1 //===- RegAllocFast.cpp - A fast register allocator for debug code --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This register allocator allocates registers to a basic block at a
10 /// time, attempting to keep values in registers and reusing registers as
11 /// appropriate.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/IndexedMap.h"
18 #include "llvm/ADT/MapVector.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/SparseSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineOperand.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/RegAllocCommon.h"
32 #include "llvm/CodeGen/RegAllocRegistry.h"
33 #include "llvm/CodeGen/RegisterClassInfo.h"
34 #include "llvm/CodeGen/TargetInstrInfo.h"
35 #include "llvm/CodeGen/TargetOpcodes.h"
36 #include "llvm/CodeGen/TargetRegisterInfo.h"
37 #include "llvm/CodeGen/TargetSubtargetInfo.h"
38 #include "llvm/InitializePasses.h"
39 #include "llvm/MC/MCRegisterInfo.h"
40 #include "llvm/Pass.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include <cassert>
45 #include <tuple>
46 #include <vector>
47
48 using namespace llvm;
49
50 #define DEBUG_TYPE "regalloc"
51
52 STATISTIC(NumStores, "Number of stores added");
53 STATISTIC(NumLoads , "Number of loads added");
54 STATISTIC(NumCoalesced, "Number of copies coalesced");
55
56 // FIXME: Remove this switch when all testcases are fixed!
57 static cl::opt<bool> IgnoreMissingDefs("rafast-ignore-missing-defs",
58 cl::Hidden);
59
60 static RegisterRegAlloc
61 fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator);
62
63 namespace {
64
65 class RegAllocFast : public MachineFunctionPass {
66 public:
67 static char ID;
68
RegAllocFast(const RegClassFilterFunc F=allocateAllRegClasses,bool ClearVirtRegs_=true)69 RegAllocFast(const RegClassFilterFunc F = allocateAllRegClasses,
70 bool ClearVirtRegs_ = true) :
71 MachineFunctionPass(ID),
72 ShouldAllocateClass(F),
73 StackSlotForVirtReg(-1),
74 ClearVirtRegs(ClearVirtRegs_) {
75 }
76
77 private:
78 MachineFrameInfo *MFI;
79 MachineRegisterInfo *MRI;
80 const TargetRegisterInfo *TRI;
81 const TargetInstrInfo *TII;
82 RegisterClassInfo RegClassInfo;
83 const RegClassFilterFunc ShouldAllocateClass;
84
85 /// Basic block currently being allocated.
86 MachineBasicBlock *MBB;
87
88 /// Maps virtual regs to the frame index where these values are spilled.
89 IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg;
90
91 bool ClearVirtRegs;
92
93 /// Everything we know about a live virtual register.
94 struct LiveReg {
95 MachineInstr *LastUse = nullptr; ///< Last instr to use reg.
96 Register VirtReg; ///< Virtual register number.
97 MCPhysReg PhysReg = 0; ///< Currently held here.
98 bool LiveOut = false; ///< Register is possibly live out.
99 bool Reloaded = false; ///< Register was reloaded.
100 bool Error = false; ///< Could not allocate.
101
LiveReg__anon192fad2b0111::RegAllocFast::LiveReg102 explicit LiveReg(Register VirtReg) : VirtReg(VirtReg) {}
103
getSparseSetIndex__anon192fad2b0111::RegAllocFast::LiveReg104 unsigned getSparseSetIndex() const {
105 return Register::virtReg2Index(VirtReg);
106 }
107 };
108
109 using LiveRegMap = SparseSet<LiveReg>;
110 /// This map contains entries for each virtual register that is currently
111 /// available in a physical register.
112 LiveRegMap LiveVirtRegs;
113
114 /// Stores assigned virtual registers present in the bundle MI.
115 DenseMap<Register, MCPhysReg> BundleVirtRegsMap;
116
117 DenseMap<unsigned, SmallVector<MachineOperand *, 2>> LiveDbgValueMap;
118 /// List of DBG_VALUE that we encountered without the vreg being assigned
119 /// because they were placed after the last use of the vreg.
120 DenseMap<unsigned, SmallVector<MachineInstr *, 1>> DanglingDbgValues;
121
122 /// Has a bit set for every virtual register for which it was determined
123 /// that it is alive across blocks.
124 BitVector MayLiveAcrossBlocks;
125
126 /// State of a register unit.
127 enum RegUnitState {
128 /// A free register is not currently in use and can be allocated
129 /// immediately without checking aliases.
130 regFree,
131
132 /// A pre-assigned register has been assigned before register allocation
133 /// (e.g., setting up a call parameter).
134 regPreAssigned,
135
136 /// Used temporarily in reloadAtBegin() to mark register units that are
137 /// live-in to the basic block.
138 regLiveIn,
139
140 /// A register state may also be a virtual register number, indication
141 /// that the physical register is currently allocated to a virtual
142 /// register. In that case, LiveVirtRegs contains the inverse mapping.
143 };
144
145 /// Maps each physical register to a RegUnitState enum or virtual register.
146 std::vector<unsigned> RegUnitStates;
147
148 SmallVector<MachineInstr *, 32> Coalesced;
149
150 using RegUnitSet = SparseSet<uint16_t, identity<uint16_t>>;
151 /// Set of register units that are used in the current instruction, and so
152 /// cannot be allocated.
153 RegUnitSet UsedInInstr;
154 RegUnitSet PhysRegUses;
155 SmallVector<uint16_t, 8> DefOperandIndexes;
156 // Register masks attached to the current instruction.
157 SmallVector<const uint32_t *> RegMasks;
158
159 void setPhysRegState(MCPhysReg PhysReg, unsigned NewState);
160 bool isPhysRegFree(MCPhysReg PhysReg) const;
161
162 /// Mark a physreg as used in this instruction.
markRegUsedInInstr(MCPhysReg PhysReg)163 void markRegUsedInInstr(MCPhysReg PhysReg) {
164 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
165 UsedInInstr.insert(*Units);
166 }
167
168 // Check if physreg is clobbered by instruction's regmask(s).
isClobberedByRegMasks(MCPhysReg PhysReg) const169 bool isClobberedByRegMasks(MCPhysReg PhysReg) const {
170 return llvm::any_of(RegMasks, [PhysReg](const uint32_t *Mask) {
171 return MachineOperand::clobbersPhysReg(Mask, PhysReg);
172 });
173 }
174
175 /// Check if a physreg or any of its aliases are used in this instruction.
isRegUsedInInstr(MCPhysReg PhysReg,bool LookAtPhysRegUses) const176 bool isRegUsedInInstr(MCPhysReg PhysReg, bool LookAtPhysRegUses) const {
177 if (LookAtPhysRegUses && isClobberedByRegMasks(PhysReg))
178 return true;
179 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
180 if (UsedInInstr.count(*Units))
181 return true;
182 if (LookAtPhysRegUses && PhysRegUses.count(*Units))
183 return true;
184 }
185 return false;
186 }
187
188 /// Mark physical register as being used in a register use operand.
189 /// This is only used by the special livethrough handling code.
markPhysRegUsedInInstr(MCPhysReg PhysReg)190 void markPhysRegUsedInInstr(MCPhysReg PhysReg) {
191 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
192 PhysRegUses.insert(*Units);
193 }
194
195 /// Remove mark of physical register being used in the instruction.
