1 //===- MachineCSE.cpp - Machine Common Subexpression Elimination Pass -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs global common subexpression elimination on machine
10 // instructions using a scoped hash table based value numbering scheme. It
11 // must be run while the machine function is still in SSA form.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/ScopedHashTable.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/CFG.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
25 #include "llvm/CodeGen/MachineDominators.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineFunctionPass.h"
28 #include "llvm/CodeGen/MachineInstr.h"
29 #include "llvm/CodeGen/MachineOperand.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/Passes.h"
32 #include "llvm/CodeGen/TargetInstrInfo.h"
33 #include "llvm/CodeGen/TargetOpcodes.h"
34 #include "llvm/CodeGen/TargetRegisterInfo.h"
35 #include "llvm/CodeGen/TargetSubtargetInfo.h"
36 #include "llvm/InitializePasses.h"
37 #include "llvm/MC/MCRegister.h"
38 #include "llvm/MC/MCRegisterInfo.h"
39 #include "llvm/Pass.h"
40 #include "llvm/Support/Allocator.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/RecyclingAllocator.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include <cassert>
45 #include <iterator>
46 #include <utility>
47 #include <vector>
48
49 using namespace llvm;
50
51 #define DEBUG_TYPE "machine-cse"
52
53 STATISTIC(NumCoalesces, "Number of copies coalesced");
54 STATISTIC(NumCSEs, "Number of common subexpression eliminated");
55 STATISTIC(NumPREs, "Number of partial redundant expression"
56 " transformed to fully redundant");
57 STATISTIC(NumPhysCSEs,
58 "Number of physreg referencing common subexpr eliminated");
59 STATISTIC(NumCrossBBCSEs,
60 "Number of cross-MBB physreg referencing CS eliminated");
61 STATISTIC(NumCommutes, "Number of copies coalesced after commuting");
62
63 // Threshold to avoid excessive cost to compute isProfitableToCSE.
64 static cl::opt<int>
65 CSUsesThreshold("csuses-threshold", cl::Hidden, cl::init(1024),
66 cl::desc("Threshold for the size of CSUses"));
67
68 namespace {
69
70 class MachineCSE : public MachineFunctionPass {
71 const TargetInstrInfo *TII;
72 const TargetRegisterInfo *TRI;
73 AliasAnalysis *AA;
74 MachineDominatorTree *DT;
75 MachineRegisterInfo *MRI;
76 MachineBlockFrequencyInfo *MBFI;
77
78 public:
79 static char ID; // Pass identification
80
MachineCSE()81 MachineCSE() : MachineFunctionPass(ID) {
82 initializeMachineCSEPass(*PassRegistry::getPassRegistry());
83 }
84
85 bool runOnMachineFunction(MachineFunction &MF) override;
86
getAnalysisUsage(AnalysisUsage & AU) const87 void getAnalysisUsage(AnalysisUsage &AU) const override {
88 AU.setPreservesCFG();
89 MachineFunctionPass::getAnalysisUsage(AU);
90 AU.addRequired<AAResultsWrapperPass>();
91 AU.addPreservedID(MachineLoopInfoID);
92 AU.addRequired<MachineDominatorTree>();
93 AU.addPreserved<MachineDominatorTree>();
94 AU.addRequired<MachineBlockFrequencyInfo>();
95 AU.addPreserved<MachineBlockFrequencyInfo>();
96 }
97
getRequiredProperties() const98 MachineFunctionProperties getRequiredProperties() const override {
99 return MachineFunctionProperties()
100 .set(MachineFunctionProperties::Property::IsSSA);
101 }
102
releaseMemory()103 void releaseMemory() override {
104 ScopeMap.clear();
105 PREMap.clear();
106 Exps.clear();
107 }
108
109 private:
110 using AllocatorTy = RecyclingAllocator<BumpPtrAllocator,
111 ScopedHashTableVal<MachineInstr *, unsigned>>;
112 using ScopedHTType =
113 ScopedHashTable<MachineInstr *, unsigned, MachineInstrExpressionTrait,
114 AllocatorTy>;
115 using ScopeType = ScopedHTType::ScopeTy;
116 using PhysDefVector = SmallVector<std::pair<unsigned, unsigned>, 2>;
117
118 unsigned LookAheadLimit = 0;
119 DenseMap<MachineBasicBlock *, ScopeType *> ScopeMap;
120 DenseMap<MachineInstr *, MachineBasicBlock *, MachineInstrExpressionTrait>
121 PREMap;
122 ScopedHTType VNT;
123 SmallVector<MachineInstr *, 64> Exps;
124 unsigned CurrVN = 0;
125
126 bool PerformTrivialCopyPropagation(MachineInstr *MI,
127 MachineBasicBlock *MBB);
128 bool isPhysDefTriviallyDead(MCRegister Reg,
129 MachineBasicBlock::const_iterator I,
130 MachineBasicBlock::const_iterator E) const;
131 bool hasLivePhysRegDefUses(const MachineInstr *MI,
132 const MachineBasicBlock *MBB,
133 SmallSet<MCRegister, 8> &PhysRefs,
134 PhysDefVector &PhysDefs, bool &PhysUseDef) const;
135 bool PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
136 SmallSet<MCRegister, 8> &PhysRefs,
137 PhysDefVector &PhysDefs, bool &NonLocal) const;
138 bool isCSECandidate(MachineInstr *MI);
139 bool isProfitableToCSE(Register CSReg, Register Reg,
140 MachineBasicBlock *CSBB, MachineInstr *MI);
141 void EnterScope(MachineBasicBlock *MBB);
142 void ExitScope(MachineBasicBlock *MBB);
143 bool ProcessBlockCSE(MachineBasicBlock *MBB);
144 void ExitScopeIfDone(MachineDomTreeNode *Node,
145 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren);
146 bool PerformCSE(MachineDomTreeNode *Node);
147
148 bool isPRECandidate(MachineInstr *MI, SmallSet<MCRegister, 8> &PhysRefs);
149 bool ProcessBlockPRE(MachineDominatorTree *MDT, MachineBasicBlock *MBB);
150 bool PerformSimplePRE(MachineDominatorTree *DT);
151 /// Heuristics to see if it's profitable to move common computations of MBB
152 /// and MBB1 to CandidateBB.
