1 //===- RegisterCoalescer.cpp - Generic Register Coalescing Interface ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the generic RegisterCoalescer interface which
10 // is used as the common interface used by all clients and
11 // implementations of register coalescing.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "RegisterCoalescer.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/CodeGen/LiveInterval.h"
25 #include "llvm/CodeGen/LiveIntervals.h"
26 #include "llvm/CodeGen/LiveRangeEdit.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineInstrBuilder.h"
32 #include "llvm/CodeGen/MachineLoopInfo.h"
33 #include "llvm/CodeGen/MachineOperand.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/Passes.h"
36 #include "llvm/CodeGen/RegisterClassInfo.h"
37 #include "llvm/CodeGen/SlotIndexes.h"
38 #include "llvm/CodeGen/TargetInstrInfo.h"
39 #include "llvm/CodeGen/TargetOpcodes.h"
40 #include "llvm/CodeGen/TargetRegisterInfo.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/InitializePasses.h"
44 #include "llvm/MC/LaneBitmask.h"
45 #include "llvm/MC/MCInstrDesc.h"
46 #include "llvm/MC/MCRegisterInfo.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Compiler.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include <algorithm>
54 #include <cassert>
55 #include <iterator>
56 #include <limits>
57 #include <tuple>
58 #include <utility>
59 #include <vector>
60
61 using namespace llvm;
62
63 #define DEBUG_TYPE "regalloc"
64
65 STATISTIC(numJoins , "Number of interval joins performed");
66 STATISTIC(numCrossRCs , "Number of cross class joins performed");
67 STATISTIC(numCommutes , "Number of instruction commuting performed");
68 STATISTIC(numExtends , "Number of copies extended");
69 STATISTIC(NumReMats , "Number of instructions re-materialized");
70 STATISTIC(NumInflated , "Number of register classes inflated");
71 STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested");
72 STATISTIC(NumLaneResolves, "Number of dead lane conflicts resolved");
73 STATISTIC(NumShrinkToUses, "Number of shrinkToUses called");
74
75 static cl::opt<bool> EnableJoining("join-liveintervals",
76 cl::desc("Coalesce copies (default=true)"),
77 cl::init(true), cl::Hidden);
78
79 static cl::opt<bool> UseTerminalRule("terminal-rule",
80 cl::desc("Apply the terminal rule"),
81 cl::init(false), cl::Hidden);
82
83 /// Temporary flag to test critical edge unsplitting.
84 static cl::opt<bool>
85 EnableJoinSplits("join-splitedges",
86 cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden);
87
88 /// Temporary flag to test global copy optimization.
89 static cl::opt<cl::boolOrDefault>
90 EnableGlobalCopies("join-globalcopies",
91 cl::desc("Coalesce copies that span blocks (default=subtarget)"),
92 cl::init(cl::BOU_UNSET), cl::Hidden);
93
94 static cl::opt<bool>
95 VerifyCoalescing("verify-coalescing",
96 cl::desc("Verify machine instrs before and after register coalescing"),
97 cl::Hidden);
98
99 static cl::opt<unsigned> LateRematUpdateThreshold(
100 "late-remat-update-threshold", cl::Hidden,
101 cl::desc("During rematerialization for a copy, if the def instruction has "
102 "many other copy uses to be rematerialized, delay the multiple "
103 "separate live interval update work and do them all at once after "
104 "all those rematerialization are done. It will save a lot of "
105 "repeated work. "),
106 cl::init(100));
107
108 static cl::opt<unsigned> LargeIntervalSizeThreshold(
109 "large-interval-size-threshold", cl::Hidden,
110 cl::desc("If the valnos size of an interval is larger than the threshold, "
111 "it is regarded as a large interval. "),
112 cl::init(100));
113
114 static cl::opt<unsigned> LargeIntervalFreqThreshold(
115 "large-interval-freq-threshold", cl::Hidden,
116 cl::desc("For a large interval, if it is coalesed with other live "
117 "intervals many times more than the threshold, stop its "
118 "coalescing to control the compile time. "),
119 cl::init(100));
120
121 namespace {
122
123 class JoinVals;
124
125 class RegisterCoalescer : public MachineFunctionPass,
126 private LiveRangeEdit::Delegate {
127 MachineFunction* MF = nullptr;
128 MachineRegisterInfo* MRI = nullptr;
129 const TargetRegisterInfo* TRI = nullptr;
130 const TargetInstrInfo* TII = nullptr;
131 LiveIntervals *LIS = nullptr;
132 const MachineLoopInfo* Loops = nullptr;
133 AliasAnalysis *AA = nullptr;
134 RegisterClassInfo RegClassInfo;
135
136 /// Position and VReg of a PHI instruction during coalescing.
