1 //===-- Lint.cpp - Check for common errors in LLVM IR ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass statically checks for common and easily-identified constructs
10 // which produce undefined or likely unintended behavior in LLVM IR.
11 //
12 // It is not a guarantee of correctness, in two ways. First, it isn't
13 // comprehensive. There are checks which could be done statically which are
14 // not yet implemented. Some of these are indicated by TODO comments, but
15 // those aren't comprehensive either. Second, many conditions cannot be
16 // checked statically. This pass does no dynamic instrumentation, so it
17 // can't check for all possible problems.
18 //
19 // Another limitation is that it assumes all code will be executed. A store
20 // through a null pointer in a basic block which is never reached is harmless,
21 // but this pass will warn about it anyway. This is the main reason why most
22 // of these checks live here instead of in the Verifier pass.
23 //
24 // Optimization passes may make conditions that this pass checks for more or
25 // less obvious. If an optimization pass appears to be introducing a warning,
26 // it may be that the optimization pass is merely exposing an existing
27 // condition in the code.
28 //
29 // This code may be run before instcombine. In many cases, instcombine checks
30 // for the same kinds of things and turns instructions with undefined behavior
31 // into unreachable (or equivalent). Because of this, this pass makes some
32 // effort to look through bitcasts and so on.
33 //
34 //===----------------------------------------------------------------------===//
35
36 #include "llvm/Analysis/Lint.h"
37 #include "llvm/ADT/APInt.h"
38 #include "llvm/ADT/ArrayRef.h"
39 #include "llvm/ADT/SmallPtrSet.h"
40 #include "llvm/ADT/Twine.h"
41 #include "llvm/Analysis/AliasAnalysis.h"
42 #include "llvm/Analysis/AssumptionCache.h"
43 #include "llvm/Analysis/ConstantFolding.h"
44 #include "llvm/Analysis/InstructionSimplify.h"
45 #include "llvm/Analysis/Loads.h"
46 #include "llvm/Analysis/MemoryLocation.h"
47 #include "llvm/Analysis/TargetLibraryInfo.h"
48 #include "llvm/Analysis/ValueTracking.h"
49 #include "llvm/IR/Argument.h"
50 #include "llvm/IR/BasicBlock.h"
51 #include "llvm/IR/Constant.h"
52 #include "llvm/IR/Constants.h"
53 #include "llvm/IR/DataLayout.h"
54 #include "llvm/IR/DerivedTypes.h"
55 #include "llvm/IR/Dominators.h"
56 #include "llvm/IR/Function.h"
57 #include "llvm/IR/GlobalVariable.h"
58 #include "llvm/IR/InstVisitor.h"
59 #include "llvm/IR/InstrTypes.h"
60 #include "llvm/IR/Instruction.h"
61 #include "llvm/IR/Instructions.h"
62 #include "llvm/IR/IntrinsicInst.h"
63 #include "llvm/IR/LegacyPassManager.h"
64 #include "llvm/IR/Module.h"
65 #include "llvm/IR/PassManager.h"
66 #include "llvm/IR/Type.h"
67 #include "llvm/IR/Value.h"
68 #include "llvm/InitializePasses.h"
69 #include "llvm/Pass.h"
70 #include "llvm/Support/Casting.h"
71 #include "llvm/Support/KnownBits.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include <cassert>
74 #include <cstdint>
75 #include <iterator>
76 #include <string>
77
78 using namespace llvm;
79
80 namespace {
81 namespace MemRef {
82 static const unsigned Read = 1;
83 static const unsigned Write = 2;
84 static const unsigned Callee = 4;
85 static const unsigned Branchee = 8;
86 } // end namespace MemRef
87
88 class Lint : public InstVisitor<Lint> {
89 friend class InstVisitor<Lint>;
90
91 void visitFunction(Function &F);
92
93 void visitCallBase(CallBase &CB);
94 void visitMemoryReference(Instruction &I, const MemoryLocation &Loc,
95 MaybeAlign Alignment, Type *Ty, unsigned Flags);
96 void visitEHBeginCatch(IntrinsicInst *II);
97 void visitEHEndCatch(IntrinsicInst *II);
98
99 void visitReturnInst(ReturnInst &I);
100 void visitLoadInst(LoadInst &I);
101 void visitStoreInst(StoreInst &I);
102 void visitXor(BinaryOperator &I);
103 void visitSub(BinaryOperator &I);
