1 //===- RegisterCoalescer.cpp - Generic Register Coalescing Interface ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the generic RegisterCoalescer interface which
10 // is used as the common interface used by all clients and
11 // implementations of register coalescing.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "RegisterCoalescer.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/CodeGen/LiveInterval.h"
25 #include "llvm/CodeGen/LiveIntervals.h"
26 #include "llvm/CodeGen/LiveRangeEdit.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineInstrBuilder.h"
32 #include "llvm/CodeGen/MachineLoopInfo.h"
33 #include "llvm/CodeGen/MachineOperand.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/Passes.h"
36 #include "llvm/CodeGen/RegisterClassInfo.h"
37 #include "llvm/CodeGen/SlotIndexes.h"
38 #include "llvm/CodeGen/TargetInstrInfo.h"
39 #include "llvm/CodeGen/TargetOpcodes.h"
40 #include "llvm/CodeGen/TargetRegisterInfo.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/InitializePasses.h"
44 #include "llvm/MC/LaneBitmask.h"
45 #include "llvm/MC/MCInstrDesc.h"
46 #include "llvm/MC/MCRegisterInfo.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Compiler.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include <algorithm>
54 #include <cassert>
55 #include <iterator>
56 #include <limits>
57 #include <tuple>
58 #include <utility>
59 #include <vector>
60
61 using namespace llvm;
62
63 #define DEBUG_TYPE "regalloc"
64
65 STATISTIC(numJoins , "Number of interval joins performed");
66 STATISTIC(numCrossRCs , "Number of cross class joins performed");
67 STATISTIC(numCommutes , "Number of instruction commuting performed");
68 STATISTIC(numExtends , "Number of copies extended");
69 STATISTIC(NumReMats , "Number of instructions re-materialized");
70 STATISTIC(NumInflated , "Number of register classes inflated");
71 STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested");
72 STATISTIC(NumLaneResolves, "Number of dead lane conflicts resolved");
73 STATISTIC(NumShrinkToUses, "Number of shrinkToUses called");
74
75 static cl::opt<bool> EnableJoining("join-liveintervals",
76 cl::desc("Coalesce copies (default=true)"),
77 cl::init(true), cl::Hidden);
78
79 static cl::opt<bool> UseTerminalRule("terminal-rule",
80 cl::desc("Apply the terminal rule"),
81 cl::init(false), cl::Hidden);
82
83 /// Temporary flag to test critical edge unsplitting.
84 static cl::opt<bool>
85 EnableJoinSplits("join-splitedges",
86 cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden);
87
88 /// Temporary flag to test global copy optimization.
89 static cl::opt<cl::boolOrDefault>
90 EnableGlobalCopies("join-globalcopies",
91 cl::desc("Coalesce copies that span blocks (default=subtarget)"),
92 cl::init(cl::BOU_UNSET), cl::Hidden);
93
94 static cl::opt<bool>
95 VerifyCoalescing("verify-coalescing",
96 cl::desc("Verify machine instrs before and after register coalescing"),
97 cl::Hidden);
98
99 static cl::opt<unsigned> LateRematUpdateThreshold(
100 "late-remat-update-threshold", cl::Hidden,
101 cl::desc("During rematerialization for a copy, if the def instruction has "
102 "many other copy uses to be rematerialized, delay the multiple "
103 "separate live interval update work and do them all at once after "
104 "all those rematerialization are done. It will save a lot of "
105 "repeated work. "),
106 cl::init(100));
107
108 static cl::opt<unsigned> LargeIntervalSizeThreshold(
109 "large-interval-size-threshold", cl::Hidden,
110 cl::desc("If the valnos size of an interval is larger than the threshold, "
111 "it is regarded as a large interval. "),
112 cl::init(100));
113
114 static cl::opt<unsigned> LargeIntervalFreqThreshold(
115 "large-interval-freq-threshold", cl::Hidden,
116 cl::desc("For a large interval, if it is coalesed with other live "
117 "intervals many times more than the threshold, stop its "
118 "coalescing to control the compile time. "),
119 cl::init(100));
120
121 namespace {
122
123 class JoinVals;
124
125 class RegisterCoalescer : public MachineFunctionPass,
126 private LiveRangeEdit::Delegate {
127 MachineFunction* MF = nullptr;
128 MachineRegisterInfo* MRI = nullptr;
129 const TargetRegisterInfo* TRI = nullptr;
130 const TargetInstrInfo* TII = nullptr;
131 LiveIntervals *LIS = nullptr;
132 const MachineLoopInfo* Loops = nullptr;
133 AliasAnalysis *AA = nullptr;
134 RegisterClassInfo RegClassInfo;
135
136 /// Debug variable location tracking -- for each VReg, maintain an
137 /// ordered-by-slot-index set of DBG_VALUEs, to help quick
138 /// identification of whether coalescing may change location validity.
139 using DbgValueLoc = std::pair<SlotIndex, MachineInstr*>;
140 DenseMap<unsigned, std::vector<DbgValueLoc>> DbgVRegToValues;
141
142 /// VRegs may be repeatedly coalesced, and have many DBG_VALUEs attached.
143 /// To avoid repeatedly merging sets of DbgValueLocs, instead record
144 /// which vregs have been coalesced, and where to. This map is from
145 /// vreg => {set of vregs merged in}.
146 DenseMap<unsigned, SmallVector<unsigned, 4>> DbgMergedVRegNums;
147
148 /// A LaneMask to remember on which subregister live ranges we need to call
149 /// shrinkToUses() later.
150 LaneBitmask ShrinkMask;
151
152 /// True if the main range of the currently coalesced intervals should be
153 /// checked for smaller live intervals.
154 bool ShrinkMainRange = false;
155
156 /// True if the coalescer should aggressively coalesce global copies
157 /// in favor of keeping local copies.
158 bool JoinGlobalCopies = false;
159
160 /// True if the coalescer should aggressively coalesce fall-thru
161 /// blocks exclusively containing copies.
162 bool JoinSplitEdges = false;
163
164 /// Copy instructions yet to be coalesced.
165 SmallVector<MachineInstr*, 8> WorkList;
166 SmallVector<MachineInstr*, 8> LocalWorkList;
167
168 /// Set of instruction pointers that have been erased, and
169 /// that may be present in WorkList.
170 SmallPtrSet<MachineInstr*, 8> ErasedInstrs;
171
172 /// Dead instructions that are about to be deleted.
173 SmallVector<MachineInstr*, 8> DeadDefs;
174
175 /// Virtual registers to be considered for register class inflation.
176 SmallVector<unsigned, 8> InflateRegs;
177
178 /// The collection of live intervals which should have been updated
179 /// immediately after rematerialiation but delayed until
180 /// lateLiveIntervalUpdate is called.
181 DenseSet<unsigned> ToBeUpdated;
182
183 /// Record how many times the large live interval with many valnos
184 /// has been tried to join with other live interval.
185 DenseMap<unsigned, unsigned long> LargeLIVisitCounter;
186
187 /// Recursively eliminate dead defs in DeadDefs.
188 void eliminateDeadDefs();
189
190 /// LiveRangeEdit callback for eliminateDeadDefs().
191 void LRE_WillEraseInstruction(MachineInstr *MI) override;
192
193 /// Coalesce the LocalWorkList.
194 void coalesceLocals();
195
196 /// Join compatible live intervals
197 void joinAllIntervals();
198
199 /// Coalesce copies in the specified MBB, putting
200 /// copies that cannot yet be coalesced into WorkList.
201 void copyCoalesceInMBB(MachineBasicBlock *MBB);
202
203 /// Tries to coalesce all copies in CurrList. Returns true if any progress
204 /// was made.
205 bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList);
206
207 /// If one def has many copy like uses, and those copy uses are all
208 /// rematerialized, the live interval update needed for those
209 /// rematerializations will be delayed and done all at once instead
210 /// of being done multiple times. This is to save compile cost because
211 /// live interval update is costly.
212 void lateLiveIntervalUpdate();
213
214 /// Attempt to join intervals corresponding to SrcReg/DstReg, which are the
215 /// src/dst of the copy instruction CopyMI. This returns true if the copy
216 /// was successfully coalesced away. If it is not currently possible to
217 /// coalesce this interval, but it may be possible if other things get
218 /// coalesced, then it returns true by reference in 'Again'.
219 bool joinCopy(MachineInstr *CopyMI, bool &Again);
220
221 /// Attempt to join these two intervals. On failure, this
222 /// returns false. The output "SrcInt" will not have been modified, so we
223 /// can use this information below to update aliases.
224 bool joinIntervals(CoalescerPair &CP);
225
226 /// Attempt joining two virtual registers. Return true on success.
227 bool joinVirtRegs(CoalescerPair &CP);
228
229 /// If a live interval has many valnos and is coalesced with other
230 /// live intervals many times, we regard such live interval as having
231 /// high compile time cost.
232 bool isHighCostLiveInterval(LiveInterval &LI);
233
234 /// Attempt joining with a reserved physreg.
235 bool joinReservedPhysReg(CoalescerPair &CP);
236
237 /// Add the LiveRange @p ToMerge as a subregister liverange of @p LI.
238 /// Subranges in @p LI which only partially interfere with the desired
239 /// LaneMask are split as necessary. @p LaneMask are the lanes that
240 /// @p ToMerge will occupy in the coalescer register. @p LI has its subrange
241 /// lanemasks already adjusted to the coalesced register.
242 void mergeSubRangeInto(LiveInterval &LI, const LiveRange &ToMerge,
243 LaneBitmask LaneMask, CoalescerPair &CP,
244 unsigned DstIdx);
245
246 /// Join the liveranges of two subregisters. Joins @p RRange into
247 /// @p LRange, @p RRange may be invalid afterwards.
248 void joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
249 LaneBitmask LaneMask, const CoalescerPair &CP);
250
251 /// We found a non-trivially-coalescable copy. If the source value number is
252 /// defined by a copy from the destination reg see if we can merge these two
253 /// destination reg valno# into a single value number, eliminating a copy.
254 /// This returns true if an interval was modified.
255 bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI);
256
257 /// Return true if there are definitions of IntB
258 /// other than BValNo val# that can reach uses of AValno val# of IntA.
259 bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB,
260 VNInfo *AValNo, VNInfo *BValNo);
261
262 /// We found a non-trivially-coalescable copy.
263 /// If the source value number is defined by a commutable instruction and
264 /// its other operand is coalesced to the copy dest register, see if we
265 /// can transform the copy into a noop by commuting the definition.
266 /// This returns a pair of two flags:
267 /// - the first element is true if an interval was modified,
268 /// - the second element is true if the destination interval needs
269 /// to be shrunk after deleting the copy.
270 std::pair<bool,bool> removeCopyByCommutingDef(const CoalescerPair &CP,
271 MachineInstr *CopyMI);
272
273 /// We found a copy which can be moved to its less frequent predecessor.
274 bool removePartialRedundancy(const CoalescerPair &CP, MachineInstr &CopyMI);
275
276 /// If the source of a copy is defined by a
277 /// trivial computation, replace the copy by rematerialize the definition.
278 bool reMaterializeTrivialDef(const CoalescerPair &CP, MachineInstr *CopyMI,
279 bool &IsDefCopy);
280
281 /// Return true if a copy involving a physreg should be joined.
282 bool canJoinPhys(const CoalescerPair &CP);
283
284 /// Replace all defs and uses of SrcReg to DstReg and update the subregister
285 /// number if it is not zero. If DstReg is a physical register and the
286 /// existing subregister number of the def / use being updated is not zero,
287 /// make sure to set it to the correct physical subregister.
288 void updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx);
289
290 /// If the given machine operand reads only undefined lanes add an undef
291 /// flag.
292 /// This can happen when undef uses were previously concealed by a copy
293 /// which we coalesced. Example:
294 /// %0:sub0<def,read-undef> = ...
295 /// %1 = COPY %0 <-- Coalescing COPY reveals undef
296 /// = use %1:sub1 <-- hidden undef use
297 void addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx,
298 MachineOperand &MO, unsigned SubRegIdx);
299
300 /// Handle copies of undef values. If the undef value is an incoming
301 /// PHI value, it will convert @p CopyMI to an IMPLICIT_DEF.
302 /// Returns nullptr if @p CopyMI was not in any way eliminable. Otherwise,
303 /// it returns @p CopyMI (which could be an IMPLICIT_DEF at this point).
304 MachineInstr *eliminateUndefCopy(MachineInstr *CopyMI);
305
306 /// Check whether or not we should apply the terminal rule on the
307 /// destination (Dst) of \p Copy.
308 /// When the terminal rule applies, Copy is not profitable to
309 /// coalesce.
310 /// Dst is terminal if it has exactly one affinity (Dst, Src) and
311 /// at least one interference (Dst, Dst2). If Dst is terminal, the
312 /// terminal rule consists in checking that at least one of
313 /// interfering node, say Dst2, has an affinity of equal or greater
314 /// weight with Src.
315 /// In that case, Dst2 and Dst will not be able to be both coalesced
316 /// with Src. Since Dst2 exposes more coalescing opportunities than
317 /// Dst, we can drop \p Copy.
318 bool applyTerminalRule(const MachineInstr &Copy) const;
319
320 /// Wrapper method for \see LiveIntervals::shrinkToUses.
321 /// This method does the proper fixing of the live-ranges when the afore
322 /// mentioned method returns true.
shrinkToUses(LiveInterval * LI,SmallVectorImpl<MachineInstr * > * Dead=nullptr)323 void shrinkToUses(LiveInterval *LI,
324 SmallVectorImpl<MachineInstr * > *Dead = nullptr) {
325 NumShrinkToUses++;
326 if (LIS->shrinkToUses(LI, Dead)) {
327 /// Check whether or not \p LI is composed by multiple connected
328 /// components and if that is the case, fix that.
329 SmallVector<LiveInterval*, 8> SplitLIs;
330 LIS->splitSeparateComponents(*LI, SplitLIs);
331 }
332 }
333
334 /// Wrapper Method to do all the necessary work when an Instruction is
335 /// deleted.
336 /// Optimizations should use this to make sure that deleted instructions
337 /// are always accounted for.
deleteInstr(MachineInstr * MI)338 void deleteInstr(MachineInstr* MI) {
339 ErasedInstrs.insert(MI);
340 LIS->RemoveMachineInstrFromMaps(*MI);
341 MI->eraseFromParent();
342 }
343
344 /// Walk over function and initialize the DbgVRegToValues map.
345 void buildVRegToDbgValueMap(MachineFunction &MF);
346
347 /// Test whether, after merging, any DBG_VALUEs would refer to a
348 /// different value number than before merging, and whether this can
349 /// be resolved. If not, mark the DBG_VALUE as being undef.
350 void checkMergingChangesDbgValues(CoalescerPair &CP, LiveRange &LHS,
351 JoinVals &LHSVals, LiveRange &RHS,
352 JoinVals &RHSVals);
353
354 void checkMergingChangesDbgValuesImpl(unsigned Reg, LiveRange &OtherRange,
355 LiveRange &RegRange, JoinVals &Vals2);
356
357 public:
358 static char ID; ///< Class identification, replacement for typeinfo
359
RegisterCoalescer()360 RegisterCoalescer() : MachineFunctionPass(ID) {
361 initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
362 }
363
364 void getAnalysisUsage(AnalysisUsage &AU) const override;
365
366 void releaseMemory() override;
367
368 /// This is the pass entry point.
369 bool runOnMachineFunction(MachineFunction&) override;
370
371 /// Implement the dump method.
372 void print(raw_ostream &O, const Module* = nullptr) const override;
373 };
374
375 } // end anonymous namespace
376
377 char RegisterCoalescer::ID = 0;
378
379 char &llvm::RegisterCoalescerID = RegisterCoalescer::ID;
380
381 INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing",
382 "Simple Register Coalescing", false, false)
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)383 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
384 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
385 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
386 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
387 INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing",
388 "Simple Register Coalescing", false, false)
389
390 LLVM_NODISCARD static bool isMoveInstr(const TargetRegisterInfo &tri,
391 const MachineInstr *MI, unsigned &Src,
392 unsigned &Dst, unsigned &SrcSub,
393 unsigned &DstSub) {
394 if (MI->isCopy()) {
395 Dst = MI->getOperand(0).getReg();
396 DstSub = MI->getOperand(0).getSubReg();
397 Src = MI->getOperand(1).getReg();
398 SrcSub = MI->getOperand(1).getSubReg();
399 } else if (MI->isSubregToReg()) {
400 Dst = MI->getOperand(0).getReg();
401 DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(),
402 MI->getOperand(3).getImm());
403 Src = MI->getOperand(2).getReg();
404 SrcSub = MI->getOperand(2).getSubReg();
405 } else
406 return false;
407 return true;
408 }
409
410 /// Return true if this block should be vacated by the coalescer to eliminate
411 /// branches. The important cases to handle in the coalescer are critical edges
412 /// split during phi elimination which contain only copies. Simple blocks that
413 /// contain non-branches should also be vacated, but this can be handled by an
414 /// earlier pass similar to early if-conversion.
isSplitEdge(const MachineBasicBlock * MBB)415 static bool isSplitEdge(const MachineBasicBlock *MBB) {
416 if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
417 return false;
418
419 for (const auto &MI : *MBB) {
420 if (!MI.isCopyLike() && !MI.isUnconditionalBranch())
421 return false;
422 }
423 return true;
424 }
425
setRegisters(const MachineInstr * MI)426 bool CoalescerPair::setRegisters(const MachineInstr *MI) {
427 SrcReg = DstReg = 0;
428 SrcIdx = DstIdx = 0;
429 NewRC = nullptr;
430 Flipped = CrossClass = false;
431
432 unsigned Src, Dst, SrcSub, DstSub;
433 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
434 return false;
435 Partial = SrcSub || DstSub;
436
437 // If one register is a physreg, it must be Dst.
438 if (Register::isPhysicalRegister(Src)) {
439 if (Register::isPhysicalRegister(Dst))
440 return false;
441 std::swap(Src, Dst);
442 std::swap(SrcSub, DstSub);
443 Flipped = true;
444 }
445
446 const MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
447
448 if (Register::isPhysicalRegister(Dst)) {
449 // Eliminate DstSub on a physreg.
450 if (DstSub) {
451 Dst = TRI.getSubReg(Dst, DstSub);
452 if (!Dst) return false;
453 DstSub = 0;
454 }
455
456 // Eliminate SrcSub by picking a corresponding Dst superregister.
457 if (SrcSub) {
458 Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src));
459 if (!Dst) return false;
460 } else if (!MRI.getRegClass(Src)->contains(Dst)) {
461 return false;
462 }
463 } else {
464 // Both registers are virtual.
465 const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
466 const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
467
468 // Both registers have subreg indices.
469 if (SrcSub && DstSub) {
470 // Copies between different sub-registers are never coalescable.
471 if (Src == Dst && SrcSub != DstSub)
472 return false;
473
474 NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub,
475 SrcIdx, DstIdx);
476 if (!NewRC)
477 return false;
478 } else if (DstSub) {
479 // SrcReg will be merged with a sub-register of DstReg.
480 SrcIdx = DstSub;
481 NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub);
482 } else if (SrcSub) {
483 // DstReg will be merged with a sub-register of SrcReg.
484 DstIdx = SrcSub;
485 NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub);
486 } else {
487 // This is a straight copy without sub-registers.
488 NewRC = TRI.getCommonSubClass(DstRC, SrcRC);
489 }
490
491 // The combined constraint may be impossible to satisfy.
492 if (!NewRC)
493 return false;
494
495 // Prefer SrcReg to be a sub-register of DstReg.
496 // FIXME: Coalescer should support subregs symmetrically.
497 if (DstIdx && !SrcIdx) {
498 std::swap(Src, Dst);
499 std::swap(SrcIdx, DstIdx);
500 Flipped = !Flipped;
501 }
502
503 CrossClass = NewRC != DstRC || NewRC != SrcRC;
504 }
505 // Check our invariants
506 assert(Register::isVirtualRegister(Src) && "Src must be virtual");
507 assert(!(Register::isPhysicalRegister(Dst) && DstSub) &&
508 "Cannot have a physical SubIdx");
509 SrcReg = Src;
510 DstReg = Dst;
511 return true;
512 }
513
flip()514 bool CoalescerPair::flip() {
515 if (Register::isPhysicalRegister(DstReg))
516 return false;
517 std::swap(SrcReg, DstReg);
518 std::swap(SrcIdx, DstIdx);
519 Flipped = !Flipped;
520 return true;
521 }
522
isCoalescable(const MachineInstr * MI) const523 bool CoalescerPair::isCoalescable(const MachineInstr *MI) const {
524 if (!MI)
525 return false;
526 unsigned Src, Dst, SrcSub, DstSub;
527 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
528 return false;
529
530 // Find the virtual register that is SrcReg.
531 if (Dst == SrcReg) {
532 std::swap(Src, Dst);
533 std::swap(SrcSub, DstSub);
534 } else if (Src != SrcReg) {
535 return false;
536 }
537
538 // Now check that Dst matches DstReg.
539 if (Register::isPhysicalRegister(DstReg)) {
540 if (!Register::isPhysicalRegister(Dst))
541 return false;
542 assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state.");
543 // DstSub could be set for a physreg from INSERT_SUBREG.