unmarkRegUsedInInstr(MCPhysReg PhysReg)196 void unmarkRegUsedInInstr(MCPhysReg PhysReg) {
197 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
198 UsedInInstr.erase(*Units);
199 }
200
201 enum : unsigned {
202 spillClean = 50,
203 spillDirty = 100,
204 spillPrefBonus = 20,
205 spillImpossible = ~0u
206 };
207
208 public:
getPassName() const209 StringRef getPassName() const override { return "Fast Register Allocator"; }
210
getAnalysisUsage(AnalysisUsage & AU) const211 void getAnalysisUsage(AnalysisUsage &AU) const override {
212 AU.setPreservesCFG();
213 MachineFunctionPass::getAnalysisUsage(AU);
214 }
215
getRequiredProperties() const216 MachineFunctionProperties getRequiredProperties() const override {
217 return MachineFunctionProperties().set(
218 MachineFunctionProperties::Property::NoPHIs);
219 }
220
getSetProperties() const221 MachineFunctionProperties getSetProperties() const override {
222 if (ClearVirtRegs) {
223 return MachineFunctionProperties().set(
224 MachineFunctionProperties::Property::NoVRegs);
225 }
226
227 return MachineFunctionProperties();
228 }
229
getClearedProperties() const230 MachineFunctionProperties getClearedProperties() const override {
231 return MachineFunctionProperties().set(
232 MachineFunctionProperties::Property::IsSSA);
233 }
234
235 private:
236 bool runOnMachineFunction(MachineFunction &MF) override;
237
238 void allocateBasicBlock(MachineBasicBlock &MBB);
239
240 void addRegClassDefCounts(std::vector<unsigned> &RegClassDefCounts,
241 Register Reg) const;
242
243 void allocateInstruction(MachineInstr &MI);
244 void handleDebugValue(MachineInstr &MI);
245 void handleBundle(MachineInstr &MI);
246
247 bool usePhysReg(MachineInstr &MI, MCPhysReg PhysReg);
248 bool definePhysReg(MachineInstr &MI, MCPhysReg PhysReg);
249 bool displacePhysReg(MachineInstr &MI, MCPhysReg PhysReg);
250 void freePhysReg(MCPhysReg PhysReg);
251
252 unsigned calcSpillCost(MCPhysReg PhysReg) const;
253
findLiveVirtReg(Register VirtReg)254 LiveRegMap::iterator findLiveVirtReg(Register VirtReg) {
255 return LiveVirtRegs.find(Register::virtReg2Index(VirtReg));
256 }
257
findLiveVirtReg(Register VirtReg) const258 LiveRegMap::const_iterator findLiveVirtReg(Register VirtReg) const {
259 return LiveVirtRegs.find(Register::virtReg2Index(VirtReg));
260 }
261
262 void assignVirtToPhysReg(MachineInstr &MI, LiveReg &, MCPhysReg PhysReg);
263 void allocVirtReg(MachineInstr &MI, LiveReg &LR, Register Hint,
264 bool LookAtPhysRegUses = false);
265 void allocVirtRegUndef(MachineOperand &MO);
266 void assignDanglingDebugValues(MachineInstr &Def, Register VirtReg,
267 MCPhysReg Reg);
268 void defineLiveThroughVirtReg(MachineInstr &MI, unsigned OpNum,
269 Register VirtReg);
270 void defineVirtReg(MachineInstr &MI, unsigned OpNum, Register VirtReg,
271 bool LookAtPhysRegUses = false);
272 void useVirtReg(MachineInstr &MI, unsigned OpNum, Register VirtReg);
273
274 MachineBasicBlock::iterator
275 getMBBBeginInsertionPoint(MachineBasicBlock &MBB,
276 SmallSet<Register, 2> &PrologLiveIns) const;
277
278 void reloadAtBegin(MachineBasicBlock &MBB);
279 void setPhysReg(MachineInstr &MI, MachineOperand &MO, MCPhysReg PhysReg);
280
281 Register traceCopies(Register VirtReg) const;
282 Register traceCopyChain(Register Reg) const;
283
284 bool shouldAllocateRegister(const Register Reg) const;
285 int getStackSpaceFor(Register VirtReg);
286 void spill(MachineBasicBlock::iterator Before, Register VirtReg,
287 MCPhysReg AssignedReg, bool Kill, bool LiveOut);
288 void reload(MachineBasicBlock::iterator Before, Register VirtReg,
289 MCPhysReg PhysReg);
290
291 bool mayLiveOut(Register VirtReg);
292 bool mayLiveIn(Register VirtReg);
293
294 void dumpState() const;
295 };
296
297 } // end anonymous namespace
298
299 char RegAllocFast::ID = 0;
300
301 INITIALIZE_PASS(RegAllocFast, "regallocfast", "Fast Register Allocator", false,
302 false)
303
shouldAllocateRegister(const Register Reg) const304 bool RegAllocFast::shouldAllocateRegister(const Register Reg) const {
305 assert(Reg.isVirtual());
306 const TargetRegisterClass &RC = *MRI->getRegClass(Reg);
307 return ShouldAllocateClass(*TRI, RC);
308 }
309
setPhysRegState(MCPhysReg PhysReg,unsigned NewState)310 void RegAllocFast::setPhysRegState(MCPhysReg PhysReg, unsigned NewState) {
311 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI)
312 RegUnitStates[*UI] = NewState;
313 }
314
isPhysRegFree(MCPhysReg PhysReg) const315 bool RegAllocFast::isPhysRegFree(MCPhysReg PhysReg) const {
316 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) {
317 if (RegUnitStates[*UI] != regFree)
318 return false;
319 }
320 return true;
321 }
322
323 /// This allocates space for the specified virtual register to be held on the
324 /// stack.
getStackSpaceFor(Register VirtReg)325 int RegAllocFast::getStackSpaceFor(Register VirtReg) {
326 // Find the location Reg would belong...
327 int SS = StackSlotForVirtReg[VirtReg];
328 // Already has space allocated?
329 if (SS != -1)
330 return SS;
331
332 // Allocate a new stack object for this spill location...
333 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
334 unsigned Size = TRI->getSpillSize(RC);
335 Align Alignment = TRI->getSpillAlign(RC);
336 int FrameIdx = MFI->CreateSpillStackObject(Size, Alignment);
337
338 // Assign the slot.
339 StackSlotForVirtReg[VirtReg] = FrameIdx;
340 return FrameIdx;
341 }
342
dominates(MachineBasicBlock & MBB,MachineBasicBlock::const_iterator A,MachineBasicBlock::const_iterator B)343 static bool dominates(MachineBasicBlock &MBB,
344 MachineBasicBlock::const_iterator A,
345 MachineBasicBlock::const_iterator B) {
346 auto MBBEnd = MBB.end();
347 if (B == MBBEnd)
348 return true;
349
350 MachineBasicBlock::const_iterator I = MBB.begin();
351 for (; &*I != A && &*I != B; ++I)
352 ;
353
354 return &*I == A;
355 }
356
357 /// Returns false if \p VirtReg is known to not live out of the current block.
mayLiveOut(Register VirtReg)358 bool RegAllocFast::mayLiveOut(Register VirtReg) {
359 if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg))) {
360 // Cannot be live-out if there are no successors.
361 return !MBB->succ_empty();
362 }
363
364 const MachineInstr *SelfLoopDef = nullptr;
365
366 // If this block loops back to itself, it is necessary to check whether the
367 // use comes after the def.
368 if (MBB->isSuccessor(MBB)) {
369 // Find the first def in the self loop MBB.
370 for (const MachineInstr &DefInst : MRI->def_instructions(VirtReg)) {
371 if (DefInst.getParent() != MBB) {
372 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
373 return true;
374 } else {
375 if (!SelfLoopDef || dominates(*MBB, DefInst.getIterator(), SelfLoopDef))
376 SelfLoopDef = &DefInst;
377 }
378 }
379 if (!SelfLoopDef) {
380 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
381 return true;
382 }
383 }
384
385 // See if the first \p Limit uses of the register are all in the current
386 // block.
387 static const unsigned Limit = 8;
388 unsigned C = 0;
389 for (const MachineInstr &UseInst : MRI->use_nodbg_instructions(VirtReg)) {
390 if (UseInst.getParent() != MBB || ++C >= Limit) {
391 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
392 // Cannot be live-out if there are no successors.
393 return !MBB->succ_empty();
394 }
395
396 if (SelfLoopDef) {
397 // Try to handle some simple cases to avoid spilling and reloading every
398 // value inside a self looping block.
399 if (SelfLoopDef == &UseInst ||
400 !dominates(*MBB, SelfLoopDef->getIterator(), UseInst.getIterator())) {
401 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
402 return true;
403 }
404 }
405 }
406
407 return false;
408 }
409
410 /// Returns false if \p VirtReg is known to not be live into the current block.
mayLiveIn(Register VirtReg)411 bool RegAllocFast::mayLiveIn(Register VirtReg) {
412 if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg)))
413 return !MBB->pred_empty();
414
415 // See if the first \p Limit def of the register are all in the current block.
416 static const unsigned Limit = 8;
417 unsigned C = 0;
418 for (const MachineInstr &DefInst : MRI->def_instructions(VirtReg)) {
419 if (DefInst.getParent() != MBB || ++C >= Limit) {
420 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
421 return !MBB->pred_empty();
422 }
423 }
424
425 return false;
426 }
427
428 /// Insert spill instruction for \p AssignedReg before \p Before. Update
429 /// DBG_VALUEs with \p VirtReg operands with the stack slot.
spill(MachineBasicBlock::iterator Before,Register VirtReg,MCPhysReg AssignedReg,bool Kill,bool LiveOut)430 void RegAllocFast::spill(MachineBasicBlock::iterator Before, Register VirtReg,
431 MCPhysReg AssignedReg, bool Kill, bool LiveOut) {
432 LLVM_DEBUG(dbgs() << "Spilling " << printReg(VirtReg, TRI)
433 << " in " << printReg(AssignedReg, TRI));
434 int FI = getStackSpaceFor(VirtReg);
435 LLVM_DEBUG(dbgs() << " to stack slot #" << FI << '\n');
436
437 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
438 TII->storeRegToStackSlot(*MBB, Before, AssignedReg, Kill, FI, &RC, TRI,
439 VirtReg);
440 ++NumStores;
441
442 MachineBasicBlock::iterator FirstTerm = MBB->getFirstTerminator();
443
444 // When we spill a virtual register, we will have spill instructions behind
445 // every definition of it, meaning we can switch all the DBG_VALUEs over
446 // to just reference the stack slot.
