1 //===- RegAllocFast.cpp - A fast register allocator for debug code --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This register allocator allocates registers to a basic block at a
10 /// time, attempting to keep values in registers and reusing registers as
11 /// appropriate.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/IndexedMap.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/SparseSet.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineFunctionPass.h"
26 #include "llvm/CodeGen/MachineInstr.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/CodeGen/MachineOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/RegAllocRegistry.h"
31 #include "llvm/CodeGen/RegisterClassInfo.h"
32 #include "llvm/CodeGen/TargetInstrInfo.h"
33 #include "llvm/CodeGen/TargetOpcodes.h"
34 #include "llvm/CodeGen/TargetRegisterInfo.h"
35 #include "llvm/CodeGen/TargetSubtargetInfo.h"
36 #include "llvm/IR/DebugLoc.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/InitializePasses.h"
39 #include "llvm/MC/MCInstrDesc.h"
40 #include "llvm/MC/MCRegisterInfo.h"
41 #include "llvm/Pass.h"
42 #include "llvm/Support/Casting.h"
43 #include "llvm/Support/Compiler.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include <cassert>
48 #include <tuple>
49 #include <vector>
50
51 using namespace llvm;
52
53 #define DEBUG_TYPE "regalloc"
54
55 STATISTIC(NumStores, "Number of stores added");
56 STATISTIC(NumLoads , "Number of loads added");
57 STATISTIC(NumCoalesced, "Number of copies coalesced");
58
59 static RegisterRegAlloc
60 fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator);
61
62 namespace {
63
64 class RegAllocFast : public MachineFunctionPass {
65 public:
66 static char ID;
67
RegAllocFast()68 RegAllocFast() : MachineFunctionPass(ID), StackSlotForVirtReg(-1) {}
69
70 private:
71 MachineFrameInfo *MFI;
72 MachineRegisterInfo *MRI;
73 const TargetRegisterInfo *TRI;
74 const TargetInstrInfo *TII;
75 RegisterClassInfo RegClassInfo;
76
77 /// Basic block currently being allocated.
78 MachineBasicBlock *MBB;
79
80 /// Maps virtual regs to the frame index where these values are spilled.
81 IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg;
82
83 /// Everything we know about a live virtual register.
84 struct LiveReg {
85 MachineInstr *LastUse = nullptr; ///< Last instr to use reg.
86 Register VirtReg; ///< Virtual register number.
87 MCPhysReg PhysReg = 0; ///< Currently held here.
88 unsigned short LastOpNum = 0; ///< OpNum on LastUse.
89 bool Dirty = false; ///< Register needs spill.
90
LiveReg__anonfbe882250111::RegAllocFast::LiveReg91 explicit LiveReg(Register VirtReg) : VirtReg(VirtReg) {}
92
getSparseSetIndex__anonfbe882250111::RegAllocFast::LiveReg93 unsigned getSparseSetIndex() const {
94 return Register::virtReg2Index(VirtReg);
95 }
96 };
97
98 using LiveRegMap = SparseSet<LiveReg>;
99 /// This map contains entries for each virtual register that is currently
100 /// available in a physical register.
101 LiveRegMap LiveVirtRegs;
102
103 DenseMap<unsigned, SmallVector<MachineInstr *, 2>> LiveDbgValueMap;
104
105 /// Has a bit set for every virtual register for which it was determined
106 /// that it is alive across blocks.
107 BitVector MayLiveAcrossBlocks;
108
109 /// State of a physical register.
110 enum RegState {
111 /// A disabled register is not available for allocation, but an alias may
112 /// be in use. A register can only be moved out of the disabled state if
113 /// all aliases are disabled.
114 regDisabled,
115
116 /// A free register is not currently in use and can be allocated
117 /// immediately without checking aliases.
118 regFree,
119
120 /// A reserved register has been assigned explicitly (e.g., setting up a
121 /// call parameter), and it remains reserved until it is used.
122 regReserved
123
124 /// A register state may also be a virtual register number, indication
125 /// that the physical register is currently allocated to a virtual
126 /// register. In that case, LiveVirtRegs contains the inverse mapping.
127 };
128
129 /// Maps each physical register to a RegState enum or a virtual register.
130 std::vector<unsigned> PhysRegState;
131
132 SmallVector<Register, 16> VirtDead;
133 SmallVector<MachineInstr *, 32> Coalesced;
134
135 using RegUnitSet = SparseSet<uint16_t, identity<uint16_t>>;
136 /// Set of register units that are used in the current instruction, and so
137 /// cannot be allocated.
138 RegUnitSet UsedInInstr;
139
140 void setPhysRegState(MCPhysReg PhysReg, unsigned NewState);
141
142 /// Mark a physreg as used in this instruction.
markRegUsedInInstr(MCPhysReg PhysReg)143 void markRegUsedInInstr(MCPhysReg PhysReg) {
144 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
145 UsedInInstr.insert(*Units);
146 }
147
148 /// Check if a physreg or any of its aliases are used in this instruction.