544 if (DstSub)
545 Dst = TRI.getSubReg(Dst, DstSub);
546 // Full copy of Src.
547 if (!SrcSub)
548 return DstReg == Dst;
549 // This is a partial register copy. Check that the parts match.
550 return TRI.getSubReg(DstReg, SrcSub) == Dst;
551 } else {
552 // DstReg is virtual.
553 if (DstReg != Dst)
554 return false;
555 // Registers match, do the subregisters line up?
556 return TRI.composeSubRegIndices(SrcIdx, SrcSub) ==
557 TRI.composeSubRegIndices(DstIdx, DstSub);
558 }
559 }
560
getAnalysisUsage(AnalysisUsage & AU) const561 void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const {
562 AU.setPreservesCFG();
563 AU.addRequired<AAResultsWrapperPass>();
564 AU.addRequired<LiveIntervals>();
565 AU.addPreserved<LiveIntervals>();
566 AU.addPreserved<SlotIndexes>();
567 AU.addRequired<MachineLoopInfo>();
568 AU.addPreserved<MachineLoopInfo>();
569 AU.addPreservedID(MachineDominatorsID);
570 MachineFunctionPass::getAnalysisUsage(AU);
571 }
572
eliminateDeadDefs()573 void RegisterCoalescer::eliminateDeadDefs() {
574 SmallVector<unsigned, 8> NewRegs;
575 LiveRangeEdit(nullptr, NewRegs, *MF, *LIS,
576 nullptr, this).eliminateDeadDefs(DeadDefs);
577 }
578
LRE_WillEraseInstruction(MachineInstr * MI)579 void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) {
580 // MI may be in WorkList. Make sure we don't visit it.
581 ErasedInstrs.insert(MI);
582 }
583
adjustCopiesBackFrom(const CoalescerPair & CP,MachineInstr * CopyMI)584 bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP,
585 MachineInstr *CopyMI) {
586 assert(!CP.isPartial() && "This doesn't work for partial copies.");
587 assert(!CP.isPhys() && "This doesn't work for physreg copies.");
588
589 LiveInterval &IntA =
590 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
591 LiveInterval &IntB =
592 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
593 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
594
595 // We have a non-trivially-coalescable copy with IntA being the source and
596 // IntB being the dest, thus this defines a value number in IntB. If the
597 // source value number (in IntA) is defined by a copy from B, see if we can
598 // merge these two pieces of B into a single value number, eliminating a copy.
599 // For example:
600 //
601 // A3 = B0
602 // ...
603 // B1 = A3 <- this copy
604 //
605 // In this case, B0 can be extended to where the B1 copy lives, allowing the
606 // B1 value number to be replaced with B0 (which simplifies the B
607 // liveinterval).
608
609 // BValNo is a value number in B that is defined by a copy from A. 'B1' in
610 // the example above.
611 LiveInterval::iterator BS = IntB.FindSegmentContaining(CopyIdx);
612 if (BS == IntB.end()) return false;
613 VNInfo *BValNo = BS->valno;
614
615 // Get the location that B is defined at. Two options: either this value has
616 // an unknown definition point or it is defined at CopyIdx. If unknown, we
617 // can't process it.
618 if (BValNo->def != CopyIdx) return false;
619
620 // AValNo is the value number in A that defines the copy, A3 in the example.
621 SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true);
622 LiveInterval::iterator AS = IntA.FindSegmentContaining(CopyUseIdx);
623 // The live segment might not exist after fun with physreg coalescing.
624 if (AS == IntA.end()) return false;
625 VNInfo *AValNo = AS->valno;
626
627 // If AValNo is defined as a copy from IntB, we can potentially process this.
628 // Get the instruction that defines this value number.
629 MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def);
630 // Don't allow any partial copies, even if isCoalescable() allows them.
631 if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy())
632 return false;
633
634 // Get the Segment in IntB that this value number starts with.
635 LiveInterval::iterator ValS =
636 IntB.FindSegmentContaining(AValNo->def.getPrevSlot());
637 if (ValS == IntB.end())
638 return false;
639
640 // Make sure that the end of the live segment is inside the same block as
641 // CopyMI.
642 MachineInstr *ValSEndInst =
643 LIS->getInstructionFromIndex(ValS->end.getPrevSlot());
644 if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent())
645 return false;
646
647 // Okay, we now know that ValS ends in the same block that the CopyMI
648 // live-range starts. If there are no intervening live segments between them
649 // in IntB, we can merge them.
650 if (ValS+1 != BS) return false;
651
652 LLVM_DEBUG(dbgs() << "Extending: " << printReg(IntB.reg, TRI));
653
654 SlotIndex FillerStart = ValS->end, FillerEnd = BS->start;
655 // We are about to delete CopyMI, so need to remove it as the 'instruction
656 // that defines this value #'. Update the valnum with the new defining
657 // instruction #.
658 BValNo->def = FillerStart;
659
660 // Okay, we can merge them. We need to insert a new liverange:
661 // [ValS.end, BS.begin) of either value number, then we merge the
662 // two value numbers.
663 IntB.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, BValNo));
664
665 // Okay, merge "B1" into the same value number as "B0".
666 if (BValNo != ValS->valno)
667 IntB.MergeValueNumberInto(BValNo, ValS->valno);
668
669 // Do the same for the subregister segments.
670 for (LiveInterval::SubRange &S : IntB.subranges()) {
671 // Check for SubRange Segments of the form [1234r,1234d:0) which can be
672 // removed to prevent creating bogus SubRange Segments.
673 LiveInterval::iterator SS = S.FindSegmentContaining(CopyIdx);
674 if (SS != S.end() && SlotIndex::isSameInstr(SS->start, SS->end)) {
675 S.removeSegment(*SS, true);
676 continue;
677 }
678 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
679 S.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, SubBValNo));
680 VNInfo *SubValSNo = S.getVNInfoAt(AValNo->def.getPrevSlot());
681 if (SubBValNo != SubValSNo)
682 S.MergeValueNumberInto(SubBValNo, SubValSNo);
683 }
684
685 LLVM_DEBUG(dbgs() << " result = " << IntB << '\n');
686
687 // If the source instruction was killing the source register before the
688 // merge, unset the isKill marker given the live range has been extended.
689 int UIdx = ValSEndInst->findRegisterUseOperandIdx(IntB.reg, true);
690 if (UIdx != -1) {
691 ValSEndInst->getOperand(UIdx).setIsKill(false);
692 }
693
694 // Rewrite the copy.
695 CopyMI->substituteRegister(IntA.reg, IntB.reg, 0, *TRI);
696 // If the copy instruction was killing the destination register or any
697 // subrange before the merge trim the live range.
698 bool RecomputeLiveRange = AS->end == CopyIdx;
699 if (!RecomputeLiveRange) {
700 for (LiveInterval::SubRange &S : IntA.subranges()) {
701 LiveInterval::iterator SS = S.FindSegmentContaining(CopyUseIdx);
702 if (SS != S.end() && SS->end == CopyIdx) {
703 RecomputeLiveRange = true;
704 break;
705 }
706 }
707 }
708 if (RecomputeLiveRange)
709 shrinkToUses(&IntA);
710
711 ++numExtends;
712 return true;
713 }
714
hasOtherReachingDefs(LiveInterval & IntA,LiveInterval & IntB,VNInfo * AValNo,VNInfo * BValNo)715 bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA,
716 LiveInterval &IntB,
717 VNInfo *AValNo,
718 VNInfo *BValNo) {
719 // If AValNo has PHI kills, conservatively assume that IntB defs can reach
720 // the PHI values.
721 if (LIS->hasPHIKill(IntA, AValNo))
722 return true;
723
724 for (LiveRange::Segment &ASeg : IntA.segments) {
725 if (ASeg.valno != AValNo) continue;
726 LiveInterval::iterator BI = llvm::upper_bound(IntB, ASeg.start);
727 if (BI != IntB.begin())
728 --BI;
729 for (; BI != IntB.end() && ASeg.end >= BI->start; ++BI) {
730 if (BI->valno == BValNo)
731 continue;
732 if (BI->start <= ASeg.start && BI->end > ASeg.start)
733 return true;
734 if (BI->start > ASeg.start && BI->start < ASeg.end)
735 return true;
736 }
737 }
738 return false;
739 }
740
741 /// Copy segments with value number @p SrcValNo from liverange @p Src to live
742 /// range @Dst and use value number @p DstValNo there.
743 static std::pair<bool,bool>
addSegmentsWithValNo(LiveRange & Dst,VNInfo * DstValNo,const LiveRange & Src,const VNInfo * SrcValNo)744 addSegmentsWithValNo(LiveRange &Dst, VNInfo *DstValNo, const LiveRange &Src,
745 const VNInfo *SrcValNo) {
746 bool Changed = false;
747 bool MergedWithDead = false;
748 for (const LiveRange::Segment &S : Src.segments) {
749 if (S.valno != SrcValNo)
750 continue;
751 // This is adding a segment from Src that ends in a copy that is about
752 // to be removed. This segment is going to be merged with a pre-existing
753 // segment in Dst. This works, except in cases when the corresponding
754 // segment in Dst is dead. For example: adding [192r,208r:1) from Src
755 // to [208r,208d:1) in Dst would create [192r,208d:1) in Dst.
756 // Recognized such cases, so that the segments can be shrunk.
757 LiveRange::Segment Added = LiveRange::Segment(S.start, S.end, DstValNo);
758 LiveRange::Segment &Merged = *Dst.addSegment(Added);
759 if (Merged.end.isDead())
760 MergedWithDead = true;
761 Changed = true;
762 }
763 return std::make_pair(Changed, MergedWithDead);
764 }
765
766 std::pair<bool,bool>
removeCopyByCommutingDef(const CoalescerPair & CP,MachineInstr * CopyMI)767 RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP,
768 MachineInstr *CopyMI) {
769 assert(!CP.isPhys());
770
771 LiveInterval &IntA =
772 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
773 LiveInterval &IntB =
774 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
775
776 // We found a non-trivially-coalescable copy with IntA being the source and
777 // IntB being the dest, thus this defines a value number in IntB. If the
778 // source value number (in IntA) is defined by a commutable instruction and
779 // its other operand is coalesced to the copy dest register, see if we can
780 // transform the copy into a noop by commuting the definition. For example,
781 //
782 // A3 = op A2 killed B0
783 // ...
784 // B1 = A3 <- this copy
785 // ...
786 // = op A3 <- more uses
787 //
788 // ==>
789 //
790 // B2 = op B0 killed A2
791 // ...
792 // B1 = B2 <- now an identity copy
793 // ...
794 // = op B2 <- more uses
795
796 // BValNo is a value number in B that is defined by a copy from A. 'B1' in
797 // the example above.
798 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
799 VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx);
800 assert(BValNo != nullptr && BValNo->def == CopyIdx);
801
802 // AValNo is the value number in A that defines the copy, A3 in the example.
803 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true));
804 assert(AValNo && !AValNo->isUnused() && "COPY source not live");
805 if (AValNo->isPHIDef())
806 return { false, false };
807 MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def);
808 if (!DefMI)
809 return { false, false };
810 if (!DefMI->isCommutable())
811 return { false, false };
812 // If DefMI is a two-address instruction then commuting it will change the
813 // destination register.
814 int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg);
815 assert(DefIdx != -1);
816 unsigned UseOpIdx;
817 if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
818 return { false, false };
819
820 // FIXME: The code below tries to commute 'UseOpIdx' operand with some other
821 // commutable operand which is expressed by 'CommuteAnyOperandIndex'value
822 // passed to the method. That _other_ operand is chosen by
823 // the findCommutedOpIndices() method.
824 //
825 // That is obviously an area for improvement in case of instructions having
826 // more than 2 operands. For example, if some instruction has 3 commutable
827 // operands then all possible variants (i.e. op#1<->op#2, op#1<->op#3,
828 // op#2<->op#3) of commute transformation should be considered/tried here.
829 unsigned NewDstIdx = TargetInstrInfo::CommuteAnyOperandIndex;
830 if (!TII->findCommutedOpIndices(*DefMI, UseOpIdx, NewDstIdx))
831 return { false, false };
832
833 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
834 Register NewReg = NewDstMO.getReg();
835 if (NewReg != IntB.reg || !IntB.Query(AValNo->def).isKill())
836 return { false, false };
837
838 // Make sure there are no other definitions of IntB that would reach the
839 // uses which the new definition can reach.
840 if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
841 return { false, false };
842
843 // If some of the uses of IntA.reg is already coalesced away, return false.
844 // It's not possible to determine whether it's safe to perform the coalescing.
845 for (MachineOperand &MO : MRI->use_nodbg_operands(IntA.reg)) {
846 MachineInstr *UseMI = MO.getParent();
847 unsigned OpNo = &MO - &UseMI->getOperand(0);
848 SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI);
849 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
850 if (US == IntA.end() || US->valno != AValNo)
851 continue;
852 // If this use is tied to a def, we can't rewrite the register.
853 if (UseMI->isRegTiedToDefOperand(OpNo))
854 return { false, false };
855 }
856
857 LLVM_DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t'
858 << *DefMI);
859
860 // At this point we have decided that it is legal to do this
861 // transformation. Start by commuting the instruction.
862 MachineBasicBlock *MBB = DefMI->getParent();
863 MachineInstr *NewMI =
864 TII->commuteInstruction(*DefMI, false, UseOpIdx, NewDstIdx);
865 if (!NewMI)
866 return { false, false };
867 if (Register::isVirtualRegister(IntA.reg) &&
868 Register::isVirtualRegister(IntB.reg) &&
869 !MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg)))
870 return { false, false };
871 if (NewMI != DefMI) {
872 LIS->ReplaceMachineInstrInMaps(*DefMI, *NewMI);
873 MachineBasicBlock::iterator Pos = DefMI;
874 MBB->insert(Pos, NewMI);
875 MBB->erase(DefMI);
876 }
877
878 // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
879 // A = or A, B
880 // ...
881 // B = A
882 // ...
883 // C = killed A
884 // ...
885 // = B
886
887 // Update uses of IntA of the specific Val# with IntB.
888 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg),
889 UE = MRI->use_end();
890 UI != UE; /* ++UI is below because of possible MI removal */) {
891 MachineOperand &UseMO = *UI;
892 ++UI;
893 if (UseMO.isUndef())
894 continue;
895 MachineInstr *UseMI = UseMO.getParent();
896 if (UseMI->isDebugValue()) {
897 // FIXME These don't have an instruction index. Not clear we have enough
898 // info to decide whether to do this replacement or not. For now do it.
899 UseMO.setReg(NewReg);
900 continue;
901 }
902 SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI).getRegSlot(true);
903 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
904 assert(US != IntA.end() && "Use must be live");
905 if (US->valno != AValNo)
906 continue;
907 // Kill flags are no longer accurate. They are recomputed after RA.
908 UseMO.setIsKill(false);
909 if (Register::isPhysicalRegister(NewReg))
910 UseMO.substPhysReg(NewReg, *TRI);
911 else
912 UseMO.setReg(NewReg);
913 if (UseMI == CopyMI)
914 continue;
915 if (!UseMI->isCopy())
916 continue;
917 if (UseMI->getOperand(0).getReg() != IntB.reg ||
918 UseMI->getOperand(0).getSubReg())
919 continue;
920
921 // This copy will become a noop. If it's defining a new val#, merge it into
922 // BValNo.
923 SlotIndex DefIdx = UseIdx.getRegSlot();
924 VNInfo *DVNI = IntB.getVNInfoAt(DefIdx);
925 if (!DVNI)
926 continue;
927 LLVM_DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI);
928 assert(DVNI->def == DefIdx);
929 BValNo = IntB.MergeValueNumberInto(DVNI, BValNo);
930 for (LiveInterval::SubRange &S : IntB.subranges()) {
931 VNInfo *SubDVNI = S.getVNInfoAt(DefIdx);
932 if (!SubDVNI)
933 continue;
934 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
935 assert(SubBValNo->def == CopyIdx);
936 S.MergeValueNumberInto(SubDVNI, SubBValNo);
937 }
938
939 deleteInstr(UseMI);
940 }
941
942 // Extend BValNo by merging in IntA live segments of AValNo. Val# definition
943 // is updated.
944 bool ShrinkB = false;
945 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
946 if (IntA.hasSubRanges() || IntB.hasSubRanges()) {
947 if (!IntA.hasSubRanges()) {
948 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntA.reg);
949 IntA.createSubRangeFrom(Allocator, Mask, IntA);
950 } else if (!IntB.hasSubRanges()) {
951 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntB.reg);
952 IntB.createSubRangeFrom(Allocator, Mask, IntB);
953 }
954 SlotIndex AIdx = CopyIdx.getRegSlot(true);
955 LaneBitmask MaskA;
956 const SlotIndexes &Indexes = *LIS->getSlotIndexes();
957 for (LiveInterval::SubRange &SA : IntA.subranges()) {
958 VNInfo *ASubValNo = SA.getVNInfoAt(AIdx);
959 // Even if we are dealing with a full copy, some lanes can
960 // still be undefined.
961 // E.g.,
962 // undef A.subLow = ...
963 // B = COPY A <== A.subHigh is undefined here and does
964 // not have a value number.
965 if (!ASubValNo)
966 continue;
967 MaskA |= SA.LaneMask;
968
969 IntB.refineSubRanges(
970 Allocator, SA.LaneMask,
971 [&Allocator, &SA, CopyIdx, ASubValNo,
972 &ShrinkB](LiveInterval::SubRange &SR) {
973 VNInfo *BSubValNo = SR.empty() ? SR.getNextValue(CopyIdx, Allocator)
974 : SR.getVNInfoAt(CopyIdx);
975 assert(BSubValNo != nullptr);
976 auto P = addSegmentsWithValNo(SR, BSubValNo, SA, ASubValNo);
977 ShrinkB |= P.second;
978 if (P.first)
979 BSubValNo->def = ASubValNo->def;
980 },
981 Indexes, *TRI);
982 }
983 // Go over all subranges of IntB that have not been covered by IntA,
984 // and delete the segments starting at CopyIdx. This can happen if
985 // IntA has undef lanes that are defined in IntB.
986 for (LiveInterval::SubRange &SB : IntB.subranges()) {
987 if ((SB.LaneMask & MaskA).any())
988 continue;
989 if (LiveRange::Segment *S = SB.getSegmentContaining(CopyIdx))
990 if (S->start.getBaseIndex() == CopyIdx.getBaseIndex())
991 SB.removeSegment(*S, true);
992 }
993 }
994
995 BValNo->def = AValNo->def;
996 auto P = addSegmentsWithValNo(IntB, BValNo, IntA, AValNo);
997 ShrinkB |= P.second;
998 LLVM_DEBUG(dbgs() << "\t\textended: " << IntB << '\n');
999
1000 LIS->removeVRegDefAt(IntA, AValNo->def);
1001
1002 LLVM_DEBUG(dbgs() << "\t\ttrimmed: " << IntA << '\n');
1003 ++numCommutes;
1004 return { true, ShrinkB };
1005 }
1006
1007 /// For copy B = A in BB2, if A is defined by A = B in BB0 which is a
1008 /// predecessor of BB2, and if B is not redefined on the way from A = B
1009 /// in BB0 to B = A in BB2, B = A in BB2 is partially redundant if the
1010 /// execution goes through the path from BB0 to BB2. We may move B = A
1011 /// to the predecessor without such reversed copy.
1012 /// So we will transform the program from:
1013 /// BB0:
1014 /// A = B; BB1:
1015 /// ... ...
1016 /// / \ /
1017 /// BB2:
1018 /// ...
1019 /// B = A;
1020 ///
1021 /// to:
1022 ///
1023 /// BB0: BB1:
1024 /// A = B; ...
1025 /// ... B = A;
1026 /// / \ /
1027 /// BB2:
1028 /// ...
1029 ///
1030 /// A special case is when BB0 and BB2 are the same BB which is the only
1031 /// BB in a loop:
1032 /// BB1:
1033 /// ...
1034 /// BB0/BB2: ----
1035 /// B = A; |
1036 /// ... |
1037 /// A = B; |
1038 /// |-------
1039 /// |
1040 /// We may hoist B = A from BB0/BB2 to BB1.
1041 ///
1042 /// The major preconditions for correctness to remove such partial
1043 /// redundancy include:
1044 /// 1. A in B = A in BB2 is defined by a PHI in BB2, and one operand of
1045 /// the PHI is defined by the reversed copy A = B in BB0.
1046 /// 2. No B is referenced from the start of BB2 to B = A.
1047 /// 3. No B is defined from A = B to the end of BB0.
1048 /// 4. BB1 has only one successor.
1049 ///
1050 /// 2 and 4 implicitly ensure B is not live at the end of BB1.
1051 /// 4 guarantees BB2 is hotter than BB1, so we can only move a copy to a
1052 /// colder place, which not only prevent endless loop, but also make sure
1053 /// the movement of copy is beneficial.
removePartialRedundancy(const CoalescerPair & CP,MachineInstr & CopyMI)1054 bool RegisterCoalescer::removePartialRedundancy(const CoalescerPair &CP,
1055 MachineInstr &CopyMI) {
1056 assert(!CP.isPhys());
1057 if (!CopyMI.isFullCopy())
1058 return false;
1059
1060 MachineBasicBlock &MBB = *CopyMI.getParent();
1061 if (MBB.isEHPad())
1062 return false;
1063
1064 if (MBB.pred_size() != 2)
1065 return false;
1066
1067 LiveInterval &IntA =
1068 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
1069 LiveInterval &IntB =
1070 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
1071
1072 // A is defined by PHI at the entry of MBB.