447 SmallVectorImpl<MachineOperand *> &LRIDbgOperands = LiveDbgValueMap[VirtReg];
448 SmallMapVector<MachineInstr *, SmallVector<const MachineOperand *>, 2>
449 SpilledOperandsMap;
450 for (MachineOperand *MO : LRIDbgOperands)
451 SpilledOperandsMap[MO->getParent()].push_back(MO);
452 for (auto MISpilledOperands : SpilledOperandsMap) {
453 MachineInstr &DBG = *MISpilledOperands.first;
454 // We don't have enough support for tracking operands of DBG_VALUE_LISTs.
455 if (DBG.isDebugValueList())
456 continue;
457 MachineInstr *NewDV = buildDbgValueForSpill(
458 *MBB, Before, *MISpilledOperands.first, FI, MISpilledOperands.second);
459 assert(NewDV->getParent() == MBB && "dangling parent pointer");
460 (void)NewDV;
461 LLVM_DEBUG(dbgs() << "Inserting debug info due to spill:\n" << *NewDV);
462
463 if (LiveOut) {
464 // We need to insert a DBG_VALUE at the end of the block if the spill slot
465 // is live out, but there is another use of the value after the
466 // spill. This will allow LiveDebugValues to see the correct live out
467 // value to propagate to the successors.
468 MachineInstr *ClonedDV = MBB->getParent()->CloneMachineInstr(NewDV);
469 MBB->insert(FirstTerm, ClonedDV);
470 LLVM_DEBUG(dbgs() << "Cloning debug info due to live out spill\n");
471 }
472
473 // Rewrite unassigned dbg_values to use the stack slot.
474 // TODO We can potentially do this for list debug values as well if we know
475 // how the dbg_values are getting unassigned.
476 if (DBG.isNonListDebugValue()) {
477 MachineOperand &MO = DBG.getDebugOperand(0);
478 if (MO.isReg() && MO.getReg() == 0) {
479 updateDbgValueForSpill(DBG, FI, 0);
480 }
481 }
482 }
483 // Now this register is spilled there is should not be any DBG_VALUE
484 // pointing to this register because they are all pointing to spilled value
485 // now.
486 LRIDbgOperands.clear();
487 }
488
489 /// Insert reload instruction for \p PhysReg before \p Before.
reload(MachineBasicBlock::iterator Before,Register VirtReg,MCPhysReg PhysReg)490 void RegAllocFast::reload(MachineBasicBlock::iterator Before, Register VirtReg,
491 MCPhysReg PhysReg) {
492 LLVM_DEBUG(dbgs() << "Reloading " << printReg(VirtReg, TRI) << " into "
493 << printReg(PhysReg, TRI) << '\n');
494 int FI = getStackSpaceFor(VirtReg);
495 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
496 TII->loadRegFromStackSlot(*MBB, Before, PhysReg, FI, &RC, TRI, VirtReg);
497 ++NumLoads;
498 }
499
500 /// Get basic block begin insertion point.
501 /// This is not just MBB.begin() because surprisingly we have EH_LABEL
502 /// instructions marking the begin of a basic block. This means we must insert
503 /// new instructions after such labels...
504 MachineBasicBlock::iterator
getMBBBeginInsertionPoint(MachineBasicBlock & MBB,SmallSet<Register,2> & PrologLiveIns) const505 RegAllocFast::getMBBBeginInsertionPoint(
506 MachineBasicBlock &MBB, SmallSet<Register, 2> &PrologLiveIns) const {
507 MachineBasicBlock::iterator I = MBB.begin();
508 while (I != MBB.end()) {
509 if (I->isLabel()) {
510 ++I;
511 continue;
512 }
513
514 // Most reloads should be inserted after prolog instructions.
515 if (!TII->isBasicBlockPrologue(*I))
516 break;
517
518 // However if a prolog instruction reads a register that needs to be
519 // reloaded, the reload should be inserted before the prolog.
520 for (MachineOperand &MO : I->operands()) {
521 if (MO.isReg())
522 PrologLiveIns.insert(MO.getReg());
523 }
524
525 ++I;
526 }
527
528 return I;
529 }
530
531 /// Reload all currently assigned virtual registers.
reloadAtBegin(MachineBasicBlock & MBB)532 void RegAllocFast::reloadAtBegin(MachineBasicBlock &MBB) {
533 if (LiveVirtRegs.empty())
534 return;
535
536 for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) {
537 MCPhysReg Reg = P.PhysReg;
538 // Set state to live-in. This possibly overrides mappings to virtual
539 // registers but we don't care anymore at this point.
540 setPhysRegState(Reg, regLiveIn);
541 }
542
543
544 SmallSet<Register, 2> PrologLiveIns;
545
546 // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order
547 // of spilling here is deterministic, if arbitrary.
548 MachineBasicBlock::iterator InsertBefore
549 = getMBBBeginInsertionPoint(MBB, PrologLiveIns);
550 for (const LiveReg &LR : LiveVirtRegs) {
551 MCPhysReg PhysReg = LR.PhysReg;
552 if (PhysReg == 0)
553 continue;
554
555 MCRegister FirstUnit = *MCRegUnitIterator(PhysReg, TRI);
556 if (RegUnitStates[FirstUnit] == regLiveIn)
557 continue;
558
559 assert((&MBB != &MBB.getParent()->front() || IgnoreMissingDefs) &&
560 "no reload in start block. Missing vreg def?");
561
562 if (PrologLiveIns.count(PhysReg)) {
563 // FIXME: Theoretically this should use an insert point skipping labels
564 // but I'm not sure how labels should interact with prolog instruction
565 // that need reloads.
566 reload(MBB.begin(), LR.VirtReg, PhysReg);
567 } else
568 reload(InsertBefore, LR.VirtReg, PhysReg);
569 }
570 LiveVirtRegs.clear();
571 }
572
573 /// Handle the direct use of a physical register. Check that the register is
574 /// not used by a virtreg. Kill the physreg, marking it free. This may add
575 /// implicit kills to MO->getParent() and invalidate MO.
usePhysReg(MachineInstr & MI,MCPhysReg Reg)576 bool RegAllocFast::usePhysReg(MachineInstr &MI, MCPhysReg Reg) {
577 assert(Register::isPhysicalRegister(Reg) && "expected physreg");
578 bool displacedAny = displacePhysReg(MI, Reg);
579 setPhysRegState(Reg, regPreAssigned);
580 markRegUsedInInstr(Reg);
581 return displacedAny;
582 }
583
definePhysReg(MachineInstr & MI,MCPhysReg Reg)584 bool RegAllocFast::definePhysReg(MachineInstr &MI, MCPhysReg Reg) {
585 bool displacedAny = displacePhysReg(MI, Reg);
586 setPhysRegState(Reg, regPreAssigned);
587 return displacedAny;
588 }
589
590 /// Mark PhysReg as reserved or free after spilling any virtregs. This is very
591 /// similar to defineVirtReg except the physreg is reserved instead of
592 /// allocated.