137 struct PHIValPos {
138 SlotIndex SI; ///< Slot where this PHI occurs.
139 Register Reg; ///< VReg the PHI occurs in.
140 unsigned SubReg; ///< Qualifying subregister for Reg.
141 };
142
143 /// Map from debug instruction number to PHI position during coalescing.
144 DenseMap<unsigned, PHIValPos> PHIValToPos;
145 /// Index of, for each VReg, which debug instruction numbers and
146 /// corresponding PHIs are sensitive to coalescing. Each VReg may have
147 /// multiple PHI defs, at different positions.
148 DenseMap<Register, SmallVector<unsigned, 2>> RegToPHIIdx;
149
150 /// Debug variable location tracking -- for each VReg, maintain an
151 /// ordered-by-slot-index set of DBG_VALUEs, to help quick
152 /// identification of whether coalescing may change location validity.
153 using DbgValueLoc = std::pair<SlotIndex, MachineInstr*>;
154 DenseMap<Register, std::vector<DbgValueLoc>> DbgVRegToValues;
155
156 /// VRegs may be repeatedly coalesced, and have many DBG_VALUEs attached.
157 /// To avoid repeatedly merging sets of DbgValueLocs, instead record
158 /// which vregs have been coalesced, and where to. This map is from
159 /// vreg => {set of vregs merged in}.
160 DenseMap<Register, SmallVector<Register, 4>> DbgMergedVRegNums;
161
162 /// A LaneMask to remember on which subregister live ranges we need to call
163 /// shrinkToUses() later.
164 LaneBitmask ShrinkMask;
165
166 /// True if the main range of the currently coalesced intervals should be
167 /// checked for smaller live intervals.
168 bool ShrinkMainRange = false;
169
170 /// True if the coalescer should aggressively coalesce global copies
171 /// in favor of keeping local copies.
172 bool JoinGlobalCopies = false;
173
174 /// True if the coalescer should aggressively coalesce fall-thru
175 /// blocks exclusively containing copies.
176 bool JoinSplitEdges = false;
177
178 /// Copy instructions yet to be coalesced.
179 SmallVector<MachineInstr*, 8> WorkList;
180 SmallVector<MachineInstr*, 8> LocalWorkList;
181
182 /// Set of instruction pointers that have been erased, and
183 /// that may be present in WorkList.
184 SmallPtrSet<MachineInstr*, 8> ErasedInstrs;
185
186 /// Dead instructions that are about to be deleted.
187 SmallVector<MachineInstr*, 8> DeadDefs;
188
189 /// Virtual registers to be considered for register class inflation.
190 SmallVector<Register, 8> InflateRegs;
191
192 /// The collection of live intervals which should have been updated
193 /// immediately after rematerialiation but delayed until
194 /// lateLiveIntervalUpdate is called.
195 DenseSet<Register> ToBeUpdated;
196
197 /// Record how many times the large live interval with many valnos
198 /// has been tried to join with other live interval.
199 DenseMap<Register, unsigned long> LargeLIVisitCounter;
200
201 /// Recursively eliminate dead defs in DeadDefs.
202 void eliminateDeadDefs(LiveRangeEdit *Edit = nullptr);
203
204 /// LiveRangeEdit callback for eliminateDeadDefs().
205 void LRE_WillEraseInstruction(MachineInstr *MI) override;
206
207 /// Coalesce the LocalWorkList.
208 void coalesceLocals();
209
210 /// Join compatible live intervals
211 void joinAllIntervals();
212
213 /// Coalesce copies in the specified MBB, putting
214 /// copies that cannot yet be coalesced into WorkList.
215 void copyCoalesceInMBB(MachineBasicBlock *MBB);
216
217 /// Tries to coalesce all copies in CurrList. Returns true if any progress
218 /// was made.
219 bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList);
220
221 /// If one def has many copy like uses, and those copy uses are all
222 /// rematerialized, the live interval update needed for those
223 /// rematerializations will be delayed and done all at once instead
224 /// of being done multiple times. This is to save compile cost because
225 /// live interval update is costly.