isRegUsedInInstr(MCPhysReg PhysReg) const149 bool isRegUsedInInstr(MCPhysReg PhysReg) const {
150 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
151 if (UsedInInstr.count(*Units))
152 return true;
153 return false;
154 }
155
156 enum : unsigned {
157 spillClean = 50,
158 spillDirty = 100,
159 spillPrefBonus = 20,
160 spillImpossible = ~0u
161 };
162
163 public:
getPassName() const164 StringRef getPassName() const override { return "Fast Register Allocator"; }
165
getAnalysisUsage(AnalysisUsage & AU) const166 void getAnalysisUsage(AnalysisUsage &AU) const override {
167 AU.setPreservesCFG();
168 MachineFunctionPass::getAnalysisUsage(AU);
169 }
170
getRequiredProperties() const171 MachineFunctionProperties getRequiredProperties() const override {
172 return MachineFunctionProperties().set(
173 MachineFunctionProperties::Property::NoPHIs);
174 }
175
getSetProperties() const176 MachineFunctionProperties getSetProperties() const override {
177 return MachineFunctionProperties().set(
178 MachineFunctionProperties::Property::NoVRegs);
179 }
180
181 private:
182 bool runOnMachineFunction(MachineFunction &MF) override;
183
184 void allocateBasicBlock(MachineBasicBlock &MBB);
185 void allocateInstruction(MachineInstr &MI);
186 void handleDebugValue(MachineInstr &MI);
187 void handleThroughOperands(MachineInstr &MI,
188 SmallVectorImpl<Register> &VirtDead);
189 bool isLastUseOfLocalReg(const MachineOperand &MO) const;
190
191 void addKillFlag(const LiveReg &LRI);
192 void killVirtReg(LiveReg &LR);
193 void killVirtReg(Register VirtReg);
194 void spillVirtReg(MachineBasicBlock::iterator MI, LiveReg &LR);
195 void spillVirtReg(MachineBasicBlock::iterator MI, Register VirtReg);
196
197 void usePhysReg(MachineOperand &MO);
198 void definePhysReg(MachineBasicBlock::iterator MI, MCPhysReg PhysReg,
199 RegState NewState);
200 unsigned calcSpillCost(MCPhysReg PhysReg) const;
201 void assignVirtToPhysReg(LiveReg &, MCPhysReg PhysReg);
202
findLiveVirtReg(Register VirtReg)203 LiveRegMap::iterator findLiveVirtReg(Register VirtReg) {
204 return LiveVirtRegs.find(Register::virtReg2Index(VirtReg));
205 }
206
findLiveVirtReg(Register VirtReg) const207 LiveRegMap::const_iterator findLiveVirtReg(Register VirtReg) const {
208 return LiveVirtRegs.find(Register::virtReg2Index(VirtReg));
209 }
210
211 void allocVirtReg(MachineInstr &MI, LiveReg &LR, Register Hint);
212 void allocVirtRegUndef(MachineOperand &MO);
213 MCPhysReg defineVirtReg(MachineInstr &MI, unsigned OpNum, Register VirtReg,
214 Register Hint);
215 LiveReg &reloadVirtReg(MachineInstr &MI, unsigned OpNum, Register VirtReg,
216 Register Hint);
217 void spillAll(MachineBasicBlock::iterator MI, bool OnlyLiveOut);
218 bool setPhysReg(MachineInstr &MI, MachineOperand &MO, MCPhysReg PhysReg);
219
220 Register traceCopies(Register VirtReg) const;
221 Register traceCopyChain(Register Reg) const;
222
223 int getStackSpaceFor(Register VirtReg);
224 void spill(MachineBasicBlock::iterator Before, Register VirtReg,
225 MCPhysReg AssignedReg, bool Kill);
226 void reload(MachineBasicBlock::iterator Before, Register VirtReg,
227 MCPhysReg PhysReg);
228
229 bool mayLiveOut(Register VirtReg);
230 bool mayLiveIn(Register VirtReg);
231
232 void dumpState();
233 };
234
235 } // end anonymous namespace
236
237 char RegAllocFast::ID = 0;
238
239 INITIALIZE_PASS(RegAllocFast, "regallocfast", "Fast Register Allocator", false,
240 false)
241
setPhysRegState(MCPhysReg PhysReg,unsigned NewState)242 void RegAllocFast::setPhysRegState(MCPhysReg PhysReg, unsigned NewState) {
243 PhysRegState[PhysReg] = NewState;
244 }
245
246 /// This allocates space for the specified virtual register to be held on the
247 /// stack.
getStackSpaceFor(Register VirtReg)248 int RegAllocFast::getStackSpaceFor(Register VirtReg) {
249 // Find the location Reg would belong...
250 int SS = StackSlotForVirtReg[VirtReg];
251 // Already has space allocated?
252 if (SS != -1)
253 return SS;
254
255 // Allocate a new stack object for this spill location...
256 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
257 unsigned Size = TRI->getSpillSize(RC);
258 unsigned Align = TRI->getSpillAlignment(RC);
259 int FrameIdx = MFI->CreateSpillStackObject(Size, Align);
260
261 // Assign the slot.
262 StackSlotForVirtReg[VirtReg] = FrameIdx;
263 return FrameIdx;
264 }
265
266 /// Returns false if \p VirtReg is known to not live out of the current block.
mayLiveOut(Register VirtReg)267 bool RegAllocFast::mayLiveOut(Register VirtReg) {
268 if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg))) {
269 // Cannot be live-out if there are no successors.
270 return !MBB->succ_empty();
271 }
272
273 // If this block loops back to itself, it would be necessary to check whether
274 // the use comes after the def.
275 if (MBB->isSuccessor(MBB)) {
276 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
277 return true;
278 }
279
280 // See if the first \p Limit uses of the register are all in the current
281 // block.
282 static const unsigned Limit = 8;
283 unsigned C = 0;
284 for (const MachineInstr &UseInst : MRI->reg_nodbg_instructions(VirtReg)) {
285 if (UseInst.getParent() != MBB || ++C >= Limit) {
286 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
287 // Cannot be live-out if there are no successors.
288 return !MBB->succ_empty();
289 }
290 }
291
292 return false;
293 }
294
295 /// Returns false if \p VirtReg is known to not be live into the current block.
mayLiveIn(Register VirtReg)296 bool RegAllocFast::mayLiveIn(Register VirtReg) {
297 if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg)))
298 return !MBB->pred_empty();
299
300 // See if the first \p Limit def of the register are all in the current block.
301 static const unsigned Limit = 8;
302 unsigned C = 0;
303 for (const MachineInstr &DefInst : MRI->def_instructions(VirtReg)) {
304 if (DefInst.getParent() != MBB || ++C >= Limit) {
305 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
306 return !MBB->pred_empty();
307 }
308 }
309
310 return false;
311 }
312
313 /// Insert spill instruction for \p AssignedReg before \p Before. Update
314 /// DBG_VALUEs with \p VirtReg operands with the stack slot.
spill(MachineBasicBlock::iterator Before,Register VirtReg,MCPhysReg AssignedReg,bool Kill)315 void RegAllocFast::spill(MachineBasicBlock::iterator Before, Register VirtReg,
316 MCPhysReg AssignedReg, bool Kill) {
317 LLVM_DEBUG(dbgs() << "Spilling " << printReg(VirtReg, TRI)
318 << " in " << printReg(AssignedReg, TRI));
319 int FI = getStackSpaceFor(VirtReg);
320 LLVM_DEBUG(dbgs() << " to stack slot #" << FI << '\n');
321
322 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
323 TII->storeRegToStackSlot(*MBB, Before, AssignedReg, Kill, FI, &RC, TRI);
324 ++NumStores;
325
326 // If this register is used by DBG_VALUE then insert new DBG_VALUE to
327 // identify spilled location as the place to find corresponding variable's
328 // value.
329 SmallVectorImpl<MachineInstr *> &LRIDbgValues = LiveDbgValueMap[VirtReg];
330 for (MachineInstr *DBG : LRIDbgValues) {
331 MachineInstr *NewDV = buildDbgValueForSpill(*MBB, Before, *DBG, FI);
332 assert(NewDV->getParent() == MBB && "dangling parent pointer");
333 (void)NewDV;
334 LLVM_DEBUG(dbgs() << "Inserting debug info due to spill:\n" << *NewDV);
335 }
336 // Now this register is spilled there is should not be any DBG_VALUE
337 // pointing to this register because they are all pointing to spilled value
338 // now.
339 LRIDbgValues.clear();
340 }
341
342 /// Insert reload instruction for \p PhysReg before \p Before.
reload(MachineBasicBlock::iterator Before,Register VirtReg,MCPhysReg PhysReg)343 void RegAllocFast::reload(MachineBasicBlock::iterator Before, Register VirtReg,
344 MCPhysReg PhysReg) {
345 LLVM_DEBUG(dbgs() << "Reloading " << printReg(VirtReg, TRI) << " into "
346 << printReg(PhysReg, TRI) << '\n');
347 int FI = getStackSpaceFor(VirtReg);
348 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
349 TII->loadRegFromStackSlot(*MBB, Before, PhysReg, FI, &RC, TRI);
350 ++NumLoads;
351 }
352
353 /// Return true if MO is the only remaining reference to its virtual register,
354 /// and it is guaranteed to be a block-local register.
isLastUseOfLocalReg(const MachineOperand & MO) const355 bool RegAllocFast::isLastUseOfLocalReg(const MachineOperand &MO) const {
356 // If the register has ever been spilled or reloaded, we conservatively assume
357 // it is a global register used in multiple blocks.