displacePhysReg(MachineInstr & MI,MCPhysReg PhysReg)593 bool RegAllocFast::displacePhysReg(MachineInstr &MI, MCPhysReg PhysReg) {
594 bool displacedAny = false;
595
596 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) {
597 unsigned Unit = *UI;
598 switch (unsigned VirtReg = RegUnitStates[Unit]) {
599 default: {
600 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
601 assert(LRI != LiveVirtRegs.end() && "datastructures in sync");
602 MachineBasicBlock::iterator ReloadBefore =
603 std::next((MachineBasicBlock::iterator)MI.getIterator());
604 reload(ReloadBefore, VirtReg, LRI->PhysReg);
605
606 setPhysRegState(LRI->PhysReg, regFree);
607 LRI->PhysReg = 0;
608 LRI->Reloaded = true;
609 displacedAny = true;
610 break;
611 }
612 case regPreAssigned:
613 RegUnitStates[Unit] = regFree;
614 displacedAny = true;
615 break;
616 case regFree:
617 break;
618 }
619 }
620 return displacedAny;
621 }
622
freePhysReg(MCPhysReg PhysReg)623 void RegAllocFast::freePhysReg(MCPhysReg PhysReg) {
624 LLVM_DEBUG(dbgs() << "Freeing " << printReg(PhysReg, TRI) << ':');
625
626 MCRegister FirstUnit = *MCRegUnitIterator(PhysReg, TRI);
627 switch (unsigned VirtReg = RegUnitStates[FirstUnit]) {
628 case regFree:
629 LLVM_DEBUG(dbgs() << '\n');
630 return;
631 case regPreAssigned:
632 LLVM_DEBUG(dbgs() << '\n');
633 setPhysRegState(PhysReg, regFree);
634 return;
635 default: {
636 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
637 assert(LRI != LiveVirtRegs.end());
638 LLVM_DEBUG(dbgs() << ' ' << printReg(LRI->VirtReg, TRI) << '\n');
639 setPhysRegState(LRI->PhysReg, regFree);
640 LRI->PhysReg = 0;
641 }
642 return;
643 }
644 }
645
646 /// Return the cost of spilling clearing out PhysReg and aliases so it is free
647 /// for allocation. Returns 0 when PhysReg is free or disabled with all aliases
648 /// disabled - it can be allocated directly.
649 /// \returns spillImpossible when PhysReg or an alias can't be spilled.
calcSpillCost(MCPhysReg PhysReg) const650 unsigned RegAllocFast::calcSpillCost(MCPhysReg PhysReg) const {
651 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) {
652 switch (unsigned VirtReg = RegUnitStates[*UI]) {
653 case regFree:
654 break;
655 case regPreAssigned:
656 LLVM_DEBUG(dbgs() << "Cannot spill pre-assigned "
657 << printReg(PhysReg, TRI) << '\n');
658 return spillImpossible;
659 default: {
660 bool SureSpill = StackSlotForVirtReg[VirtReg] != -1 ||
661 findLiveVirtReg(VirtReg)->LiveOut;
662 return SureSpill ? spillClean : spillDirty;
663 }
664 }
665 }
666 return 0;
667 }
668
assignDanglingDebugValues(MachineInstr & Definition,Register VirtReg,MCPhysReg Reg)669 void RegAllocFast::assignDanglingDebugValues(MachineInstr &Definition,
670 Register VirtReg, MCPhysReg Reg) {
671 auto UDBGValIter = DanglingDbgValues.find(VirtReg);
672 if (UDBGValIter == DanglingDbgValues.end())
673 return;
674
675 SmallVectorImpl<MachineInstr*> &Dangling = UDBGValIter->second;
676 for (MachineInstr *DbgValue : Dangling) {
677 assert(DbgValue->isDebugValue());
678 if (!DbgValue->hasDebugOperandForReg(VirtReg))
679 continue;
680
681 // Test whether the physreg survives from the definition to the DBG_VALUE.
682 MCPhysReg SetToReg = Reg;
683 unsigned Limit = 20;
684 for (MachineBasicBlock::iterator I = std::next(Definition.getIterator()),
685 E = DbgValue->getIterator(); I != E; ++I) {
686 if (I->modifiesRegister(Reg, TRI) || --Limit == 0) {
687 LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue
688 << '\n');
689 SetToReg = 0;
690 break;
691 }
692 }
693 for (MachineOperand &MO : DbgValue->getDebugOperandsForReg(VirtReg)) {
694 MO.setReg(SetToReg);
695 if (SetToReg != 0)
696 MO.setIsRenamable();
697 }
698 }
699 Dangling.clear();
700 }
701
702 /// This method updates local state so that we know that PhysReg is the
703 /// proper container for VirtReg now. The physical register must not be used
704 /// for anything else when this is called.
assignVirtToPhysReg(MachineInstr & AtMI,LiveReg & LR,MCPhysReg PhysReg)705 void RegAllocFast::assignVirtToPhysReg(MachineInstr &AtMI, LiveReg &LR,
706 MCPhysReg PhysReg) {
707 Register VirtReg = LR.VirtReg;
708 LLVM_DEBUG(dbgs() << "Assigning " << printReg(VirtReg, TRI) << " to "
709 << printReg(PhysReg, TRI) << '\n');
710 assert(LR.PhysReg == 0 && "Already assigned a physreg");
711 assert(PhysReg != 0 && "Trying to assign no register");
712 LR.PhysReg = PhysReg;
713 setPhysRegState(PhysReg, VirtReg);
714
715 assignDanglingDebugValues(AtMI, VirtReg, PhysReg);
716 }
717
isCoalescable(const MachineInstr & MI)718 static bool isCoalescable(const MachineInstr &MI) {
719 return MI.isFullCopy();
720 }
721
traceCopyChain(Register Reg) const722 Register RegAllocFast::traceCopyChain(Register Reg) const {
723 static const unsigned ChainLengthLimit = 3;
724 unsigned C = 0;
725 do {
726 if (Reg.isPhysical())
727 return Reg;
728 assert(Reg.isVirtual());
729
730 MachineInstr *VRegDef = MRI->getUniqueVRegDef(Reg);
731 if (!VRegDef || !isCoalescable(*VRegDef))
732 return 0;
733 Reg = VRegDef->getOperand(1).getReg();
734 } while (++C <= ChainLengthLimit);
735 return 0;
736 }
737
738 /// Check if any of \p VirtReg's definitions is a copy. If it is follow the
739 /// chain of copies to check whether we reach a physical register we can
740 /// coalesce with.
traceCopies(Register VirtReg) const741 Register RegAllocFast::traceCopies(Register VirtReg) const {
742 static const unsigned DefLimit = 3;
743 unsigned C = 0;
744 for (const MachineInstr &MI : MRI->def_instructions(VirtReg)) {
745 if (isCoalescable(MI)) {
746 Register Reg = MI.getOperand(1).getReg();
747 Reg = traceCopyChain(Reg);
748 if (Reg.isValid())
749 return Reg;
750 }
751
752 if (++C >= DefLimit)
753 break;
754 }
755 return Register();
756 }
757
758 /// Allocates a physical register for VirtReg.
allocVirtReg(MachineInstr & MI,LiveReg & LR,Register Hint0,bool LookAtPhysRegUses)759 void RegAllocFast::allocVirtReg(MachineInstr &MI, LiveReg &LR,
760 Register Hint0, bool LookAtPhysRegUses) {
761 const Register VirtReg = LR.VirtReg;
762 assert(LR.PhysReg == 0);
763
764 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
765 LLVM_DEBUG(dbgs() << "Search register for " << printReg(VirtReg)
766 << " in class " << TRI->getRegClassName(&RC)
767 << " with hint " << printReg(Hint0, TRI) << '\n');
768
769 // Take hint when possible.
770 if (Hint0.isPhysical() && MRI->isAllocatable(Hint0) && RC.contains(Hint0) &&
771 !isRegUsedInInstr(Hint0, LookAtPhysRegUses)) {
772 // Take hint if the register is currently free.
773 if (isPhysRegFree(Hint0)) {
774 LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint0, TRI)
775 << '\n');
776 assignVirtToPhysReg(MI, LR, Hint0);
777 return;
778 } else {
779 LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint0, TRI)
780 << " occupied\n");
781 }
782 } else {
783 Hint0 = Register();
784 }
785
786
787 // Try other hint.
788 Register Hint1 = traceCopies(VirtReg);
789 if (Hint1.isPhysical() && MRI->isAllocatable(Hint1) && RC.contains(Hint1) &&
790 !isRegUsedInInstr(Hint1, LookAtPhysRegUses)) {
791 // Take hint if the register is currently free.
792 if (isPhysRegFree(Hint1)) {
793 LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint1, TRI)
794 << '\n');
795 assignVirtToPhysReg(MI, LR, Hint1);
796 return;
797 } else {
798 LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint1, TRI)
799 << " occupied\n");
800 }
801 } else {
802 Hint1 = Register();
803 }
804
805 MCPhysReg BestReg = 0;
806 unsigned BestCost = spillImpossible;
807 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC);
808 for (MCPhysReg PhysReg : AllocationOrder) {
809 LLVM_DEBUG(dbgs() << "\tRegister: " << printReg(PhysReg, TRI) << ' ');
810 if (isRegUsedInInstr(PhysReg, LookAtPhysRegUses)) {
811 LLVM_DEBUG(dbgs() << "already used in instr.\n");
812 continue;
813 }
814
815 unsigned Cost = calcSpillCost(PhysReg);
816 LLVM_DEBUG(dbgs() << "Cost: " << Cost << " BestCost: " << BestCost << '\n');
817 // Immediate take a register with cost 0.