153 bool isProfitableToHoistInto(MachineBasicBlock *CandidateBB,
154 MachineBasicBlock *MBB,
155 MachineBasicBlock *MBB1);
156 };
157
158 } // end anonymous namespace
159
160 char MachineCSE::ID = 0;
161
162 char &llvm::MachineCSEID = MachineCSE::ID;
163
164 INITIALIZE_PASS_BEGIN(MachineCSE, DEBUG_TYPE,
165 "Machine Common Subexpression Elimination", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)166 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
167 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
168 INITIALIZE_PASS_END(MachineCSE, DEBUG_TYPE,
169 "Machine Common Subexpression Elimination", false, false)
170
171 /// The source register of a COPY machine instruction can be propagated to all
172 /// its users, and this propagation could increase the probability of finding
173 /// common subexpressions. If the COPY has only one user, the COPY itself can
174 /// be removed.
175 bool MachineCSE::PerformTrivialCopyPropagation(MachineInstr *MI,
176 MachineBasicBlock *MBB) {
177 bool Changed = false;
178 for (MachineOperand &MO : MI->operands()) {
179 if (!MO.isReg() || !MO.isUse())
180 continue;
181 Register Reg = MO.getReg();
182 if (!Reg.isVirtual())
183 continue;
184 bool OnlyOneUse = MRI->hasOneNonDBGUse(Reg);
185 MachineInstr *DefMI = MRI->getVRegDef(Reg);
186 if (!DefMI->isCopy())
187 continue;
188 Register SrcReg = DefMI->getOperand(1).getReg();
189 if (!SrcReg.isVirtual())
190 continue;
191 if (DefMI->getOperand(0).getSubReg())
192 continue;
193 // FIXME: We should trivially coalesce subregister copies to expose CSE
194 // opportunities on instructions with truncated operands (see
195 // cse-add-with-overflow.ll). This can be done here as follows:
196 // if (SrcSubReg)
197 // RC = TRI->getMatchingSuperRegClass(MRI->getRegClass(SrcReg), RC,
198 // SrcSubReg);
199 // MO.substVirtReg(SrcReg, SrcSubReg, *TRI);
200 //
201 // The 2-addr pass has been updated to handle coalesced subregs. However,
202 // some machine-specific code still can't handle it.
203 // To handle it properly we also need a way find a constrained subregister
204 // class given a super-reg class and subreg index.
205 if (DefMI->getOperand(1).getSubReg())
206 continue;
207 if (!MRI->constrainRegAttrs(SrcReg, Reg))
208 continue;
209 LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI);
210 LLVM_DEBUG(dbgs() << "*** to: " << *MI);
211
212 // Propagate SrcReg of copies to MI.
213 MO.setReg(SrcReg);
214 MRI->clearKillFlags(SrcReg);
215 // Coalesce single use copies.
216 if (OnlyOneUse) {
217 // If (and only if) we've eliminated all uses of the copy, also
218 // copy-propagate to any debug-users of MI, or they'll be left using
219 // an undefined value.
220 DefMI->changeDebugValuesDefReg(SrcReg);
221
222 DefMI->eraseFromParent();
223 ++NumCoalesces;
224 }
225 Changed = true;
226 }
227
228 return Changed;
229 }
230
isPhysDefTriviallyDead(MCRegister Reg,MachineBasicBlock::const_iterator I,MachineBasicBlock::const_iterator E) const231 bool MachineCSE::isPhysDefTriviallyDead(
232 MCRegister Reg, MachineBasicBlock::const_iterator I,
233 MachineBasicBlock::const_iterator E) const {
234 unsigned LookAheadLeft = LookAheadLimit;
235 while (LookAheadLeft) {
236 // Skip over dbg_value's.
237 I = skipDebugInstructionsForward(I, E);
238
239 if (I == E)
240 // Reached end of block, we don't know if register is dead or not.
