1 //===---- DivergenceAnalysis.cpp --- Divergence Analysis Implementation ----==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a general divergence analysis for loop vectorization
10 // and GPU programs. It determines which branches and values in a loop or GPU
11 // program are divergent. It can help branch optimizations such as jump
12 // threading and loop unswitching to make better decisions.
13 //
14 // GPU programs typically use the SIMD execution model, where multiple threads
15 // in the same execution group have to execute in lock-step. Therefore, if the
16 // code contains divergent branches (i.e., threads in a group do not agree on
17 // which path of the branch to take), the group of threads has to execute all
18 // the paths from that branch with different subsets of threads enabled until
19 // they re-converge.
20 //
21 // Due to this execution model, some optimizations such as jump
22 // threading and loop unswitching can interfere with thread re-convergence.
23 // Therefore, an analysis that computes which branches in a GPU program are
24 // divergent can help the compiler to selectively run these optimizations.
25 //
26 // This implementation is derived from the Vectorization Analysis of the
27 // Region Vectorizer (RV). The analysis is based on the approach described in
28 //
29 // An abstract interpretation for SPMD divergence
30 // on reducible control flow graphs.
31 // Julian Rosemann, Simon Moll and Sebastian Hack
32 // POPL '21
33 //
34 // This implementation is generic in the sense that it does
35 // not itself identify original sources of divergence.
36 // Instead specialized adapter classes, (LoopDivergenceAnalysis) for loops and
37 // (DivergenceAnalysis) for functions, identify the sources of divergence
38 // (e.g., special variables that hold the thread ID or the iteration variable).
39 //
40 // The generic implementation propagates divergence to variables that are data
41 // or sync dependent on a source of divergence.
42 //
43 // While data dependency is a well-known concept, the notion of sync dependency
44 // is worth more explanation. Sync dependence characterizes the control flow
45 // aspect of the propagation of branch divergence. For example,
46 //
47 // %cond = icmp slt i32 %tid, 10
48 // br i1 %cond, label %then, label %else
49 // then:
50 // br label %merge
51 // else:
52 // br label %merge
53 // merge:
54 // %a = phi i32 [ 0, %then ], [ 1, %else ]
55 //
56 // Suppose %tid holds the thread ID. Although %a is not data dependent on %tid
57 // because %tid is not on its use-def chains, %a is sync dependent on %tid
58 // because the branch "br i1 %cond" depends on %tid and affects which value %a
59 // is assigned to.
60 //
61 // The sync dependence detection (which branch induces divergence in which join
62 // points) is implemented in the SyncDependenceAnalysis.
63 //
64 // The current implementation has the following limitations:
65 // 1. intra-procedural. It conservatively considers the arguments of a
66 // non-kernel-entry function and the return value of a function call as
67 // divergent.
68 // 2. memory as black box. It conservatively considers values loaded from
69 // generic or local address as divergent. This can be improved by leveraging
70 // pointer analysis and/or by modelling non-escaping memory objects in SSA
71 // as done in RV.
72 //
73 //===----------------------------------------------------------------------===//
74
75 #include "llvm/Analysis/DivergenceAnalysis.h"
76 #include "llvm/ADT/PostOrderIterator.h"
77 #include "llvm/Analysis/CFG.h"
78 #include "llvm/Analysis/LoopInfo.h"
79 #include "llvm/Analysis/PostDominators.h"
80 #include "llvm/Analysis/TargetTransformInfo.h"
81 #include "llvm/IR/Dominators.h"
82 #include "llvm/IR/InstIterator.h"
83 #include "llvm/IR/Instructions.h"
84 #include "llvm/IR/Value.h"
85 #include "llvm/Support/Debug.h"
86 #include "llvm/Support/raw_ostream.h"
87
88 using namespace llvm;
89
90 #define DEBUG_TYPE "divergence"
91