358 if (StackSlotForVirtReg[MO.getReg()] != -1)
359 return false;
360
361 // Check that the use/def chain has exactly one operand - MO.
362 MachineRegisterInfo::reg_nodbg_iterator I = MRI->reg_nodbg_begin(MO.getReg());
363 if (&*I != &MO)
364 return false;
365 return ++I == MRI->reg_nodbg_end();
366 }
367
368 /// Set kill flags on last use of a virtual register.
addKillFlag(const LiveReg & LR)369 void RegAllocFast::addKillFlag(const LiveReg &LR) {
370 if (!LR.LastUse) return;
371 MachineOperand &MO = LR.LastUse->getOperand(LR.LastOpNum);
372 if (MO.isUse() && !LR.LastUse->isRegTiedToDefOperand(LR.LastOpNum)) {
373 if (MO.getReg() == LR.PhysReg)
374 MO.setIsKill();
375 // else, don't do anything we are problably redefining a
376 // subreg of this register and given we don't track which
377 // lanes are actually dead, we cannot insert a kill flag here.
378 // Otherwise we may end up in a situation like this:
379 // ... = (MO) physreg:sub1, implicit killed physreg
380 // ... <== Here we would allow later pass to reuse physreg:sub1
381 // which is potentially wrong.
382 // LR:sub0 = ...
383 // ... = LR.sub1 <== This is going to use physreg:sub1
384 }
385 }
386
387 /// Mark virtreg as no longer available.
killVirtReg(LiveReg & LR)388 void RegAllocFast::killVirtReg(LiveReg &LR) {
389 addKillFlag(LR);
390 assert(PhysRegState[LR.PhysReg] == LR.VirtReg &&
391 "Broken RegState mapping");
392 setPhysRegState(LR.PhysReg, regFree);
393 LR.PhysReg = 0;
394 }
395
396 /// Mark virtreg as no longer available.
killVirtReg(Register VirtReg)397 void RegAllocFast::killVirtReg(Register VirtReg) {
398 assert(Register::isVirtualRegister(VirtReg) &&
399 "killVirtReg needs a virtual register");
400 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
401 if (LRI != LiveVirtRegs.end() && LRI->PhysReg)
402 killVirtReg(*LRI);
403 }
404
405 /// This method spills the value specified by VirtReg into the corresponding
406 /// stack slot if needed.
spillVirtReg(MachineBasicBlock::iterator MI,Register VirtReg)407 void RegAllocFast::spillVirtReg(MachineBasicBlock::iterator MI,
408 Register VirtReg) {
409 assert(Register::isVirtualRegister(VirtReg) &&
410 "Spilling a physical register is illegal!");
411 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
412 assert(LRI != LiveVirtRegs.end() && LRI->PhysReg &&
413 "Spilling unmapped virtual register");
414 spillVirtReg(MI, *LRI);
415 }
416
417 /// Do the actual work of spilling.
spillVirtReg(MachineBasicBlock::iterator MI,LiveReg & LR)418 void RegAllocFast::spillVirtReg(MachineBasicBlock::iterator MI, LiveReg &LR) {
419 assert(PhysRegState[LR.PhysReg] == LR.VirtReg && "Broken RegState mapping");
420
421 if (LR.Dirty) {
422 // If this physreg is used by the instruction, we want to kill it on the
423 // instruction, not on the spill.
424 bool SpillKill = MachineBasicBlock::iterator(LR.LastUse) != MI;
425 LR.Dirty = false;
426
427 spill(MI, LR.VirtReg, LR.PhysReg, SpillKill);
428
429 if (SpillKill)
430 LR.LastUse = nullptr; // Don't kill register again
431 }
432 killVirtReg(LR);
433 }
434
435 /// Spill all dirty virtregs without killing them.
spillAll(MachineBasicBlock::iterator MI,bool OnlyLiveOut)436 void RegAllocFast::spillAll(MachineBasicBlock::iterator MI, bool OnlyLiveOut) {
437 if (LiveVirtRegs.empty())
438 return;
439 // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order
440 // of spilling here is deterministic, if arbitrary.
441 for (LiveReg &LR : LiveVirtRegs) {
442 if (!LR.PhysReg)
443 continue;
444 if (OnlyLiveOut && !mayLiveOut(LR.VirtReg))
445 continue;
446 spillVirtReg(MI, LR);
447 }
448 LiveVirtRegs.clear();
449 }
450
451 /// Handle the direct use of a physical register. Check that the register is
452 /// not used by a virtreg. Kill the physreg, marking it free. This may add
453 /// implicit kills to MO->getParent() and invalidate MO.
usePhysReg(MachineOperand & MO)454 void RegAllocFast::usePhysReg(MachineOperand &MO) {
455 // Ignore undef uses.
456 if (MO.isUndef())
457 return;
458
459 Register PhysReg = MO.getReg();
460 assert(PhysReg.isPhysical() && "Bad usePhysReg operand");
461
462 markRegUsedInInstr(PhysReg);
463 switch (PhysRegState[PhysReg]) {
464 case regDisabled:
465 break;
466 case regReserved:
467 PhysRegState[PhysReg] = regFree;
468 LLVM_FALLTHROUGH;
469 case regFree:
470 MO.setIsKill();
471 return;
472 default:
473 // The physreg was allocated to a virtual register. That means the value we
474 // wanted has been clobbered.
475 llvm_unreachable("Instruction uses an allocated register");
476 }
477
478 // Maybe a superregister is reserved?
479 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) {
480 MCPhysReg Alias = *AI;
481 switch (PhysRegState[Alias]) {
482 case regDisabled:
483 break;
484 case regReserved:
485 // Either PhysReg is a subregister of Alias and we mark the
486 // whole register as free, or PhysReg is the superregister of
487 // Alias and we mark all the aliases as disabled before freeing
488 // PhysReg.
489 // In the latter case, since PhysReg was disabled, this means that
490 // its value is defined only by physical sub-registers. This check
491 // is performed by the assert of the default case in this loop.
492 // Note: The value of the superregister may only be partial
493 // defined, that is why regDisabled is a valid state for aliases.
494 assert((TRI->isSuperRegister(PhysReg, Alias) ||
495 TRI->isSuperRegister(Alias, PhysReg)) &&
496 "Instruction is not using a subregister of a reserved register");
497 LLVM_FALLTHROUGH;
498 case regFree:
499 if (TRI->isSuperRegister(PhysReg, Alias)) {
500 // Leave the superregister in the working set.
501 setPhysRegState(Alias, regFree);
502 MO.getParent()->addRegisterKilled(Alias, TRI, true);
503 return;
504 }
505 // Some other alias was in the working set - clear it.