104 void visitLShr(BinaryOperator &I);
105 void visitAShr(BinaryOperator &I);
106 void visitShl(BinaryOperator &I);
107 void visitSDiv(BinaryOperator &I);
108 void visitUDiv(BinaryOperator &I);
109 void visitSRem(BinaryOperator &I);
110 void visitURem(BinaryOperator &I);
111 void visitAllocaInst(AllocaInst &I);
112 void visitVAArgInst(VAArgInst &I);
113 void visitIndirectBrInst(IndirectBrInst &I);
114 void visitExtractElementInst(ExtractElementInst &I);
115 void visitInsertElementInst(InsertElementInst &I);
116 void visitUnreachableInst(UnreachableInst &I);
117
118 Value *findValue(Value *V, bool OffsetOk) const;
119 Value *findValueImpl(Value *V, bool OffsetOk,
120 SmallPtrSetImpl<Value *> &Visited) const;
121
122 public:
123 Module *Mod;
124 const DataLayout *DL;
125 AliasAnalysis *AA;
126 AssumptionCache *AC;
127 DominatorTree *DT;
128 TargetLibraryInfo *TLI;
129
130 std::string Messages;
131 raw_string_ostream MessagesStr;
132
Lint(Module * Mod,const DataLayout * DL,AliasAnalysis * AA,AssumptionCache * AC,DominatorTree * DT,TargetLibraryInfo * TLI)133 Lint(Module *Mod, const DataLayout *DL, AliasAnalysis *AA,
134 AssumptionCache *AC, DominatorTree *DT, TargetLibraryInfo *TLI)
135 : Mod(Mod), DL(DL), AA(AA), AC(AC), DT(DT), TLI(TLI),
136 MessagesStr(Messages) {}
137
WriteValues(ArrayRef<const Value * > Vs)138 void WriteValues(ArrayRef<const Value *> Vs) {
139 for (const Value *V : Vs) {
140 if (!V)
141 continue;
142 if (isa<Instruction>(V)) {
143 MessagesStr << *V << '\n';
144 } else {
145 V->printAsOperand(MessagesStr, true, Mod);
146 MessagesStr << '\n';
147 }
148 }
149 }
150
151 /// A check failed, so printout out the condition and the message.
152 ///
153 /// This provides a nice place to put a breakpoint if you want to see why
154 /// something is not correct.
CheckFailed(const Twine & Message)155 void CheckFailed(const Twine &Message) { MessagesStr << Message << '\n'; }
156
157 /// A check failed (with values to print).
158 ///
159 /// This calls the Message-only version so that the above is easier to set
160 /// a breakpoint on.
161 template <typename T1, typename... Ts>
CheckFailed(const Twine & Message,const T1 & V1,const Ts &...Vs)162 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
163 CheckFailed(Message);
164 WriteValues({V1, Vs...});
165 }
166 };
167 } // end anonymous namespace
168
169 // Check - We know that cond should be true, if not print an error message.
170 #define Check(C, ...) \
171 do { \
172 if (!(C)) { \
173 CheckFailed(__VA_ARGS__); \
174 return; \
175 } \
176 } while (false)
177
visitFunction(Function & F)178 void Lint::visitFunction(Function &F) {
179 // This isn't undefined behavior, it's just a little unusual, and it's a
180 // fairly common mistake to neglect to name a function.
181 Check(F.hasName() || F.hasLocalLinkage(),
182 "Unusual: Unnamed function with non-local linkage", &F);
183
184 // TODO: Check for irreducible control flow.
185 }
186
visitCallBase(CallBase & I)187 void Lint::visitCallBase(CallBase &I) {
188 Value *Callee = I.getCalledOperand();
189
190 visitMemoryReference(I, MemoryLocation::getAfter(Callee), std::nullopt,
191 nullptr, MemRef::Callee);
192
193 if (Function *F = dyn_cast<Function>(findValue(Callee,
194 /*OffsetOk=*/false))) {
195 Check(I.getCallingConv() == F->getCallingConv(),
196 "Undefined behavior: Caller and callee calling convention differ",
197 &I);
198
199 FunctionType *FT = F->getFunctionType();
200 unsigned NumActualArgs = I.arg_size();
201
202 Check(FT->isVarArg() ? FT->getNumParams() <= NumActualArgs
203 : FT->getNumParams() == NumActualArgs,
204 "Undefined behavior: Call argument count mismatches callee "
205 "argument count",
206 &I);
207
208 Check(FT->getReturnType() == I.getType(),
209 "Undefined behavior: Call return type mismatches "
210 "callee return type",
211 &I);
212
213 // Check argument types (in case the callee was casted) and attributes.