1073 SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(true);
1074 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx);
1075 assert(AValNo && !AValNo->isUnused() && "COPY source not live");
1076 if (!AValNo->isPHIDef())
1077 return false;
1078
1079 // No B is referenced before CopyMI in MBB.
1080 if (IntB.overlaps(LIS->getMBBStartIdx(&MBB), CopyIdx))
1081 return false;
1082
1083 // MBB has two predecessors: one contains A = B so no copy will be inserted
1084 // for it. The other one will have a copy moved from MBB.
1085 bool FoundReverseCopy = false;
1086 MachineBasicBlock *CopyLeftBB = nullptr;
1087 for (MachineBasicBlock *Pred : MBB.predecessors()) {
1088 VNInfo *PVal = IntA.getVNInfoBefore(LIS->getMBBEndIdx(Pred));
1089 MachineInstr *DefMI = LIS->getInstructionFromIndex(PVal->def);
1090 if (!DefMI || !DefMI->isFullCopy()) {
1091 CopyLeftBB = Pred;
1092 continue;
1093 }
1094 // Check DefMI is a reverse copy and it is in BB Pred.
1095 if (DefMI->getOperand(0).getReg() != IntA.reg ||
1096 DefMI->getOperand(1).getReg() != IntB.reg ||
1097 DefMI->getParent() != Pred) {
1098 CopyLeftBB = Pred;
1099 continue;
1100 }
1101 // If there is any other def of B after DefMI and before the end of Pred,
1102 // we need to keep the copy of B = A at the end of Pred if we remove
1103 // B = A from MBB.
1104 bool ValB_Changed = false;
1105 for (auto VNI : IntB.valnos) {
1106 if (VNI->isUnused())
1107 continue;
1108 if (PVal->def < VNI->def && VNI->def < LIS->getMBBEndIdx(Pred)) {
1109 ValB_Changed = true;
1110 break;
1111 }
1112 }
1113 if (ValB_Changed) {
1114 CopyLeftBB = Pred;
1115 continue;
1116 }
1117 FoundReverseCopy = true;
1118 }
1119
1120 // If no reverse copy is found in predecessors, nothing to do.
1121 if (!FoundReverseCopy)
1122 return false;
1123
1124 // If CopyLeftBB is nullptr, it means every predecessor of MBB contains
1125 // reverse copy, CopyMI can be removed trivially if only IntA/IntB is updated.
1126 // If CopyLeftBB is not nullptr, move CopyMI from MBB to CopyLeftBB and
1127 // update IntA/IntB.
1128 //
1129 // If CopyLeftBB is not nullptr, ensure CopyLeftBB has a single succ so
1130 // MBB is hotter than CopyLeftBB.
1131 if (CopyLeftBB && CopyLeftBB->succ_size() > 1)
1132 return false;
1133
1134 // Now (almost sure it's) ok to move copy.
1135 if (CopyLeftBB) {
1136 // Position in CopyLeftBB where we should insert new copy.
1137 auto InsPos = CopyLeftBB->getFirstTerminator();
1138
1139 // Make sure that B isn't referenced in the terminators (if any) at the end
1140 // of the predecessor since we're about to insert a new definition of B
1141 // before them.
1142 if (InsPos != CopyLeftBB->end()) {
1143 SlotIndex InsPosIdx = LIS->getInstructionIndex(*InsPos).getRegSlot(true);
1144 if (IntB.overlaps(InsPosIdx, LIS->getMBBEndIdx(CopyLeftBB)))
1145 return false;
1146 }
1147
1148 LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Move the copy to "
1149 << printMBBReference(*CopyLeftBB) << '\t' << CopyMI);
1150
1151 // Insert new copy to CopyLeftBB.
1152 MachineInstr *NewCopyMI = BuildMI(*CopyLeftBB, InsPos, CopyMI.getDebugLoc(),
1153 TII->get(TargetOpcode::COPY), IntB.reg)
1154 .addReg(IntA.reg);
1155 SlotIndex NewCopyIdx =
1156 LIS->InsertMachineInstrInMaps(*NewCopyMI).getRegSlot();
1157 IntB.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator());
1158 for (LiveInterval::SubRange &SR : IntB.subranges())
1159 SR.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator());
1160
1161 // If the newly created Instruction has an address of an instruction that was
1162 // deleted before (object recycled by the allocator) it needs to be removed from
1163 // the deleted list.
1164 ErasedInstrs.erase(NewCopyMI);
1165 } else {
1166 LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Remove the copy from "
1167 << printMBBReference(MBB) << '\t' << CopyMI);
1168 }
1169
1170 // Remove CopyMI.
1171 // Note: This is fine to remove the copy before updating the live-ranges.
1172 // While updating the live-ranges, we only look at slot indices and
1173 // never go back to the instruction.
1174 // Mark instructions as deleted.
1175 deleteInstr(&CopyMI);
1176
1177 // Update the liveness.
1178 SmallVector<SlotIndex, 8> EndPoints;
1179 VNInfo *BValNo = IntB.Query(CopyIdx).valueOutOrDead();
1180 LIS->pruneValue(*static_cast<LiveRange *>(&IntB), CopyIdx.getRegSlot(),
1181 &EndPoints);
1182 BValNo->markUnused();
1183 // Extend IntB to the EndPoints of its original live interval.
1184 LIS->extendToIndices(IntB, EndPoints);
1185
1186 // Now, do the same for its subranges.
1187 for (LiveInterval::SubRange &SR : IntB.subranges()) {
1188 EndPoints.clear();
1189 VNInfo *BValNo = SR.Query(CopyIdx).valueOutOrDead();
1190 assert(BValNo && "All sublanes should be live");
1191 LIS->pruneValue(SR, CopyIdx.getRegSlot(), &EndPoints);
1192 BValNo->markUnused();
1193 // We can have a situation where the result of the original copy is live,
1194 // but is immediately dead in this subrange, e.g. [336r,336d:0). That makes
1195 // the copy appear as an endpoint from pruneValue(), but we don't want it
1196 // to because the copy has been removed. We can go ahead and remove that
1197 // endpoint; there is no other situation here that there could be a use at
1198 // the same place as we know that the copy is a full copy.
1199 for (unsigned I = 0; I != EndPoints.size(); ) {
1200 if (SlotIndex::isSameInstr(EndPoints[I], CopyIdx)) {
1201 EndPoints[I] = EndPoints.back();
1202 EndPoints.pop_back();
1203 continue;
1204 }
1205 ++I;
1206 }
1207 LIS->extendToIndices(SR, EndPoints);
1208 }
1209 // If any dead defs were extended, truncate them.
1210 shrinkToUses(&IntB);
1211
1212 // Finally, update the live-range of IntA.
1213 shrinkToUses(&IntA);
1214 return true;
1215 }
1216
1217 /// Returns true if @p MI defines the full vreg @p Reg, as opposed to just
1218 /// defining a subregister.
definesFullReg(const MachineInstr & MI,unsigned Reg)1219 static bool definesFullReg(const MachineInstr &MI, unsigned Reg) {
1220 assert(!Register::isPhysicalRegister(Reg) &&
1221 "This code cannot handle physreg aliasing");
1222 for (const MachineOperand &Op : MI.operands()) {
1223 if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg)
1224 continue;
1225 // Return true if we define the full register or don't care about the value
1226 // inside other subregisters.
1227 if (Op.getSubReg() == 0 || Op.isUndef())
1228 return true;
1229 }
1230 return false;
1231 }
1232
reMaterializeTrivialDef(const CoalescerPair & CP,MachineInstr * CopyMI,bool & IsDefCopy)1233 bool RegisterCoalescer::reMaterializeTrivialDef(const CoalescerPair &CP,
1234 MachineInstr *CopyMI,
1235 bool &IsDefCopy) {
1236 IsDefCopy = false;
1237 unsigned SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg();
1238 unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx();
1239 unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
1240 unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx();
1241 if (Register::isPhysicalRegister(SrcReg))
1242 return false;
1243
1244 LiveInterval &SrcInt = LIS->getInterval(SrcReg);
1245 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI);
1246 VNInfo *ValNo = SrcInt.Query(CopyIdx).valueIn();
1247 if (!ValNo)
1248 return false;
1249 if (ValNo->isPHIDef() || ValNo->isUnused())
1250 return false;
1251 MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def);
1252 if (!DefMI)
1253 return false;
1254 if (DefMI->isCopyLike()) {
1255 IsDefCopy = true;
1256 return false;
1257 }
1258 if (!TII->isAsCheapAsAMove(*DefMI))
1259 return false;
1260 if (!TII->isTriviallyReMaterializable(*DefMI, AA))
1261 return false;
1262 if (!definesFullReg(*DefMI, SrcReg))
1263 return false;
1264 bool SawStore = false;
1265 if (!DefMI->isSafeToMove(AA, SawStore))
1266 return false;
1267 const MCInstrDesc &MCID = DefMI->getDesc();
1268 if (MCID.getNumDefs() != 1)
1269 return false;
1270 // Only support subregister destinations when the def is read-undef.
1271 MachineOperand &DstOperand = CopyMI->getOperand(0);
1272 Register CopyDstReg = DstOperand.getReg();
1273 if (DstOperand.getSubReg() && !DstOperand.isUndef())
1274 return false;
1275
1276 // If both SrcIdx and DstIdx are set, correct rematerialization would widen
1277 // the register substantially (beyond both source and dest size). This is bad
1278 // for performance since it can cascade through a function, introducing many
1279 // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers
1280 // around after a few subreg copies).
1281 if (SrcIdx && DstIdx)
1282 return false;
1283
1284 const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF);
1285 if (!DefMI->isImplicitDef()) {
1286 if (Register::isPhysicalRegister(DstReg)) {
1287 unsigned NewDstReg = DstReg;
1288
1289 unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(),
1290 DefMI->getOperand(0).getSubReg());
1291 if (NewDstIdx)
1292 NewDstReg = TRI->getSubReg(DstReg, NewDstIdx);
1293
1294 // Finally, make sure that the physical subregister that will be
1295 // constructed later is permitted for the instruction.
1296 if (!DefRC->contains(NewDstReg))
1297 return false;
1298 } else {
1299 // Theoretically, some stack frame reference could exist. Just make sure
1300 // it hasn't actually happened.
1301 assert(Register::isVirtualRegister(DstReg) &&
1302 "Only expect to deal with virtual or physical registers");
1303 }
1304 }
1305
1306 DebugLoc DL = CopyMI->getDebugLoc();
1307 MachineBasicBlock *MBB = CopyMI->getParent();
1308 MachineBasicBlock::iterator MII =
1309 std::next(MachineBasicBlock::iterator(CopyMI));
1310 TII->reMaterialize(*MBB, MII, DstReg, SrcIdx, *DefMI, *TRI);
1311 MachineInstr &NewMI = *std::prev(MII);
1312 NewMI.setDebugLoc(DL);
1313
1314 // In a situation like the following:
1315 // %0:subreg = instr ; DefMI, subreg = DstIdx
1316 // %1 = copy %0:subreg ; CopyMI, SrcIdx = 0
1317 // instead of widening %1 to the register class of %0 simply do:
1318 // %1 = instr
1319 const TargetRegisterClass *NewRC = CP.getNewRC();
1320 if (DstIdx != 0) {
1321 MachineOperand &DefMO = NewMI.getOperand(0);
1322 if (DefMO.getSubReg() == DstIdx) {
1323 assert(SrcIdx == 0 && CP.isFlipped()
1324 && "Shouldn't have SrcIdx+DstIdx at this point");
1325 const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
1326 const TargetRegisterClass *CommonRC =
1327 TRI->getCommonSubClass(DefRC, DstRC);
1328 if (CommonRC != nullptr) {
1329 NewRC = CommonRC;
1330 DstIdx = 0;
1331 DefMO.setSubReg(0);
1332 DefMO.setIsUndef(false); // Only subregs can have def+undef.
1333 }
1334 }
1335 }
1336
1337 // CopyMI may have implicit operands, save them so that we can transfer them
1338 // over to the newly materialized instruction after CopyMI is removed.
1339 SmallVector<MachineOperand, 4> ImplicitOps;
1340 ImplicitOps.reserve(CopyMI->getNumOperands() -
1341 CopyMI->getDesc().getNumOperands());
1342 for (unsigned I = CopyMI->getDesc().getNumOperands(),
1343 E = CopyMI->getNumOperands();
1344 I != E; ++I) {
1345 MachineOperand &MO = CopyMI->getOperand(I);
1346 if (MO.isReg()) {
1347 assert(MO.isImplicit() && "No explicit operands after implicit operands.");
1348 // Discard VReg implicit defs.
1349 if (Register::isPhysicalRegister(MO.getReg()))
1350 ImplicitOps.push_back(MO);
1351 }
1352 }
1353
1354 LIS->ReplaceMachineInstrInMaps(*CopyMI, NewMI);
1355 CopyMI->eraseFromParent();
1356 ErasedInstrs.insert(CopyMI);
1357
1358 // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86).
1359 // We need to remember these so we can add intervals once we insert
1360 // NewMI into SlotIndexes.
1361 SmallVector<unsigned, 4> NewMIImplDefs;
1362 for (unsigned i = NewMI.getDesc().getNumOperands(),
1363 e = NewMI.getNumOperands();
1364 i != e; ++i) {
1365 MachineOperand &MO = NewMI.getOperand(i);
1366 if (MO.isReg() && MO.isDef()) {
1367 assert(MO.isImplicit() && MO.isDead() &&
1368 Register::isPhysicalRegister(MO.getReg()));
1369 NewMIImplDefs.push_back(MO.getReg());
1370 }
1371 }
1372
1373 if (Register::isVirtualRegister(DstReg)) {
1374 unsigned NewIdx = NewMI.getOperand(0).getSubReg();
1375
1376 if (DefRC != nullptr) {
1377 if (NewIdx)
1378 NewRC = TRI->getMatchingSuperRegClass(NewRC, DefRC, NewIdx);
1379 else
1380 NewRC = TRI->getCommonSubClass(NewRC, DefRC);
1381 assert(NewRC && "subreg chosen for remat incompatible with instruction");
1382 }
1383 // Remap subranges to new lanemask and change register class.
1384 LiveInterval &DstInt = LIS->getInterval(DstReg);
1385 for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1386 SR.LaneMask = TRI->composeSubRegIndexLaneMask(DstIdx, SR.LaneMask);
1387 }
1388 MRI->setRegClass(DstReg, NewRC);
1389
1390 // Update machine operands and add flags.
1391 updateRegDefsUses(DstReg, DstReg, DstIdx);
1392 NewMI.getOperand(0).setSubReg(NewIdx);
1393 // updateRegDefUses can add an "undef" flag to the definition, since
1394 // it will replace DstReg with DstReg.DstIdx. If NewIdx is 0, make
1395 // sure that "undef" is not set.
1396 if (NewIdx == 0)
1397 NewMI.getOperand(0).setIsUndef(false);
1398 // Add dead subregister definitions if we are defining the whole register
1399 // but only part of it is live.
1400 // This could happen if the rematerialization instruction is rematerializing
1401 // more than actually is used in the register.
1402 // An example would be:
1403 // %1 = LOAD CONSTANTS 5, 8 ; Loading both 5 and 8 in different subregs
1404 // ; Copying only part of the register here, but the rest is undef.
1405 // %2:sub_16bit<def, read-undef> = COPY %1:sub_16bit
1406 // ==>
1407 // ; Materialize all the constants but only using one
1408 // %2 = LOAD_CONSTANTS 5, 8
1409 //
1410 // at this point for the part that wasn't defined before we could have
1411 // subranges missing the definition.
1412 if (NewIdx == 0 && DstInt.hasSubRanges()) {
1413 SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI);
1414 SlotIndex DefIndex =
1415 CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber());
1416 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(DstReg);
1417 VNInfo::Allocator& Alloc = LIS->getVNInfoAllocator();
1418 for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1419 if (!SR.liveAt(DefIndex))
1420 SR.createDeadDef(DefIndex, Alloc);
1421 MaxMask &= ~SR.LaneMask;
1422 }
1423 if (MaxMask.any()) {
1424 LiveInterval::SubRange *SR = DstInt.createSubRange(Alloc, MaxMask);
1425 SR->createDeadDef(DefIndex, Alloc);
1426 }
1427 }
1428
1429 // Make sure that the subrange for resultant undef is removed
1430 // For example:
1431 // %1:sub1<def,read-undef> = LOAD CONSTANT 1
1432 // %2 = COPY %1
1433 // ==>
1434 // %2:sub1<def, read-undef> = LOAD CONSTANT 1
1435 // ; Correct but need to remove the subrange for %2:sub0
1436 // ; as it is now undef
1437 if (NewIdx != 0 && DstInt.hasSubRanges()) {
1438 // The affected subregister segments can be removed.
1439 SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI);
1440 LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(NewIdx);
1441 bool UpdatedSubRanges = false;
1442 for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1443 if ((SR.LaneMask & DstMask).none()) {
1444 LLVM_DEBUG(dbgs()
1445 << "Removing undefined SubRange "
1446 << PrintLaneMask(SR.LaneMask) << " : " << SR << "\n");
1447 // VNI is in ValNo - remove any segments in this SubRange that have this ValNo
1448 if (VNInfo *RmValNo = SR.getVNInfoAt(CurrIdx.getRegSlot())) {
1449 SR.removeValNo(RmValNo);
1450 UpdatedSubRanges = true;
1451 }
1452 }
1453 }
1454 if (UpdatedSubRanges)
1455 DstInt.removeEmptySubRanges();
1456 }
1457 } else if (NewMI.getOperand(0).getReg() != CopyDstReg) {
1458 // The New instruction may be defining a sub-register of what's actually
1459 // been asked for. If so it must implicitly define the whole thing.
1460 assert(Register::isPhysicalRegister(DstReg) &&
1461 "Only expect virtual or physical registers in remat");
1462 NewMI.getOperand(0).setIsDead(true);
1463 NewMI.addOperand(MachineOperand::CreateReg(
1464 CopyDstReg, true /*IsDef*/, true /*IsImp*/, false /*IsKill*/));
1465 // Record small dead def live-ranges for all the subregisters
1466 // of the destination register.
1467 // Otherwise, variables that live through may miss some
1468 // interferences, thus creating invalid allocation.
1469 // E.g., i386 code:
1470 // %1 = somedef ; %1 GR8
1471 // %2 = remat ; %2 GR32
1472 // CL = COPY %2.sub_8bit
1473 // = somedef %1 ; %1 GR8
1474 // =>
1475 // %1 = somedef ; %1 GR8
1476 // dead ECX = remat ; implicit-def CL
1477 // = somedef %1 ; %1 GR8
1478 // %1 will see the interferences with CL but not with CH since
1479 // no live-ranges would have been created for ECX.
1480 // Fix that!
1481 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
1482 for (MCRegUnitIterator Units(NewMI.getOperand(0).getReg(), TRI);
1483 Units.isValid(); ++Units)
1484 if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
1485 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
1486 }
1487
1488 if (NewMI.getOperand(0).getSubReg())
1489 NewMI.getOperand(0).setIsUndef();
1490
1491 // Transfer over implicit operands to the rematerialized instruction.
1492 for (MachineOperand &MO : ImplicitOps)
1493 NewMI.addOperand(MO);
1494
1495 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
1496 for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) {
1497 unsigned Reg = NewMIImplDefs[i];
1498 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
1499 if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
1500 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
1501 }
1502
1503 LLVM_DEBUG(dbgs() << "Remat: " << NewMI);
1504 ++NumReMats;
1505
1506 // If the virtual SrcReg is completely eliminated, update all DBG_VALUEs
1507 // to describe DstReg instead.
1508 if (MRI->use_nodbg_empty(SrcReg)) {
1509 for (MachineOperand &UseMO : MRI->use_operands(SrcReg)) {
1510 MachineInstr *UseMI = UseMO.getParent();
1511 if (UseMI->isDebugValue()) {
1512 if (Register::isPhysicalRegister(DstReg))
1513 UseMO.substPhysReg(DstReg, *TRI);
1514 else
1515 UseMO.setReg(DstReg);
1516 // Move the debug value directly after the def of the rematerialized
1517 // value in DstReg.
1518 MBB->splice(std::next(NewMI.getIterator()), UseMI->getParent(), UseMI);
1519 LLVM_DEBUG(dbgs() << "\t\tupdated: " << *UseMI);
1520 }
1521 }
1522 }
1523
1524 if (ToBeUpdated.count(SrcReg))
1525 return true;
1526
1527 unsigned NumCopyUses = 0;
1528 for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) {
1529 if (UseMO.getParent()->isCopyLike())
1530 NumCopyUses++;
1531 }
1532 if (NumCopyUses < LateRematUpdateThreshold) {
1533 // The source interval can become smaller because we removed a use.