506 setPhysRegState(Alias, regDisabled);
507 break;
508 default:
509 llvm_unreachable("Instruction uses an alias of an allocated register");
510 }
511 }
512
513 // All aliases are disabled, bring register into working set.
514 setPhysRegState(PhysReg, regFree);
515 MO.setIsKill();
516 }
517
518 /// Mark PhysReg as reserved or free after spilling any virtregs. This is very
519 /// similar to defineVirtReg except the physreg is reserved instead of
520 /// allocated.
definePhysReg(MachineBasicBlock::iterator MI,MCPhysReg PhysReg,RegState NewState)521 void RegAllocFast::definePhysReg(MachineBasicBlock::iterator MI,
522 MCPhysReg PhysReg, RegState NewState) {
523 markRegUsedInInstr(PhysReg);
524 switch (Register VirtReg = PhysRegState[PhysReg]) {
525 case regDisabled:
526 break;
527 default:
528 spillVirtReg(MI, VirtReg);
529 LLVM_FALLTHROUGH;
530 case regFree:
531 case regReserved:
532 setPhysRegState(PhysReg, NewState);
533 return;
534 }
535
536 // This is a disabled register, disable all aliases.
537 setPhysRegState(PhysReg, NewState);
538 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) {
539 MCPhysReg Alias = *AI;
540 switch (Register VirtReg = PhysRegState[Alias]) {
541 case regDisabled:
542 break;
543 default:
544 spillVirtReg(MI, VirtReg);
545 LLVM_FALLTHROUGH;
546 case regFree:
547 case regReserved:
548 setPhysRegState(Alias, regDisabled);
549 if (TRI->isSuperRegister(PhysReg, Alias))
550 return;
551 break;
552 }
553 }
554 }
555
556 /// Return the cost of spilling clearing out PhysReg and aliases so it is free
557 /// for allocation. Returns 0 when PhysReg is free or disabled with all aliases
558 /// disabled - it can be allocated directly.
559 /// \returns spillImpossible when PhysReg or an alias can't be spilled.
calcSpillCost(MCPhysReg PhysReg) const560 unsigned RegAllocFast::calcSpillCost(MCPhysReg PhysReg) const {
561 if (isRegUsedInInstr(PhysReg)) {
562 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI)
563 << " is already used in instr.\n");
564 return spillImpossible;
565 }
566 switch (Register VirtReg = PhysRegState[PhysReg]) {
567 case regDisabled:
568 break;
569 case regFree:
570 return 0;
571 case regReserved:
572 LLVM_DEBUG(dbgs() << printReg(VirtReg, TRI) << " corresponding "
573 << printReg(PhysReg, TRI) << " is reserved already.\n");
574 return spillImpossible;
575 default: {
576 LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg);
577 assert(LRI != LiveVirtRegs.end() && LRI->PhysReg &&
578 "Missing VirtReg entry");
579 return LRI->Dirty ? spillDirty : spillClean;
580 }
581 }
582
583 // This is a disabled register, add up cost of aliases.
584 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is disabled.\n");
585 unsigned Cost = 0;
586 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) {
587 MCPhysReg Alias = *AI;
588 switch (Register VirtReg = PhysRegState[Alias]) {
589 case regDisabled:
590 break;
591 case regFree:
592 ++Cost;
593 break;
594 case regReserved:
595 return spillImpossible;
596 default: {
597 LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg);
598 assert(LRI != LiveVirtRegs.end() && LRI->PhysReg &&
599 "Missing VirtReg entry");
600 Cost += LRI->Dirty ? spillDirty : spillClean;
601 break;
602 }
603 }
604 }
605 return Cost;
606 }
607
608 /// This method updates local state so that we know that PhysReg is the
609 /// proper container for VirtReg now. The physical register must not be used
610 /// for anything else when this is called.
assignVirtToPhysReg(LiveReg & LR,MCPhysReg PhysReg)611 void RegAllocFast::assignVirtToPhysReg(LiveReg &LR, MCPhysReg PhysReg) {
612 Register VirtReg = LR.VirtReg;
613 LLVM_DEBUG(dbgs() << "Assigning " << printReg(VirtReg, TRI) << " to "
614 << printReg(PhysReg, TRI) << '\n');
615 assert(LR.PhysReg == 0 && "Already assigned a physreg");
616 assert(PhysReg != 0 && "Trying to assign no register");
617 LR.PhysReg = PhysReg;
618 setPhysRegState(PhysReg, VirtReg);
619 }
620
isCoalescable(const MachineInstr & MI)621 static bool isCoalescable(const MachineInstr &MI) {
622 return MI.isFullCopy();
623 }
624
traceCopyChain(Register Reg) const625 Register RegAllocFast::traceCopyChain(Register Reg) const {
626 static const unsigned ChainLengthLimit = 3;
627 unsigned C = 0;
628 do {
629 if (Reg.isPhysical())
630 return Reg;
631 assert(Reg.isVirtual());
632
633 MachineInstr *VRegDef = MRI->getUniqueVRegDef(Reg);
634 if (!VRegDef || !isCoalescable(*VRegDef))
635 return 0;
636 Reg = VRegDef->getOperand(1).getReg();
637 } while (++C <= ChainLengthLimit);
638 return 0;
639 }
640
641 /// Check if any of \p VirtReg's definitions is a copy. If it is follow the
642 /// chain of copies to check whether we reach a physical register we can
643 /// coalesce with.
traceCopies(Register VirtReg) const644 Register RegAllocFast::traceCopies(Register VirtReg) const {
645 static const unsigned DefLimit = 3;
646 unsigned C = 0;
647 for (const MachineInstr &MI : MRI->def_instructions(VirtReg)) {
648 if (isCoalescable(MI)) {
649 Register Reg = MI.getOperand(1).getReg();
650 Reg = traceCopyChain(Reg);
651 if (Reg.isValid())
652 return Reg;
653 }
654
655 if (++C >= DefLimit)
656 break;
657 }
658 return Register();
659 }
660
661 /// Allocates a physical register for VirtReg.
allocVirtReg(MachineInstr & MI,LiveReg & LR,Register Hint0)662 void RegAllocFast::allocVirtReg(MachineInstr &MI, LiveReg &LR, Register Hint0) {
663 const Register VirtReg = LR.VirtReg;
664
665 assert(Register::isVirtualRegister(VirtReg) &&
666 "Can only allocate virtual registers");
667
668 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
669 LLVM_DEBUG(dbgs() << "Search register for " << printReg(VirtReg)
670 << " in class " << TRI->getRegClassName(&RC)
671 << " with hint " << printReg(Hint0, TRI) << '\n');
672
673 // Take hint when possible.
674 if (Hint0.isPhysical() && MRI->isAllocatable(Hint0) &&
675 RC.contains(Hint0)) {
676 // Ignore the hint if we would have to spill a dirty register.
677 unsigned Cost = calcSpillCost(Hint0);
678 if (Cost < spillDirty) {
679 LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint0, TRI)
680 << '\n');
681 if (Cost)
682 definePhysReg(MI, Hint0, regFree);
683 assignVirtToPhysReg(LR, Hint0);
684 return;
685 } else {
686 LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint0, TRI)
687 << "occupied\n");
688 }
689 } else {
690 Hint0 = Register();
691 }
692
693 // Try other hint.