214 // TODO: Verify that caller and callee attributes are compatible.
215 Function::arg_iterator PI = F->arg_begin(), PE = F->arg_end();
216 auto AI = I.arg_begin(), AE = I.arg_end();
217 for (; AI != AE; ++AI) {
218 Value *Actual = *AI;
219 if (PI != PE) {
220 Argument *Formal = &*PI++;
221 Check(Formal->getType() == Actual->getType(),
222 "Undefined behavior: Call argument type mismatches "
223 "callee parameter type",
224 &I);
225
226 // Check that noalias arguments don't alias other arguments. This is
227 // not fully precise because we don't know the sizes of the dereferenced
228 // memory regions.
229 if (Formal->hasNoAliasAttr() && Actual->getType()->isPointerTy()) {
230 AttributeList PAL = I.getAttributes();
231 unsigned ArgNo = 0;
232 for (auto *BI = I.arg_begin(); BI != AE; ++BI, ++ArgNo) {
233 // Skip ByVal arguments since they will be memcpy'd to the callee's
234 // stack so we're not really passing the pointer anyway.
235 if (PAL.hasParamAttr(ArgNo, Attribute::ByVal))
236 continue;
237 // If both arguments are readonly, they have no dependence.
238 if (Formal->onlyReadsMemory() && I.onlyReadsMemory(ArgNo))
239 continue;
240 if (AI != BI && (*BI)->getType()->isPointerTy()) {
241 AliasResult Result = AA->alias(*AI, *BI);
242 Check(Result != AliasResult::MustAlias &&
243 Result != AliasResult::PartialAlias,
244 "Unusual: noalias argument aliases another argument", &I);
245 }
246 }
247 }
248
249 // Check that an sret argument points to valid memory.
250 if (Formal->hasStructRetAttr() && Actual->getType()->isPointerTy()) {
251 Type *Ty = Formal->getParamStructRetType();
252 MemoryLocation Loc(
253 Actual, LocationSize::precise(DL->getTypeStoreSize(Ty)));
254 visitMemoryReference(I, Loc, DL->getABITypeAlign(Ty), Ty,
255 MemRef::Read | MemRef::Write);
256 }
257 }
258 }
259 }
260
261 if (const auto *CI = dyn_cast<CallInst>(&I)) {
262 if (CI->isTailCall()) {
263 const AttributeList &PAL = CI->getAttributes();
264 unsigned ArgNo = 0;
265 for (Value *Arg : I.args()) {
266 // Skip ByVal arguments since they will be memcpy'd to the callee's
267 // stack anyway.
268 if (PAL.hasParamAttr(ArgNo++, Attribute::ByVal))
269 continue;
270 Value *Obj = findValue(Arg, /*OffsetOk=*/true);
271 Check(!isa<AllocaInst>(Obj),
272 "Undefined behavior: Call with \"tail\" keyword references "
273 "alloca",
274 &I);
275 }
276 }
277 }
278
279 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I))
280 switch (II->getIntrinsicID()) {
281 default:
282 break;
283
284 // TODO: Check more intrinsics
285
286 case Intrinsic::memcpy: {
287 MemCpyInst *MCI = cast<MemCpyInst>(&I);
288 visitMemoryReference(I, MemoryLocation::getForDest(MCI),
289 MCI->getDestAlign(), nullptr, MemRef::Write);
290 visitMemoryReference(I, MemoryLocation::getForSource(MCI),
291 MCI->getSourceAlign(), nullptr, MemRef::Read);
292
293 // Check that the memcpy arguments don't overlap. The AliasAnalysis API
294 // isn't expressive enough for what we really want to do. Known partial
295 // overlap is not distinguished from the case where nothing is known.