241 return false;
242
243 bool SeenDef = false;
244 for (const MachineOperand &MO : I->operands()) {
245 if (MO.isRegMask() && MO.clobbersPhysReg(Reg))
246 SeenDef = true;
247 if (!MO.isReg() || !MO.getReg())
248 continue;
249 if (!TRI->regsOverlap(MO.getReg(), Reg))
250 continue;
251 if (MO.isUse())
252 // Found a use!
253 return false;
254 SeenDef = true;
255 }
256 if (SeenDef)
257 // See a def of Reg (or an alias) before encountering any use, it's
258 // trivially dead.
259 return true;
260
261 --LookAheadLeft;
262 ++I;
263 }
264 return false;
265 }
266
isCallerPreservedOrConstPhysReg(MCRegister Reg,const MachineOperand & MO,const MachineFunction & MF,const TargetRegisterInfo & TRI,const TargetInstrInfo & TII)267 static bool isCallerPreservedOrConstPhysReg(MCRegister Reg,
268 const MachineOperand &MO,
269 const MachineFunction &MF,
270 const TargetRegisterInfo &TRI,
271 const TargetInstrInfo &TII) {
272 // MachineRegisterInfo::isConstantPhysReg directly called by
273 // MachineRegisterInfo::isCallerPreservedOrConstPhysReg expects the
274 // reserved registers to be frozen. That doesn't cause a problem post-ISel as
275 // most (if not all) targets freeze reserved registers right after ISel.
276 //
277 // It does cause issues mid-GlobalISel, however, hence the additional
278 // reservedRegsFrozen check.
279 const MachineRegisterInfo &MRI = MF.getRegInfo();
280 return TRI.isCallerPreservedPhysReg(Reg, MF) || TII.isIgnorableUse(MO) ||
281 (MRI.reservedRegsFrozen() && MRI.isConstantPhysReg(Reg));
282 }
283
284 /// hasLivePhysRegDefUses - Return true if the specified instruction read/write
285 /// physical registers (except for dead defs of physical registers). It also
286 /// returns the physical register def by reference if it's the only one and the
287 /// instruction does not uses a physical register.
hasLivePhysRegDefUses(const MachineInstr * MI,const MachineBasicBlock * MBB,SmallSet<MCRegister,8> & PhysRefs,PhysDefVector & PhysDefs,bool & PhysUseDef) const288 bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr *MI,
289 const MachineBasicBlock *MBB,
290 SmallSet<MCRegister, 8> &PhysRefs,
291 PhysDefVector &PhysDefs,
292 bool &PhysUseDef) const {
293 // First, add all uses to PhysRefs.
294 for (const MachineOperand &MO : MI->operands()) {
295 if (!MO.isReg() || MO.isDef())
296 continue;
297 Register Reg = MO.getReg();
298 if (!Reg)
299 continue;
300 if (Reg.isVirtual())
301 continue;
302 // Reading either caller preserved or constant physregs is ok.
303 if (!isCallerPreservedOrConstPhysReg(Reg.asMCReg(), MO, *MI->getMF(), *TRI,
304 *TII))
305 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
306 PhysRefs.insert(*AI);
307 }
308
309 // Next, collect all defs into PhysDefs. If any is already in PhysRefs
310 // (which currently contains only uses), set the PhysUseDef flag.
311 PhysUseDef = false;
312 MachineBasicBlock::const_iterator I = MI; I = std::next(I);
313 for (const auto &MOP : llvm::enumerate(MI->operands())) {
314 const MachineOperand &MO = MOP.value();
315 if (!MO.isReg() || !MO.isDef())
316 continue;
317 Register Reg = MO.getReg();
318 if (!Reg)
319 continue;
320 if (Reg.isVirtual())
321 continue;
322 // Check against PhysRefs even if the def is "dead".
323 if (PhysRefs.count(Reg.asMCReg()))
324 PhysUseDef = true;
325 // If the def is dead, it's ok. But the def may not marked "dead". That's
326 // common since this pass is run before livevariables. We can scan
327 // forward a few instructions and check if it is obviously dead.
328 if (!MO.isDead() && !isPhysDefTriviallyDead(Reg.asMCReg(), I, MBB->end()))
329 PhysDefs.push_back(std::make_pair(MOP.index(), Reg));
330 }
331
332 // Finally, add all defs to PhysRefs as well.
333 for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i)
334 for (MCRegAliasIterator AI(PhysDefs[i].second, TRI, true); AI.isValid();
335 ++AI)
336 PhysRefs.insert(*AI);
337
338 return !PhysRefs.empty();
339 }
340
PhysRegDefsReach(MachineInstr * CSMI,MachineInstr * MI,SmallSet<MCRegister,8> & PhysRefs,PhysDefVector & PhysDefs,bool & NonLocal) const341 bool MachineCSE::PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
342 SmallSet<MCRegister, 8> &PhysRefs,
343 PhysDefVector &PhysDefs,
344 bool &NonLocal) const {
345 // For now conservatively returns false if the common subexpression is
346 // not in the same basic block as the given instruction. The only exception
347 // is if the common subexpression is in the sole predecessor block.