818 if (Cost == 0) {
819 assignVirtToPhysReg(MI, LR, PhysReg);
820 return;
821 }
822
823 if (PhysReg == Hint0 || PhysReg == Hint1)
824 Cost -= spillPrefBonus;
825
826 if (Cost < BestCost) {
827 BestReg = PhysReg;
828 BestCost = Cost;
829 }
830 }
831
832 if (!BestReg) {
833 // Nothing we can do: Report an error and keep going with an invalid
834 // allocation.
835 if (MI.isInlineAsm())
836 MI.emitError("inline assembly requires more registers than available");
837 else
838 MI.emitError("ran out of registers during register allocation");
839
840 LR.Error = true;
841 LR.PhysReg = 0;
842 return;
843 }
844
845 displacePhysReg(MI, BestReg);
846 assignVirtToPhysReg(MI, LR, BestReg);
847 }
848
allocVirtRegUndef(MachineOperand & MO)849 void RegAllocFast::allocVirtRegUndef(MachineOperand &MO) {
850 assert(MO.isUndef() && "expected undef use");
851 Register VirtReg = MO.getReg();
852 assert(VirtReg.isVirtual() && "Expected virtreg");
853 if (!shouldAllocateRegister(VirtReg))
854 return;
855
856 LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg);
857 MCPhysReg PhysReg;
858 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) {
859 PhysReg = LRI->PhysReg;
860 } else {
861 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
862 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC);
863 assert(!AllocationOrder.empty() && "Allocation order must not be empty");
864 PhysReg = AllocationOrder[0];
865 }
866
867 unsigned SubRegIdx = MO.getSubReg();
868 if (SubRegIdx != 0) {
869 PhysReg = TRI->getSubReg(PhysReg, SubRegIdx);
870 MO.setSubReg(0);
871 }
872 MO.setReg(PhysReg);
873 MO.setIsRenamable(true);
874 }
875
876 /// Variation of defineVirtReg() with special handling for livethrough regs
877 /// (tied or earlyclobber) that may interfere with preassigned uses.
defineLiveThroughVirtReg(MachineInstr & MI,unsigned OpNum,Register VirtReg)878 void RegAllocFast::defineLiveThroughVirtReg(MachineInstr &MI, unsigned OpNum,
879 Register VirtReg) {
880 if (!shouldAllocateRegister(VirtReg))
881 return;
882 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
883 if (LRI != LiveVirtRegs.end()) {
884 MCPhysReg PrevReg = LRI->PhysReg;
885 if (PrevReg != 0 && isRegUsedInInstr(PrevReg, true)) {
886 LLVM_DEBUG(dbgs() << "Need new assignment for " << printReg(PrevReg, TRI)
887 << " (tied/earlyclobber resolution)\n");
888 freePhysReg(PrevReg);
889 LRI->PhysReg = 0;
890 allocVirtReg(MI, *LRI, 0, true);
891 MachineBasicBlock::iterator InsertBefore =
892 std::next((MachineBasicBlock::iterator)MI.getIterator());
893 LLVM_DEBUG(dbgs() << "Copy " << printReg(LRI->PhysReg, TRI) << " to "
894 << printReg(PrevReg, TRI) << '\n');
895 BuildMI(*MBB, InsertBefore, MI.getDebugLoc(),
896 TII->get(TargetOpcode::COPY), PrevReg)
897 .addReg(LRI->PhysReg, llvm::RegState::Kill);
898 }
899 MachineOperand &MO = MI.getOperand(OpNum);
900 if (MO.getSubReg() && !MO.isUndef()) {
901 LRI->LastUse = &MI;
902 }
903 }
904 return defineVirtReg(MI, OpNum, VirtReg, true);
905 }
906
907 /// Allocates a register for VirtReg definition. Typically the register is
908 /// already assigned from a use of the virtreg, however we still need to
909 /// perform an allocation if:
910 /// - It is a dead definition without any uses.
911 /// - The value is live out and all uses are in different basic blocks.
defineVirtReg(MachineInstr & MI,unsigned OpNum,Register VirtReg,bool LookAtPhysRegUses)912 void RegAllocFast::defineVirtReg(MachineInstr &MI, unsigned OpNum,
913 Register VirtReg, bool LookAtPhysRegUses) {
914 assert(VirtReg.isVirtual() && "Not a virtual register");
915 if (!shouldAllocateRegister(VirtReg))
916 return;
917 MachineOperand &MO = MI.getOperand(OpNum);
918 LiveRegMap::iterator LRI;
919 bool New;
920 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
921 if (New) {
922 if (!MO.isDead()) {
923 if (mayLiveOut(VirtReg)) {
924 LRI->LiveOut = true;
925 } else {
926 // It is a dead def without the dead flag; add the flag now.
927 MO.setIsDead(true);
928 }
929 }
930 }
931 if (LRI->PhysReg == 0)
932 allocVirtReg(MI, *LRI, 0, LookAtPhysRegUses);
933 else {
934 assert(!isRegUsedInInstr(LRI->PhysReg, LookAtPhysRegUses) &&
935 "TODO: preassign mismatch");
936 LLVM_DEBUG(dbgs() << "In def of " << printReg(VirtReg, TRI)
937 << " use existing assignment to "
938 << printReg(LRI->PhysReg, TRI) << '\n');
939 }
940
941 MCPhysReg PhysReg = LRI->PhysReg;
942 assert(PhysReg != 0 && "Register not assigned");
943 if (LRI->Reloaded || LRI->LiveOut) {
944 if (!MI.isImplicitDef()) {
945 MachineBasicBlock::iterator SpillBefore =
946 std::next((MachineBasicBlock::iterator)MI.getIterator());
947 LLVM_DEBUG(dbgs() << "Spill Reason: LO: " << LRI->LiveOut << " RL: "
948 << LRI->Reloaded << '\n');
949 bool Kill = LRI->LastUse == nullptr;
950 spill(SpillBefore, VirtReg, PhysReg, Kill, LRI->LiveOut);
951 LRI->LastUse = nullptr;
952 }
953 LRI->LiveOut = false;
954 LRI->Reloaded = false;
955 }
956 if (MI.getOpcode() == TargetOpcode::BUNDLE) {
957 BundleVirtRegsMap[VirtReg] = PhysReg;
958 }
959 markRegUsedInInstr(PhysReg);
960 setPhysReg(MI, MO, PhysReg);
961 }
962
963 /// Allocates a register for a VirtReg use.
useVirtReg(MachineInstr & MI,unsigned OpNum,Register VirtReg)964 void RegAllocFast::useVirtReg(MachineInstr &MI, unsigned OpNum,
965 Register VirtReg) {
966 assert(VirtReg.isVirtual() && "Not a virtual register");
967 if (!shouldAllocateRegister(VirtReg))
968 return;
969 MachineOperand &MO = MI.getOperand(OpNum);
970 LiveRegMap::iterator LRI;
971 bool New;
972 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
973 if (New) {
974 MachineOperand &MO = MI.getOperand(OpNum);
975 if (!MO.isKill()) {
976 if (mayLiveOut(VirtReg)) {
977 LRI->LiveOut = true;
978 } else {
979 // It is a last (killing) use without the kill flag; add the flag now.
980 MO.setIsKill(true);
981 }
982 }
983 } else {
984 assert((!MO.isKill() || LRI->LastUse == &MI) && "Invalid kill flag");
985 }
986
987 // If necessary allocate a register.
988 if (LRI->PhysReg == 0) {
989 assert(!MO.isTied() && "tied op should be allocated");
990 Register Hint;
991 if (MI.isCopy() && MI.getOperand(1).getSubReg() == 0) {
992 Hint = MI.getOperand(0).getReg();
993 if (Hint.isVirtual()) {
994 assert(!shouldAllocateRegister(Hint));
995 Hint = Register();
996 } else {
997 assert(Hint.isPhysical() &&
998 "Copy destination should already be assigned");
999 }
1000 }
1001 allocVirtReg(MI, *LRI, Hint, false);
1002 if (LRI->Error) {
1003 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
1004 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC);
1005 setPhysReg(MI, MO, *AllocationOrder.begin());
1006 return;
1007 }
1008 }
1009
1010 LRI->LastUse = &MI;
1011
1012 if (MI.getOpcode() == TargetOpcode::BUNDLE) {
1013 BundleVirtRegsMap[VirtReg] = LRI->PhysReg;
1014 }
1015 markRegUsedInInstr(LRI->PhysReg);
1016 setPhysReg(MI, MO, LRI->PhysReg);
1017 }
1018
1019 /// Changes operand OpNum in MI the refer the PhysReg, considering subregs. This
1020 /// may invalidate any operand pointers. Return true if the operand kills its
1021 /// register.
setPhysReg(MachineInstr & MI,MachineOperand & MO,MCPhysReg PhysReg)1022 void RegAllocFast::setPhysReg(MachineInstr &MI, MachineOperand &MO,
1023 MCPhysReg PhysReg) {
1024 if (!MO.getSubReg()) {
1025 MO.setReg(PhysReg);
1026 MO.setIsRenamable(true);
1027 return;
1028 }
1029
1030 // Handle subregister index.