296 auto Size = LocationSize::afterPointer();
297 if (const ConstantInt *Len =
298 dyn_cast<ConstantInt>(findValue(MCI->getLength(),
299 /*OffsetOk=*/false)))
300 if (Len->getValue().isIntN(32))
301 Size = LocationSize::precise(Len->getValue().getZExtValue());
302 Check(AA->alias(MCI->getSource(), Size, MCI->getDest(), Size) !=
303 AliasResult::MustAlias,
304 "Undefined behavior: memcpy source and destination overlap", &I);
305 break;
306 }
307 case Intrinsic::memcpy_inline: {
308 MemCpyInlineInst *MCII = cast<MemCpyInlineInst>(&I);
309 const uint64_t Size = MCII->getLength()->getValue().getLimitedValue();
310 visitMemoryReference(I, MemoryLocation::getForDest(MCII),
311 MCII->getDestAlign(), nullptr, MemRef::Write);
312 visitMemoryReference(I, MemoryLocation::getForSource(MCII),
313 MCII->getSourceAlign(), nullptr, MemRef::Read);
314
315 // Check that the memcpy arguments don't overlap. The AliasAnalysis API
316 // isn't expressive enough for what we really want to do. Known partial
317 // overlap is not distinguished from the case where nothing is known.
318 const LocationSize LS = LocationSize::precise(Size);
319 Check(AA->alias(MCII->getSource(), LS, MCII->getDest(), LS) !=
320 AliasResult::MustAlias,
321 "Undefined behavior: memcpy source and destination overlap", &I);
322 break;
323 }
324 case Intrinsic::memmove: {
325 MemMoveInst *MMI = cast<MemMoveInst>(&I);
326 visitMemoryReference(I, MemoryLocation::getForDest(MMI),
327 MMI->getDestAlign(), nullptr, MemRef::Write);
328 visitMemoryReference(I, MemoryLocation::getForSource(MMI),
329 MMI->getSourceAlign(), nullptr, MemRef::Read);
330 break;
331 }
332 case Intrinsic::memset: {
333 MemSetInst *MSI = cast<MemSetInst>(&I);
334 visitMemoryReference(I, MemoryLocation::getForDest(MSI),
335 MSI->getDestAlign(), nullptr, MemRef::Write);
336 break;
337 }
338 case Intrinsic::memset_inline: {
339 MemSetInlineInst *MSII = cast<MemSetInlineInst>(&I);
340 visitMemoryReference(I, MemoryLocation::getForDest(MSII),
341 MSII->getDestAlign(), nullptr, MemRef::Write);
342 break;
343 }
344
345 case Intrinsic::vastart:
346 Check(I.getParent()->getParent()->isVarArg(),
347 "Undefined behavior: va_start called in a non-varargs function",
348 &I);
349
350 visitMemoryReference(I, MemoryLocation::getForArgument(&I, 0, TLI),
351 std::nullopt, nullptr, MemRef::Read | MemRef::Write);
352 break;
353 case Intrinsic::vacopy:
354 visitMemoryReference(I, MemoryLocation::getForArgument(&I, 0, TLI),
355 std::nullopt, nullptr, MemRef::Write);
356 visitMemoryReference(I, MemoryLocation::getForArgument(&I, 1, TLI),
357 std::nullopt, nullptr, MemRef::Read);
358 break;
359 case Intrinsic::vaend:
360 visitMemoryReference(I, MemoryLocation::getForArgument(&I, 0, TLI),
361 std::nullopt, nullptr, MemRef::Read | MemRef::Write);
362 break;
363
364 case Intrinsic::stackrestore:
365 // Stackrestore doesn't read or write memory, but it sets the
366 // stack pointer, which the compiler may read from or write to
367 // at any time, so check it for both readability and writeability.
368 visitMemoryReference(I, MemoryLocation::getForArgument(&I, 0, TLI),
369 std::nullopt, nullptr, MemRef::Read | MemRef::Write);
370 break;
371 case Intrinsic::get_active_lane_mask:
372 if (auto *TripCount = dyn_cast<ConstantInt>(I.getArgOperand(1)))
373 Check(!TripCount->isZero(),
374 "get_active_lane_mask: operand #2 "
375 "must be greater than 0",
376 &I);
377 break;
378 }
379 }
380
visitReturnInst(ReturnInst & I)381 void Lint::visitReturnInst(ReturnInst &I) {
382 Function *F = I.getParent()->getParent();
383 Check(!F->doesNotReturn(),
384 "Unusual: Return statement in function with noreturn attribute", &I);
385
386 if (Value *V = I.getReturnValue()) {
387 Value *Obj = findValue(V, /*OffsetOk=*/true);
388 Check(!isa<AllocaInst>(Obj), "Unusual: Returning alloca value", &I);
389 }
390 }
391
392 // TODO: Check that the reference is in bounds.