348 const MachineBasicBlock *MBB = MI->getParent();
349 const MachineBasicBlock *CSMBB = CSMI->getParent();
350
351 bool CrossMBB = false;
352 if (CSMBB != MBB) {
353 if (MBB->pred_size() != 1 || *MBB->pred_begin() != CSMBB)
354 return false;
355
356 for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) {
357 if (MRI->isAllocatable(PhysDefs[i].second) ||
358 MRI->isReserved(PhysDefs[i].second))
359 // Avoid extending live range of physical registers if they are
360 //allocatable or reserved.
361 return false;
362 }
363 CrossMBB = true;
364 }
365 MachineBasicBlock::const_iterator I = CSMI; I = std::next(I);
366 MachineBasicBlock::const_iterator E = MI;
367 MachineBasicBlock::const_iterator EE = CSMBB->end();
368 unsigned LookAheadLeft = LookAheadLimit;
369 while (LookAheadLeft) {
370 // Skip over dbg_value's.
371 while (I != E && I != EE && I->isDebugInstr())
372 ++I;
373
374 if (I == EE) {
375 assert(CrossMBB && "Reaching end-of-MBB without finding MI?");
376 (void)CrossMBB;
377 CrossMBB = false;
378 NonLocal = true;
379 I = MBB->begin();
380 EE = MBB->end();
381 continue;
382 }
383
384 if (I == E)
385 return true;
386
387 for (const MachineOperand &MO : I->operands()) {
388 // RegMasks go on instructions like calls that clobber lots of physregs.
389 // Don't attempt to CSE across such an instruction.
390 if (MO.isRegMask())
391 return false;
392 if (!MO.isReg() || !MO.isDef())
393 continue;
394 Register MOReg = MO.getReg();
395 if (MOReg.isVirtual())
396 continue;
397 if (PhysRefs.count(MOReg.asMCReg()))
398 return false;
399 }
400
401 --LookAheadLeft;
402 ++I;
403 }
404
405 return false;
406 }
407
isCSECandidate(MachineInstr * MI)408 bool MachineCSE::isCSECandidate(MachineInstr *MI) {
409 if (MI->isPosition() || MI->isPHI() || MI->isImplicitDef() || MI->isKill() ||
410 MI->isInlineAsm() || MI->isDebugInstr())
411 return false;
412
413 // Ignore copies.
414 if (MI->isCopyLike())
415 return false;
416
417 // Ignore stuff that we obviously can't move.
418 if (MI->mayStore() || MI->isCall() || MI->isTerminator() ||
419 MI->mayRaiseFPException() || MI->hasUnmodeledSideEffects())
420 return false;
421
422 if (MI->mayLoad()) {
423 // Okay, this instruction does a load. As a refinement, we allow the target
424 // to decide whether the loaded value is actually a constant. If so, we can
425 // actually use it as a load.
426 if (!MI->isDereferenceableInvariantLoad())
427 // FIXME: we should be able to hoist loads with no other side effects if
428 // there are no other instructions which can change memory in this loop.
429 // This is a trivial form of alias analysis.
430 return false;
431 }
432
433 // Ignore stack guard loads, otherwise the register that holds CSEed value may
434 // be spilled and get loaded back with corrupted data.
435 if (MI->getOpcode() == TargetOpcode::LOAD_STACK_GUARD)
436 return false;
437
438 return true;
439 }
440
441 /// isProfitableToCSE - Return true if it's profitable to eliminate MI with a
442 /// common expression that defines Reg. CSBB is basic block where CSReg is
443 /// defined.
isProfitableToCSE(Register CSReg,Register Reg,MachineBasicBlock * CSBB,MachineInstr * MI)444 bool MachineCSE::isProfitableToCSE(Register CSReg, Register Reg,
445 MachineBasicBlock *CSBB, MachineInstr *MI) {
446 // FIXME: Heuristics that works around the lack the live range splitting.
447
448 // If CSReg is used at all uses of Reg, CSE should not increase register
449 // pressure of CSReg.
450 bool MayIncreasePressure = true;
451 if (CSReg.isVirtual() && Reg.isVirtual()) {
452 MayIncreasePressure = false;
453 SmallPtrSet<MachineInstr*, 8> CSUses;
454 int NumOfUses = 0;
455 for (MachineInstr &MI : MRI->use_nodbg_instructions(CSReg)) {
456 CSUses.insert(&MI);
457 // Too costly to compute if NumOfUses is very large. Conservatively assume
458 // MayIncreasePressure to avoid spending too much time here.
459 if (++NumOfUses > CSUsesThreshold) {
460 MayIncreasePressure = true;
461 break;
462 }
463 }
464 if (!MayIncreasePressure)
465 for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
466 if (!CSUses.count(&MI)) {
467 MayIncreasePressure = true;
468 break;
469 }
470 }
471 }
472 if (!MayIncreasePressure) return true;
473
474 // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in
475 // an immediate predecessor. We don't want to increase register pressure and
476 // end up causing other computation to be spilled.