694 Register Hint1 = traceCopies(VirtReg);
695 if (Hint1.isPhysical() && MRI->isAllocatable(Hint1) &&
696 RC.contains(Hint1) && !isRegUsedInInstr(Hint1)) {
697 // Ignore the hint if we would have to spill a dirty register.
698 unsigned Cost = calcSpillCost(Hint1);
699 if (Cost < spillDirty) {
700 LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint1, TRI)
701 << '\n');
702 if (Cost)
703 definePhysReg(MI, Hint1, regFree);
704 assignVirtToPhysReg(LR, Hint1);
705 return;
706 } else {
707 LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint1, TRI)
708 << "occupied\n");
709 }
710 } else {
711 Hint1 = Register();
712 }
713
714 MCPhysReg BestReg = 0;
715 unsigned BestCost = spillImpossible;
716 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC);
717 for (MCPhysReg PhysReg : AllocationOrder) {
718 LLVM_DEBUG(dbgs() << "\tRegister: " << printReg(PhysReg, TRI) << ' ');
719 unsigned Cost = calcSpillCost(PhysReg);
720 LLVM_DEBUG(dbgs() << "Cost: " << Cost << " BestCost: " << BestCost << '\n');
721 // Immediate take a register with cost 0.
722 if (Cost == 0) {
723 assignVirtToPhysReg(LR, PhysReg);
724 return;
725 }
726
727 if (PhysReg == Hint1 || PhysReg == Hint0)
728 Cost -= spillPrefBonus;
729
730 if (Cost < BestCost) {
731 BestReg = PhysReg;
732 BestCost = Cost;
733 }
734 }
735
736 if (!BestReg) {
737 // Nothing we can do: Report an error and keep going with an invalid
738 // allocation.
739 if (MI.isInlineAsm())
740 MI.emitError("inline assembly requires more registers than available");
741 else
742 MI.emitError("ran out of registers during register allocation");
743 definePhysReg(MI, *AllocationOrder.begin(), regFree);
744 assignVirtToPhysReg(LR, *AllocationOrder.begin());
745 return;
746 }
747
748 definePhysReg(MI, BestReg, regFree);
749 assignVirtToPhysReg(LR, BestReg);
750 }
751
allocVirtRegUndef(MachineOperand & MO)752 void RegAllocFast::allocVirtRegUndef(MachineOperand &MO) {
753 assert(MO.isUndef() && "expected undef use");
754 Register VirtReg = MO.getReg();
755 assert(Register::isVirtualRegister(VirtReg) && "Expected virtreg");
756
757 LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg);
758 MCPhysReg PhysReg;
759 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) {
760 PhysReg = LRI->PhysReg;
761 } else {
762 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
763 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC);
764 assert(!AllocationOrder.empty() && "Allocation order must not be empty");
765 PhysReg = AllocationOrder[0];
766 }
767
768 unsigned SubRegIdx = MO.getSubReg();
769 if (SubRegIdx != 0) {
770 PhysReg = TRI->getSubReg(PhysReg, SubRegIdx);
771 MO.setSubReg(0);
772 }
773 MO.setReg(PhysReg);
774 MO.setIsRenamable(true);
775 }
776
777 /// Allocates a register for VirtReg and mark it as dirty.
defineVirtReg(MachineInstr & MI,unsigned OpNum,Register VirtReg,Register Hint)778 MCPhysReg RegAllocFast::defineVirtReg(MachineInstr &MI, unsigned OpNum,
779 Register VirtReg, Register Hint) {
780 assert(Register::isVirtualRegister(VirtReg) && "Not a virtual register");
781 LiveRegMap::iterator LRI;
782 bool New;
783 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
784 if (!LRI->PhysReg) {
785 // If there is no hint, peek at the only use of this register.
786 if ((!Hint || !Hint.isPhysical()) &&
787 MRI->hasOneNonDBGUse(VirtReg)) {
788 const MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(VirtReg);
789 // It's a copy, use the destination register as a hint.
790 if (UseMI.isCopyLike())
791 Hint = UseMI.getOperand(0).getReg();
792 }
793 allocVirtReg(MI, *LRI, Hint);
794 } else if (LRI->LastUse) {
795 // Redefining a live register - kill at the last use, unless it is this
796 // instruction defining VirtReg multiple times.
797 if (LRI->LastUse != &MI || LRI->LastUse->getOperand(LRI->LastOpNum).isUse())
798 addKillFlag(*LRI);
799 }
800 assert(LRI->PhysReg && "Register not assigned");
801 LRI->LastUse = &MI;
802 LRI->LastOpNum = OpNum;
803 LRI->Dirty = true;
804 markRegUsedInInstr(LRI->PhysReg);
805 return LRI->PhysReg;
806 }
807
808 /// Make sure VirtReg is available in a physreg and return it.
reloadVirtReg(MachineInstr & MI,unsigned OpNum,Register VirtReg,Register Hint)809 RegAllocFast::LiveReg &RegAllocFast::reloadVirtReg(MachineInstr &MI,
810 unsigned OpNum,
811 Register VirtReg,
812 Register Hint) {
813 assert(Register::isVirtualRegister(VirtReg) && "Not a virtual register");
814 LiveRegMap::iterator LRI;
815 bool New;
816 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
817 MachineOperand &MO = MI.getOperand(OpNum);
818 if (!LRI->PhysReg) {
819 allocVirtReg(MI, *LRI, Hint);
820 reload(MI, VirtReg, LRI->PhysReg);
821 } else if (LRI->Dirty) {
822 if (isLastUseOfLocalReg(MO)) {
823 LLVM_DEBUG(dbgs() << "Killing last use: " << MO << '\n');
824 if (MO.isUse())
825 MO.setIsKill();
826 else
827 MO.setIsDead();
828 } else if (MO.isKill()) {
829 LLVM_DEBUG(dbgs() << "Clearing dubious kill: " << MO << '\n');
830 MO.setIsKill(false);
831 } else if (MO.isDead()) {
832 LLVM_DEBUG(dbgs() << "Clearing dubious dead: " << MO << '\n');
833 MO.setIsDead(false);
834 }
835 } else if (MO.isKill()) {
836 // We must remove kill flags from uses of reloaded registers because the
837 // register would be killed immediately, and there might be a second use:
838 // %foo = OR killed %x, %x
839 // This would cause a second reload of %x into a different register.