1534 shrinkToUses(&SrcInt, &DeadDefs);
1535 if (!DeadDefs.empty())
1536 eliminateDeadDefs();
1537 } else {
1538 ToBeUpdated.insert(SrcReg);
1539 }
1540 return true;
1541 }
1542
eliminateUndefCopy(MachineInstr * CopyMI)1543 MachineInstr *RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI) {
1544 // ProcessImplicitDefs may leave some copies of <undef> values, it only
1545 // removes local variables. When we have a copy like:
1546 //
1547 // %1 = COPY undef %2
1548 //
1549 // We delete the copy and remove the corresponding value number from %1.
1550 // Any uses of that value number are marked as <undef>.
1551
1552 // Note that we do not query CoalescerPair here but redo isMoveInstr as the
1553 // CoalescerPair may have a new register class with adjusted subreg indices
1554 // at this point.
1555 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
1556 if(!isMoveInstr(*TRI, CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx))
1557 return nullptr;
1558
1559 SlotIndex Idx = LIS->getInstructionIndex(*CopyMI);
1560 const LiveInterval &SrcLI = LIS->getInterval(SrcReg);
1561 // CopyMI is undef iff SrcReg is not live before the instruction.
1562 if (SrcSubIdx != 0 && SrcLI.hasSubRanges()) {
1563 LaneBitmask SrcMask = TRI->getSubRegIndexLaneMask(SrcSubIdx);
1564 for (const LiveInterval::SubRange &SR : SrcLI.subranges()) {
1565 if ((SR.LaneMask & SrcMask).none())
1566 continue;
1567 if (SR.liveAt(Idx))
1568 return nullptr;
1569 }
1570 } else if (SrcLI.liveAt(Idx))
1571 return nullptr;
1572
1573 // If the undef copy defines a live-out value (i.e. an input to a PHI def),
1574 // then replace it with an IMPLICIT_DEF.
1575 LiveInterval &DstLI = LIS->getInterval(DstReg);
1576 SlotIndex RegIndex = Idx.getRegSlot();
1577 LiveRange::Segment *Seg = DstLI.getSegmentContaining(RegIndex);
1578 assert(Seg != nullptr && "No segment for defining instruction");
1579 if (VNInfo *V = DstLI.getVNInfoAt(Seg->end)) {
1580 if (V->isPHIDef()) {
1581 CopyMI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
1582 for (unsigned i = CopyMI->getNumOperands(); i != 0; --i) {
1583 MachineOperand &MO = CopyMI->getOperand(i-1);
1584 if (MO.isReg() && MO.isUse())
1585 CopyMI->RemoveOperand(i-1);
1586 }
1587 LLVM_DEBUG(dbgs() << "\tReplaced copy of <undef> value with an "
1588 "implicit def\n");
1589 return CopyMI;
1590 }
1591 }
1592
1593 // Remove any DstReg segments starting at the instruction.
1594 LLVM_DEBUG(dbgs() << "\tEliminating copy of <undef> value\n");
1595
1596 // Remove value or merge with previous one in case of a subregister def.
1597 if (VNInfo *PrevVNI = DstLI.getVNInfoAt(Idx)) {
1598 VNInfo *VNI = DstLI.getVNInfoAt(RegIndex);
1599 DstLI.MergeValueNumberInto(VNI, PrevVNI);
1600
1601 // The affected subregister segments can be removed.
1602 LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(DstSubIdx);
1603 for (LiveInterval::SubRange &SR : DstLI.subranges()) {
1604 if ((SR.LaneMask & DstMask).none())
1605 continue;
1606
1607 VNInfo *SVNI = SR.getVNInfoAt(RegIndex);
1608 assert(SVNI != nullptr && SlotIndex::isSameInstr(SVNI->def, RegIndex));
1609 SR.removeValNo(SVNI);
1610 }
1611 DstLI.removeEmptySubRanges();
1612 } else
1613 LIS->removeVRegDefAt(DstLI, RegIndex);
1614
1615 // Mark uses as undef.
1616 for (MachineOperand &MO : MRI->reg_nodbg_operands(DstReg)) {
1617 if (MO.isDef() /*|| MO.isUndef()*/)
1618 continue;
1619 const MachineInstr &MI = *MO.getParent();
1620 SlotIndex UseIdx = LIS->getInstructionIndex(MI);
1621 LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg());
1622 bool isLive;
1623 if (!UseMask.all() && DstLI.hasSubRanges()) {
1624 isLive = false;
1625 for (const LiveInterval::SubRange &SR : DstLI.subranges()) {
1626 if ((SR.LaneMask & UseMask).none())
1627 continue;
1628 if (SR.liveAt(UseIdx)) {
1629 isLive = true;
1630 break;
1631 }
1632 }
1633 } else
1634 isLive = DstLI.liveAt(UseIdx);
1635 if (isLive)
1636 continue;
1637 MO.setIsUndef(true);
1638 LLVM_DEBUG(dbgs() << "\tnew undef: " << UseIdx << '\t' << MI);
1639 }
1640
1641 // A def of a subregister may be a use of the other subregisters, so
1642 // deleting a def of a subregister may also remove uses. Since CopyMI
1643 // is still part of the function (but about to be erased), mark all
1644 // defs of DstReg in it as <undef>, so that shrinkToUses would
1645 // ignore them.
1646 for (MachineOperand &MO : CopyMI->operands())
1647 if (MO.isReg() && MO.isDef() && MO.getReg() == DstReg)
1648 MO.setIsUndef(true);
1649 LIS->shrinkToUses(&DstLI);
1650
1651 return CopyMI;
1652 }
1653
addUndefFlag(const LiveInterval & Int,SlotIndex UseIdx,MachineOperand & MO,unsigned SubRegIdx)1654 void RegisterCoalescer::addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx,
1655 MachineOperand &MO, unsigned SubRegIdx) {
1656 LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubRegIdx);
1657 if (MO.isDef())
1658 Mask = ~Mask;
1659 bool IsUndef = true;
1660 for (const LiveInterval::SubRange &S : Int.subranges()) {
1661 if ((S.LaneMask & Mask).none())
1662 continue;
1663 if (S.liveAt(UseIdx)) {
1664 IsUndef = false;
1665 break;
1666 }
1667 }
1668 if (IsUndef) {
1669 MO.setIsUndef(true);
1670 // We found out some subregister use is actually reading an undefined
1671 // value. In some cases the whole vreg has become undefined at this
1672 // point so we have to potentially shrink the main range if the
1673 // use was ending a live segment there.
1674 LiveQueryResult Q = Int.Query(UseIdx);
1675 if (Q.valueOut() == nullptr)
1676 ShrinkMainRange = true;
1677 }
1678 }
1679
updateRegDefsUses(unsigned SrcReg,unsigned DstReg,unsigned SubIdx)1680 void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg, unsigned DstReg,
1681 unsigned SubIdx) {
1682 bool DstIsPhys = Register::isPhysicalRegister(DstReg);
1683 LiveInterval *DstInt = DstIsPhys ? nullptr : &LIS->getInterval(DstReg);
1684
1685 if (DstInt && DstInt->hasSubRanges() && DstReg != SrcReg) {
1686 for (MachineOperand &MO : MRI->reg_operands(DstReg)) {
1687 unsigned SubReg = MO.getSubReg();
1688 if (SubReg == 0 || MO.isUndef())
1689 continue;
1690 MachineInstr &MI = *MO.getParent();
1691 if (MI.isDebugValue())
1692 continue;
1693 SlotIndex UseIdx = LIS->getInstructionIndex(MI).getRegSlot(true);
1694 addUndefFlag(*DstInt, UseIdx, MO, SubReg);
1695 }
1696 }
1697
1698 SmallPtrSet<MachineInstr*, 8> Visited;
1699 for (MachineRegisterInfo::reg_instr_iterator
1700 I = MRI->reg_instr_begin(SrcReg), E = MRI->reg_instr_end();
1701 I != E; ) {
1702 MachineInstr *UseMI = &*(I++);
1703
1704 // Each instruction can only be rewritten once because sub-register
1705 // composition is not always idempotent. When SrcReg != DstReg, rewriting
1706 // the UseMI operands removes them from the SrcReg use-def chain, but when
1707 // SrcReg is DstReg we could encounter UseMI twice if it has multiple
1708 // operands mentioning the virtual register.
1709 if (SrcReg == DstReg && !Visited.insert(UseMI).second)
1710 continue;
1711
1712 SmallVector<unsigned,8> Ops;
1713 bool Reads, Writes;
1714 std::tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops);
1715
1716 // If SrcReg wasn't read, it may still be the case that DstReg is live-in
1717 // because SrcReg is a sub-register.
1718 if (DstInt && !Reads && SubIdx && !UseMI->isDebugValue())
1719 Reads = DstInt->liveAt(LIS->getInstructionIndex(*UseMI));
1720
1721 // Replace SrcReg with DstReg in all UseMI operands.
1722 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1723 MachineOperand &MO = UseMI->getOperand(Ops[i]);
1724
1725 // Adjust <undef> flags in case of sub-register joins. We don't want to
1726 // turn a full def into a read-modify-write sub-register def and vice
1727 // versa.
1728 if (SubIdx && MO.isDef())
1729 MO.setIsUndef(!Reads);
1730
1731 // A subreg use of a partially undef (super) register may be a complete
1732 // undef use now and then has to be marked that way.
1733 if (SubIdx != 0 && MO.isUse() && MRI->shouldTrackSubRegLiveness(DstReg)) {
1734 if (!DstInt->hasSubRanges()) {
1735 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
1736 LaneBitmask FullMask = MRI->getMaxLaneMaskForVReg(DstInt->reg);
1737 LaneBitmask UsedLanes = TRI->getSubRegIndexLaneMask(SubIdx);
1738 LaneBitmask UnusedLanes = FullMask & ~UsedLanes;
1739 DstInt->createSubRangeFrom(Allocator, UsedLanes, *DstInt);
1740 // The unused lanes are just empty live-ranges at this point.
1741 // It is the caller responsibility to set the proper
1742 // dead segments if there is an actual dead def of the
1743 // unused lanes. This may happen with rematerialization.
1744 DstInt->createSubRange(Allocator, UnusedLanes);
1745 }
1746 SlotIndex MIIdx = UseMI->isDebugValue()
1747 ? LIS->getSlotIndexes()->getIndexBefore(*UseMI)
1748 : LIS->getInstructionIndex(*UseMI);
1749 SlotIndex UseIdx = MIIdx.getRegSlot(true);
1750 addUndefFlag(*DstInt, UseIdx, MO, SubIdx);
1751 }
1752
1753 if (DstIsPhys)
1754 MO.substPhysReg(DstReg, *TRI);
1755 else
1756 MO.substVirtReg(DstReg, SubIdx, *TRI);
1757 }
1758
1759 LLVM_DEBUG({
1760 dbgs() << "\t\tupdated: ";
1761 if (!UseMI->isDebugValue())
1762 dbgs() << LIS->getInstructionIndex(*UseMI) << "\t";
1763 dbgs() << *UseMI;
1764 });
1765 }
1766 }
1767
canJoinPhys(const CoalescerPair & CP)1768 bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) {
1769 // Always join simple intervals that are defined by a single copy from a
1770 // reserved register. This doesn't increase register pressure, so it is
1771 // always beneficial.
1772 if (!MRI->isReserved(CP.getDstReg())) {
1773 LLVM_DEBUG(dbgs() << "\tCan only merge into reserved registers.\n");
1774 return false;
1775 }
1776
1777 LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg());
1778 if (JoinVInt.containsOneValue())
1779 return true;
1780
1781 LLVM_DEBUG(
1782 dbgs() << "\tCannot join complex intervals into reserved register.\n");
1783 return false;
1784 }
1785
joinCopy(MachineInstr * CopyMI,bool & Again)1786 bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) {
1787 Again = false;
1788 LLVM_DEBUG(dbgs() << LIS->getInstructionIndex(*CopyMI) << '\t' << *CopyMI);
1789
1790 CoalescerPair CP(*TRI);
1791 if (!CP.setRegisters(CopyMI)) {
1792 LLVM_DEBUG(dbgs() << "\tNot coalescable.\n");
1793 return false;
1794 }
1795
1796 if (CP.getNewRC()) {
1797 auto SrcRC = MRI->getRegClass(CP.getSrcReg());
1798 auto DstRC = MRI->getRegClass(CP.getDstReg());
1799 unsigned SrcIdx = CP.getSrcIdx();
1800 unsigned DstIdx = CP.getDstIdx();
1801 if (CP.isFlipped()) {
1802 std::swap(SrcIdx, DstIdx);
1803 std::swap(SrcRC, DstRC);
1804 }
1805 if (!TRI->shouldCoalesce(CopyMI, SrcRC, SrcIdx, DstRC, DstIdx,
1806 CP.getNewRC(), *LIS)) {
1807 LLVM_DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n");
1808 return false;
1809 }
1810 }
1811
1812 // Dead code elimination. This really should be handled by MachineDCE, but
1813 // sometimes dead copies slip through, and we can't generate invalid live
1814 // ranges.
1815 if (!CP.isPhys() && CopyMI->allDefsAreDead()) {
1816 LLVM_DEBUG(dbgs() << "\tCopy is dead.\n");
1817 DeadDefs.push_back(CopyMI);
1818 eliminateDeadDefs();
1819 return true;
1820 }
1821
1822 // Eliminate undefs.
1823 if (!CP.isPhys()) {
1824 // If this is an IMPLICIT_DEF, leave it alone, but don't try to coalesce.
1825 if (MachineInstr *UndefMI = eliminateUndefCopy(CopyMI)) {
1826 if (UndefMI->isImplicitDef())
1827 return false;
1828 deleteInstr(CopyMI);
1829 return false; // Not coalescable.
1830 }
1831 }
1832
1833 // Coalesced copies are normally removed immediately, but transformations
1834 // like removeCopyByCommutingDef() can inadvertently create identity copies.
1835 // When that happens, just join the values and remove the copy.
1836 if (CP.getSrcReg() == CP.getDstReg()) {
1837 LiveInterval &LI = LIS->getInterval(CP.getSrcReg());
1838 LLVM_DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n');
1839 const SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI);
1840 LiveQueryResult LRQ = LI.Query(CopyIdx);
1841 if (VNInfo *DefVNI = LRQ.valueDefined()) {
1842 VNInfo *ReadVNI = LRQ.valueIn();
1843 assert(ReadVNI && "No value before copy and no <undef> flag.");
1844 assert(ReadVNI != DefVNI && "Cannot read and define the same value.");
1845 LI.MergeValueNumberInto(DefVNI, ReadVNI);
1846
1847 // Process subregister liveranges.
1848 for (LiveInterval::SubRange &S : LI.subranges()) {
1849 LiveQueryResult SLRQ = S.Query(CopyIdx);
1850 if (VNInfo *SDefVNI = SLRQ.valueDefined()) {
1851 VNInfo *SReadVNI = SLRQ.valueIn();
1852 S.MergeValueNumberInto(SDefVNI, SReadVNI);
1853 }
1854 }
1855 LLVM_DEBUG(dbgs() << "\tMerged values: " << LI << '\n');
1856 }
1857 deleteInstr(CopyMI);
1858 return true;
1859 }
1860
1861 // Enforce policies.
1862 if (CP.isPhys()) {
1863 LLVM_DEBUG(dbgs() << "\tConsidering merging "
1864 << printReg(CP.getSrcReg(), TRI) << " with "
1865 << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n');
1866 if (!canJoinPhys(CP)) {
1867 // Before giving up coalescing, if definition of source is defined by
1868 // trivial computation, try rematerializing it.
1869 bool IsDefCopy;
1870 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
1871 return true;
1872 if (IsDefCopy)
1873 Again = true; // May be possible to coalesce later.
1874 return false;
1875 }
1876 } else {
1877 // When possible, let DstReg be the larger interval.
1878 if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() >
1879 LIS->getInterval(CP.getDstReg()).size())
1880 CP.flip();
1881
1882 LLVM_DEBUG({
1883 dbgs() << "\tConsidering merging to "
1884 << TRI->getRegClassName(CP.getNewRC()) << " with ";
1885 if (CP.getDstIdx() && CP.getSrcIdx())
1886 dbgs() << printReg(CP.getDstReg()) << " in "
1887 << TRI->getSubRegIndexName(CP.getDstIdx()) << " and "
1888 << printReg(CP.getSrcReg()) << " in "
1889 << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n';
1890 else
1891 dbgs() << printReg(CP.getSrcReg(), TRI) << " in "
1892 << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n';
1893 });
1894 }
1895
1896 ShrinkMask = LaneBitmask::getNone();
1897 ShrinkMainRange = false;
1898
1899 // Okay, attempt to join these two intervals. On failure, this returns false.
1900 // Otherwise, if one of the intervals being joined is a physreg, this method
1901 // always canonicalizes DstInt to be it. The output "SrcInt" will not have
1902 // been modified, so we can use this information below to update aliases.
1903 if (!joinIntervals(CP)) {
1904 // Coalescing failed.
1905
1906 // If definition of source is defined by trivial computation, try
1907 // rematerializing it.
1908 bool IsDefCopy;
1909 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
1910 return true;
1911
1912 // If we can eliminate the copy without merging the live segments, do so
1913 // now.
1914 if (!CP.isPartial() && !CP.isPhys()) {
1915 bool Changed = adjustCopiesBackFrom(CP, CopyMI);
1916 bool Shrink = false;
1917 if (!Changed)
1918 std::tie(Changed, Shrink) = removeCopyByCommutingDef(CP, CopyMI);
1919 if (Changed) {
1920 deleteInstr(CopyMI);
1921 if (Shrink) {
1922 unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
1923 LiveInterval &DstLI = LIS->getInterval(DstReg);
1924 shrinkToUses(&DstLI);
1925 LLVM_DEBUG(dbgs() << "\t\tshrunk: " << DstLI << '\n');
1926 }
1927 LLVM_DEBUG(dbgs() << "\tTrivial!\n");
1928 return true;
1929 }
1930 }
1931
1932 // Try and see if we can partially eliminate the copy by moving the copy to
1933 // its predecessor.
1934 if (!CP.isPartial() && !CP.isPhys())
1935 if (removePartialRedundancy(CP, *CopyMI))
1936 return true;
1937
1938 // Otherwise, we are unable to join the intervals.
1939 LLVM_DEBUG(dbgs() << "\tInterference!\n");
1940 Again = true; // May be possible to coalesce later.
1941 return false;
1942 }
1943
1944 // Coalescing to a virtual register that is of a sub-register class of the
1945 // other. Make sure the resulting register is set to the right register class.
1946 if (CP.isCrossClass()) {
1947 ++numCrossRCs;
1948 MRI->setRegClass(CP.getDstReg(), CP.getNewRC());
1949 }
1950
1951 // Removing sub-register copies can ease the register class constraints.
1952 // Make sure we attempt to inflate the register class of DstReg.
1953 if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC()))
1954 InflateRegs.push_back(CP.getDstReg());
1955
1956 // CopyMI has been erased by joinIntervals at this point. Remove it from
1957 // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back
1958 // to the work list. This keeps ErasedInstrs from growing needlessly.
1959 ErasedInstrs.erase(CopyMI);
1960
1961 // Rewrite all SrcReg operands to DstReg.
1962 // Also update DstReg operands to include DstIdx if it is set.
1963 if (CP.getDstIdx())
1964 updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx());
1965 updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx());
1966
1967 // Shrink subregister ranges if necessary.
1968 if (ShrinkMask.any()) {
1969 LiveInterval &LI = LIS->getInterval(CP.getDstReg());
1970 for (LiveInterval::SubRange &S : LI.subranges()) {
1971 if ((S.LaneMask & ShrinkMask).none())
1972 continue;
1973 LLVM_DEBUG(dbgs() << "Shrink LaneUses (Lane " << PrintLaneMask(S.LaneMask)
1974 << ")\n");
1975 LIS->shrinkToUses(S, LI.reg);
1976 }
1977 LI.removeEmptySubRanges();
1978 }
1979
1980 // CP.getSrcReg()'s live interval has been merged into CP.getDstReg's live
1981 // interval. Since CP.getSrcReg() is in ToBeUpdated set and its live interval
1982 // is not up-to-date, need to update the merged live interval here.
1983 if (ToBeUpdated.count(CP.getSrcReg()))
1984 ShrinkMainRange = true;
1985
1986 if (ShrinkMainRange) {
1987 LiveInterval &LI = LIS->getInterval(CP.getDstReg());
1988 shrinkToUses(&LI);
1989 }
1990
1991 // SrcReg is guaranteed to be the register whose live interval that is
1992 // being merged.
1993 LIS->removeInterval(CP.getSrcReg());
1994
1995 // Update regalloc hint.
1996 TRI->updateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF);
1997
1998 LLVM_DEBUG({
1999 dbgs() << "\tSuccess: " << printReg(CP.getSrcReg(), TRI, CP.getSrcIdx())
2000 << " -> " << printReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n';
2001 dbgs() << "\tResult = ";
2002 if (CP.isPhys())
2003 dbgs() << printReg(CP.getDstReg(), TRI);
2004 else
2005 dbgs() << LIS->getInterval(CP.getDstReg());
2006 dbgs() << '\n';
2007 });
2008
2009 ++numJoins;
2010 return true;
2011 }
2012
joinReservedPhysReg(CoalescerPair & CP)2013 bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) {
2014 unsigned DstReg = CP.getDstReg();
2015 unsigned SrcReg = CP.getSrcReg();
2016 assert(CP.isPhys() && "Must be a physreg copy");
2017 assert(MRI->isReserved(DstReg) && "Not a reserved register");
2018 LiveInterval &RHS = LIS->getInterval(SrcReg);
2019 LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n');
2020
2021 assert(RHS.containsOneValue() && "Invalid join with reserved register");
2022
2023 // Optimization for reserved registers like ESP. We can only merge with a
2024 // reserved physreg if RHS has a single value that is a copy of DstReg.