393 // TODO: Check readnone/readonly function attributes.
visitMemoryReference(Instruction & I,const MemoryLocation & Loc,MaybeAlign Align,Type * Ty,unsigned Flags)394 void Lint::visitMemoryReference(Instruction &I, const MemoryLocation &Loc,
395 MaybeAlign Align, Type *Ty, unsigned Flags) {
396 // If no memory is being referenced, it doesn't matter if the pointer
397 // is valid.
398 if (Loc.Size.isZero())
399 return;
400
401 Value *Ptr = const_cast<Value *>(Loc.Ptr);
402 Value *UnderlyingObject = findValue(Ptr, /*OffsetOk=*/true);
403 Check(!isa<ConstantPointerNull>(UnderlyingObject),
404 "Undefined behavior: Null pointer dereference", &I);
405 Check(!isa<UndefValue>(UnderlyingObject),
406 "Undefined behavior: Undef pointer dereference", &I);
407 Check(!isa<ConstantInt>(UnderlyingObject) ||
408 !cast<ConstantInt>(UnderlyingObject)->isMinusOne(),
409 "Unusual: All-ones pointer dereference", &I);
410 Check(!isa<ConstantInt>(UnderlyingObject) ||
411 !cast<ConstantInt>(UnderlyingObject)->isOne(),
412 "Unusual: Address one pointer dereference", &I);
413
414 if (Flags & MemRef::Write) {
415 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(UnderlyingObject))
416 Check(!GV->isConstant(), "Undefined behavior: Write to read-only memory",
417 &I);
418 Check(!isa<Function>(UnderlyingObject) &&
419 !isa<BlockAddress>(UnderlyingObject),
420 "Undefined behavior: Write to text section", &I);
421 }
422 if (Flags & MemRef::Read) {
423 Check(!isa<Function>(UnderlyingObject), "Unusual: Load from function body",
424 &I);
425 Check(!isa<BlockAddress>(UnderlyingObject),
426 "Undefined behavior: Load from block address", &I);
427 }
428 if (Flags & MemRef::Callee) {
429 Check(!isa<BlockAddress>(UnderlyingObject),
430 "Undefined behavior: Call to block address", &I);
431 }
432 if (Flags & MemRef::Branchee) {
433 Check(!isa<Constant>(UnderlyingObject) ||
434 isa<BlockAddress>(UnderlyingObject),
435 "Undefined behavior: Branch to non-blockaddress", &I);
436 }
437
438 // Check for buffer overflows and misalignment.
439 // Only handles memory references that read/write something simple like an
440 // alloca instruction or a global variable.
441 int64_t Offset = 0;
442 if (Value *Base = GetPointerBaseWithConstantOffset(Ptr, Offset, *DL)) {
443 // OK, so the access is to a constant offset from Ptr. Check that Ptr is
444 // something we can handle and if so extract the size of this base object
445 // along with its alignment.
446 uint64_t BaseSize = MemoryLocation::UnknownSize;
447 MaybeAlign BaseAlign;
448
449 if (AllocaInst *AI = dyn_cast<AllocaInst>(Base)) {
450 Type *ATy = AI->getAllocatedType();
451 if (!AI->isArrayAllocation() && ATy->isSized())
452 BaseSize = DL->getTypeAllocSize(ATy);
453 BaseAlign = AI->getAlign();
454 } else if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Base)) {
455 // If the global may be defined differently in another compilation unit
456 // then don't warn about funky memory accesses.
457 if (GV->hasDefinitiveInitializer()) {
458 Type *GTy = GV->getValueType();
459 if (GTy->isSized())
460 BaseSize = DL->getTypeAllocSize(GTy);
461 BaseAlign = GV->getAlign();
462 if (!BaseAlign && GTy->isSized())
463 BaseAlign = DL->getABITypeAlign(GTy);
464 }
465 }
466
467 // Accesses from before the start or after the end of the object are not
468 // defined.
469 Check(!Loc.Size.hasValue() || BaseSize == MemoryLocation::UnknownSize ||
470 (Offset >= 0 && Offset + Loc.Size.getValue() <= BaseSize),
471 "Undefined behavior: Buffer overflow", &I);
472
473 // Accesses that say that the memory is more aligned than it is are not
474 // defined.