477 if (TII->isAsCheapAsAMove(*MI)) {
478 MachineBasicBlock *BB = MI->getParent();
479 if (CSBB != BB && !CSBB->isSuccessor(BB))
480 return false;
481 }
482
483 // Heuristics #2: If the expression doesn't not use a vr and the only use
484 // of the redundant computation are copies, do not cse.
485 bool HasVRegUse = false;
486 for (const MachineOperand &MO : MI->operands()) {
487 if (MO.isReg() && MO.isUse() && MO.getReg().isVirtual()) {
488 HasVRegUse = true;
489 break;
490 }
491 }
492 if (!HasVRegUse) {
493 bool HasNonCopyUse = false;
494 for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
495 // Ignore copies.
496 if (!MI.isCopyLike()) {
497 HasNonCopyUse = true;
498 break;
499 }
500 }
501 if (!HasNonCopyUse)
502 return false;
503 }
504
505 // Heuristics #3: If the common subexpression is used by PHIs, do not reuse
506 // it unless the defined value is already used in the BB of the new use.
507 bool HasPHI = false;
508 for (MachineInstr &UseMI : MRI->use_nodbg_instructions(CSReg)) {
509 HasPHI |= UseMI.isPHI();
510 if (UseMI.getParent() == MI->getParent())
511 return true;
512 }
513
514 return !HasPHI;
515 }
516
EnterScope(MachineBasicBlock * MBB)517 void MachineCSE::EnterScope(MachineBasicBlock *MBB) {
518 LLVM_DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n');
519 ScopeType *Scope = new ScopeType(VNT);
520 ScopeMap[MBB] = Scope;
521 }
522
ExitScope(MachineBasicBlock * MBB)523 void MachineCSE::ExitScope(MachineBasicBlock *MBB) {
524 LLVM_DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n');
525 DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB);
526 assert(SI != ScopeMap.end());
527 delete SI->second;
528 ScopeMap.erase(SI);
529 }
530
ProcessBlockCSE(MachineBasicBlock * MBB)531 bool MachineCSE::ProcessBlockCSE(MachineBasicBlock *MBB) {
532 bool Changed = false;
533
534 SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs;
535 SmallVector<unsigned, 2> ImplicitDefsToUpdate;
536 SmallVector<unsigned, 2> ImplicitDefs;
537 for (MachineInstr &MI : llvm::make_early_inc_range(*MBB)) {
538 if (!isCSECandidate(&MI))
539 continue;
540
541 bool FoundCSE = VNT.count(&MI);
542 if (!FoundCSE) {
543 // Using trivial copy propagation to find more CSE opportunities.
544 if (PerformTrivialCopyPropagation(&MI, MBB)) {
545 Changed = true;
546
547 // After coalescing MI itself may become a copy.
548 if (MI.isCopyLike())
549 continue;
550
551 // Try again to see if CSE is possible.
552 FoundCSE = VNT.count(&MI);
553 }
554 }
555
556 // Commute commutable instructions.
557 bool Commuted = false;
558 if (!FoundCSE && MI.isCommutable()) {
559 if (MachineInstr *NewMI = TII->commuteInstruction(MI)) {
560 Commuted = true;
561 FoundCSE = VNT.count(NewMI);
562 if (NewMI != &MI) {
563 // New instruction. It doesn't need to be kept.
564 NewMI->eraseFromParent();
565 Changed = true;
566 } else if (!FoundCSE)
567 // MI was changed but it didn't help, commute it back!
568 (void)TII->commuteInstruction(MI);
569 }
570 }
571
572 // If the instruction defines physical registers and the values *may* be
573 // used, then it's not safe to replace it with a common subexpression.
574 // It's also not safe if the instruction uses physical registers.
575 bool CrossMBBPhysDef = false;
576 SmallSet<MCRegister, 8> PhysRefs;
577 PhysDefVector PhysDefs;
578 bool PhysUseDef = false;
579 if (FoundCSE &&
580 hasLivePhysRegDefUses(&MI, MBB, PhysRefs, PhysDefs, PhysUseDef)) {
581 FoundCSE = false;
582
583 // ... Unless the CS is local or is in the sole predecessor block
584 // and it also defines the physical register which is not clobbered
585 // in between and the physical register uses were not clobbered.
586 // This can never be the case if the instruction both uses and
587 // defines the same physical register, which was detected above.
588 if (!PhysUseDef) {
589 unsigned CSVN = VNT.lookup(&MI);
590 MachineInstr *CSMI = Exps[CSVN];
591 if (PhysRegDefsReach(CSMI, &MI, PhysRefs, PhysDefs, CrossMBBPhysDef))
592 FoundCSE = true;
593 }
594 }
595
596 if (!FoundCSE) {
597 VNT.insert(&MI, CurrVN++);
598 Exps.push_back(&MI);
599 continue;
600 }
601
602 // Found a common subexpression, eliminate it.
603 unsigned CSVN = VNT.lookup(&MI);
604 MachineInstr *CSMI = Exps[CSVN];
605 LLVM_DEBUG(dbgs() << "Examining: " << MI);
606 LLVM_DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI);
607
608 // Prevent CSE-ing non-local convergent instructions.