2025 // The live range of the reserved register will look like a set of dead defs
2026 // - we don't properly track the live range of reserved registers.
2027
2028 // Deny any overlapping intervals. This depends on all the reserved
2029 // register live ranges to look like dead defs.
2030 if (!MRI->isConstantPhysReg(DstReg)) {
2031 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) {
2032 // Abort if not all the regunits are reserved.
2033 for (MCRegUnitRootIterator RI(*UI, TRI); RI.isValid(); ++RI) {
2034 if (!MRI->isReserved(*RI))
2035 return false;
2036 }
2037 if (RHS.overlaps(LIS->getRegUnit(*UI))) {
2038 LLVM_DEBUG(dbgs() << "\t\tInterference: " << printRegUnit(*UI, TRI)
2039 << '\n');
2040 return false;
2041 }
2042 }
2043
2044 // We must also check for overlaps with regmask clobbers.
2045 BitVector RegMaskUsable;
2046 if (LIS->checkRegMaskInterference(RHS, RegMaskUsable) &&
2047 !RegMaskUsable.test(DstReg)) {
2048 LLVM_DEBUG(dbgs() << "\t\tRegMask interference\n");
2049 return false;
2050 }
2051 }
2052
2053 // Skip any value computations, we are not adding new values to the
2054 // reserved register. Also skip merging the live ranges, the reserved
2055 // register live range doesn't need to be accurate as long as all the
2056 // defs are there.
2057
2058 // Delete the identity copy.
2059 MachineInstr *CopyMI;
2060 if (CP.isFlipped()) {
2061 // Physreg is copied into vreg
2062 // %y = COPY %physreg_x
2063 // ... //< no other def of %physreg_x here
2064 // use %y
2065 // =>
2066 // ...
2067 // use %physreg_x
2068 CopyMI = MRI->getVRegDef(SrcReg);
2069 } else {
2070 // VReg is copied into physreg:
2071 // %y = def
2072 // ... //< no other def or use of %physreg_x here
2073 // %physreg_x = COPY %y
2074 // =>
2075 // %physreg_x = def
2076 // ...
2077 if (!MRI->hasOneNonDBGUse(SrcReg)) {
2078 LLVM_DEBUG(dbgs() << "\t\tMultiple vreg uses!\n");
2079 return false;
2080 }
2081
2082 if (!LIS->intervalIsInOneMBB(RHS)) {
2083 LLVM_DEBUG(dbgs() << "\t\tComplex control flow!\n");
2084 return false;
2085 }
2086
2087 MachineInstr &DestMI = *MRI->getVRegDef(SrcReg);
2088 CopyMI = &*MRI->use_instr_nodbg_begin(SrcReg);
2089 SlotIndex CopyRegIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
2090 SlotIndex DestRegIdx = LIS->getInstructionIndex(DestMI).getRegSlot();
2091
2092 if (!MRI->isConstantPhysReg(DstReg)) {
2093 // We checked above that there are no interfering defs of the physical
2094 // register. However, for this case, where we intend to move up the def of
2095 // the physical register, we also need to check for interfering uses.
2096 SlotIndexes *Indexes = LIS->getSlotIndexes();
2097 for (SlotIndex SI = Indexes->getNextNonNullIndex(DestRegIdx);
2098 SI != CopyRegIdx; SI = Indexes->getNextNonNullIndex(SI)) {
2099 MachineInstr *MI = LIS->getInstructionFromIndex(SI);
2100 if (MI->readsRegister(DstReg, TRI)) {
2101 LLVM_DEBUG(dbgs() << "\t\tInterference (read): " << *MI);
2102 return false;
2103 }
2104 }
2105 }
2106
2107 // We're going to remove the copy which defines a physical reserved
2108 // register, so remove its valno, etc.
2109 LLVM_DEBUG(dbgs() << "\t\tRemoving phys reg def of "
2110 << printReg(DstReg, TRI) << " at " << CopyRegIdx << "\n");
2111
2112 LIS->removePhysRegDefAt(DstReg, CopyRegIdx);
2113 // Create a new dead def at the new def location.
2114 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) {
2115 LiveRange &LR = LIS->getRegUnit(*UI);
2116 LR.createDeadDef(DestRegIdx, LIS->getVNInfoAllocator());
2117 }
2118 }
2119
2120 deleteInstr(CopyMI);
2121
2122 // We don't track kills for reserved registers.
2123 MRI->clearKillFlags(CP.getSrcReg());
2124
2125 return true;
2126 }
2127
2128 //===----------------------------------------------------------------------===//
2129 // Interference checking and interval joining
2130 //===----------------------------------------------------------------------===//
2131 //
2132 // In the easiest case, the two live ranges being joined are disjoint, and
2133 // there is no interference to consider. It is quite common, though, to have
2134 // overlapping live ranges, and we need to check if the interference can be
2135 // resolved.
2136 //
2137 // The live range of a single SSA value forms a sub-tree of the dominator tree.
2138 // This means that two SSA values overlap if and only if the def of one value
2139 // is contained in the live range of the other value. As a special case, the
2140 // overlapping values can be defined at the same index.
2141 //
2142 // The interference from an overlapping def can be resolved in these cases:
2143 //
2144 // 1. Coalescable copies. The value is defined by a copy that would become an
2145 // identity copy after joining SrcReg and DstReg. The copy instruction will
2146 // be removed, and the value will be merged with the source value.
2147 //
2148 // There can be several copies back and forth, causing many values to be
2149 // merged into one. We compute a list of ultimate values in the joined live
2150 // range as well as a mappings from the old value numbers.
2151 //
2152 // 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI
2153 // predecessors have a live out value. It doesn't cause real interference,
2154 // and can be merged into the value it overlaps. Like a coalescable copy, it
2155 // can be erased after joining.
2156 //
2157 // 3. Copy of external value. The overlapping def may be a copy of a value that
2158 // is already in the other register. This is like a coalescable copy, but
2159 // the live range of the source register must be trimmed after erasing the
2160 // copy instruction:
2161 //
2162 // %src = COPY %ext
2163 // %dst = COPY %ext <-- Remove this COPY, trim the live range of %ext.
2164 //
2165 // 4. Clobbering undefined lanes. Vector registers are sometimes built by
2166 // defining one lane at a time:
2167 //
2168 // %dst:ssub0<def,read-undef> = FOO
2169 // %src = BAR
2170 // %dst:ssub1 = COPY %src
2171 //
2172 // The live range of %src overlaps the %dst value defined by FOO, but
2173 // merging %src into %dst:ssub1 is only going to clobber the ssub1 lane
2174 // which was undef anyway.
2175 //
2176 // The value mapping is more complicated in this case. The final live range
2177 // will have different value numbers for both FOO and BAR, but there is no
2178 // simple mapping from old to new values. It may even be necessary to add
2179 // new PHI values.
2180 //
2181 // 5. Clobbering dead lanes. A def may clobber a lane of a vector register that
2182 // is live, but never read. This can happen because we don't compute
2183 // individual live ranges per lane.
2184 //
2185 // %dst = FOO
2186 // %src = BAR
2187 // %dst:ssub1 = COPY %src
2188 //
2189 // This kind of interference is only resolved locally. If the clobbered
2190 // lane value escapes the block, the join is aborted.
2191
2192 namespace {
2193
2194 /// Track information about values in a single virtual register about to be
2195 /// joined. Objects of this class are always created in pairs - one for each
2196 /// side of the CoalescerPair (or one for each lane of a side of the coalescer
2197 /// pair)
2198 class JoinVals {
2199 /// Live range we work on.
2200 LiveRange &LR;
2201
2202 /// (Main) register we work on.
2203 const unsigned Reg;
2204
2205 /// Reg (and therefore the values in this liverange) will end up as
2206 /// subregister SubIdx in the coalesced register. Either CP.DstIdx or
2207 /// CP.SrcIdx.
2208 const unsigned SubIdx;
2209
2210 /// The LaneMask that this liverange will occupy the coalesced register. May
2211 /// be smaller than the lanemask produced by SubIdx when merging subranges.
2212 const LaneBitmask LaneMask;
2213
2214 /// This is true when joining sub register ranges, false when joining main
2215 /// ranges.
2216 const bool SubRangeJoin;
2217
2218 /// Whether the current LiveInterval tracks subregister liveness.
2219 const bool TrackSubRegLiveness;
2220
2221 /// Values that will be present in the final live range.
2222 SmallVectorImpl<VNInfo*> &NewVNInfo;
2223
2224 const CoalescerPair &CP;
2225 LiveIntervals *LIS;
2226 SlotIndexes *Indexes;
2227 const TargetRegisterInfo *TRI;
2228
2229 /// Value number assignments. Maps value numbers in LI to entries in
2230 /// NewVNInfo. This is suitable for passing to LiveInterval::join().
2231 SmallVector<int, 8> Assignments;
2232
2233 public:
2234 /// Conflict resolution for overlapping values.
2235 enum ConflictResolution {
2236 /// No overlap, simply keep this value.
2237 CR_Keep,
2238
2239 /// Merge this value into OtherVNI and erase the defining instruction.
2240 /// Used for IMPLICIT_DEF, coalescable copies, and copies from external
2241 /// values.
2242 CR_Erase,
2243
2244 /// Merge this value into OtherVNI but keep the defining instruction.
2245 /// This is for the special case where OtherVNI is defined by the same
2246 /// instruction.
2247 CR_Merge,
2248
2249 /// Keep this value, and have it replace OtherVNI where possible. This
2250 /// complicates value mapping since OtherVNI maps to two different values
2251 /// before and after this def.
2252 /// Used when clobbering undefined or dead lanes.
2253 CR_Replace,
2254
2255 /// Unresolved conflict. Visit later when all values have been mapped.
2256 CR_Unresolved,
2257
2258 /// Unresolvable conflict. Abort the join.
2259 CR_Impossible
2260 };
2261
2262 private:
2263 /// Per-value info for LI. The lane bit masks are all relative to the final
2264 /// joined register, so they can be compared directly between SrcReg and
2265 /// DstReg.
2266 struct Val {
2267 ConflictResolution Resolution = CR_Keep;
2268
2269 /// Lanes written by this def, 0 for unanalyzed values.
2270 LaneBitmask WriteLanes;
2271
2272 /// Lanes with defined values in this register. Other lanes are undef and
2273 /// safe to clobber.
2274 LaneBitmask ValidLanes;
2275
2276 /// Value in LI being redefined by this def.
2277 VNInfo *RedefVNI = nullptr;
2278
2279 /// Value in the other live range that overlaps this def, if any.
2280 VNInfo *OtherVNI = nullptr;
2281
2282 /// Is this value an IMPLICIT_DEF that can be erased?
2283 ///
2284 /// IMPLICIT_DEF values should only exist at the end of a basic block that
2285 /// is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be
2286 /// safely erased if they are overlapping a live value in the other live
2287 /// interval.
2288 ///
2289 /// Weird control flow graphs and incomplete PHI handling in
2290 /// ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with
2291 /// longer live ranges. Such IMPLICIT_DEF values should be treated like
2292 /// normal values.
2293 bool ErasableImplicitDef = false;
2294
2295 /// True when the live range of this value will be pruned because of an
2296 /// overlapping CR_Replace value in the other live range.
2297 bool Pruned = false;
2298
2299 /// True once Pruned above has been computed.
2300 bool PrunedComputed = false;
2301
2302 /// True if this value is determined to be identical to OtherVNI
2303 /// (in valuesIdentical). This is used with CR_Erase where the erased
2304 /// copy is redundant, i.e. the source value is already the same as
2305 /// the destination. In such cases the subranges need to be updated
2306 /// properly. See comment at pruneSubRegValues for more info.
2307 bool Identical = false;
2308
2309 Val() = default;
2310
isAnalyzed__anon01e3b9040311::JoinVals::Val2311 bool isAnalyzed() const { return WriteLanes.any(); }
2312 };
2313
2314 /// One entry per value number in LI.
2315 SmallVector<Val, 8> Vals;
2316
2317 /// Compute the bitmask of lanes actually written by DefMI.
2318 /// Set Redef if there are any partial register definitions that depend on the
2319 /// previous value of the register.
2320 LaneBitmask computeWriteLanes(const MachineInstr *DefMI, bool &Redef) const;
2321
2322 /// Find the ultimate value that VNI was copied from.
2323 std::pair<const VNInfo*,unsigned> followCopyChain(const VNInfo *VNI) const;
2324
2325 bool valuesIdentical(VNInfo *Value0, VNInfo *Value1, const JoinVals &Other) const;
2326
2327 /// Analyze ValNo in this live range, and set all fields of Vals[ValNo].
2328 /// Return a conflict resolution when possible, but leave the hard cases as
2329 /// CR_Unresolved.
2330 /// Recursively calls computeAssignment() on this and Other, guaranteeing that
2331 /// both OtherVNI and RedefVNI have been analyzed and mapped before returning.
2332 /// The recursion always goes upwards in the dominator tree, making loops
2333 /// impossible.
2334 ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other);
2335
2336 /// Compute the value assignment for ValNo in RI.
2337 /// This may be called recursively by analyzeValue(), but never for a ValNo on
2338 /// the stack.
2339 void computeAssignment(unsigned ValNo, JoinVals &Other);
2340
2341 /// Assuming ValNo is going to clobber some valid lanes in Other.LR, compute
2342 /// the extent of the tainted lanes in the block.
2343 ///
2344 /// Multiple values in Other.LR can be affected since partial redefinitions
2345 /// can preserve previously tainted lanes.
2346 ///
2347 /// 1 %dst = VLOAD <-- Define all lanes in %dst
2348 /// 2 %src = FOO <-- ValNo to be joined with %dst:ssub0
2349 /// 3 %dst:ssub1 = BAR <-- Partial redef doesn't clear taint in ssub0
2350 /// 4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read
2351 ///
2352 /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes)
2353 /// entry to TaintedVals.
2354 ///
2355 /// Returns false if the tainted lanes extend beyond the basic block.
2356 bool
2357 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other,
2358 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent);
2359
2360 /// Return true if MI uses any of the given Lanes from Reg.
2361 /// This does not include partial redefinitions of Reg.
2362 bool usesLanes(const MachineInstr &MI, unsigned, unsigned, LaneBitmask) const;
2363
2364 /// Determine if ValNo is a copy of a value number in LR or Other.LR that will
2365 /// be pruned:
2366 ///
2367 /// %dst = COPY %src
2368 /// %src = COPY %dst <-- This value to be pruned.
2369 /// %dst = COPY %src <-- This value is a copy of a pruned value.
2370 bool isPrunedValue(unsigned ValNo, JoinVals &Other);
2371
2372 public:
JoinVals(LiveRange & LR,unsigned Reg,unsigned SubIdx,LaneBitmask LaneMask,SmallVectorImpl<VNInfo * > & newVNInfo,const CoalescerPair & cp,LiveIntervals * lis,const TargetRegisterInfo * TRI,bool SubRangeJoin,bool TrackSubRegLiveness)2373 JoinVals(LiveRange &LR, unsigned Reg, unsigned SubIdx, LaneBitmask LaneMask,
2374 SmallVectorImpl<VNInfo*> &newVNInfo, const CoalescerPair &cp,
2375 LiveIntervals *lis, const TargetRegisterInfo *TRI, bool SubRangeJoin,
2376 bool TrackSubRegLiveness)
2377 : LR(LR), Reg(Reg), SubIdx(SubIdx), LaneMask(LaneMask),
2378 SubRangeJoin(SubRangeJoin), TrackSubRegLiveness(TrackSubRegLiveness),
2379 NewVNInfo(newVNInfo), CP(cp), LIS(lis), Indexes(LIS->getSlotIndexes()),
2380 TRI(TRI), Assignments(LR.getNumValNums(), -1), Vals(LR.getNumValNums()) {}
2381
2382 /// Analyze defs in LR and compute a value mapping in NewVNInfo.
2383 /// Returns false if any conflicts were impossible to resolve.
2384 bool mapValues(JoinVals &Other);
2385
2386 /// Try to resolve conflicts that require all values to be mapped.
2387 /// Returns false if any conflicts were impossible to resolve.
2388 bool resolveConflicts(JoinVals &Other);
2389
2390 /// Prune the live range of values in Other.LR where they would conflict with
2391 /// CR_Replace values in LR. Collect end points for restoring the live range
2392 /// after joining.
2393 void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints,
2394 bool changeInstrs);
2395
2396 /// Removes subranges starting at copies that get removed. This sometimes
2397 /// happens when undefined subranges are copied around. These ranges contain
2398 /// no useful information and can be removed.
2399 void pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask);
2400
2401 /// Pruning values in subranges can lead to removing segments in these
2402 /// subranges started by IMPLICIT_DEFs. The corresponding segments in
2403 /// the main range also need to be removed. This function will mark
2404 /// the corresponding values in the main range as pruned, so that
2405 /// eraseInstrs can do the final cleanup.
2406 /// The parameter @p LI must be the interval whose main range is the
2407 /// live range LR.
2408 void pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange);
2409
2410 /// Erase any machine instructions that have been coalesced away.
2411 /// Add erased instructions to ErasedInstrs.
2412 /// Add foreign virtual registers to ShrinkRegs if their live range ended at
2413 /// the erased instrs.
2414 void eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
2415 SmallVectorImpl<unsigned> &ShrinkRegs,
2416 LiveInterval *LI = nullptr);
2417
2418 /// Remove liverange defs at places where implicit defs will be removed.
2419 void removeImplicitDefs();
2420
2421 /// Get the value assignments suitable for passing to LiveInterval::join.
getAssignments() const2422 const int *getAssignments() const { return Assignments.data(); }
2423
2424 /// Get the conflict resolution for a value number.
getResolution(unsigned Num) const2425 ConflictResolution getResolution(unsigned Num) const {
2426 return Vals[Num].Resolution;
2427 }
2428 };
2429
2430 } // end anonymous namespace
2431
computeWriteLanes(const MachineInstr * DefMI,bool & Redef) const2432 LaneBitmask JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef)
2433 const {
2434 LaneBitmask L;
2435 for (const MachineOperand &MO : DefMI->operands()) {
2436 if (!MO.isReg() || MO.getReg() != Reg || !MO.isDef())
2437 continue;
2438 L |= TRI->getSubRegIndexLaneMask(
2439 TRI->composeSubRegIndices(SubIdx, MO.getSubReg()));
2440 if (MO.readsReg())
2441 Redef = true;
2442 }
2443 return L;
2444 }
2445
followCopyChain(const VNInfo * VNI) const2446 std::pair<const VNInfo*, unsigned> JoinVals::followCopyChain(
2447 const VNInfo *VNI) const {
2448 unsigned TrackReg = Reg;
2449
2450 while (!VNI->isPHIDef()) {
2451 SlotIndex Def = VNI->def;
2452 MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
2453 assert(MI && "No defining instruction");
2454 if (!MI->isFullCopy())
2455 return std::make_pair(VNI, TrackReg);
2456 Register SrcReg = MI->getOperand(1).getReg();
2457 if (!Register::isVirtualRegister(SrcReg))
2458 return std::make_pair(VNI, TrackReg);
2459
2460 const LiveInterval &LI = LIS->getInterval(SrcReg);
2461 const VNInfo *ValueIn;
2462 // No subrange involved.
2463 if (!SubRangeJoin || !LI.hasSubRanges()) {
2464 LiveQueryResult LRQ = LI.Query(Def);
2465 ValueIn = LRQ.valueIn();
2466 } else {
2467 // Query subranges. Ensure that all matching ones take us to the same def
2468 // (allowing some of them to be undef).
2469 ValueIn = nullptr;
2470 for (const LiveInterval::SubRange &S : LI.subranges()) {
2471 // Transform lanemask to a mask in the joined live interval.
2472 LaneBitmask SMask = TRI->composeSubRegIndexLaneMask(SubIdx, S.LaneMask);
2473 if ((SMask & LaneMask).none())
2474 continue;
2475 LiveQueryResult LRQ = S.Query(Def);
2476 if (!ValueIn) {
2477 ValueIn = LRQ.valueIn();
2478 continue;
2479 }
2480 if (LRQ.valueIn() && ValueIn != LRQ.valueIn())
2481 return std::make_pair(VNI, TrackReg);
2482 }
2483 }
2484 if (ValueIn == nullptr) {
2485 // Reaching an undefined value is legitimate, for example:
2486 //
2487 // 1 undef %0.sub1 = ... ;; %0.sub0 == undef
2488 // 2 %1 = COPY %0 ;; %1 is defined here.
2489 // 3 %0 = COPY %1 ;; Now %0.sub0 has a definition,
2490 // ;; but it's equivalent to "undef".