1031 MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : MCRegister());
1032 MO.setIsRenamable(true);
1033 // Note: We leave the subreg number around a little longer in case of defs.
1034 // This is so that the register freeing logic in allocateInstruction can still
1035 // recognize this as subregister defs. The code there will clear the number.
1036 if (!MO.isDef())
1037 MO.setSubReg(0);
1038
1039 // A kill flag implies killing the full register. Add corresponding super
1040 // register kill.
1041 if (MO.isKill()) {
1042 MI.addRegisterKilled(PhysReg, TRI, true);
1043 return;
1044 }
1045
1046 // A <def,read-undef> of a sub-register requires an implicit def of the full
1047 // register.
1048 if (MO.isDef() && MO.isUndef()) {
1049 if (MO.isDead())
1050 MI.addRegisterDead(PhysReg, TRI, true);
1051 else
1052 MI.addRegisterDefined(PhysReg, TRI);
1053 }
1054 }
1055
1056 #ifndef NDEBUG
1057
dumpState() const1058 void RegAllocFast::dumpState() const {
1059 for (unsigned Unit = 1, UnitE = TRI->getNumRegUnits(); Unit != UnitE;
1060 ++Unit) {
1061 switch (unsigned VirtReg = RegUnitStates[Unit]) {
1062 case regFree:
1063 break;
1064 case regPreAssigned:
1065 dbgs() << " " << printRegUnit(Unit, TRI) << "[P]";
1066 break;
1067 case regLiveIn:
1068 llvm_unreachable("Should not have regLiveIn in map");
1069 default: {
1070 dbgs() << ' ' << printRegUnit(Unit, TRI) << '=' << printReg(VirtReg);
1071 LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg);
1072 assert(I != LiveVirtRegs.end() && "have LiveVirtRegs entry");
1073 if (I->LiveOut || I->Reloaded) {
1074 dbgs() << '[';
1075 if (I->LiveOut) dbgs() << 'O';
1076 if (I->Reloaded) dbgs() << 'R';
1077 dbgs() << ']';
1078 }
1079 assert(TRI->hasRegUnit(I->PhysReg, Unit) && "inverse mapping present");
1080 break;
1081 }
1082 }
1083 }
1084 dbgs() << '\n';
1085 // Check that LiveVirtRegs is the inverse.
1086 for (const LiveReg &LR : LiveVirtRegs) {
1087 Register VirtReg = LR.VirtReg;
1088 assert(VirtReg.isVirtual() && "Bad map key");
1089 MCPhysReg PhysReg = LR.PhysReg;
1090 if (PhysReg != 0) {
1091 assert(Register::isPhysicalRegister(PhysReg) &&
1092 "mapped to physreg");
1093 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) {
1094 assert(RegUnitStates[*UI] == VirtReg && "inverse map valid");
1095 }
1096 }
1097 }
1098 }
1099 #endif
1100
1101 /// Count number of defs consumed from each register class by \p Reg
addRegClassDefCounts(std::vector<unsigned> & RegClassDefCounts,Register Reg) const1102 void RegAllocFast::addRegClassDefCounts(std::vector<unsigned> &RegClassDefCounts,
1103 Register Reg) const {
1104 assert(RegClassDefCounts.size() == TRI->getNumRegClasses());
1105
1106 if (Reg.isVirtual()) {
1107 if (!shouldAllocateRegister(Reg))
1108 return;
1109 const TargetRegisterClass *OpRC = MRI->getRegClass(Reg);
1110 for (unsigned RCIdx = 0, RCIdxEnd = TRI->getNumRegClasses();
1111 RCIdx != RCIdxEnd; ++RCIdx) {
1112 const TargetRegisterClass *IdxRC = TRI->getRegClass(RCIdx);
1113 // FIXME: Consider aliasing sub/super registers.
1114 if (OpRC->hasSubClassEq(IdxRC))
1115 ++RegClassDefCounts[RCIdx];
1116 }
1117
1118 return;
1119 }
1120
1121 for (unsigned RCIdx = 0, RCIdxEnd = TRI->getNumRegClasses();
1122 RCIdx != RCIdxEnd; ++RCIdx) {
1123 const TargetRegisterClass *IdxRC = TRI->getRegClass(RCIdx);
1124 for (MCRegAliasIterator Alias(Reg, TRI, true); Alias.isValid(); ++Alias) {
1125 if (IdxRC->contains(*Alias)) {
1126 ++RegClassDefCounts[RCIdx];
1127 break;
1128 }
1129 }
1130 }
1131 }
1132
allocateInstruction(MachineInstr & MI)1133 void RegAllocFast::allocateInstruction(MachineInstr &MI) {
1134 // The basic algorithm here is:
1135 // 1. Mark registers of def operands as free
1136 // 2. Allocate registers to use operands and place reload instructions for
1137 // registers displaced by the allocation.
1138 //
1139 // However we need to handle some corner cases:
1140 // - pre-assigned defs and uses need to be handled before the other def/use
1141 // operands are processed to avoid the allocation heuristics clashing with
1142 // the pre-assignment.
1143 // - The "free def operands" step has to come last instead of first for tied
1144 // operands and early-clobbers.
1145
1146 UsedInInstr.clear();
1147 RegMasks.clear();
1148 BundleVirtRegsMap.clear();
1149
1150 auto TiedOpIsUndef = [&](const MachineOperand &MO, unsigned Idx) {
1151 assert(MO.isTied());
1152 unsigned TiedIdx = MI.findTiedOperandIdx(Idx);
1153 const MachineOperand &TiedMO = MI.getOperand(TiedIdx);
1154 return TiedMO.isUndef();
1155 };
1156 // Scan for special cases; Apply pre-assigned register defs to state.
1157 bool HasPhysRegUse = false;
1158 bool HasRegMask = false;
1159 bool HasVRegDef = false;
1160 bool HasDef = false;
1161 bool HasEarlyClobber = false;
1162 bool NeedToAssignLiveThroughs = false;
1163 for (unsigned I = 0; I < MI.getNumOperands(); ++I) {
1164 MachineOperand &MO = MI.getOperand(I);
1165 if (MO.isReg()) {
1166 Register Reg = MO.getReg();
1167 if (Reg.isVirtual()) {
1168 if (!shouldAllocateRegister(Reg))
1169 continue;
1170 if (MO.isDef()) {
1171 HasDef = true;
1172 HasVRegDef = true;
1173 if (MO.isEarlyClobber()) {
1174 HasEarlyClobber = true;
1175 NeedToAssignLiveThroughs = true;
1176 }
1177 if ((MO.isTied() && !TiedOpIsUndef(MO, I)) ||
1178 (MO.getSubReg() != 0 && !MO.isUndef()))
1179 NeedToAssignLiveThroughs = true;
1180 }
1181 } else if (Reg.isPhysical()) {
1182 if (!MRI->isReserved(Reg)) {
1183 if (MO.isDef()) {
1184 HasDef = true;
1185 bool displacedAny = definePhysReg(MI, Reg);
1186 if (MO.isEarlyClobber())
1187 HasEarlyClobber = true;
1188 if (!displacedAny)
1189 MO.setIsDead(true);
1190 }
1191 if (MO.readsReg())
1192 HasPhysRegUse = true;
1193 }
1194 }
1195 } else if (MO.isRegMask()) {
1196 HasRegMask = true;
1197 RegMasks.push_back(MO.getRegMask());
1198 }
1199 }
1200
1201 // Allocate virtreg defs.
1202 if (HasDef) {
1203 if (HasVRegDef) {
1204 // Special handling for early clobbers, tied operands or subregister defs:
1205 // Compared to "normal" defs these:
1206 // - Must not use a register that is pre-assigned for a use operand.
1207 // - In order to solve tricky inline assembly constraints we change the
1208 // heuristic to figure out a good operand order before doing
1209 // assignments.
1210 if (NeedToAssignLiveThroughs) {
1211 DefOperandIndexes.clear();
1212 PhysRegUses.clear();
1213
1214 // Track number of defs which may consume a register from the class.