DivergenceAnalysisImpl(const Function & F,const Loop * RegionLoop,const DominatorTree & DT,const LoopInfo & LI,SyncDependenceAnalysis & SDA,bool IsLCSSAForm)92 DivergenceAnalysisImpl::DivergenceAnalysisImpl(
93 const Function &F, const Loop *RegionLoop, const DominatorTree &DT,
94 const LoopInfo &LI, SyncDependenceAnalysis &SDA, bool IsLCSSAForm)
95 : F(F), RegionLoop(RegionLoop), DT(DT), LI(LI), SDA(SDA),
96 IsLCSSAForm(IsLCSSAForm) {}
97
markDivergent(const Value & DivVal)98 bool DivergenceAnalysisImpl::markDivergent(const Value &DivVal) {
99 if (isAlwaysUniform(DivVal))
100 return false;
101 assert(isa<Instruction>(DivVal) || isa<Argument>(DivVal));
102 assert(!isAlwaysUniform(DivVal) && "cannot be a divergent");
103 return DivergentValues.insert(&DivVal).second;
104 }
105
addUniformOverride(const Value & UniVal)106 void DivergenceAnalysisImpl::addUniformOverride(const Value &UniVal) {
107 UniformOverrides.insert(&UniVal);
108 }
109
isTemporalDivergent(const BasicBlock & ObservingBlock,const Value & Val) const110 bool DivergenceAnalysisImpl::isTemporalDivergent(
111 const BasicBlock &ObservingBlock, const Value &Val) const {
112 const auto *Inst = dyn_cast<const Instruction>(&Val);
113 if (!Inst)
114 return false;
115 // check whether any divergent loop carrying Val terminates before control
116 // proceeds to ObservingBlock
117 for (const auto *Loop = LI.getLoopFor(Inst->getParent());
118 Loop != RegionLoop && !Loop->contains(&ObservingBlock);
119 Loop = Loop->getParentLoop()) {
120 if (DivergentLoops.contains(Loop))
121 return true;
122 }
123
124 return false;
125 }
126
inRegion(const Instruction & I) const127 bool DivergenceAnalysisImpl::inRegion(const Instruction &I) const {
128 return I.getParent() && inRegion(*I.getParent());
129 }
130
inRegion(const BasicBlock & BB) const131 bool DivergenceAnalysisImpl::inRegion(const BasicBlock &BB) const {
132 return RegionLoop ? RegionLoop->contains(&BB) : (BB.getParent() == &F);
133 }
134
pushUsers(const Value & V)135 void DivergenceAnalysisImpl::pushUsers(const Value &V) {
136 const auto *I = dyn_cast<const Instruction>(&V);
137
138 if (I && I->isTerminator()) {
139 analyzeControlDivergence(*I);
140 return;
141 }
142
143 for (const auto *User : V.users()) {
144 const auto *UserInst = dyn_cast<const Instruction>(User);
145 if (!UserInst)
146 continue;
147
148 // only compute divergent inside loop
149 if (!inRegion(*UserInst))
150 continue;
151
152 // All users of divergent values are immediate divergent
153 if (markDivergent(*UserInst))
154 Worklist.push_back(UserInst);
155 }
156 }
157
getIfCarriedInstruction(const Use & U,const Loop & DivLoop)158 static const Instruction *getIfCarriedInstruction(const Use &U,
159 const Loop &DivLoop) {
160 const auto *I = dyn_cast<const Instruction>(&U);
161 if (!I)
162 return nullptr;
163 if (!DivLoop.contains(I))
164 return nullptr;
165 return I;
166 }
167
analyzeTemporalDivergence(const Instruction & I,const Loop & OuterDivLoop)168 void DivergenceAnalysisImpl::analyzeTemporalDivergence(
169 const Instruction &I, const Loop &OuterDivLoop) {
170 if (isAlwaysUniform(I))
171 return;
172 if (isDivergent(I))
173 return;
174
175 LLVM_DEBUG(dbgs() << "Analyze temporal divergence: " << I.getName() << "\n");
176 assert((isa<PHINode>(I) || !IsLCSSAForm) &&
177 "In LCSSA form all users of loop-exiting defs are Phi nodes.");
178 for (const Use &Op : I.operands()) {
179 const auto *OpInst = getIfCarriedInstruction(Op, OuterDivLoop);
180 if (!OpInst)
181 continue;
182 if (markDivergent(I))
183 pushUsers(I);
184 return;
185 }
186 }
187
188 // marks all users of loop-carried values of the loop headed by LoopHeader as
189 // divergent
analyzeLoopExitDivergence(const BasicBlock & DivExit,const Loop & OuterDivLoop)190 void DivergenceAnalysisImpl::analyzeLoopExitDivergence(
191 const BasicBlock &DivExit, const Loop &OuterDivLoop) {
192 // All users are in immediate exit blocks
193 if (IsLCSSAForm) {
194 for (const auto &Phi : DivExit.phis()) {
195 analyzeTemporalDivergence(Phi, OuterDivLoop);
196 }
197 return;
198 }
199
200 // For non-LCSSA we have to follow all live out edges wherever they may lead.