2491 return std::make_pair(nullptr, SrcReg);
2492 }
2493 VNI = ValueIn;
2494 TrackReg = SrcReg;
2495 }
2496 return std::make_pair(VNI, TrackReg);
2497 }
2498
valuesIdentical(VNInfo * Value0,VNInfo * Value1,const JoinVals & Other) const2499 bool JoinVals::valuesIdentical(VNInfo *Value0, VNInfo *Value1,
2500 const JoinVals &Other) const {
2501 const VNInfo *Orig0;
2502 unsigned Reg0;
2503 std::tie(Orig0, Reg0) = followCopyChain(Value0);
2504 if (Orig0 == Value1 && Reg0 == Other.Reg)
2505 return true;
2506
2507 const VNInfo *Orig1;
2508 unsigned Reg1;
2509 std::tie(Orig1, Reg1) = Other.followCopyChain(Value1);
2510 // If both values are undefined, and the source registers are the same
2511 // register, the values are identical. Filter out cases where only one
2512 // value is defined.
2513 if (Orig0 == nullptr || Orig1 == nullptr)
2514 return Orig0 == Orig1 && Reg0 == Reg1;
2515
2516 // The values are equal if they are defined at the same place and use the
2517 // same register. Note that we cannot compare VNInfos directly as some of
2518 // them might be from a copy created in mergeSubRangeInto() while the other
2519 // is from the original LiveInterval.
2520 return Orig0->def == Orig1->def && Reg0 == Reg1;
2521 }
2522
2523 JoinVals::ConflictResolution
analyzeValue(unsigned ValNo,JoinVals & Other)2524 JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) {
2525 Val &V = Vals[ValNo];
2526 assert(!V.isAnalyzed() && "Value has already been analyzed!");
2527 VNInfo *VNI = LR.getValNumInfo(ValNo);
2528 if (VNI->isUnused()) {
2529 V.WriteLanes = LaneBitmask::getAll();
2530 return CR_Keep;
2531 }
2532
2533 // Get the instruction defining this value, compute the lanes written.
2534 const MachineInstr *DefMI = nullptr;
2535 if (VNI->isPHIDef()) {
2536 // Conservatively assume that all lanes in a PHI are valid.
2537 LaneBitmask Lanes = SubRangeJoin ? LaneBitmask::getLane(0)
2538 : TRI->getSubRegIndexLaneMask(SubIdx);
2539 V.ValidLanes = V.WriteLanes = Lanes;
2540 } else {
2541 DefMI = Indexes->getInstructionFromIndex(VNI->def);
2542 assert(DefMI != nullptr);
2543 if (SubRangeJoin) {
2544 // We don't care about the lanes when joining subregister ranges.
2545 V.WriteLanes = V.ValidLanes = LaneBitmask::getLane(0);
2546 if (DefMI->isImplicitDef()) {
2547 V.ValidLanes = LaneBitmask::getNone();
2548 V.ErasableImplicitDef = true;
2549 }
2550 } else {
2551 bool Redef = false;
2552 V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef);
2553
2554 // If this is a read-modify-write instruction, there may be more valid
2555 // lanes than the ones written by this instruction.
2556 // This only covers partial redef operands. DefMI may have normal use
2557 // operands reading the register. They don't contribute valid lanes.
2558 //
2559 // This adds ssub1 to the set of valid lanes in %src:
2560 //
2561 // %src:ssub1 = FOO
2562 //
2563 // This leaves only ssub1 valid, making any other lanes undef:
2564 //
2565 // %src:ssub1<def,read-undef> = FOO %src:ssub2
2566 //
2567 // The <read-undef> flag on the def operand means that old lane values are
2568 // not important.
2569 if (Redef) {
2570 V.RedefVNI = LR.Query(VNI->def).valueIn();
2571 assert((TrackSubRegLiveness || V.RedefVNI) &&
2572 "Instruction is reading nonexistent value");
2573 if (V.RedefVNI != nullptr) {
2574 computeAssignment(V.RedefVNI->id, Other);
2575 V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes;
2576 }
2577 }
2578
2579 // An IMPLICIT_DEF writes undef values.
2580 if (DefMI->isImplicitDef()) {
2581 // We normally expect IMPLICIT_DEF values to be live only until the end
2582 // of their block. If the value is really live longer and gets pruned in
2583 // another block, this flag is cleared again.
2584 //
2585 // Clearing the valid lanes is deferred until it is sure this can be
2586 // erased.
2587 V.ErasableImplicitDef = true;
2588 }
2589 }
2590 }
2591
2592 // Find the value in Other that overlaps VNI->def, if any.
2593 LiveQueryResult OtherLRQ = Other.LR.Query(VNI->def);
2594
2595 // It is possible that both values are defined by the same instruction, or
2596 // the values are PHIs defined in the same block. When that happens, the two
2597 // values should be merged into one, but not into any preceding value.
2598 // The first value defined or visited gets CR_Keep, the other gets CR_Merge.
2599 if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) {
2600 assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ");
2601
2602 // One value stays, the other is merged. Keep the earlier one, or the first
2603 // one we see.
2604 if (OtherVNI->def < VNI->def)
2605 Other.computeAssignment(OtherVNI->id, *this);
2606 else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) {
2607 // This is an early-clobber def overlapping a live-in value in the other
2608 // register. Not mergeable.
2609 V.OtherVNI = OtherLRQ.valueIn();
2610 return CR_Impossible;
2611 }
2612 V.OtherVNI = OtherVNI;
2613 Val &OtherV = Other.Vals[OtherVNI->id];
2614 // Keep this value, check for conflicts when analyzing OtherVNI.
2615 if (!OtherV.isAnalyzed())
2616 return CR_Keep;
2617 // Both sides have been analyzed now.
2618 // Allow overlapping PHI values. Any real interference would show up in a
2619 // predecessor, the PHI itself can't introduce any conflicts.
2620 if (VNI->isPHIDef())
2621 return CR_Merge;
2622 if ((V.ValidLanes & OtherV.ValidLanes).any())
2623 // Overlapping lanes can't be resolved.
2624 return CR_Impossible;
2625 else
2626 return CR_Merge;
2627 }
2628
2629 // No simultaneous def. Is Other live at the def?
2630 V.OtherVNI = OtherLRQ.valueIn();
2631 if (!V.OtherVNI)
2632 // No overlap, no conflict.
2633 return CR_Keep;
2634
2635 assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ");
2636
2637 // We have overlapping values, or possibly a kill of Other.
2638 // Recursively compute assignments up the dominator tree.
2639 Other.computeAssignment(V.OtherVNI->id, *this);
2640 Val &OtherV = Other.Vals[V.OtherVNI->id];
2641
2642 if (OtherV.ErasableImplicitDef) {
2643 // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block.
2644 // This shouldn't normally happen, but ProcessImplicitDefs can leave such
2645 // IMPLICIT_DEF instructions behind, and there is nothing wrong with it
2646 // technically.
2647 //
2648 // When it happens, treat that IMPLICIT_DEF as a normal value, and don't try
2649 // to erase the IMPLICIT_DEF instruction.
2650 if (DefMI &&
2651 DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) {
2652 LLVM_DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def
2653 << " extends into "
2654 << printMBBReference(*DefMI->getParent())
2655 << ", keeping it.\n");
2656 OtherV.ErasableImplicitDef = false;
2657 } else {
2658 // We deferred clearing these lanes in case we needed to save them
2659 OtherV.ValidLanes &= ~OtherV.WriteLanes;
2660 }
2661 }
2662
2663 // Allow overlapping PHI values. Any real interference would show up in a
2664 // predecessor, the PHI itself can't introduce any conflicts.
2665 if (VNI->isPHIDef())
2666 return CR_Replace;
2667
2668 // Check for simple erasable conflicts.
2669 if (DefMI->isImplicitDef()) {
2670 // We need the def for the subregister if there is nothing else live at the
2671 // subrange at this point.
2672 if (TrackSubRegLiveness
2673 && (V.WriteLanes & (OtherV.ValidLanes | OtherV.WriteLanes)).none())
2674 return CR_Replace;
2675 return CR_Erase;
2676 }
2677
2678 // Include the non-conflict where DefMI is a coalescable copy that kills
2679 // OtherVNI. We still want the copy erased and value numbers merged.
2680 if (CP.isCoalescable(DefMI)) {
2681 // Some of the lanes copied from OtherVNI may be undef, making them undef
2682 // here too.
2683 V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes;
2684 return CR_Erase;
2685 }
2686
2687 // This may not be a real conflict if DefMI simply kills Other and defines
2688 // VNI.
2689 if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def)
2690 return CR_Keep;
2691
2692 // Handle the case where VNI and OtherVNI can be proven to be identical:
2693 //
2694 // %other = COPY %ext
2695 // %this = COPY %ext <-- Erase this copy
2696 //
2697 if (DefMI->isFullCopy() && !CP.isPartial() &&
2698 valuesIdentical(VNI, V.OtherVNI, Other)) {
2699 V.Identical = true;
2700 return CR_Erase;
2701 }
2702
2703 // The remaining checks apply to the lanes, which aren't tracked here. This
2704 // was already decided to be OK via the following CR_Replace condition.
2705 // CR_Replace.
2706 if (SubRangeJoin)
2707 return CR_Replace;
2708
2709 // If the lanes written by this instruction were all undef in OtherVNI, it is
2710 // still safe to join the live ranges. This can't be done with a simple value
2711 // mapping, though - OtherVNI will map to multiple values:
2712 //
2713 // 1 %dst:ssub0 = FOO <-- OtherVNI
2714 // 2 %src = BAR <-- VNI
2715 // 3 %dst:ssub1 = COPY killed %src <-- Eliminate this copy.
2716 // 4 BAZ killed %dst
2717 // 5 QUUX killed %src
2718 //
2719 // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace
2720 // handles this complex value mapping.
2721 if ((V.WriteLanes & OtherV.ValidLanes).none())
2722 return CR_Replace;
2723
2724 // If the other live range is killed by DefMI and the live ranges are still
2725 // overlapping, it must be because we're looking at an early clobber def:
2726 //
2727 // %dst<def,early-clobber> = ASM killed %src
2728 //
2729 // In this case, it is illegal to merge the two live ranges since the early
2730 // clobber def would clobber %src before it was read.
2731 if (OtherLRQ.isKill()) {
2732 // This case where the def doesn't overlap the kill is handled above.
2733 assert(VNI->def.isEarlyClobber() &&
2734 "Only early clobber defs can overlap a kill");
2735 return CR_Impossible;
2736 }
2737
2738 // VNI is clobbering live lanes in OtherVNI, but there is still the
2739 // possibility that no instructions actually read the clobbered lanes.
2740 // If we're clobbering all the lanes in OtherVNI, at least one must be read.
2741 // Otherwise Other.RI wouldn't be live here.
2742 if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes).none())
2743 return CR_Impossible;
2744
2745 // We need to verify that no instructions are reading the clobbered lanes. To
2746 // save compile time, we'll only check that locally. Don't allow the tainted
2747 // value to escape the basic block.
2748 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2749 if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB))
2750 return CR_Impossible;
2751
2752 // There are still some things that could go wrong besides clobbered lanes
2753 // being read, for example OtherVNI may be only partially redefined in MBB,
2754 // and some clobbered lanes could escape the block. Save this analysis for
2755 // resolveConflicts() when all values have been mapped. We need to know
2756 // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute
2757 // that now - the recursive analyzeValue() calls must go upwards in the
2758 // dominator tree.
2759 return CR_Unresolved;
2760 }
2761
computeAssignment(unsigned ValNo,JoinVals & Other)2762 void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) {
2763 Val &V = Vals[ValNo];
2764 if (V.isAnalyzed()) {
2765 // Recursion should always move up the dominator tree, so ValNo is not
2766 // supposed to reappear before it has been assigned.
2767 assert(Assignments[ValNo] != -1 && "Bad recursion?");
2768 return;
2769 }
2770 switch ((V.Resolution = analyzeValue(ValNo, Other))) {
2771 case CR_Erase:
2772 case CR_Merge:
2773 // Merge this ValNo into OtherVNI.
2774 assert(V.OtherVNI && "OtherVNI not assigned, can't merge.");
2775 assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion");
2776 Assignments[ValNo] = Other.Assignments[V.OtherVNI->id];
2777 LLVM_DEBUG(dbgs() << "\t\tmerge " << printReg(Reg) << ':' << ValNo << '@'
2778 << LR.getValNumInfo(ValNo)->def << " into "
2779 << printReg(Other.Reg) << ':' << V.OtherVNI->id << '@'
2780 << V.OtherVNI->def << " --> @"
2781 << NewVNInfo[Assignments[ValNo]]->def << '\n');
2782 break;
2783 case CR_Replace:
2784 case CR_Unresolved: {
2785 // The other value is going to be pruned if this join is successful.
2786 assert(V.OtherVNI && "OtherVNI not assigned, can't prune");
2787 Val &OtherV = Other.Vals[V.OtherVNI->id];
2788 // We cannot erase an IMPLICIT_DEF if we don't have valid values for all
2789 // its lanes.
2790 if (OtherV.ErasableImplicitDef &&
2791 TrackSubRegLiveness &&
2792 (OtherV.WriteLanes & ~V.ValidLanes).any()) {
2793 LLVM_DEBUG(dbgs() << "Cannot erase implicit_def with missing values\n");
2794
2795 OtherV.ErasableImplicitDef = false;
2796 // The valid lanes written by the implicit_def were speculatively cleared
2797 // before, so make this more conservative. It may be better to track this,
2798 // I haven't found a testcase where it matters.
2799 OtherV.ValidLanes = LaneBitmask::getAll();
2800 }
2801
2802 OtherV.Pruned = true;
2803 LLVM_FALLTHROUGH;
2804 }
2805 default:
2806 // This value number needs to go in the final joined live range.
2807 Assignments[ValNo] = NewVNInfo.size();
2808 NewVNInfo.push_back(LR.getValNumInfo(ValNo));
2809 break;
2810 }
2811 }
2812
mapValues(JoinVals & Other)2813 bool JoinVals::mapValues(JoinVals &Other) {
2814 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2815 computeAssignment(i, Other);
2816 if (Vals[i].Resolution == CR_Impossible) {
2817 LLVM_DEBUG(dbgs() << "\t\tinterference at " << printReg(Reg) << ':' << i
2818 << '@' << LR.getValNumInfo(i)->def << '\n');
2819 return false;
2820 }
2821 }
2822 return true;
2823 }
2824
2825 bool JoinVals::
taintExtent(unsigned ValNo,LaneBitmask TaintedLanes,JoinVals & Other,SmallVectorImpl<std::pair<SlotIndex,LaneBitmask>> & TaintExtent)2826 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other,
2827 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent) {
2828 VNInfo *VNI = LR.getValNumInfo(ValNo);
2829 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2830 SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB);
2831
2832 // Scan Other.LR from VNI.def to MBBEnd.
2833 LiveInterval::iterator OtherI = Other.LR.find(VNI->def);
2834 assert(OtherI != Other.LR.end() && "No conflict?");
2835 do {
2836 // OtherI is pointing to a tainted value. Abort the join if the tainted
2837 // lanes escape the block.
2838 SlotIndex End = OtherI->end;
2839 if (End >= MBBEnd) {
2840 LLVM_DEBUG(dbgs() << "\t\ttaints global " << printReg(Other.Reg) << ':'
2841 << OtherI->valno->id << '@' << OtherI->start << '\n');
2842 return false;
2843 }
2844 LLVM_DEBUG(dbgs() << "\t\ttaints local " << printReg(Other.Reg) << ':'
2845 << OtherI->valno->id << '@' << OtherI->start << " to "
2846 << End << '\n');
2847 // A dead def is not a problem.
2848 if (End.isDead())
2849 break;
2850 TaintExtent.push_back(std::make_pair(End, TaintedLanes));
2851
2852 // Check for another def in the MBB.
2853 if (++OtherI == Other.LR.end() || OtherI->start >= MBBEnd)
2854 break;
2855
2856 // Lanes written by the new def are no longer tainted.
2857 const Val &OV = Other.Vals[OtherI->valno->id];
2858 TaintedLanes &= ~OV.WriteLanes;
2859 if (!OV.RedefVNI)
2860 break;
2861 } while (TaintedLanes.any());
2862 return true;
2863 }
2864
usesLanes(const MachineInstr & MI,unsigned Reg,unsigned SubIdx,LaneBitmask Lanes) const2865 bool JoinVals::usesLanes(const MachineInstr &MI, unsigned Reg, unsigned SubIdx,
2866 LaneBitmask Lanes) const {
2867 if (MI.isDebugInstr())
2868 return false;
2869 for (const MachineOperand &MO : MI.operands()) {
2870 if (!MO.isReg() || MO.isDef() || MO.getReg() != Reg)
2871 continue;
2872 if (!MO.readsReg())
2873 continue;
2874 unsigned S = TRI->composeSubRegIndices(SubIdx, MO.getSubReg());
2875 if ((Lanes & TRI->getSubRegIndexLaneMask(S)).any())
2876 return true;
2877 }
2878 return false;
2879 }
2880
resolveConflicts(JoinVals & Other)2881 bool JoinVals::resolveConflicts(JoinVals &Other) {
2882 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2883 Val &V = Vals[i];
2884 assert(V.Resolution != CR_Impossible && "Unresolvable conflict");
2885 if (V.Resolution != CR_Unresolved)
2886 continue;
2887 LLVM_DEBUG(dbgs() << "\t\tconflict at " << printReg(Reg) << ':' << i << '@'
2888 << LR.getValNumInfo(i)->def << '\n');
2889 if (SubRangeJoin)
2890 return false;
2891
2892 ++NumLaneConflicts;
2893 assert(V.OtherVNI && "Inconsistent conflict resolution.");
2894 VNInfo *VNI = LR.getValNumInfo(i);
2895 const Val &OtherV = Other.Vals[V.OtherVNI->id];
2896
2897 // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the
2898 // join, those lanes will be tainted with a wrong value. Get the extent of
2899 // the tainted lanes.
2900 LaneBitmask TaintedLanes = V.WriteLanes & OtherV.ValidLanes;
2901 SmallVector<std::pair<SlotIndex, LaneBitmask>, 8> TaintExtent;
2902 if (!taintExtent(i, TaintedLanes, Other, TaintExtent))
2903 // Tainted lanes would extend beyond the basic block.
2904 return false;
2905
2906 assert(!TaintExtent.empty() && "There should be at least one conflict.");
2907
2908 // Now look at the instructions from VNI->def to TaintExtent (inclusive).
2909 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2910 MachineBasicBlock::iterator MI = MBB->begin();
2911 if (!VNI->isPHIDef()) {
2912 MI = Indexes->getInstructionFromIndex(VNI->def);
2913 // No need to check the instruction defining VNI for reads.
2914 ++MI;
2915 }
2916 assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) &&
2917 "Interference ends on VNI->def. Should have been handled earlier");
2918 MachineInstr *LastMI =
2919 Indexes->getInstructionFromIndex(TaintExtent.front().first);
2920 assert(LastMI && "Range must end at a proper instruction");
2921 unsigned TaintNum = 0;
2922 while (true) {
2923 assert(MI != MBB->end() && "Bad LastMI");
2924 if (usesLanes(*MI, Other.Reg, Other.SubIdx, TaintedLanes)) {
2925 LLVM_DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI);
2926 return false;
2927 }
2928 // LastMI is the last instruction to use the current value.
2929 if (&*MI == LastMI) {
2930 if (++TaintNum == TaintExtent.size())
2931 break;
2932 LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first);
2933 assert(LastMI && "Range must end at a proper instruction");
2934 TaintedLanes = TaintExtent[TaintNum].second;
2935 }
2936 ++MI;
2937 }
2938
2939 // The tainted lanes are unused.
2940 V.Resolution = CR_Replace;
2941 ++NumLaneResolves;
2942 }
2943 return true;
2944 }
2945
isPrunedValue(unsigned ValNo,JoinVals & Other)2946 bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) {
2947 Val &V = Vals[ValNo];
2948 if (V.Pruned || V.PrunedComputed)
2949 return V.Pruned;
2950
2951 if (V.Resolution != CR_Erase && V.Resolution != CR_Merge)
2952 return V.Pruned;
2953
2954 // Follow copies up the dominator tree and check if any intermediate value
2955 // has been pruned.
2956 V.PrunedComputed = true;
2957 V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this);
2958 return V.Pruned;
2959 }
2960
pruneValues(JoinVals & Other,SmallVectorImpl<SlotIndex> & EndPoints,bool changeInstrs)2961 void JoinVals::pruneValues(JoinVals &Other,
2962 SmallVectorImpl<SlotIndex> &EndPoints,
2963 bool changeInstrs) {
2964 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2965 SlotIndex Def = LR.getValNumInfo(i)->def;
2966 switch (Vals[i].Resolution) {
2967 case CR_Keep:
2968 break;
2969 case CR_Replace: {
2970 // This value takes precedence over the value in Other.LR.
2971 LIS->pruneValue(Other.LR, Def, &EndPoints);
2972 // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF
2973 // instructions are only inserted to provide a live-out value for PHI
2974 // predecessors, so the instruction should simply go away once its value
2975 // has been replaced.
2976 Val &OtherV = Other.Vals[Vals[i].OtherVNI->id];
2977 bool EraseImpDef = OtherV.ErasableImplicitDef &&
2978 OtherV.Resolution == CR_Keep;
2979 if (!Def.isBlock()) {
2980 if (changeInstrs) {
2981 // Remove <def,read-undef> flags. This def is now a partial redef.