475 if (!Align && Ty && Ty->isSized())
476 Align = DL->getABITypeAlign(Ty);
477 if (BaseAlign && Align)
478 Check(*Align <= commonAlignment(*BaseAlign, Offset),
479 "Undefined behavior: Memory reference address is misaligned", &I);
480 }
481 }
482
visitLoadInst(LoadInst & I)483 void Lint::visitLoadInst(LoadInst &I) {
484 visitMemoryReference(I, MemoryLocation::get(&I), I.getAlign(), I.getType(),
485 MemRef::Read);
486 }
487
visitStoreInst(StoreInst & I)488 void Lint::visitStoreInst(StoreInst &I) {
489 visitMemoryReference(I, MemoryLocation::get(&I), I.getAlign(),
490 I.getOperand(0)->getType(), MemRef::Write);
491 }
492
visitXor(BinaryOperator & I)493 void Lint::visitXor(BinaryOperator &I) {
494 Check(!isa<UndefValue>(I.getOperand(0)) || !isa<UndefValue>(I.getOperand(1)),
495 "Undefined result: xor(undef, undef)", &I);
496 }
497
visitSub(BinaryOperator & I)498 void Lint::visitSub(BinaryOperator &I) {
499 Check(!isa<UndefValue>(I.getOperand(0)) || !isa<UndefValue>(I.getOperand(1)),
500 "Undefined result: sub(undef, undef)", &I);
501 }
502
visitLShr(BinaryOperator & I)503 void Lint::visitLShr(BinaryOperator &I) {
504 if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getOperand(1),
505 /*OffsetOk=*/false)))
506 Check(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
507 "Undefined result: Shift count out of range", &I);
508 }
509
visitAShr(BinaryOperator & I)510 void Lint::visitAShr(BinaryOperator &I) {
511 if (ConstantInt *CI =
512 dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
513 Check(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
514 "Undefined result: Shift count out of range", &I);
515 }
516
visitShl(BinaryOperator & I)517 void Lint::visitShl(BinaryOperator &I) {
518 if (ConstantInt *CI =
519 dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
520 Check(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
521 "Undefined result: Shift count out of range", &I);
522 }
523
isZero(Value * V,const DataLayout & DL,DominatorTree * DT,AssumptionCache * AC)524 static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT,
525 AssumptionCache *AC) {
526 // Assume undef could be zero.
527 if (isa<UndefValue>(V))
528 return true;
529
530 VectorType *VecTy = dyn_cast<VectorType>(V->getType());
531 if (!VecTy) {
532 KnownBits Known =
533 computeKnownBits(V, DL, 0, AC, dyn_cast<Instruction>(V), DT);
534 return Known.isZero();
535 }
536
537 // Per-component check doesn't work with zeroinitializer
538 Constant *C = dyn_cast<Constant>(V);
539 if (!C)
540 return false;
541
542 if (C->isZeroValue())
543 return true;
544
545 // For a vector, KnownZero will only be true if all values are zero, so check
546 // this per component
547 for (unsigned I = 0, N = cast<FixedVectorType>(VecTy)->getNumElements();
548 I != N; ++I) {
549 Constant *Elem = C->getAggregateElement(I);
550 if (isa<UndefValue>(Elem))
551 return true;
552
553 KnownBits Known = computeKnownBits(Elem, DL);
554 if (Known.isZero())
555 return true;
556 }
557
558 return false;
559 }
560
visitSDiv(BinaryOperator & I)561 void Lint::visitSDiv(BinaryOperator &I) {
562 Check(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
563 "Undefined behavior: Division by zero", &I);
564 }
565
visitUDiv(BinaryOperator & I)566 void Lint::visitUDiv(BinaryOperator &I) {
567 Check(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
568 "Undefined behavior: Division by zero", &I);
569 }
570
visitSRem(BinaryOperator & I)571 void Lint::visitSRem(BinaryOperator &I) {
572 Check(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
573 "Undefined behavior: Division by zero", &I);
574 }
575
visitURem(BinaryOperator & I)576 void Lint::visitURem(BinaryOperator &I) {
577 Check(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
578 "Undefined behavior: Division by zero", &I);
579 }
580
visitAllocaInst(AllocaInst & I)581 void Lint::visitAllocaInst(AllocaInst &I) {
582 if (isa<ConstantInt>(I.getArraySize()))
583 // This isn't undefined behavior, it's just an obvious pessimization.
584 Check(&I.getParent()->getParent()->getEntryBlock() == I.getParent(),
585 "Pessimization: Static alloca outside of entry block", &I);
586
587 // TODO: Check for an unusual size (MSB set?)