201 const BasicBlock &LoopHeader = *OuterDivLoop.getHeader();
202 SmallVector<const BasicBlock *, 8> TaintStack;
203 TaintStack.push_back(&DivExit);
204
205 // Otherwise potential users of loop-carried values could be anywhere in the
206 // dominance region of DivLoop (including its fringes for phi nodes)
207 DenseSet<const BasicBlock *> Visited;
208 Visited.insert(&DivExit);
209
210 do {
211 auto *UserBlock = TaintStack.pop_back_val();
212
213 // don't spread divergence beyond the region
214 if (!inRegion(*UserBlock))
215 continue;
216
217 assert(!OuterDivLoop.contains(UserBlock) &&
218 "irreducible control flow detected");
219
220 // phi nodes at the fringes of the dominance region
221 if (!DT.dominates(&LoopHeader, UserBlock)) {
222 // all PHI nodes of UserBlock become divergent
223 for (const auto &Phi : UserBlock->phis()) {
224 analyzeTemporalDivergence(Phi, OuterDivLoop);
225 }
226 continue;
227 }
228
229 // Taint outside users of values carried by OuterDivLoop.
230 for (const auto &I : *UserBlock) {
231 analyzeTemporalDivergence(I, OuterDivLoop);
232 }
233
234 // visit all blocks in the dominance region
235 for (const auto *SuccBlock : successors(UserBlock)) {
236 if (!Visited.insert(SuccBlock).second) {
237 continue;
238 }
239 TaintStack.push_back(SuccBlock);
240 }
241 } while (!TaintStack.empty());
242 }
243
propagateLoopExitDivergence(const BasicBlock & DivExit,const Loop & InnerDivLoop)244 void DivergenceAnalysisImpl::propagateLoopExitDivergence(
245 const BasicBlock &DivExit, const Loop &InnerDivLoop) {
246 LLVM_DEBUG(dbgs() << "\tpropLoopExitDiv " << DivExit.getName() << "\n");
247
248 // Find outer-most loop that does not contain \p DivExit
249 const Loop *DivLoop = &InnerDivLoop;
250 const Loop *OuterDivLoop = DivLoop;
251 const Loop *ExitLevelLoop = LI.getLoopFor(&DivExit);
252 const unsigned LoopExitDepth =
253 ExitLevelLoop ? ExitLevelLoop->getLoopDepth() : 0;
254 while (DivLoop && DivLoop->getLoopDepth() > LoopExitDepth) {
255 DivergentLoops.insert(DivLoop); // all crossed loops are divergent
256 OuterDivLoop = DivLoop;
257 DivLoop = DivLoop->getParentLoop();
258 }
259 LLVM_DEBUG(dbgs() << "\tOuter-most left loop: " << OuterDivLoop->getName()
260 << "\n");
261
262 analyzeLoopExitDivergence(DivExit, *OuterDivLoop);
263 }
264
265 // this is a divergent join point - mark all phi nodes as divergent and push
266 // them onto the stack.
taintAndPushPhiNodes(const BasicBlock & JoinBlock)267 void DivergenceAnalysisImpl::taintAndPushPhiNodes(const BasicBlock &JoinBlock) {
268 LLVM_DEBUG(dbgs() << "taintAndPushPhiNodes in " << JoinBlock.getName()
269 << "\n");
270
271 // ignore divergence outside the region
272 if (!inRegion(JoinBlock)) {
273 return;
274 }
275
276 // push non-divergent phi nodes in JoinBlock to the worklist
277 for (const auto &Phi : JoinBlock.phis()) {
278 if (isDivergent(Phi))
279 continue;
280 // FIXME Theoretically ,the 'undef' value could be replaced by any other
281 // value causing spurious divergence.
282 if (Phi.hasConstantOrUndefValue())
283 continue;
284 if (markDivergent(Phi))
285 Worklist.push_back(&Phi);
286 }
287 }
288
analyzeControlDivergence(const Instruction & Term)289 void DivergenceAnalysisImpl::analyzeControlDivergence(const Instruction &Term) {
290 LLVM_DEBUG(dbgs() << "analyzeControlDiv " << Term.getParent()->getName()
291 << "\n");
292
293 // Don't propagate divergence from unreachable blocks.
294 if (!DT.isReachableFromEntry(Term.getParent()))
295 return;
296
297 const auto *BranchLoop = LI.getLoopFor(Term.getParent());
298
299 const auto &DivDesc = SDA.getJoinBlocks(Term);
300
301 // Iterate over all blocks now reachable by a disjoint path join
302 for (const auto *JoinBlock : DivDesc.JoinDivBlocks) {
303 taintAndPushPhiNodes(*JoinBlock);
304 }
305
306 assert(DivDesc.LoopDivBlocks.empty() || BranchLoop);
307 for (const auto *DivExitBlock : DivDesc.LoopDivBlocks) {
308 propagateLoopExitDivergence(*DivExitBlock, *BranchLoop);
309 }
310 }
311
compute()312 void DivergenceAnalysisImpl::compute() {
313 // Initialize worklist.