609 // LLVM's current definition of `isConvergent` does not necessarily prove
610 // that non-local CSE is illegal. The following check extends the definition
611 // of `isConvergent` to assume a convergent instruction is dependent not
612 // only on additional conditions, but also on fewer conditions. LLVM does
613 // not have a MachineInstr attribute which expresses this extended
614 // definition, so it's necessary to use `isConvergent` to prevent illegally
615 // CSE-ing the subset of `isConvergent` instructions which do fall into this
616 // extended definition.
617 if (MI.isConvergent() && MI.getParent() != CSMI->getParent()) {
618 LLVM_DEBUG(dbgs() << "*** Convergent MI and subexpression exist in "
619 "different BBs, avoid CSE!\n");
620 VNT.insert(&MI, CurrVN++);
621 Exps.push_back(&MI);
622 continue;
623 }
624
625 // Check if it's profitable to perform this CSE.
626 bool DoCSE = true;
627 unsigned NumDefs = MI.getNumDefs();
628
629 for (unsigned i = 0, e = MI.getNumOperands(); NumDefs && i != e; ++i) {
630 MachineOperand &MO = MI.getOperand(i);
631 if (!MO.isReg() || !MO.isDef())
632 continue;
633 Register OldReg = MO.getReg();
634 Register NewReg = CSMI->getOperand(i).getReg();
635
636 // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
637 // we should make sure it is not dead at CSMI.
638 if (MO.isImplicit() && !MO.isDead() && CSMI->getOperand(i).isDead())
639 ImplicitDefsToUpdate.push_back(i);
640
641 // Keep track of implicit defs of CSMI and MI, to clear possibly
642 // made-redundant kill flags.
643 if (MO.isImplicit() && !MO.isDead() && OldReg == NewReg)
644 ImplicitDefs.push_back(OldReg);
645
646 if (OldReg == NewReg) {
647 --NumDefs;
648 continue;
649 }
650
651 assert(OldReg.isVirtual() && NewReg.isVirtual() &&
652 "Do not CSE physical register defs!");
653
654 if (!isProfitableToCSE(NewReg, OldReg, CSMI->getParent(), &MI)) {
655 LLVM_DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n");
656 DoCSE = false;
657 break;
658 }
659
660 // Don't perform CSE if the result of the new instruction cannot exist
661 // within the constraints (register class, bank, or low-level type) of
662 // the old instruction.
663 if (!MRI->constrainRegAttrs(NewReg, OldReg)) {
664 LLVM_DEBUG(
665 dbgs() << "*** Not the same register constraints, avoid CSE!\n");
666 DoCSE = false;
667 break;
668 }
669
670 CSEPairs.push_back(std::make_pair(OldReg, NewReg));
671 --NumDefs;
672 }
673
674 // Actually perform the elimination.
675 if (DoCSE) {
676 for (const std::pair<unsigned, unsigned> &CSEPair : CSEPairs) {
677 unsigned OldReg = CSEPair.first;
678 unsigned NewReg = CSEPair.second;
679 // OldReg may have been unused but is used now, clear the Dead flag
680 MachineInstr *Def = MRI->getUniqueVRegDef(NewReg);
681 assert(Def != nullptr && "CSEd register has no unique definition?");
682 Def->clearRegisterDeads(NewReg);
683 // Replace with NewReg and clear kill flags which may be wrong now.
684 MRI->replaceRegWith(OldReg, NewReg);
685 MRI->clearKillFlags(NewReg);
686 }
687
688 // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
689 // we should make sure it is not dead at CSMI.
690 for (unsigned ImplicitDefToUpdate : ImplicitDefsToUpdate)
691 CSMI->getOperand(ImplicitDefToUpdate).setIsDead(false);
692 for (const auto &PhysDef : PhysDefs)
693 if (!MI.getOperand(PhysDef.first).isDead())
694 CSMI->getOperand(PhysDef.first).setIsDead(false);
695
696 // Go through implicit defs of CSMI and MI, and clear the kill flags on
697 // their uses in all the instructions between CSMI and MI.
698 // We might have made some of the kill flags redundant, consider:
699 // subs ... implicit-def %nzcv <- CSMI
700 // csinc ... implicit killed %nzcv <- this kill flag isn't valid anymore
701 // subs ... implicit-def %nzcv <- MI, to be eliminated
702 // csinc ... implicit killed %nzcv
703 // Since we eliminated MI, and reused a register imp-def'd by CSMI
704 // (here %nzcv), that register, if it was killed before MI, should have
705 // that kill flag removed, because it's lifetime was extended.
706 if (CSMI->getParent() == MI.getParent()) {
707 for (MachineBasicBlock::iterator II = CSMI, IE = &MI; II != IE; ++II)
708 for (auto ImplicitDef : ImplicitDefs)
709 if (MachineOperand *MO = II->findRegisterUseOperand(
710 ImplicitDef, /*isKill=*/true, TRI))
711 MO->setIsKill(false);
712 } else {
713 // If the instructions aren't in the same BB, bail out and clear the
714 // kill flag on all uses of the imp-def'd register.