840 LLVM_DEBUG(dbgs() << "Clearing clean kill: " << MO << '\n');
841 MO.setIsKill(false);
842 } else if (MO.isDead()) {
843 LLVM_DEBUG(dbgs() << "Clearing clean dead: " << MO << '\n');
844 MO.setIsDead(false);
845 }
846 assert(LRI->PhysReg && "Register not assigned");
847 LRI->LastUse = &MI;
848 LRI->LastOpNum = OpNum;
849 markRegUsedInInstr(LRI->PhysReg);
850 return *LRI;
851 }
852
853 /// Changes operand OpNum in MI the refer the PhysReg, considering subregs. This
854 /// may invalidate any operand pointers. Return true if the operand kills its
855 /// register.
setPhysReg(MachineInstr & MI,MachineOperand & MO,MCPhysReg PhysReg)856 bool RegAllocFast::setPhysReg(MachineInstr &MI, MachineOperand &MO,
857 MCPhysReg PhysReg) {
858 bool Dead = MO.isDead();
859 if (!MO.getSubReg()) {
860 MO.setReg(PhysReg);
861 MO.setIsRenamable(true);
862 return MO.isKill() || Dead;
863 }
864
865 // Handle subregister index.
866 MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : Register());
867 MO.setIsRenamable(true);
868 MO.setSubReg(0);
869
870 // A kill flag implies killing the full register. Add corresponding super
871 // register kill.
872 if (MO.isKill()) {
873 MI.addRegisterKilled(PhysReg, TRI, true);
874 return true;
875 }
876
877 // A <def,read-undef> of a sub-register requires an implicit def of the full
878 // register.
879 if (MO.isDef() && MO.isUndef())
880 MI.addRegisterDefined(PhysReg, TRI);
881
882 return Dead;
883 }
884
885 // Handles special instruction operand like early clobbers and tied ops when
886 // there are additional physreg defines.
handleThroughOperands(MachineInstr & MI,SmallVectorImpl<Register> & VirtDead)887 void RegAllocFast::handleThroughOperands(MachineInstr &MI,
888 SmallVectorImpl<Register> &VirtDead) {
889 LLVM_DEBUG(dbgs() << "Scanning for through registers:");
890 SmallSet<Register, 8> ThroughRegs;
891 for (const MachineOperand &MO : MI.operands()) {
892 if (!MO.isReg()) continue;
893 Register Reg = MO.getReg();
894 if (!Reg.isVirtual())
895 continue;
896 if (MO.isEarlyClobber() || (MO.isUse() && MO.isTied()) ||
897 (MO.getSubReg() && MI.readsVirtualRegister(Reg))) {
898 if (ThroughRegs.insert(Reg).second)
899 LLVM_DEBUG(dbgs() << ' ' << printReg(Reg));
900 }
901 }
902
903 // If any physreg defines collide with preallocated through registers,
904 // we must spill and reallocate.
905 LLVM_DEBUG(dbgs() << "\nChecking for physdef collisions.\n");
906 for (const MachineOperand &MO : MI.operands()) {
907 if (!MO.isReg() || !MO.isDef()) continue;
908 Register Reg = MO.getReg();
909 if (!Reg || !Reg.isPhysical())
910 continue;
911 markRegUsedInInstr(Reg);
912 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
913 if (ThroughRegs.count(PhysRegState[*AI]))
914 definePhysReg(MI, *AI, regFree);
915 }
916 }
917
918 SmallVector<Register, 8> PartialDefs;
919 LLVM_DEBUG(dbgs() << "Allocating tied uses.\n");
920 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
921 MachineOperand &MO = MI.getOperand(I);
922 if (!MO.isReg()) continue;
923 Register Reg = MO.getReg();
924 if (!Register::isVirtualRegister(Reg))
925 continue;
926 if (MO.isUse()) {
927 if (!MO.isTied()) continue;
928 LLVM_DEBUG(dbgs() << "Operand " << I << "(" << MO
929 << ") is tied to operand " << MI.findTiedOperandIdx(I)
930 << ".\n");
931 LiveReg &LR = reloadVirtReg(MI, I, Reg, 0);
932 MCPhysReg PhysReg = LR.PhysReg;
933 setPhysReg(MI, MO, PhysReg);
934 // Note: we don't update the def operand yet. That would cause the normal
935 // def-scan to attempt spilling.
936 } else if (MO.getSubReg() && MI.readsVirtualRegister(Reg)) {
937 LLVM_DEBUG(dbgs() << "Partial redefine: " << MO << '\n');
938 // Reload the register, but don't assign to the operand just yet.
939 // That would confuse the later phys-def processing pass.
940 LiveReg &LR = reloadVirtReg(MI, I, Reg, 0);
941 PartialDefs.push_back(LR.PhysReg);
942 }
943 }
944
945 LLVM_DEBUG(dbgs() << "Allocating early clobbers.\n");
946 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
947 const MachineOperand &MO = MI.getOperand(I);
948 if (!MO.isReg()) continue;
949 Register Reg = MO.getReg();
950 if (!Register::isVirtualRegister(Reg))
951 continue;
952 if (!MO.isEarlyClobber())
953 continue;
954 // Note: defineVirtReg may invalidate MO.
955 MCPhysReg PhysReg = defineVirtReg(MI, I, Reg, 0);
956 if (setPhysReg(MI, MI.getOperand(I), PhysReg))
957 VirtDead.push_back(Reg);
958 }
959
960 // Restore UsedInInstr to a state usable for allocating normal virtual uses.
961 UsedInInstr.clear();
962 for (const MachineOperand &MO : MI.operands()) {
963 if (!MO.isReg() || (MO.isDef() && !MO.isEarlyClobber())) continue;
964 Register Reg = MO.getReg();
965 if (!Reg || !Reg.isPhysical())
966 continue;
967 LLVM_DEBUG(dbgs() << "\tSetting " << printReg(Reg, TRI)
968 << " as used in instr\n");
969 markRegUsedInInstr(Reg);
970 }
971
972 // Also mark PartialDefs as used to avoid reallocation.
973 for (Register PartialDef : PartialDefs)
974 markRegUsedInInstr(PartialDef);
975 }
976
977 #ifndef NDEBUG
dumpState()978 void RegAllocFast::dumpState() {
979 for (unsigned Reg = 1, E = TRI->getNumRegs(); Reg != E; ++Reg) {
980 if (PhysRegState[Reg] == regDisabled) continue;
981 dbgs() << " " << printReg(Reg, TRI);
982 switch(PhysRegState[Reg]) {
983 case regFree:
984 break;
985 case regReserved:
986 dbgs() << "*";
987 break;
988 default: {
989 dbgs() << '=' << printReg(PhysRegState[Reg]);
990 LiveRegMap::iterator LRI = findLiveVirtReg(PhysRegState[Reg]);
991 assert(LRI != LiveVirtRegs.end() && LRI->PhysReg &&
992 "Missing VirtReg entry");
993 if (LRI->Dirty)
994 dbgs() << "*";
995 assert(LRI->PhysReg == Reg && "Bad inverse map");
996 break;
997 }
998 }
999 }
1000 dbgs() << '\n';
1001 // Check that LiveVirtRegs is the inverse.
1002 for (LiveRegMap::iterator i = LiveVirtRegs.begin(),
1003 e = LiveVirtRegs.end(); i != e; ++i) {
1004 if (!i->PhysReg)
1005 continue;
1006 assert(i->VirtReg.isVirtual() && "Bad map key");
1007 assert(Register::isPhysicalRegister(i->PhysReg) && "Bad map value");
1008 assert(PhysRegState[i->PhysReg] == i->VirtReg && "Bad inverse map");
1009 }
1010 }
1011 #endif
1012
allocateInstruction(MachineInstr & MI)1013 void RegAllocFast::allocateInstruction(MachineInstr &MI) {
1014 const MCInstrDesc &MCID = MI.getDesc();
1015
1016 // If this is a copy, we may be able to coalesce.