2982 // Also remove dead flags since the joined live range will
2983 // continue past this instruction.
2984 for (MachineOperand &MO :
2985 Indexes->getInstructionFromIndex(Def)->operands()) {
2986 if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) {
2987 if (MO.getSubReg() != 0 && MO.isUndef() && !EraseImpDef)
2988 MO.setIsUndef(false);
2989 MO.setIsDead(false);
2990 }
2991 }
2992 }
2993 // This value will reach instructions below, but we need to make sure
2994 // the live range also reaches the instruction at Def.
2995 if (!EraseImpDef)
2996 EndPoints.push_back(Def);
2997 }
2998 LLVM_DEBUG(dbgs() << "\t\tpruned " << printReg(Other.Reg) << " at " << Def
2999 << ": " << Other.LR << '\n');
3000 break;
3001 }
3002 case CR_Erase:
3003 case CR_Merge:
3004 if (isPrunedValue(i, Other)) {
3005 // This value is ultimately a copy of a pruned value in LR or Other.LR.
3006 // We can no longer trust the value mapping computed by
3007 // computeAssignment(), the value that was originally copied could have
3008 // been replaced.
3009 LIS->pruneValue(LR, Def, &EndPoints);
3010 LLVM_DEBUG(dbgs() << "\t\tpruned all of " << printReg(Reg) << " at "
3011 << Def << ": " << LR << '\n');
3012 }
3013 break;
3014 case CR_Unresolved:
3015 case CR_Impossible:
3016 llvm_unreachable("Unresolved conflicts");
3017 }
3018 }
3019 }
3020
3021 /// Consider the following situation when coalescing the copy between
3022 /// %31 and %45 at 800. (The vertical lines represent live range segments.)
3023 ///
3024 /// Main range Subrange 0004 (sub2)
3025 /// %31 %45 %31 %45
3026 /// 544 %45 = COPY %28 + +
3027 /// | v1 | v1
3028 /// 560B bb.1: + +
3029 /// 624 = %45.sub2 | v2 | v2
3030 /// 800 %31 = COPY %45 + + + +
3031 /// | v0 | v0
3032 /// 816 %31.sub1 = ... + |
3033 /// 880 %30 = COPY %31 | v1 +
3034 /// 928 %45 = COPY %30 | + +
3035 /// | | v0 | v0 <--+
3036 /// 992B ; backedge -> bb.1 | + + |
3037 /// 1040 = %31.sub0 + |
3038 /// This value must remain
3039 /// live-out!
3040 ///
3041 /// Assuming that %31 is coalesced into %45, the copy at 928 becomes
3042 /// redundant, since it copies the value from %45 back into it. The
3043 /// conflict resolution for the main range determines that %45.v0 is
3044 /// to be erased, which is ok since %31.v1 is identical to it.
3045 /// The problem happens with the subrange for sub2: it has to be live
3046 /// on exit from the block, but since 928 was actually a point of
3047 /// definition of %45.sub2, %45.sub2 was not live immediately prior
3048 /// to that definition. As a result, when 928 was erased, the value v0
3049 /// for %45.sub2 was pruned in pruneSubRegValues. Consequently, an
3050 /// IMPLICIT_DEF was inserted as a "backedge" definition for %45.sub2,
3051 /// providing an incorrect value to the use at 624.
3052 ///
3053 /// Since the main-range values %31.v1 and %45.v0 were proved to be
3054 /// identical, the corresponding values in subranges must also be the
3055 /// same. A redundant copy is removed because it's not needed, and not
3056 /// because it copied an undefined value, so any liveness that originated
3057 /// from that copy cannot disappear. When pruning a value that started
3058 /// at the removed copy, the corresponding identical value must be
3059 /// extended to replace it.
pruneSubRegValues(LiveInterval & LI,LaneBitmask & ShrinkMask)3060 void JoinVals::pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask) {
3061 // Look for values being erased.
3062 bool DidPrune = false;
3063 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3064 Val &V = Vals[i];
3065 // We should trigger in all cases in which eraseInstrs() does something.
3066 // match what eraseInstrs() is doing, print a message so
3067 if (V.Resolution != CR_Erase &&
3068 (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned))
3069 continue;
3070
3071 // Check subranges at the point where the copy will be removed.
3072 SlotIndex Def = LR.getValNumInfo(i)->def;
3073 SlotIndex OtherDef;
3074 if (V.Identical)
3075 OtherDef = V.OtherVNI->def;
3076
3077 // Print message so mismatches with eraseInstrs() can be diagnosed.
3078 LLVM_DEBUG(dbgs() << "\t\tExpecting instruction removal at " << Def
3079 << '\n');
3080 for (LiveInterval::SubRange &S : LI.subranges()) {
3081 LiveQueryResult Q = S.Query(Def);
3082
3083 // If a subrange starts at the copy then an undefined value has been
3084 // copied and we must remove that subrange value as well.
3085 VNInfo *ValueOut = Q.valueOutOrDead();
3086 if (ValueOut != nullptr && (Q.valueIn() == nullptr ||
3087 (V.Identical && V.Resolution == CR_Erase &&
3088 ValueOut->def == Def))) {
3089 LLVM_DEBUG(dbgs() << "\t\tPrune sublane " << PrintLaneMask(S.LaneMask)
3090 << " at " << Def << "\n");
3091 SmallVector<SlotIndex,8> EndPoints;
3092 LIS->pruneValue(S, Def, &EndPoints);
3093 DidPrune = true;
3094 // Mark value number as unused.
3095 ValueOut->markUnused();
3096
3097 if (V.Identical && S.Query(OtherDef).valueOutOrDead()) {
3098 // If V is identical to V.OtherVNI (and S was live at OtherDef),
3099 // then we can't simply prune V from S. V needs to be replaced
3100 // with V.OtherVNI.
3101 LIS->extendToIndices(S, EndPoints);
3102 }
3103 continue;
3104 }
3105 // If a subrange ends at the copy, then a value was copied but only
3106 // partially used later. Shrink the subregister range appropriately.
3107 if (Q.valueIn() != nullptr && Q.valueOut() == nullptr) {
3108 LLVM_DEBUG(dbgs() << "\t\tDead uses at sublane "
3109 << PrintLaneMask(S.LaneMask) << " at " << Def
3110 << "\n");
3111 ShrinkMask |= S.LaneMask;
3112 }
3113 }
3114 }
3115 if (DidPrune)
3116 LI.removeEmptySubRanges();
3117 }
3118
3119 /// Check if any of the subranges of @p LI contain a definition at @p Def.
isDefInSubRange(LiveInterval & LI,SlotIndex Def)3120 static bool isDefInSubRange(LiveInterval &LI, SlotIndex Def) {
3121 for (LiveInterval::SubRange &SR : LI.subranges()) {
3122 if (VNInfo *VNI = SR.Query(Def).valueOutOrDead())
3123 if (VNI->def == Def)
3124 return true;
3125 }
3126 return false;
3127 }
3128
pruneMainSegments(LiveInterval & LI,bool & ShrinkMainRange)3129 void JoinVals::pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange) {
3130 assert(&static_cast<LiveRange&>(LI) == &LR);
3131
3132 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3133 if (Vals[i].Resolution != CR_Keep)
3134 continue;
3135 VNInfo *VNI = LR.getValNumInfo(i);
3136 if (VNI->isUnused() || VNI->isPHIDef() || isDefInSubRange(LI, VNI->def))
3137 continue;
3138 Vals[i].Pruned = true;
3139 ShrinkMainRange = true;
3140 }
3141 }
3142
removeImplicitDefs()3143 void JoinVals::removeImplicitDefs() {
3144 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3145 Val &V = Vals[i];
3146 if (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned)
3147 continue;
3148
3149 VNInfo *VNI = LR.getValNumInfo(i);
3150 VNI->markUnused();
3151 LR.removeValNo(VNI);
3152 }
3153 }
3154
eraseInstrs(SmallPtrSetImpl<MachineInstr * > & ErasedInstrs,SmallVectorImpl<unsigned> & ShrinkRegs,LiveInterval * LI)3155 void JoinVals::eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
3156 SmallVectorImpl<unsigned> &ShrinkRegs,
3157 LiveInterval *LI) {
3158 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3159 // Get the def location before markUnused() below invalidates it.
3160 VNInfo *VNI = LR.getValNumInfo(i);
3161 SlotIndex Def = VNI->def;
3162 switch (Vals[i].Resolution) {
3163 case CR_Keep: {
3164 // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any
3165 // longer. The IMPLICIT_DEF instructions are only inserted by
3166 // PHIElimination to guarantee that all PHI predecessors have a value.
3167 if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned)
3168 break;
3169 // Remove value number i from LR.
3170 // For intervals with subranges, removing a segment from the main range
3171 // may require extending the previous segment: for each definition of
3172 // a subregister, there will be a corresponding def in the main range.
3173 // That def may fall in the middle of a segment from another subrange.
3174 // In such cases, removing this def from the main range must be
3175 // complemented by extending the main range to account for the liveness
3176 // of the other subrange.
3177 // The new end point of the main range segment to be extended.
3178 SlotIndex NewEnd;
3179 if (LI != nullptr) {
3180 LiveRange::iterator I = LR.FindSegmentContaining(Def);
3181 assert(I != LR.end());
3182 // Do not extend beyond the end of the segment being removed.
3183 // The segment may have been pruned in preparation for joining
3184 // live ranges.
3185 NewEnd = I->end;
3186 }
3187
3188 LR.removeValNo(VNI);
3189 // Note that this VNInfo is reused and still referenced in NewVNInfo,
3190 // make it appear like an unused value number.
3191 VNI->markUnused();
3192
3193 if (LI != nullptr && LI->hasSubRanges()) {
3194 assert(static_cast<LiveRange*>(LI) == &LR);
3195 // Determine the end point based on the subrange information:
3196 // minimum of (earliest def of next segment,
3197 // latest end point of containing segment)
3198 SlotIndex ED, LE;
3199 for (LiveInterval::SubRange &SR : LI->subranges()) {
3200 LiveRange::iterator I = SR.find(Def);
3201 if (I == SR.end())
3202 continue;
3203 if (I->start > Def)
3204 ED = ED.isValid() ? std::min(ED, I->start) : I->start;
3205 else
3206 LE = LE.isValid() ? std::max(LE, I->end) : I->end;
3207 }
3208 if (LE.isValid())
3209 NewEnd = std::min(NewEnd, LE);
3210 if (ED.isValid())
3211 NewEnd = std::min(NewEnd, ED);
3212
3213 // We only want to do the extension if there was a subrange that
3214 // was live across Def.
3215 if (LE.isValid()) {
3216 LiveRange::iterator S = LR.find(Def);
3217 if (S != LR.begin())
3218 std::prev(S)->end = NewEnd;
3219 }
3220 }
3221 LLVM_DEBUG({
3222 dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LR << '\n';
3223 if (LI != nullptr)
3224 dbgs() << "\t\t LHS = " << *LI << '\n';
3225 });
3226 LLVM_FALLTHROUGH;
3227 }
3228
3229 case CR_Erase: {
3230 MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
3231 assert(MI && "No instruction to erase");
3232 if (MI->isCopy()) {
3233 Register Reg = MI->getOperand(1).getReg();
3234 if (Register::isVirtualRegister(Reg) && Reg != CP.getSrcReg() &&
3235 Reg != CP.getDstReg())
3236 ShrinkRegs.push_back(Reg);
3237 }
3238 ErasedInstrs.insert(MI);
3239 LLVM_DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI);
3240 LIS->RemoveMachineInstrFromMaps(*MI);
3241 MI->eraseFromParent();
3242 break;
3243 }
3244 default:
3245 break;
3246 }
3247 }
3248 }
3249
joinSubRegRanges(LiveRange & LRange,LiveRange & RRange,LaneBitmask LaneMask,const CoalescerPair & CP)3250 void RegisterCoalescer::joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
3251 LaneBitmask LaneMask,
3252 const CoalescerPair &CP) {
3253 SmallVector<VNInfo*, 16> NewVNInfo;
3254 JoinVals RHSVals(RRange, CP.getSrcReg(), CP.getSrcIdx(), LaneMask,
3255 NewVNInfo, CP, LIS, TRI, true, true);
3256 JoinVals LHSVals(LRange, CP.getDstReg(), CP.getDstIdx(), LaneMask,
3257 NewVNInfo, CP, LIS, TRI, true, true);
3258
3259 // Compute NewVNInfo and resolve conflicts (see also joinVirtRegs())
3260 // We should be able to resolve all conflicts here as we could successfully do
3261 // it on the mainrange already. There is however a problem when multiple
3262 // ranges get mapped to the "overflow" lane mask bit which creates unexpected
3263 // interferences.
3264 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) {
3265 // We already determined that it is legal to merge the intervals, so this
3266 // should never fail.
3267 llvm_unreachable("*** Couldn't join subrange!\n");
3268 }
3269 if (!LHSVals.resolveConflicts(RHSVals) ||
3270 !RHSVals.resolveConflicts(LHSVals)) {
3271 // We already determined that it is legal to merge the intervals, so this
3272 // should never fail.
3273 llvm_unreachable("*** Couldn't join subrange!\n");
3274 }
3275
3276 // The merging algorithm in LiveInterval::join() can't handle conflicting
3277 // value mappings, so we need to remove any live ranges that overlap a
3278 // CR_Replace resolution. Collect a set of end points that can be used to
3279 // restore the live range after joining.
3280 SmallVector<SlotIndex, 8> EndPoints;
3281 LHSVals.pruneValues(RHSVals, EndPoints, false);
3282 RHSVals.pruneValues(LHSVals, EndPoints, false);
3283
3284 LHSVals.removeImplicitDefs();
3285 RHSVals.removeImplicitDefs();
3286
3287 LRange.verify();
3288 RRange.verify();
3289
3290 // Join RRange into LHS.
3291 LRange.join(RRange, LHSVals.getAssignments(), RHSVals.getAssignments(),
3292 NewVNInfo);
3293
3294 LLVM_DEBUG(dbgs() << "\t\tjoined lanes: " << PrintLaneMask(LaneMask)
3295 << ' ' << LRange << "\n");
3296 if (EndPoints.empty())
3297 return;
3298
3299 // Recompute the parts of the live range we had to remove because of
3300 // CR_Replace conflicts.
3301 LLVM_DEBUG({
3302 dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: ";
3303 for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) {
3304 dbgs() << EndPoints[i];
3305 if (i != n-1)
3306 dbgs() << ',';
3307 }
3308 dbgs() << ": " << LRange << '\n';
3309 });
3310 LIS->extendToIndices(LRange, EndPoints);
3311 }
3312
mergeSubRangeInto(LiveInterval & LI,const LiveRange & ToMerge,LaneBitmask LaneMask,CoalescerPair & CP,unsigned ComposeSubRegIdx)3313 void RegisterCoalescer::mergeSubRangeInto(LiveInterval &LI,
3314 const LiveRange &ToMerge,
3315 LaneBitmask LaneMask,
3316 CoalescerPair &CP,
3317 unsigned ComposeSubRegIdx) {
3318 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
3319 LI.refineSubRanges(
3320 Allocator, LaneMask,
3321 [this, &Allocator, &ToMerge, &CP](LiveInterval::SubRange &SR) {
3322 if (SR.empty()) {
3323 SR.assign(ToMerge, Allocator);
3324 } else {
3325 // joinSubRegRange() destroys the merged range, so we need a copy.
3326 LiveRange RangeCopy(ToMerge, Allocator);
3327 joinSubRegRanges(SR, RangeCopy, SR.LaneMask, CP);
3328 }
3329 },
3330 *LIS->getSlotIndexes(), *TRI, ComposeSubRegIdx);
3331 }
3332
isHighCostLiveInterval(LiveInterval & LI)3333 bool RegisterCoalescer::isHighCostLiveInterval(LiveInterval &LI) {
3334 if (LI.valnos.size() < LargeIntervalSizeThreshold)
3335 return false;
3336 auto &Counter = LargeLIVisitCounter[LI.reg];
3337 if (Counter < LargeIntervalFreqThreshold) {
3338 Counter++;
3339 return false;
3340 }
3341 return true;
3342 }
3343
joinVirtRegs(CoalescerPair & CP)3344 bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) {
3345 SmallVector<VNInfo*, 16> NewVNInfo;
3346 LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
3347 LiveInterval &LHS = LIS->getInterval(CP.getDstReg());
3348 bool TrackSubRegLiveness = MRI->shouldTrackSubRegLiveness(*CP.getNewRC());
3349 JoinVals RHSVals(RHS, CP.getSrcReg(), CP.getSrcIdx(), LaneBitmask::getNone(),
3350 NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness);
3351 JoinVals LHSVals(LHS, CP.getDstReg(), CP.getDstIdx(), LaneBitmask::getNone(),
3352 NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness);
3353
3354 LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << "\n\t\tLHS = " << LHS << '\n');
3355
3356 if (isHighCostLiveInterval(LHS) || isHighCostLiveInterval(RHS))
3357 return false;
3358
3359 // First compute NewVNInfo and the simple value mappings.
3360 // Detect impossible conflicts early.
3361 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals))
3362 return false;
3363
3364 // Some conflicts can only be resolved after all values have been mapped.
3365 if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals))
3366 return false;
3367
3368 // All clear, the live ranges can be merged.
3369 if (RHS.hasSubRanges() || LHS.hasSubRanges()) {
3370 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
3371
3372 // Transform lanemasks from the LHS to masks in the coalesced register and
3373 // create initial subranges if necessary.
3374 unsigned DstIdx = CP.getDstIdx();
3375 if (!LHS.hasSubRanges()) {
3376 LaneBitmask Mask = DstIdx == 0 ? CP.getNewRC()->getLaneMask()
3377 : TRI->getSubRegIndexLaneMask(DstIdx);
3378 // LHS must support subregs or we wouldn't be in this codepath.
3379 assert(Mask.any());
3380 LHS.createSubRangeFrom(Allocator, Mask, LHS);
3381 } else if (DstIdx != 0) {
3382 // Transform LHS lanemasks to new register class if necessary.
3383 for (LiveInterval::SubRange &R : LHS.subranges()) {
3384 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(DstIdx, R.LaneMask);
3385 R.LaneMask = Mask;
3386 }
3387 }
3388 LLVM_DEBUG(dbgs() << "\t\tLHST = " << printReg(CP.getDstReg()) << ' ' << LHS
3389 << '\n');
3390
3391 // Determine lanemasks of RHS in the coalesced register and merge subranges.
3392 unsigned SrcIdx = CP.getSrcIdx();
3393 if (!RHS.hasSubRanges()) {
3394 LaneBitmask Mask = SrcIdx == 0 ? CP.getNewRC()->getLaneMask()
3395 : TRI->getSubRegIndexLaneMask(SrcIdx);
3396 mergeSubRangeInto(LHS, RHS, Mask, CP, DstIdx);
3397 } else {
3398 // Pair up subranges and merge.
3399 for (LiveInterval::SubRange &R : RHS.subranges()) {
3400 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(SrcIdx, R.LaneMask);
3401 mergeSubRangeInto(LHS, R, Mask, CP, DstIdx);
3402 }
3403 }
3404 LLVM_DEBUG(dbgs() << "\tJoined SubRanges " << LHS << "\n");
3405
3406 // Pruning implicit defs from subranges may result in the main range
3407 // having stale segments.
3408 LHSVals.pruneMainSegments(LHS, ShrinkMainRange);
3409
3410 LHSVals.pruneSubRegValues(LHS, ShrinkMask);
3411 RHSVals.pruneSubRegValues(LHS, ShrinkMask);
3412 }
3413
3414 // The merging algorithm in LiveInterval::join() can't handle conflicting
3415 // value mappings, so we need to remove any live ranges that overlap a
3416 // CR_Replace resolution. Collect a set of end points that can be used to
3417 // restore the live range after joining.
3418 SmallVector<SlotIndex, 8> EndPoints;
3419 LHSVals.pruneValues(RHSVals, EndPoints, true);
3420 RHSVals.pruneValues(LHSVals, EndPoints, true);
3421
3422 // Erase COPY and IMPLICIT_DEF instructions. This may cause some external
3423 // registers to require trimming.
3424 SmallVector<unsigned, 8> ShrinkRegs;
3425 LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs, &LHS);
3426 RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
3427 while (!ShrinkRegs.empty())
3428 shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val()));
3429
3430 // Scan and mark undef any DBG_VALUEs that would refer to a different value.
3431 checkMergingChangesDbgValues(CP, LHS, LHSVals, RHS, RHSVals);
3432
3433 // Join RHS into LHS.
3434 LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo);
3435
3436 // Kill flags are going to be wrong if the live ranges were overlapping.
3437 // Eventually, we should simply clear all kill flags when computing live
3438 // ranges. They are reinserted after register allocation.
3439 MRI->clearKillFlags(LHS.reg);
3440 MRI->clearKillFlags(RHS.reg);
3441
3442 if (!EndPoints.empty()) {
3443 // Recompute the parts of the live range we had to remove because of
3444 // CR_Replace conflicts.