715 for (auto ImplicitDef : ImplicitDefs)
716 MRI->clearKillFlags(ImplicitDef);
717 }
718
719 if (CrossMBBPhysDef) {
720 // Add physical register defs now coming in from a predecessor to MBB
721 // livein list.
722 while (!PhysDefs.empty()) {
723 auto LiveIn = PhysDefs.pop_back_val();
724 if (!MBB->isLiveIn(LiveIn.second))
725 MBB->addLiveIn(LiveIn.second);
726 }
727 ++NumCrossBBCSEs;
728 }
729
730 MI.eraseFromParent();
731 ++NumCSEs;
732 if (!PhysRefs.empty())
733 ++NumPhysCSEs;
734 if (Commuted)
735 ++NumCommutes;
736 Changed = true;
737 } else {
738 VNT.insert(&MI, CurrVN++);
739 Exps.push_back(&MI);
740 }
741 CSEPairs.clear();
742 ImplicitDefsToUpdate.clear();
743 ImplicitDefs.clear();
744 }
745
746 return Changed;
747 }
748
749 /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given
750 /// dominator tree node if its a leaf or all of its children are done. Walk
751 /// up the dominator tree to destroy ancestors which are now done.
752 void
ExitScopeIfDone(MachineDomTreeNode * Node,DenseMap<MachineDomTreeNode *,unsigned> & OpenChildren)753 MachineCSE::ExitScopeIfDone(MachineDomTreeNode *Node,
754 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren) {
755 if (OpenChildren[Node])
756 return;
757
758 // Pop scope.
759 ExitScope(Node->getBlock());
760
761 // Now traverse upwards to pop ancestors whose offsprings are all done.
762 while (MachineDomTreeNode *Parent = Node->getIDom()) {
763 unsigned Left = --OpenChildren[Parent];
764 if (Left != 0)
765 break;
766 ExitScope(Parent->getBlock());
767 Node = Parent;
768 }
769 }
770
PerformCSE(MachineDomTreeNode * Node)771 bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) {
772 SmallVector<MachineDomTreeNode*, 32> Scopes;
773 SmallVector<MachineDomTreeNode*, 8> WorkList;
774 DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
775
776 CurrVN = 0;
777
778 // Perform a DFS walk to determine the order of visit.
779 WorkList.push_back(Node);
780 do {
781 Node = WorkList.pop_back_val();
782 Scopes.push_back(Node);
783 OpenChildren[Node] = Node->getNumChildren();
784 append_range(WorkList, Node->children());
785 } while (!WorkList.empty());
786
787 // Now perform CSE.
788 bool Changed = false;
789 for (MachineDomTreeNode *Node : Scopes) {
790 MachineBasicBlock *MBB = Node->getBlock();
791 EnterScope(MBB);
792 Changed |= ProcessBlockCSE(MBB);
793 // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
794 ExitScopeIfDone(Node, OpenChildren);
795 }
796
797 return Changed;
798 }
799
800 // We use stronger checks for PRE candidate rather than for CSE ones to embrace
801 // checks inside ProcessBlockCSE(), not only inside isCSECandidate(). This helps
802 // to exclude instrs created by PRE that won't be CSEed later.
isPRECandidate(MachineInstr * MI,SmallSet<MCRegister,8> & PhysRefs)803 bool MachineCSE::isPRECandidate(MachineInstr *MI,
804 SmallSet<MCRegister, 8> &PhysRefs) {
805 if (!isCSECandidate(MI) ||
806 MI->isNotDuplicable() ||
807 MI->mayLoad() ||
808 TII->isAsCheapAsAMove(*MI) ||
809 MI->getNumDefs() != 1 ||
810 MI->getNumExplicitDefs() != 1)
811 return false;
812
813 for (const MachineOperand &MO : MI->operands()) {
814 if (MO.isReg() && !MO.getReg().isVirtual()) {
815 if (MO.isDef())
816 return false;
817 else
818 PhysRefs.insert(MO.getReg());
819 }
820 }
821
822 return true;
823 }
824
ProcessBlockPRE(MachineDominatorTree * DT,MachineBasicBlock * MBB)825 bool MachineCSE::ProcessBlockPRE(MachineDominatorTree *DT,
826 MachineBasicBlock *MBB) {
827 bool Changed = false;
828 for (MachineInstr &MI : llvm::make_early_inc_range(*MBB)) {
829 SmallSet<MCRegister, 8> PhysRefs;
830 if (!isPRECandidate(&MI, PhysRefs))
831 continue;
832
833 if (!PREMap.count(&MI)) {
834 PREMap[&MI] = MBB;
835 continue;
836 }
837
838 auto MBB1 = PREMap[&MI];
839 assert(
840 !DT->properlyDominates(MBB, MBB1) &&
841 "MBB cannot properly dominate MBB1 while DFS through dominators tree!");
842 auto CMBB = DT->findNearestCommonDominator(MBB, MBB1);
843 if (!CMBB->isLegalToHoistInto())
844 continue;
845
846 if (!isProfitableToHoistInto(CMBB, MBB, MBB1))
847 continue;
848
849 // Two instrs are partial redundant if their basic blocks are reachable
850 // from one to another but one doesn't dominate another.