1017 Register CopySrcReg;
1018 Register CopyDstReg;
1019 unsigned CopySrcSub = 0;
1020 unsigned CopyDstSub = 0;
1021 if (MI.isCopy()) {
1022 CopyDstReg = MI.getOperand(0).getReg();
1023 CopySrcReg = MI.getOperand(1).getReg();
1024 CopyDstSub = MI.getOperand(0).getSubReg();
1025 CopySrcSub = MI.getOperand(1).getSubReg();
1026 }
1027
1028 // Track registers used by instruction.
1029 UsedInInstr.clear();
1030
1031 // First scan.
1032 // Mark physreg uses and early clobbers as used.
1033 // Find the end of the virtreg operands
1034 unsigned VirtOpEnd = 0;
1035 bool hasTiedOps = false;
1036 bool hasEarlyClobbers = false;
1037 bool hasPartialRedefs = false;
1038 bool hasPhysDefs = false;
1039 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1040 MachineOperand &MO = MI.getOperand(i);
1041 // Make sure MRI knows about registers clobbered by regmasks.
1042 if (MO.isRegMask()) {
1043 MRI->addPhysRegsUsedFromRegMask(MO.getRegMask());
1044 continue;
1045 }
1046 if (!MO.isReg()) continue;
1047 Register Reg = MO.getReg();
1048 if (!Reg) continue;
1049 if (Register::isVirtualRegister(Reg)) {
1050 VirtOpEnd = i+1;
1051 if (MO.isUse()) {
1052 hasTiedOps = hasTiedOps ||
1053 MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1;
1054 } else {
1055 if (MO.isEarlyClobber())
1056 hasEarlyClobbers = true;
1057 if (MO.getSubReg() && MI.readsVirtualRegister(Reg))
1058 hasPartialRedefs = true;
1059 }
1060 continue;
1061 }
1062 if (!MRI->isAllocatable(Reg)) continue;
1063 if (MO.isUse()) {
1064 usePhysReg(MO);
1065 } else if (MO.isEarlyClobber()) {
1066 definePhysReg(MI, Reg,
1067 (MO.isImplicit() || MO.isDead()) ? regFree : regReserved);
1068 hasEarlyClobbers = true;
1069 } else
1070 hasPhysDefs = true;
1071 }
1072
1073 // The instruction may have virtual register operands that must be allocated
1074 // the same register at use-time and def-time: early clobbers and tied
1075 // operands. If there are also physical defs, these registers must avoid
1076 // both physical defs and uses, making them more constrained than normal
1077 // operands.
1078 // Similarly, if there are multiple defs and tied operands, we must make
1079 // sure the same register is allocated to uses and defs.
1080 // We didn't detect inline asm tied operands above, so just make this extra
1081 // pass for all inline asm.
1082 if (MI.isInlineAsm() || hasEarlyClobbers || hasPartialRedefs ||
1083 (hasTiedOps && (hasPhysDefs || MCID.getNumDefs() > 1))) {
1084 handleThroughOperands(MI, VirtDead);
1085 // Don't attempt coalescing when we have funny stuff going on.
1086 CopyDstReg = Register();
1087 // Pretend we have early clobbers so the use operands get marked below.
1088 // This is not necessary for the common case of a single tied use.
1089 hasEarlyClobbers = true;
1090 }
1091
1092 // Second scan.
1093 // Allocate virtreg uses.
1094 bool HasUndefUse = false;
1095 for (unsigned I = 0; I != VirtOpEnd; ++I) {
1096 MachineOperand &MO = MI.getOperand(I);
1097 if (!MO.isReg()) continue;
1098 Register Reg = MO.getReg();
1099 if (!Reg.isVirtual())
1100 continue;
1101 if (MO.isUse()) {
1102 if (MO.isUndef()) {
1103 HasUndefUse = true;
1104 // There is no need to allocate a register for an undef use.
1105 continue;
1106 }
1107
1108 // Populate MayLiveAcrossBlocks in case the use block is allocated before
1109 // the def block (removing the vreg uses).
1110 mayLiveIn(Reg);
1111
1112 LiveReg &LR = reloadVirtReg(MI, I, Reg, CopyDstReg);
1113 MCPhysReg PhysReg = LR.PhysReg;
1114 CopySrcReg = (CopySrcReg == Reg || CopySrcReg == PhysReg) ? PhysReg : 0;
1115 if (setPhysReg(MI, MO, PhysReg))
1116 killVirtReg(LR);
1117 }
1118 }
1119
1120 // Allocate undef operands. This is a separate step because in a situation
1121 // like ` = OP undef %X, %X` both operands need the same register assign
1122 // so we should perform the normal assignment first.
1123 if (HasUndefUse) {
1124 for (MachineOperand &MO : MI.uses()) {
1125 if (!MO.isReg() || !MO.isUse())
1126 continue;
1127 Register Reg = MO.getReg();
1128 if (!Reg.isVirtual())
1129 continue;
1130
1131 assert(MO.isUndef() && "Should only have undef virtreg uses left");
1132 allocVirtRegUndef(MO);
1133 }
1134 }
1135
1136 // Track registers defined by instruction - early clobbers and tied uses at
1137 // this point.
1138 UsedInInstr.clear();
1139 if (hasEarlyClobbers) {
1140 for (const MachineOperand &MO : MI.operands()) {
1141 if (!MO.isReg()) continue;
1142 Register Reg = MO.getReg();
1143 if (!Reg || !Reg.isPhysical())
1144 continue;
1145 // Look for physreg defs and tied uses.
1146 if (!MO.isDef() && !MO.isTied()) continue;
1147 markRegUsedInInstr(Reg);
1148 }
1149 }
1150
1151 unsigned DefOpEnd = MI.getNumOperands();
1152 if (MI.isCall()) {
1153 // Spill all virtregs before a call. This serves one purpose: If an
1154 // exception is thrown, the landing pad is going to expect to find
1155 // registers in their spill slots.
1156 // Note: although this is appealing to just consider all definitions
1157 // as call-clobbered, this is not correct because some of those
1158 // definitions may be used later on and we do not want to reuse
1159 // those for virtual registers in between.
1160 LLVM_DEBUG(dbgs() << " Spilling remaining registers before call.\n");
1161 spillAll(MI, /*OnlyLiveOut*/ false);
1162 }
1163
1164 // Third scan.
1165 // Mark all physreg defs as used before allocating virtreg defs.
1166 for (unsigned I = 0; I != DefOpEnd; ++I) {
1167 const MachineOperand &MO = MI.getOperand(I);
1168 if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber())
1169 continue;
1170 Register Reg = MO.getReg();
1171
1172 if (!Reg || !Reg.isPhysical() || !MRI->isAllocatable(Reg))
1173 continue;
1174 definePhysReg(MI, Reg, MO.isDead() ? regFree : regReserved);
1175 }
1176
1177 // Fourth scan.