1215 std::vector<unsigned> RegClassDefCounts(TRI->getNumRegClasses(), 0);
1216 assert(RegClassDefCounts[0] == 0);
1217
1218 LLVM_DEBUG(dbgs() << "Need to assign livethroughs\n");
1219 for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I) {
1220 const MachineOperand &MO = MI.getOperand(I);
1221 if (!MO.isReg())
1222 continue;
1223 Register Reg = MO.getReg();
1224 if (MO.readsReg()) {
1225 if (Reg.isPhysical()) {
1226 LLVM_DEBUG(dbgs() << "mark extra used: " << printReg(Reg, TRI)
1227 << '\n');
1228 markPhysRegUsedInInstr(Reg);
1229 }
1230 }
1231
1232 if (MO.isDef()) {
1233 if (Reg.isVirtual() && shouldAllocateRegister(Reg))
1234 DefOperandIndexes.push_back(I);
1235
1236 addRegClassDefCounts(RegClassDefCounts, Reg);
1237 }
1238 }
1239
1240 llvm::sort(DefOperandIndexes, [&](uint16_t I0, uint16_t I1) {
1241 const MachineOperand &MO0 = MI.getOperand(I0);
1242 const MachineOperand &MO1 = MI.getOperand(I1);
1243 Register Reg0 = MO0.getReg();
1244 Register Reg1 = MO1.getReg();
1245 const TargetRegisterClass &RC0 = *MRI->getRegClass(Reg0);
1246 const TargetRegisterClass &RC1 = *MRI->getRegClass(Reg1);
1247
1248 // Identify regclass that are easy to use up completely just in this
1249 // instruction.
1250 unsigned ClassSize0 = RegClassInfo.getOrder(&RC0).size();
1251 unsigned ClassSize1 = RegClassInfo.getOrder(&RC1).size();
1252
1253 bool SmallClass0 = ClassSize0 < RegClassDefCounts[RC0.getID()];
1254 bool SmallClass1 = ClassSize1 < RegClassDefCounts[RC1.getID()];
1255 if (SmallClass0 > SmallClass1)
1256 return true;
1257 if (SmallClass0 < SmallClass1)
1258 return false;
1259
1260 // Allocate early clobbers and livethrough operands first.
1261 bool Livethrough0 = MO0.isEarlyClobber() || MO0.isTied() ||
1262 (MO0.getSubReg() == 0 && !MO0.isUndef());
1263 bool Livethrough1 = MO1.isEarlyClobber() || MO1.isTied() ||
1264 (MO1.getSubReg() == 0 && !MO1.isUndef());
1265 if (Livethrough0 > Livethrough1)
1266 return true;
1267 if (Livethrough0 < Livethrough1)
1268 return false;
1269
1270 // Tie-break rule: operand index.
1271 return I0 < I1;
1272 });
1273
1274 for (uint16_t OpIdx : DefOperandIndexes) {
1275 MachineOperand &MO = MI.getOperand(OpIdx);
1276 LLVM_DEBUG(dbgs() << "Allocating " << MO << '\n');
1277 unsigned Reg = MO.getReg();
1278 if (MO.isEarlyClobber() ||
1279 (MO.isTied() && !TiedOpIsUndef(MO, OpIdx)) ||
1280 (MO.getSubReg() && !MO.isUndef())) {
1281 defineLiveThroughVirtReg(MI, OpIdx, Reg);
1282 } else {
1283 defineVirtReg(MI, OpIdx, Reg);
1284 }
1285 }
1286 } else {
1287 // Assign virtual register defs.
1288 for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I) {
1289 MachineOperand &MO = MI.getOperand(I);
1290 if (!MO.isReg() || !MO.isDef())
1291 continue;
1292 Register Reg = MO.getReg();
1293 if (Reg.isVirtual())
1294 defineVirtReg(MI, I, Reg);
1295 }
1296 }
1297 }
1298
1299 // Free registers occupied by defs.
1300 // Iterate operands in reverse order, so we see the implicit super register
1301 // defs first (we added them earlier in case of <def,read-undef>).
1302 for (signed I = MI.getNumOperands() - 1; I >= 0; --I) {
1303 MachineOperand &MO = MI.getOperand(I);
1304 if (!MO.isReg() || !MO.isDef())
1305 continue;
1306
1307 // subreg defs don't free the full register. We left the subreg number
1308 // around as a marker in setPhysReg() to recognize this case here.
1309 if (MO.getSubReg() != 0) {
1310 MO.setSubReg(0);
1311 continue;
1312 }
1313
1314 assert((!MO.isTied() || !isClobberedByRegMasks(MO.getReg())) &&
1315 "tied def assigned to clobbered register");
1316
1317 // Do not free tied operands and early clobbers.
1318 if ((MO.isTied() && !TiedOpIsUndef(MO, I)) || MO.isEarlyClobber())
1319 continue;
1320 Register Reg = MO.getReg();
1321 if (!Reg)
1322 continue;
1323 if (Reg.isVirtual()) {
1324 assert(!shouldAllocateRegister(Reg));
1325 continue;
1326 }
1327 assert(Reg.isPhysical());
1328 if (MRI->isReserved(Reg))
1329 continue;
1330 freePhysReg(Reg);
1331 unmarkRegUsedInInstr(Reg);
1332 }
1333 }
1334
1335 // Displace clobbered registers.
1336 if (HasRegMask) {
1337 assert(!RegMasks.empty() && "expected RegMask");
1338 // MRI bookkeeping.
1339 for (const auto *RM : RegMasks)
1340 MRI->addPhysRegsUsedFromRegMask(RM);
1341
1342 // Displace clobbered registers.
1343 for (const LiveReg &LR : LiveVirtRegs) {
1344 MCPhysReg PhysReg = LR.PhysReg;
1345 if (PhysReg != 0 && isClobberedByRegMasks(PhysReg))
1346 displacePhysReg(MI, PhysReg);
1347 }
1348 }
1349
1350 // Apply pre-assigned register uses to state.
1351 if (HasPhysRegUse) {
1352 for (MachineOperand &MO : MI.operands()) {
1353 if (!MO.isReg() || !MO.readsReg())
1354 continue;
1355 Register Reg = MO.getReg();
1356 if (!Reg.isPhysical())
1357 continue;
1358 if (MRI->isReserved(Reg))
1359 continue;
1360 bool displacedAny = usePhysReg(MI, Reg);
1361 if (!displacedAny)
1362 MO.setIsKill(true);
1363 }
1364 }
1365
1366 // Allocate virtreg uses and insert reloads as necessary.
1367 bool HasUndefUse = false;
1368 for (unsigned I = 0; I < MI.getNumOperands(); ++I) {
1369 MachineOperand &MO = MI.getOperand(I);
1370 if (!MO.isReg() || !MO.isUse())
1371 continue;
1372 Register Reg = MO.getReg();
1373 if (!Reg.isVirtual() || !shouldAllocateRegister(Reg))
1374 continue;
1375
1376 if (MO.isUndef()) {
1377 HasUndefUse = true;
1378 continue;
1379 }
1380
1381
1382 // Populate MayLiveAcrossBlocks in case the use block is allocated before
1383 // the def block (removing the vreg uses).
1384 mayLiveIn(Reg);
1385
1386
1387 assert(!MO.isInternalRead() && "Bundles not supported");
1388 assert(MO.readsReg() && "reading use");
1389 useVirtReg(MI, I, Reg);
1390 }
1391
1392 // Allocate undef operands. This is a separate step because in a situation
1393 // like ` = OP undef %X, %X` both operands need the same register assign
1394 // so we should perform the normal assignment first.
1395 if (HasUndefUse) {
1396 for (MachineOperand &MO : MI.uses()) {
1397 if (!MO.isReg() || !MO.isUse())
1398 continue;
1399 Register Reg = MO.getReg();
1400 if (!Reg.isVirtual() || !shouldAllocateRegister(Reg))
1401 continue;
1402
1403 assert(MO.isUndef() && "Should only have undef virtreg uses left");
1404 allocVirtRegUndef(MO);
1405 }
1406 }
1407
1408 // Free early clobbers.
1409 if (HasEarlyClobber) {
1410 for (MachineOperand &MO : llvm::reverse(MI.operands())) {
1411 if (!MO.isReg() || !MO.isDef() || !MO.isEarlyClobber())
1412 continue;
1413 assert(!MO.getSubReg() && "should be already handled in def processing");
1414
1415 Register Reg = MO.getReg();
1416 if (!Reg)
1417 continue;
1418 if (Reg.isVirtual()) {
1419 assert(!shouldAllocateRegister(Reg));
1420 continue;
1421 }
1422 assert(Reg.isPhysical() && "should have register assigned");
1423
1424 // We sometimes get odd situations like:
1425 // early-clobber %x0 = INSTRUCTION %x0
1426 // which is semantically questionable as the early-clobber should
1427 // apply before the use. But in practice we consider the use to
1428 // happen before the early clobber now. Don't free the early clobber
1429 // register in this case.