588 }
589
visitVAArgInst(VAArgInst & I)590 void Lint::visitVAArgInst(VAArgInst &I) {
591 visitMemoryReference(I, MemoryLocation::get(&I), std::nullopt, nullptr,
592 MemRef::Read | MemRef::Write);
593 }
594
visitIndirectBrInst(IndirectBrInst & I)595 void Lint::visitIndirectBrInst(IndirectBrInst &I) {
596 visitMemoryReference(I, MemoryLocation::getAfter(I.getAddress()),
597 std::nullopt, nullptr, MemRef::Branchee);
598
599 Check(I.getNumDestinations() != 0,
600 "Undefined behavior: indirectbr with no destinations", &I);
601 }
602
visitExtractElementInst(ExtractElementInst & I)603 void Lint::visitExtractElementInst(ExtractElementInst &I) {
604 if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getIndexOperand(),
605 /*OffsetOk=*/false)))
606 Check(
607 CI->getValue().ult(
608 cast<FixedVectorType>(I.getVectorOperandType())->getNumElements()),
609 "Undefined result: extractelement index out of range", &I);
610 }
611
visitInsertElementInst(InsertElementInst & I)612 void Lint::visitInsertElementInst(InsertElementInst &I) {
613 if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getOperand(2),
614 /*OffsetOk=*/false)))
615 Check(CI->getValue().ult(
616 cast<FixedVectorType>(I.getType())->getNumElements()),
617 "Undefined result: insertelement index out of range", &I);
618 }
619
visitUnreachableInst(UnreachableInst & I)620 void Lint::visitUnreachableInst(UnreachableInst &I) {
621 // This isn't undefined behavior, it's merely suspicious.
622 Check(&I == &I.getParent()->front() ||
623 std::prev(I.getIterator())->mayHaveSideEffects(),
624 "Unusual: unreachable immediately preceded by instruction without "
625 "side effects",
626 &I);
627 }
628
629 /// findValue - Look through bitcasts and simple memory reference patterns
630 /// to identify an equivalent, but more informative, value. If OffsetOk
631 /// is true, look through getelementptrs with non-zero offsets too.
632 ///
633 /// Most analysis passes don't require this logic, because instcombine
634 /// will simplify most of these kinds of things away. But it's a goal of
635 /// this Lint pass to be useful even on non-optimized IR.
findValue(Value * V,bool OffsetOk) const636 Value *Lint::findValue(Value *V, bool OffsetOk) const {
637 SmallPtrSet<Value *, 4> Visited;
638 return findValueImpl(V, OffsetOk, Visited);
639 }
640
641 /// findValueImpl - Implementation helper for findValue.
findValueImpl(Value * V,bool OffsetOk,SmallPtrSetImpl<Value * > & Visited) const642 Value *Lint::findValueImpl(Value *V, bool OffsetOk,
643 SmallPtrSetImpl<Value *> &Visited) const {
644 // Detect self-referential values.
645 if (!Visited.insert(V).second)
646 return UndefValue::get(V->getType());
647
648 // TODO: Look through sext or zext cast, when the result is known to
649 // be interpreted as signed or unsigned, respectively.
650 // TODO: Look through eliminable cast pairs.
651 // TODO: Look through calls with unique return values.
652 // TODO: Look through vector insert/extract/shuffle.
653 V = OffsetOk ? getUnderlyingObject(V) : V->stripPointerCasts();
654 if (LoadInst *L = dyn_cast<LoadInst>(V)) {
655 BasicBlock::iterator BBI = L->getIterator();
656 BasicBlock *BB = L->getParent();
657 SmallPtrSet<BasicBlock *, 4> VisitedBlocks;
658 for (;;) {
659 if (!VisitedBlocks.insert(BB).second)
660 break;
661 if (Value *U =
662 FindAvailableLoadedValue(L, BB, BBI, DefMaxInstsToScan, AA))
663 return findValueImpl(U, OffsetOk, Visited);
664 if (BBI != BB->begin())
665 break;
666 BB = BB->getUniquePredecessor();
667 if (!BB)
668 break;
669 BBI = BB->end();
670 }
671 } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
672 if (Value *W = PN->hasConstantValue())
673 return findValueImpl(W, OffsetOk, Visited);
674 } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
675 if (CI->isNoopCast(*DL))
676 return findValueImpl(CI->getOperand(0), OffsetOk, Visited);
677 } else if (ExtractValueInst *Ex = dyn_cast<ExtractValueInst>(V)) {
678 if (Value *W =
679 FindInsertedValue(Ex->getAggregateOperand(), Ex->getIndices()))
680 if (W != V)
681 return findValueImpl(W, OffsetOk, Visited);
682 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
683 // Same as above, but for ConstantExpr instead of Instruction.