3445 LLVM_DEBUG({
3446 dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: ";
3447 for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) {
3448 dbgs() << EndPoints[i];
3449 if (i != n-1)
3450 dbgs() << ',';
3451 }
3452 dbgs() << ": " << LHS << '\n';
3453 });
3454 LIS->extendToIndices((LiveRange&)LHS, EndPoints);
3455 }
3456
3457 return true;
3458 }
3459
joinIntervals(CoalescerPair & CP)3460 bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) {
3461 return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP);
3462 }
3463
buildVRegToDbgValueMap(MachineFunction & MF)3464 void RegisterCoalescer::buildVRegToDbgValueMap(MachineFunction &MF)
3465 {
3466 const SlotIndexes &Slots = *LIS->getSlotIndexes();
3467 SmallVector<MachineInstr *, 8> ToInsert;
3468
3469 // After collecting a block of DBG_VALUEs into ToInsert, enter them into the
3470 // vreg => DbgValueLoc map.
3471 auto CloseNewDVRange = [this, &ToInsert](SlotIndex Slot) {
3472 for (auto *X : ToInsert)
3473 DbgVRegToValues[X->getOperand(0).getReg()].push_back({Slot, X});
3474
3475 ToInsert.clear();
3476 };
3477
3478 // Iterate over all instructions, collecting them into the ToInsert vector.
3479 // Once a non-debug instruction is found, record the slot index of the
3480 // collected DBG_VALUEs.
3481 for (auto &MBB : MF) {
3482 SlotIndex CurrentSlot = Slots.getMBBStartIdx(&MBB);
3483
3484 for (auto &MI : MBB) {
3485 if (MI.isDebugValue() && MI.getOperand(0).isReg() &&
3486 MI.getOperand(0).getReg().isVirtual()) {
3487 ToInsert.push_back(&MI);
3488 } else if (!MI.isDebugInstr()) {
3489 CurrentSlot = Slots.getInstructionIndex(MI);
3490 CloseNewDVRange(CurrentSlot);
3491 }
3492 }
3493
3494 // Close range of DBG_VALUEs at the end of blocks.
3495 CloseNewDVRange(Slots.getMBBEndIdx(&MBB));
3496 }
3497
3498 // Sort all DBG_VALUEs we've seen by slot number.
3499 for (auto &Pair : DbgVRegToValues)
3500 llvm::sort(Pair.second);
3501 }
3502
checkMergingChangesDbgValues(CoalescerPair & CP,LiveRange & LHS,JoinVals & LHSVals,LiveRange & RHS,JoinVals & RHSVals)3503 void RegisterCoalescer::checkMergingChangesDbgValues(CoalescerPair &CP,
3504 LiveRange &LHS,
3505 JoinVals &LHSVals,
3506 LiveRange &RHS,
3507 JoinVals &RHSVals) {
3508 auto ScanForDstReg = [&](unsigned Reg) {
3509 checkMergingChangesDbgValuesImpl(Reg, RHS, LHS, LHSVals);
3510 };
3511
3512 auto ScanForSrcReg = [&](unsigned Reg) {
3513 checkMergingChangesDbgValuesImpl(Reg, LHS, RHS, RHSVals);
3514 };
3515
3516 // Scan for potentially unsound DBG_VALUEs: examine first the register number
3517 // Reg, and then any other vregs that may have been merged into it.
3518 auto PerformScan = [this](unsigned Reg, std::function<void(unsigned)> Func) {
3519 Func(Reg);
3520 if (DbgMergedVRegNums.count(Reg))
3521 for (unsigned X : DbgMergedVRegNums[Reg])
3522 Func(X);
3523 };
3524
3525 // Scan for unsound updates of both the source and destination register.
3526 PerformScan(CP.getSrcReg(), ScanForSrcReg);
3527 PerformScan(CP.getDstReg(), ScanForDstReg);
3528 }
3529
checkMergingChangesDbgValuesImpl(unsigned Reg,LiveRange & OtherLR,LiveRange & RegLR,JoinVals & RegVals)3530 void RegisterCoalescer::checkMergingChangesDbgValuesImpl(unsigned Reg,
3531 LiveRange &OtherLR,
3532 LiveRange &RegLR,
3533 JoinVals &RegVals) {
3534 // Are there any DBG_VALUEs to examine?
3535 auto VRegMapIt = DbgVRegToValues.find(Reg);
3536 if (VRegMapIt == DbgVRegToValues.end())
3537 return;
3538
3539 auto &DbgValueSet = VRegMapIt->second;
3540 auto DbgValueSetIt = DbgValueSet.begin();
3541 auto SegmentIt = OtherLR.begin();
3542
3543 bool LastUndefResult = false;
3544 SlotIndex LastUndefIdx;
3545
3546 // If the "Other" register is live at a slot Idx, test whether Reg can
3547 // safely be merged with it, or should be marked undef.
3548 auto ShouldUndef = [&RegVals, &RegLR, &LastUndefResult,
3549 &LastUndefIdx](SlotIndex Idx) -> bool {
3550 // Our worst-case performance typically happens with asan, causing very
3551 // many DBG_VALUEs of the same location. Cache a copy of the most recent
3552 // result for this edge-case.
3553 if (LastUndefIdx == Idx)
3554 return LastUndefResult;
3555
3556 // If the other range was live, and Reg's was not, the register coalescer
3557 // will not have tried to resolve any conflicts. We don't know whether
3558 // the DBG_VALUE will refer to the same value number, so it must be made
3559 // undef.
3560 auto OtherIt = RegLR.find(Idx);
3561 if (OtherIt == RegLR.end())
3562 return true;
3563
3564 // Both the registers were live: examine the conflict resolution record for
3565 // the value number Reg refers to. CR_Keep meant that this value number
3566 // "won" and the merged register definitely refers to that value. CR_Erase
3567 // means the value number was a redundant copy of the other value, which
3568 // was coalesced and Reg deleted. It's safe to refer to the other register
3569 // (which will be the source of the copy).
3570 auto Resolution = RegVals.getResolution(OtherIt->valno->id);
3571 LastUndefResult = Resolution != JoinVals::CR_Keep &&
3572 Resolution != JoinVals::CR_Erase;
3573 LastUndefIdx = Idx;
3574 return LastUndefResult;
3575 };
3576
3577 // Iterate over both the live-range of the "Other" register, and the set of
3578 // DBG_VALUEs for Reg at the same time. Advance whichever one has the lowest
3579 // slot index. This relies on the DbgValueSet being ordered.
3580 while (DbgValueSetIt != DbgValueSet.end() && SegmentIt != OtherLR.end()) {
3581 if (DbgValueSetIt->first < SegmentIt->end) {
3582 // "Other" is live and there is a DBG_VALUE of Reg: test if we should
3583 // set it undef.
3584 if (DbgValueSetIt->first >= SegmentIt->start &&
3585 DbgValueSetIt->second->getOperand(0).getReg() != 0 &&
3586 ShouldUndef(DbgValueSetIt->first)) {
3587 // Mark undef, erase record of this DBG_VALUE to avoid revisiting.
3588 DbgValueSetIt->second->getOperand(0).setReg(0);
3589 continue;
3590 }
3591 ++DbgValueSetIt;
3592 } else {
3593 ++SegmentIt;
3594 }
3595 }
3596 }
3597
3598 namespace {
3599
3600 /// Information concerning MBB coalescing priority.
3601 struct MBBPriorityInfo {
3602 MachineBasicBlock *MBB;
3603 unsigned Depth;
3604 bool IsSplit;
3605
MBBPriorityInfo__anon01e3b9040a11::MBBPriorityInfo3606 MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit)
3607 : MBB(mbb), Depth(depth), IsSplit(issplit) {}
3608 };
3609
3610 } // end anonymous namespace
3611
3612 /// C-style comparator that sorts first based on the loop depth of the basic
3613 /// block (the unsigned), and then on the MBB number.
3614 ///
3615 /// EnableGlobalCopies assumes that the primary sort key is loop depth.
compareMBBPriority(const MBBPriorityInfo * LHS,const MBBPriorityInfo * RHS)3616 static int compareMBBPriority(const MBBPriorityInfo *LHS,
3617 const MBBPriorityInfo *RHS) {
3618 // Deeper loops first
3619 if (LHS->Depth != RHS->Depth)
3620 return LHS->Depth > RHS->Depth ? -1 : 1;
3621
3622 // Try to unsplit critical edges next.
3623 if (LHS->IsSplit != RHS->IsSplit)
3624 return LHS->IsSplit ? -1 : 1;
3625
3626 // Prefer blocks that are more connected in the CFG. This takes care of
3627 // the most difficult copies first while intervals are short.
3628 unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size();
3629 unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size();
3630 if (cl != cr)
3631 return cl > cr ? -1 : 1;
3632
3633 // As a last resort, sort by block number.
3634 return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1;
3635 }
3636
3637 /// \returns true if the given copy uses or defines a local live range.
isLocalCopy(MachineInstr * Copy,const LiveIntervals * LIS)3638 static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) {
3639 if (!Copy->isCopy())
3640 return false;
3641
3642 if (Copy->getOperand(1).isUndef())
3643 return false;
3644
3645 Register SrcReg = Copy->getOperand(1).getReg();
3646 Register DstReg = Copy->getOperand(0).getReg();
3647 if (Register::isPhysicalRegister(SrcReg) ||
3648 Register::isPhysicalRegister(DstReg))
3649 return false;
3650
3651 return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg))
3652 || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg));
3653 }
3654
lateLiveIntervalUpdate()3655 void RegisterCoalescer::lateLiveIntervalUpdate() {
3656 for (unsigned reg : ToBeUpdated) {
3657 if (!LIS->hasInterval(reg))
3658 continue;
3659 LiveInterval &LI = LIS->getInterval(reg);
3660 shrinkToUses(&LI, &DeadDefs);
3661 if (!DeadDefs.empty())
3662 eliminateDeadDefs();
3663 }
3664 ToBeUpdated.clear();
3665 }
3666
3667 bool RegisterCoalescer::
copyCoalesceWorkList(MutableArrayRef<MachineInstr * > CurrList)3668 copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) {
3669 bool Progress = false;
3670 for (unsigned i = 0, e = CurrList.size(); i != e; ++i) {
3671 if (!CurrList[i])
3672 continue;
3673 // Skip instruction pointers that have already been erased, for example by
3674 // dead code elimination.
3675 if (ErasedInstrs.count(CurrList[i])) {
3676 CurrList[i] = nullptr;
3677 continue;
3678 }
3679 bool Again = false;
3680 bool Success = joinCopy(CurrList[i], Again);
3681 Progress |= Success;
3682 if (Success || !Again)
3683 CurrList[i] = nullptr;
3684 }
3685 return Progress;
3686 }
3687
3688 /// Check if DstReg is a terminal node.
3689 /// I.e., it does not have any affinity other than \p Copy.
isTerminalReg(unsigned DstReg,const MachineInstr & Copy,const MachineRegisterInfo * MRI)3690 static bool isTerminalReg(unsigned DstReg, const MachineInstr &Copy,
3691 const MachineRegisterInfo *MRI) {
3692 assert(Copy.isCopyLike());
3693 // Check if the destination of this copy as any other affinity.
3694 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(DstReg))
3695 if (&MI != &Copy && MI.isCopyLike())
3696 return false;
3697 return true;
3698 }
3699
applyTerminalRule(const MachineInstr & Copy) const3700 bool RegisterCoalescer::applyTerminalRule(const MachineInstr &Copy) const {
3701 assert(Copy.isCopyLike());
3702 if (!UseTerminalRule)
3703 return false;
3704 unsigned DstReg, DstSubReg, SrcReg, SrcSubReg;
3705 if (!isMoveInstr(*TRI, &Copy, SrcReg, DstReg, SrcSubReg, DstSubReg))
3706 return false;
3707 // Check if the destination of this copy has any other affinity.
3708 if (Register::isPhysicalRegister(DstReg) ||
3709 // If SrcReg is a physical register, the copy won't be coalesced.
3710 // Ignoring it may have other side effect (like missing
3711 // rematerialization). So keep it.
3712 Register::isPhysicalRegister(SrcReg) || !isTerminalReg(DstReg, Copy, MRI))
3713 return false;
3714
3715 // DstReg is a terminal node. Check if it interferes with any other
3716 // copy involving SrcReg.
3717 const MachineBasicBlock *OrigBB = Copy.getParent();
3718 const LiveInterval &DstLI = LIS->getInterval(DstReg);
3719 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(SrcReg)) {
3720 // Technically we should check if the weight of the new copy is
3721 // interesting compared to the other one and update the weight
3722 // of the copies accordingly. However, this would only work if
3723 // we would gather all the copies first then coalesce, whereas
3724 // right now we interleave both actions.
3725 // For now, just consider the copies that are in the same block.
3726 if (&MI == &Copy || !MI.isCopyLike() || MI.getParent() != OrigBB)
3727 continue;
3728 unsigned OtherReg, OtherSubReg, OtherSrcReg, OtherSrcSubReg;
3729 if (!isMoveInstr(*TRI, &Copy, OtherSrcReg, OtherReg, OtherSrcSubReg,
3730 OtherSubReg))
3731 return false;
3732 if (OtherReg == SrcReg)
3733 OtherReg = OtherSrcReg;
3734 // Check if OtherReg is a non-terminal.
3735 if (Register::isPhysicalRegister(OtherReg) ||
3736 isTerminalReg(OtherReg, MI, MRI))
3737 continue;
3738 // Check that OtherReg interfere with DstReg.
3739 if (LIS->getInterval(OtherReg).overlaps(DstLI)) {
3740 LLVM_DEBUG(dbgs() << "Apply terminal rule for: " << printReg(DstReg)
3741 << '\n');
3742 return true;
3743 }
3744 }
3745 return false;
3746 }
3747
3748 void
copyCoalesceInMBB(MachineBasicBlock * MBB)3749 RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) {
3750 LLVM_DEBUG(dbgs() << MBB->getName() << ":\n");
3751
3752 // Collect all copy-like instructions in MBB. Don't start coalescing anything
3753 // yet, it might invalidate the iterator.
3754 const unsigned PrevSize = WorkList.size();
3755 if (JoinGlobalCopies) {
3756 SmallVector<MachineInstr*, 2> LocalTerminals;
3757 SmallVector<MachineInstr*, 2> GlobalTerminals;
3758 // Coalesce copies bottom-up to coalesce local defs before local uses. They
3759 // are not inherently easier to resolve, but slightly preferable until we
3760 // have local live range splitting. In particular this is required by
3761 // cmp+jmp macro fusion.
3762 for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
3763 MII != E; ++MII) {
3764 if (!MII->isCopyLike())
3765 continue;
3766 bool ApplyTerminalRule = applyTerminalRule(*MII);
3767 if (isLocalCopy(&(*MII), LIS)) {
3768 if (ApplyTerminalRule)
3769 LocalTerminals.push_back(&(*MII));
3770 else
3771 LocalWorkList.push_back(&(*MII));
3772 } else {
3773 if (ApplyTerminalRule)
3774 GlobalTerminals.push_back(&(*MII));
3775 else
3776 WorkList.push_back(&(*MII));
3777 }
3778 }
3779 // Append the copies evicted by the terminal rule at the end of the list.
3780 LocalWorkList.append(LocalTerminals.begin(), LocalTerminals.end());
3781 WorkList.append(GlobalTerminals.begin(), GlobalTerminals.end());
3782 }
3783 else {
3784 SmallVector<MachineInstr*, 2> Terminals;
3785 for (MachineInstr &MII : *MBB)
3786 if (MII.isCopyLike()) {
3787 if (applyTerminalRule(MII))
3788 Terminals.push_back(&MII);
3789 else
3790 WorkList.push_back(&MII);
3791 }
3792 // Append the copies evicted by the terminal rule at the end of the list.
3793 WorkList.append(Terminals.begin(), Terminals.end());
3794 }
3795 // Try coalescing the collected copies immediately, and remove the nulls.
3796 // This prevents the WorkList from getting too large since most copies are
3797 // joinable on the first attempt.
3798 MutableArrayRef<MachineInstr*>
3799 CurrList(WorkList.begin() + PrevSize, WorkList.end());
3800 if (copyCoalesceWorkList(CurrList))
3801 WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(),
3802 nullptr), WorkList.end());
3803 }
3804
coalesceLocals()3805 void RegisterCoalescer::coalesceLocals() {
3806 copyCoalesceWorkList(LocalWorkList);
3807 for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) {
3808 if (LocalWorkList[j])
3809 WorkList.push_back(LocalWorkList[j]);
3810 }
3811 LocalWorkList.clear();
3812 }
3813
joinAllIntervals()3814 void RegisterCoalescer::joinAllIntervals() {
3815 LLVM_DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
3816 assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around.");
3817
3818 std::vector<MBBPriorityInfo> MBBs;
3819 MBBs.reserve(MF->size());
3820 for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) {
3821 MachineBasicBlock *MBB = &*I;
3822 MBBs.push_back(MBBPriorityInfo(MBB, Loops->getLoopDepth(MBB),
3823 JoinSplitEdges && isSplitEdge(MBB)));
3824 }
3825 array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority);
3826
3827 // Coalesce intervals in MBB priority order.
3828 unsigned CurrDepth = std::numeric_limits<unsigned>::max();
3829 for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
3830 // Try coalescing the collected local copies for deeper loops.
3831 if (JoinGlobalCopies && MBBs[i].Depth < CurrDepth) {
3832 coalesceLocals();
3833 CurrDepth = MBBs[i].Depth;
3834 }
3835 copyCoalesceInMBB(MBBs[i].MBB);
3836 }
3837 lateLiveIntervalUpdate();
3838 coalesceLocals();
3839
3840 // Joining intervals can allow other intervals to be joined. Iteratively join
3841 // until we make no progress.
3842 while (copyCoalesceWorkList(WorkList))
3843 /* empty */ ;
3844 lateLiveIntervalUpdate();
3845 }
3846
releaseMemory()3847 void RegisterCoalescer::releaseMemory() {
3848 ErasedInstrs.clear();
3849 WorkList.clear();
3850 DeadDefs.clear();
3851 InflateRegs.clear();
3852 LargeLIVisitCounter.clear();
3853 }
3854
runOnMachineFunction(MachineFunction & fn)3855 bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
3856 MF = &fn;
3857 MRI = &fn.getRegInfo();
3858 const TargetSubtargetInfo &STI = fn.getSubtarget();
3859 TRI = STI.getRegisterInfo();
3860 TII = STI.getInstrInfo();
3861 LIS = &getAnalysis<LiveIntervals>();
3862 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3863 Loops = &getAnalysis<MachineLoopInfo>();
3864 if (EnableGlobalCopies == cl::BOU_UNSET)
3865 JoinGlobalCopies = STI.enableJoinGlobalCopies();
3866 else
3867 JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE);
3868
3869 // The MachineScheduler does not currently require JoinSplitEdges. This will
3870 // either be enabled unconditionally or replaced by a more general live range
3871 // splitting optimization.
3872 JoinSplitEdges = EnableJoinSplits;
3873
3874 LLVM_DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
3875 << "********** Function: " << MF->getName() << '\n');
3876
3877 if (VerifyCoalescing)
3878 MF->verify(this, "Before register coalescing");
3879
3880 DbgVRegToValues.clear();
3881 DbgMergedVRegNums.clear();
3882 buildVRegToDbgValueMap(fn);
3883
3884 RegClassInfo.runOnMachineFunction(fn);
3885
3886 // Join (coalesce) intervals if requested.
3887 if (EnableJoining)
3888 joinAllIntervals();
3889
3890 // After deleting a lot of copies, register classes may be less constrained.
3891 // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 ->
3892 // DPR inflation.
3893 array_pod_sort(InflateRegs.begin(), InflateRegs.end());
3894 InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()),
3895 InflateRegs.end());
3896 LLVM_DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size()
3897 << " regs.\n");
3898 for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) {
3899 unsigned Reg = InflateRegs[i];
3900 if (MRI->reg_nodbg_empty(Reg))
3901 continue;
3902 if (MRI->recomputeRegClass(Reg)) {
3903 LLVM_DEBUG(dbgs() << printReg(Reg) << " inflated to "
3904 << TRI->getRegClassName(MRI->getRegClass(Reg)) << '\n');
3905 ++NumInflated;
3906
3907 LiveInterval &LI = LIS->getInterval(Reg);
3908 if (LI.hasSubRanges()) {
3909 // If the inflated register class does not support subregisters anymore
3910 // remove the subranges.
3911 if (!MRI->shouldTrackSubRegLiveness(Reg)) {
3912 LI.clearSubRanges();
3913 } else {
3914 #ifndef NDEBUG
3915 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
3916 // If subranges are still supported, then the same subregs
3917 // should still be supported.
3918 for (LiveInterval::SubRange &S : LI.subranges()) {
3919 assert((S.LaneMask & ~MaxMask).none());
3920 }
3921 #endif
3922 }
3923 }
3924 }
3925 }
3926
3927 LLVM_DEBUG(dump());
3928 if (VerifyCoalescing)
3929 MF->verify(this, "After register coalescing");
3930 return true;
3931 }
3932
print(raw_ostream & O,const Module * m) const3933 void RegisterCoalescer::print(raw_ostream &O, const Module* m) const {
3934 LIS->print(O, m);
3935 }
3936