1430 if (MI.readsRegister(Reg, TRI))
1431 continue;
1432
1433 freePhysReg(Reg);
1434 }
1435 }
1436
1437 LLVM_DEBUG(dbgs() << "<< " << MI);
1438 if (MI.isCopy() && MI.getOperand(0).getReg() == MI.getOperand(1).getReg() &&
1439 MI.getNumOperands() == 2) {
1440 LLVM_DEBUG(dbgs() << "Mark identity copy for removal\n");
1441 Coalesced.push_back(&MI);
1442 }
1443 }
1444
handleDebugValue(MachineInstr & MI)1445 void RegAllocFast::handleDebugValue(MachineInstr &MI) {
1446 // Ignore DBG_VALUEs that aren't based on virtual registers. These are
1447 // mostly constants and frame indices.
1448 for (Register Reg : MI.getUsedDebugRegs()) {
1449 if (!Reg.isVirtual())
1450 continue;
1451 if (!shouldAllocateRegister(Reg))
1452 continue;
1453
1454 // Already spilled to a stackslot?
1455 int SS = StackSlotForVirtReg[Reg];
1456 if (SS != -1) {
1457 // Modify DBG_VALUE now that the value is in a spill slot.
1458 updateDbgValueForSpill(MI, SS, Reg);
1459 LLVM_DEBUG(dbgs() << "Rewrite DBG_VALUE for spilled memory: " << MI);
1460 continue;
1461 }
1462
1463 // See if this virtual register has already been allocated to a physical
1464 // register or spilled to a stack slot.
1465 LiveRegMap::iterator LRI = findLiveVirtReg(Reg);
1466 SmallVector<MachineOperand *> DbgOps;
1467 for (MachineOperand &Op : MI.getDebugOperandsForReg(Reg))
1468 DbgOps.push_back(&Op);
1469
1470 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) {
1471 // Update every use of Reg within MI.
1472 for (auto &RegMO : DbgOps)
1473 setPhysReg(MI, *RegMO, LRI->PhysReg);
1474 } else {
1475 DanglingDbgValues[Reg].push_back(&MI);
1476 }
1477
1478 // If Reg hasn't been spilled, put this DBG_VALUE in LiveDbgValueMap so
1479 // that future spills of Reg will have DBG_VALUEs.
1480 LiveDbgValueMap[Reg].append(DbgOps.begin(), DbgOps.end());
1481 }
1482 }
1483
handleBundle(MachineInstr & MI)1484 void RegAllocFast::handleBundle(MachineInstr &MI) {
1485 MachineBasicBlock::instr_iterator BundledMI = MI.getIterator();
1486 ++BundledMI;
1487 while (BundledMI->isBundledWithPred()) {
1488 for (MachineOperand &MO : BundledMI->operands()) {
1489 if (!MO.isReg())
1490 continue;
1491
1492 Register Reg = MO.getReg();
1493 if (!Reg.isVirtual() || !shouldAllocateRegister(Reg))
1494 continue;
1495
1496 DenseMap<Register, MCPhysReg>::iterator DI;
1497 DI = BundleVirtRegsMap.find(Reg);
1498 assert(DI != BundleVirtRegsMap.end() && "Unassigned virtual register");
1499
1500 setPhysReg(MI, MO, DI->second);
1501 }
1502
1503 ++BundledMI;
1504 }
1505 }
1506
allocateBasicBlock(MachineBasicBlock & MBB)1507 void RegAllocFast::allocateBasicBlock(MachineBasicBlock &MBB) {
1508 this->MBB = &MBB;
1509 LLVM_DEBUG(dbgs() << "\nAllocating " << MBB);
1510
1511 RegUnitStates.assign(TRI->getNumRegUnits(), regFree);
1512 assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?");
1513
1514 for (const auto &LiveReg : MBB.liveouts())
1515 setPhysRegState(LiveReg.PhysReg, regPreAssigned);
1516
1517 Coalesced.clear();
1518
1519 // Traverse block in reverse order allocating instructions one by one.
1520 for (MachineInstr &MI : reverse(MBB)) {
1521 LLVM_DEBUG(
1522 dbgs() << "\n>> " << MI << "Regs:";
1523 dumpState()
1524 );
1525
1526 // Special handling for debug values. Note that they are not allowed to
1527 // affect codegen of the other instructions in any way.
1528 if (MI.isDebugValue()) {
1529 handleDebugValue(MI);
1530 continue;
1531 }
1532
1533 allocateInstruction(MI);
1534
1535 // Once BUNDLE header is assigned registers, same assignments need to be
1536 // done for bundled MIs.
1537 if (MI.getOpcode() == TargetOpcode::BUNDLE) {
1538 handleBundle(MI);
1539 }
1540 }
1541
1542 LLVM_DEBUG(
1543 dbgs() << "Begin Regs:";
1544 dumpState()
1545 );
1546
1547 // Spill all physical registers holding virtual registers now.
1548 LLVM_DEBUG(dbgs() << "Loading live registers at begin of block.\n");
1549 reloadAtBegin(MBB);
1550
1551 // Erase all the coalesced copies. We are delaying it until now because
1552 // LiveVirtRegs might refer to the instrs.
1553 for (MachineInstr *MI : Coalesced)
1554 MBB.erase(MI);
1555 NumCoalesced += Coalesced.size();
1556
1557 for (auto &UDBGPair : DanglingDbgValues) {
1558 for (MachineInstr *DbgValue : UDBGPair.second) {
1559 assert(DbgValue->isDebugValue() && "expected DBG_VALUE");
1560 // Nothing to do if the vreg was spilled in the meantime.
1561 if (!DbgValue->hasDebugOperandForReg(UDBGPair.first))
1562 continue;
1563 LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue
1564 << '\n');
1565 DbgValue->setDebugValueUndef();
1566 }
1567 }
1568 DanglingDbgValues.clear();
1569
1570 LLVM_DEBUG(MBB.dump());
1571 }
1572
runOnMachineFunction(MachineFunction & MF)1573 bool RegAllocFast::runOnMachineFunction(MachineFunction &MF) {
1574 LLVM_DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n"
1575 << "********** Function: " << MF.getName() << '\n');
1576 MRI = &MF.getRegInfo();
1577 const TargetSubtargetInfo &STI = MF.getSubtarget();
1578 TRI = STI.getRegisterInfo();
1579 TII = STI.getInstrInfo();
1580 MFI = &MF.getFrameInfo();
1581 MRI->freezeReservedRegs(MF);
1582 RegClassInfo.runOnMachineFunction(MF);
1583 unsigned NumRegUnits = TRI->getNumRegUnits();
1584 UsedInInstr.clear();
1585 UsedInInstr.setUniverse(NumRegUnits);
1586 PhysRegUses.clear();
1587 PhysRegUses.setUniverse(NumRegUnits);
1588
1589 // initialize the virtual->physical register map to have a 'null'
1590 // mapping for all virtual registers
1591 unsigned NumVirtRegs = MRI->getNumVirtRegs();
1592 StackSlotForVirtReg.resize(NumVirtRegs);
1593 LiveVirtRegs.setUniverse(NumVirtRegs);
1594 MayLiveAcrossBlocks.clear();
1595 MayLiveAcrossBlocks.resize(NumVirtRegs);
1596
1597 // Loop over all of the basic blocks, eliminating virtual register references
1598 for (MachineBasicBlock &MBB : MF)
1599 allocateBasicBlock(MBB);
1600
1601 if (ClearVirtRegs) {
1602 // All machine operands and other references to virtual registers have been
1603 // replaced. Remove the virtual registers.
1604 MRI->clearVirtRegs();
1605 }
1606
1607 StackSlotForVirtReg.clear();
1608 LiveDbgValueMap.clear();
1609 return true;
1610 }
1611
createFastRegisterAllocator()1612 FunctionPass *llvm::createFastRegisterAllocator() {
1613 return new RegAllocFast();
1614 }
1615
createFastRegisterAllocator(RegClassFilterFunc Ftor,bool ClearVirtRegs)1616 FunctionPass *llvm::createFastRegisterAllocator(RegClassFilterFunc Ftor,
1617 bool ClearVirtRegs) {
1618 return new RegAllocFast(Ftor, ClearVirtRegs);
1619 }
1620