684 if (Instruction::isCast(CE->getOpcode())) {
685 if (CastInst::isNoopCast(Instruction::CastOps(CE->getOpcode()),
686 CE->getOperand(0)->getType(), CE->getType(),
687 *DL))
688 return findValueImpl(CE->getOperand(0), OffsetOk, Visited);
689 }
690 }
691
692 // As a last resort, try SimplifyInstruction or constant folding.
693 if (Instruction *Inst = dyn_cast<Instruction>(V)) {
694 if (Value *W = simplifyInstruction(Inst, {*DL, TLI, DT, AC}))
695 return findValueImpl(W, OffsetOk, Visited);
696 } else if (auto *C = dyn_cast<Constant>(V)) {
697 Value *W = ConstantFoldConstant(C, *DL, TLI);
698 if (W != V)
699 return findValueImpl(W, OffsetOk, Visited);
700 }
701
702 return V;
703 }
704
run(Function & F,FunctionAnalysisManager & AM)705 PreservedAnalyses LintPass::run(Function &F, FunctionAnalysisManager &AM) {
706 auto *Mod = F.getParent();
707 auto *DL = &F.getParent()->getDataLayout();
708 auto *AA = &AM.getResult<AAManager>(F);
709 auto *AC = &AM.getResult<AssumptionAnalysis>(F);
710 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
711 auto *TLI = &AM.getResult<TargetLibraryAnalysis>(F);
712 Lint L(Mod, DL, AA, AC, DT, TLI);
713 L.visit(F);
714 dbgs() << L.MessagesStr.str();
715 return PreservedAnalyses::all();
716 }
717
718 namespace {
719 class LintLegacyPass : public FunctionPass {
720 public:
721 static char ID; // Pass identification, replacement for typeid
LintLegacyPass()722 LintLegacyPass() : FunctionPass(ID) {
723 initializeLintLegacyPassPass(*PassRegistry::getPassRegistry());
724 }
725
726 bool runOnFunction(Function &F) override;
727
getAnalysisUsage(AnalysisUsage & AU) const728 void getAnalysisUsage(AnalysisUsage &AU) const override {
729 AU.setPreservesAll();
730 AU.addRequired<AAResultsWrapperPass>();
731 AU.addRequired<AssumptionCacheTracker>();
732 AU.addRequired<TargetLibraryInfoWrapperPass>();
733 AU.addRequired<DominatorTreeWrapperPass>();
734 }
print(raw_ostream & O,const Module * M) const735 void print(raw_ostream &O, const Module *M) const override {}
736 };
737 } // namespace
738
739 char LintLegacyPass::ID = 0;
740 INITIALIZE_PASS_BEGIN(LintLegacyPass, "lint", "Statically lint-checks LLVM IR",
741 false, true)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)742 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
743 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
744 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
745 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
746 INITIALIZE_PASS_END(LintLegacyPass, "lint", "Statically lint-checks LLVM IR",
747 false, true)
748
749 bool LintLegacyPass::runOnFunction(Function &F) {
750 auto *Mod = F.getParent();
751 auto *DL = &F.getParent()->getDataLayout();
752 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
753 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
754 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
755 auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
756 Lint L(Mod, DL, AA, AC, DT, TLI);
757 L.visit(F);
758 dbgs() << L.MessagesStr.str();
759 return false;
760 }
761
762 //===----------------------------------------------------------------------===//
763 // Implement the public interfaces to this file...
764 //===----------------------------------------------------------------------===//
765
createLintLegacyPassPass()766 FunctionPass *llvm::createLintLegacyPassPass() { return new LintLegacyPass(); }
767
768 /// lintFunction - Check a function for errors, printing messages on stderr.
769 ///
lintFunction(const Function & f)770 void llvm::lintFunction(const Function &f) {
771 Function &F = const_cast<Function &>(f);
772 assert(!F.isDeclaration() && "Cannot lint external functions");
773
774 legacy::FunctionPassManager FPM(F.getParent());
775 auto *V = new LintLegacyPass();
776 FPM.add(V);
777 FPM.run(F);
778 }
779
780 /// lintModule - Check a module for errors, printing messages on stderr.
781 ///
lintModule(const Module & M)782 void llvm::lintModule(const Module &M) {
783 legacy::PassManager PM;
784 auto *V = new LintLegacyPass();
785 PM.add(V);
786 PM.run(const_cast<Module &>(M));
787 }
788