314 auto DivValuesCopy = DivergentValues;
315 for (const auto *DivVal : DivValuesCopy) {
316 assert(isDivergent(*DivVal) && "Worklist invariant violated!");
317 pushUsers(*DivVal);
318 }
319
320 // All values on the Worklist are divergent.
321 // Their users may not have been updated yed.
322 while (!Worklist.empty()) {
323 const Instruction &I = *Worklist.back();
324 Worklist.pop_back();
325
326 // propagate value divergence to users
327 assert(isDivergent(I) && "Worklist invariant violated!");
328 pushUsers(I);
329 }
330 }
331
isAlwaysUniform(const Value & V) const332 bool DivergenceAnalysisImpl::isAlwaysUniform(const Value &V) const {
333 return UniformOverrides.contains(&V);
334 }
335
isDivergent(const Value & V) const336 bool DivergenceAnalysisImpl::isDivergent(const Value &V) const {
337 return DivergentValues.contains(&V);
338 }
339
isDivergentUse(const Use & U) const340 bool DivergenceAnalysisImpl::isDivergentUse(const Use &U) const {
341 Value &V = *U.get();
342 Instruction &I = *cast<Instruction>(U.getUser());
343 return isDivergent(V) || isTemporalDivergent(*I.getParent(), V);
344 }
345
DivergenceInfo(Function & F,const DominatorTree & DT,const PostDominatorTree & PDT,const LoopInfo & LI,const TargetTransformInfo & TTI,bool KnownReducible)346 DivergenceInfo::DivergenceInfo(Function &F, const DominatorTree &DT,
347 const PostDominatorTree &PDT, const LoopInfo &LI,
348 const TargetTransformInfo &TTI,
349 bool KnownReducible)
350 : F(F) {
351 if (!KnownReducible) {
352 using RPOTraversal = ReversePostOrderTraversal<const Function *>;
353 RPOTraversal FuncRPOT(&F);
354 if (containsIrreducibleCFG<const BasicBlock *, const RPOTraversal,
355 const LoopInfo>(FuncRPOT, LI)) {
356 ContainsIrreducible = true;
357 return;
358 }
359 }
360 SDA = std::make_unique<SyncDependenceAnalysis>(DT, PDT, LI);
361 DA = std::make_unique<DivergenceAnalysisImpl>(F, nullptr, DT, LI, *SDA,
362 /* LCSSA */ false);
363 for (auto &I : instructions(F)) {
364 if (TTI.isSourceOfDivergence(&I)) {
365 DA->markDivergent(I);
366 } else if (TTI.isAlwaysUniform(&I)) {
367 DA->addUniformOverride(I);
368 }
369 }
370 for (auto &Arg : F.args()) {
371 if (TTI.isSourceOfDivergence(&Arg)) {
372 DA->markDivergent(Arg);
373 }
374 }
375
376 DA->compute();
377 }
378
379 AnalysisKey DivergenceAnalysis::Key;
380
381 DivergenceAnalysis::Result
run(Function & F,FunctionAnalysisManager & AM)382 DivergenceAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
383 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
384 auto &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);
385 auto &LI = AM.getResult<LoopAnalysis>(F);
386 auto &TTI = AM.getResult<TargetIRAnalysis>(F);
387
388 return DivergenceInfo(F, DT, PDT, LI, TTI, /* KnownReducible = */ false);
389 }
390
391 PreservedAnalyses
run(Function & F,FunctionAnalysisManager & FAM)392 DivergenceAnalysisPrinterPass::run(Function &F, FunctionAnalysisManager &FAM) {
393 auto &DI = FAM.getResult<DivergenceAnalysis>(F);
394 OS << "'Divergence Analysis' for function '" << F.getName() << "':\n";
395 if (DI.hasDivergence()) {
396 for (auto &Arg : F.args()) {
397 OS << (DI.isDivergent(Arg) ? "DIVERGENT: " : " ");
398 OS << Arg << "\n";
399 }
400 for (const BasicBlock &BB : F) {
401 OS << "\n " << BB.getName() << ":\n";
402 for (const auto &I : BB.instructionsWithoutDebug()) {
403 OS << (DI.isDivergent(I) ? "DIVERGENT: " : " ");
404 OS << I << "\n";
405 }
406 }
407 }
408 return PreservedAnalyses::all();
409 }
410