1178 // Allocate defs and collect dead defs.
1179 for (unsigned I = 0; I != DefOpEnd; ++I) {
1180 const MachineOperand &MO = MI.getOperand(I);
1181 if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber())
1182 continue;
1183 Register Reg = MO.getReg();
1184
1185 // We have already dealt with phys regs in the previous scan.
1186 if (Reg.isPhysical())
1187 continue;
1188 MCPhysReg PhysReg = defineVirtReg(MI, I, Reg, CopySrcReg);
1189 if (setPhysReg(MI, MI.getOperand(I), PhysReg)) {
1190 VirtDead.push_back(Reg);
1191 CopyDstReg = Register(); // cancel coalescing;
1192 } else
1193 CopyDstReg = (CopyDstReg == Reg || CopyDstReg == PhysReg) ? PhysReg : 0;
1194 }
1195
1196 // Kill dead defs after the scan to ensure that multiple defs of the same
1197 // register are allocated identically. We didn't need to do this for uses
1198 // because we are crerating our own kill flags, and they are always at the
1199 // last use.
1200 for (Register VirtReg : VirtDead)
1201 killVirtReg(VirtReg);
1202 VirtDead.clear();
1203
1204 LLVM_DEBUG(dbgs() << "<< " << MI);
1205 if (CopyDstReg && CopyDstReg == CopySrcReg && CopyDstSub == CopySrcSub) {
1206 LLVM_DEBUG(dbgs() << "Mark identity copy for removal\n");
1207 Coalesced.push_back(&MI);
1208 }
1209 }
1210
handleDebugValue(MachineInstr & MI)1211 void RegAllocFast::handleDebugValue(MachineInstr &MI) {
1212 MachineOperand &MO = MI.getOperand(0);
1213
1214 // Ignore DBG_VALUEs that aren't based on virtual registers. These are
1215 // mostly constants and frame indices.
1216 if (!MO.isReg())
1217 return;
1218 Register Reg = MO.getReg();
1219 if (!Register::isVirtualRegister(Reg))
1220 return;
1221
1222 // See if this virtual register has already been allocated to a physical
1223 // register or spilled to a stack slot.
1224 LiveRegMap::iterator LRI = findLiveVirtReg(Reg);
1225 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) {
1226 setPhysReg(MI, MO, LRI->PhysReg);
1227 } else {
1228 int SS = StackSlotForVirtReg[Reg];
1229 if (SS != -1) {
1230 // Modify DBG_VALUE now that the value is in a spill slot.
1231 updateDbgValueForSpill(MI, SS);
1232 LLVM_DEBUG(dbgs() << "Modifying debug info due to spill:" << "\t" << MI);
1233 return;
1234 }
1235
1236 // We can't allocate a physreg for a DebugValue, sorry!
1237 LLVM_DEBUG(dbgs() << "Unable to allocate vreg used by DBG_VALUE");
1238 MO.setReg(Register());
1239 }
1240
1241 // If Reg hasn't been spilled, put this DBG_VALUE in LiveDbgValueMap so
1242 // that future spills of Reg will have DBG_VALUEs.
1243 LiveDbgValueMap[Reg].push_back(&MI);
1244 }
1245
allocateBasicBlock(MachineBasicBlock & MBB)1246 void RegAllocFast::allocateBasicBlock(MachineBasicBlock &MBB) {
1247 this->MBB = &MBB;
1248 LLVM_DEBUG(dbgs() << "\nAllocating " << MBB);
1249
1250 PhysRegState.assign(TRI->getNumRegs(), regDisabled);
1251 assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?");
1252
1253 MachineBasicBlock::iterator MII = MBB.begin();
1254
1255 // Add live-in registers as live.
1256 for (const MachineBasicBlock::RegisterMaskPair &LI : MBB.liveins())
1257 if (MRI->isAllocatable(LI.PhysReg))
1258 definePhysReg(MII, LI.PhysReg, regReserved);
1259
1260 VirtDead.clear();
1261 Coalesced.clear();
1262
1263 // Otherwise, sequentially allocate each instruction in the MBB.
1264 for (MachineInstr &MI : MBB) {
1265 LLVM_DEBUG(
1266 dbgs() << "\n>> " << MI << "Regs:";
1267 dumpState()
1268 );
1269
1270 // Special handling for debug values. Note that they are not allowed to
1271 // affect codegen of the other instructions in any way.
1272 if (MI.isDebugValue()) {
1273 handleDebugValue(MI);
1274 continue;
1275 }
1276
1277 allocateInstruction(MI);
1278 }
1279
1280 // Spill all physical registers holding virtual registers now.
1281 LLVM_DEBUG(dbgs() << "Spilling live registers at end of block.\n");
1282 spillAll(MBB.getFirstTerminator(), /*OnlyLiveOut*/ true);
1283
1284 // Erase all the coalesced copies. We are delaying it until now because
1285 // LiveVirtRegs might refer to the instrs.
1286 for (MachineInstr *MI : Coalesced)
1287 MBB.erase(MI);
1288 NumCoalesced += Coalesced.size();
1289
1290 LLVM_DEBUG(MBB.dump());
1291 }
1292
runOnMachineFunction(MachineFunction & MF)1293 bool RegAllocFast::runOnMachineFunction(MachineFunction &MF) {
1294 LLVM_DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n"
1295 << "********** Function: " << MF.getName() << '\n');
1296 MRI = &MF.getRegInfo();
1297 const TargetSubtargetInfo &STI = MF.getSubtarget();
1298 TRI = STI.getRegisterInfo();
1299 TII = STI.getInstrInfo();
1300 MFI = &MF.getFrameInfo();
1301 MRI->freezeReservedRegs(MF);
1302 RegClassInfo.runOnMachineFunction(MF);
1303 UsedInInstr.clear();
1304 UsedInInstr.setUniverse(TRI->getNumRegUnits());
1305
1306 // initialize the virtual->physical register map to have a 'null'
1307 // mapping for all virtual registers
1308 unsigned NumVirtRegs = MRI->getNumVirtRegs();
1309 StackSlotForVirtReg.resize(NumVirtRegs);
1310 LiveVirtRegs.setUniverse(NumVirtRegs);
1311 MayLiveAcrossBlocks.clear();
1312 MayLiveAcrossBlocks.resize(NumVirtRegs);
1313
1314 // Loop over all of the basic blocks, eliminating virtual register references
1315 for (MachineBasicBlock &MBB : MF)
1316 allocateBasicBlock(MBB);
1317
1318 // All machine operands and other references to virtual registers have been
1319 // replaced. Remove the virtual registers.
1320 MRI->clearVirtRegs();
1321
1322 StackSlotForVirtReg.clear();
1323 LiveDbgValueMap.clear();
1324 return true;
1325 }
1326
createFastRegisterAllocator()1327 FunctionPass *llvm::createFastRegisterAllocator() {
1328 return new RegAllocFast();
1329 }
1330