851 if (CMBB != MBB1) {
852 auto BB = MBB->getBasicBlock(), BB1 = MBB1->getBasicBlock();
853 if (BB != nullptr && BB1 != nullptr &&
854 (isPotentiallyReachable(BB1, BB) ||
855 isPotentiallyReachable(BB, BB1))) {
856 // The following check extends the definition of `isConvergent` to
857 // assume a convergent instruction is dependent not only on additional
858 // conditions, but also on fewer conditions. LLVM does not have a
859 // MachineInstr attribute which expresses this extended definition, so
860 // it's necessary to use `isConvergent` to prevent illegally PRE-ing the
861 // subset of `isConvergent` instructions which do fall into this
862 // extended definition.
863 if (MI.isConvergent() && CMBB != MBB)
864 continue;
865
866 // If this instruction uses physical registers then we can only do PRE
867 // if it's using the value that is live at the place we're hoisting to.
868 bool NonLocal;
869 PhysDefVector PhysDefs;
870 if (!PhysRefs.empty() &&
871 !PhysRegDefsReach(&*(CMBB->getFirstTerminator()), &MI, PhysRefs,
872 PhysDefs, NonLocal))
873 continue;
874
875 assert(MI.getOperand(0).isDef() &&
876 "First operand of instr with one explicit def must be this def");
877 Register VReg = MI.getOperand(0).getReg();
878 Register NewReg = MRI->cloneVirtualRegister(VReg);
879 if (!isProfitableToCSE(NewReg, VReg, CMBB, &MI))
880 continue;
881 MachineInstr &NewMI =
882 TII->duplicate(*CMBB, CMBB->getFirstTerminator(), MI);
883
884 // When hoisting, make sure we don't carry the debug location of
885 // the original instruction, as that's not correct and can cause
886 // unexpected jumps when debugging optimized code.
887 auto EmptyDL = DebugLoc();
888 NewMI.setDebugLoc(EmptyDL);
889
890 NewMI.getOperand(0).setReg(NewReg);
891
892 PREMap[&MI] = CMBB;
893 ++NumPREs;
894 Changed = true;
895 }
896 }
897 }
898 return Changed;
899 }
900
901 // This simple PRE (partial redundancy elimination) pass doesn't actually
902 // eliminate partial redundancy but transforms it to full redundancy,
903 // anticipating that the next CSE step will eliminate this created redundancy.
904 // If CSE doesn't eliminate this, than created instruction will remain dead
905 // and eliminated later by Remove Dead Machine Instructions pass.
PerformSimplePRE(MachineDominatorTree * DT)906 bool MachineCSE::PerformSimplePRE(MachineDominatorTree *DT) {
907 SmallVector<MachineDomTreeNode *, 32> BBs;
908
909 PREMap.clear();
910 bool Changed = false;
911 BBs.push_back(DT->getRootNode());
912 do {
913 auto Node = BBs.pop_back_val();
914 append_range(BBs, Node->children());
915
916 MachineBasicBlock *MBB = Node->getBlock();
917 Changed |= ProcessBlockPRE(DT, MBB);
918
919 } while (!BBs.empty());
920
921 return Changed;
922 }
923
isProfitableToHoistInto(MachineBasicBlock * CandidateBB,MachineBasicBlock * MBB,MachineBasicBlock * MBB1)924 bool MachineCSE::isProfitableToHoistInto(MachineBasicBlock *CandidateBB,
925 MachineBasicBlock *MBB,
926 MachineBasicBlock *MBB1) {
927 if (CandidateBB->getParent()->getFunction().hasMinSize())
928 return true;
929 assert(DT->dominates(CandidateBB, MBB) && "CandidateBB should dominate MBB");
930 assert(DT->dominates(CandidateBB, MBB1) &&
931 "CandidateBB should dominate MBB1");
932 return MBFI->getBlockFreq(CandidateBB) <=
933 MBFI->getBlockFreq(MBB) + MBFI->getBlockFreq(MBB1);
934 }
935
runOnMachineFunction(MachineFunction & MF)936 bool MachineCSE::runOnMachineFunction(MachineFunction &MF) {
937 if (skipFunction(MF.getFunction()))
938 return false;
939
940 TII = MF.getSubtarget().getInstrInfo();
941 TRI = MF.getSubtarget().getRegisterInfo();
942 MRI = &MF.getRegInfo();
943 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
944 DT = &getAnalysis<MachineDominatorTree>();
945 MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
946 LookAheadLimit = TII->getMachineCSELookAheadLimit();
947 bool ChangedPRE, ChangedCSE;
948 ChangedPRE = PerformSimplePRE(DT);
949 ChangedCSE = PerformCSE(DT->getRootNode());
950 return ChangedPRE || ChangedCSE;
951 }
952