226 void lateLiveIntervalUpdate();
227
228 /// Check if the incoming value defined by a COPY at \p SLRQ in the subrange
229 /// has no value defined in the predecessors. If the incoming value is the
230 /// same as defined by the copy itself, the value is considered undefined.
231 bool copyValueUndefInPredecessors(LiveRange &S,
232 const MachineBasicBlock *MBB,
233 LiveQueryResult SLRQ);
234
235 /// Set necessary undef flags on subregister uses after pruning out undef
236 /// lane segments from the subrange.
237 void setUndefOnPrunedSubRegUses(LiveInterval &LI, Register Reg,
238 LaneBitmask PrunedLanes);
239
240 /// Attempt to join intervals corresponding to SrcReg/DstReg, which are the
241 /// src/dst of the copy instruction CopyMI. This returns true if the copy
242 /// was successfully coalesced away. If it is not currently possible to
243 /// coalesce this interval, but it may be possible if other things get
244 /// coalesced, then it returns true by reference in 'Again'.
245 bool joinCopy(MachineInstr *CopyMI, bool &Again);
246
247 /// Attempt to join these two intervals. On failure, this
248 /// returns false. The output "SrcInt" will not have been modified, so we
249 /// can use this information below to update aliases.
250 bool joinIntervals(CoalescerPair &CP);
251
252 /// Attempt joining two virtual registers. Return true on success.
253 bool joinVirtRegs(CoalescerPair &CP);
254
255 /// If a live interval has many valnos and is coalesced with other
256 /// live intervals many times, we regard such live interval as having
257 /// high compile time cost.
258 bool isHighCostLiveInterval(LiveInterval &LI);
259
260 /// Attempt joining with a reserved physreg.
261 bool joinReservedPhysReg(CoalescerPair &CP);
262
263 /// Add the LiveRange @p ToMerge as a subregister liverange of @p LI.
264 /// Subranges in @p LI which only partially interfere with the desired
265 /// LaneMask are split as necessary. @p LaneMask are the lanes that
266 /// @p ToMerge will occupy in the coalescer register. @p LI has its subrange
267 /// lanemasks already adjusted to the coalesced register.
268 void mergeSubRangeInto(LiveInterval &LI, const LiveRange &ToMerge,
269 LaneBitmask LaneMask, CoalescerPair &CP,
270 unsigned DstIdx);
271
272 /// Join the liveranges of two subregisters. Joins @p RRange into
273 /// @p LRange, @p RRange may be invalid afterwards.
274 void joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
275 LaneBitmask LaneMask, const CoalescerPair &CP);
276
277 /// We found a non-trivially-coalescable copy. If the source value number is
278 /// defined by a copy from the destination reg see if we can merge these two
279 /// destination reg valno# into a single value number, eliminating a copy.
280 /// This returns true if an interval was modified.
281 bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI);
282
283 /// Return true if there are definitions of IntB
284 /// other than BValNo val# that can reach uses of AValno val# of IntA.
285 bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB,
286 VNInfo *AValNo, VNInfo *BValNo);
287
288 /// We found a non-trivially-coalescable copy.
289 /// If the source value number is defined by a commutable instruction and
290 /// its other operand is coalesced to the copy dest register, see if we
291 /// can transform the copy into a noop by commuting the definition.
292 /// This returns a pair of two flags:
293 /// - the first element is true if an interval was modified,
294 /// - the second element is true if the destination interval needs
295 /// to be shrunk after deleting the copy.
296 std::pair<bool,bool> removeCopyByCommutingDef(const CoalescerPair &CP,
297 MachineInstr *CopyMI);
298
299 /// We found a copy which can be moved to its less frequent predecessor.
300 bool removePartialRedundancy(const CoalescerPair &CP, MachineInstr &CopyMI);
301
302 /// If the source of a copy is defined by a
303 /// trivial computation, replace the copy by rematerialize the definition.
304 bool reMaterializeTrivialDef(const CoalescerPair &CP, MachineInstr *CopyMI,
305 bool &IsDefCopy);
306
307 /// Return true if a copy involving a physreg should be joined.
308 bool canJoinPhys(const CoalescerPair &CP);
309
310 /// Replace all defs and uses of SrcReg to DstReg and update the subregister
311 /// number if it is not zero. If DstReg is a physical register and the
312 /// existing subregister number of the def / use being updated is not zero,
313 /// make sure to set it to the correct physical subregister.
314 void updateRegDefsUses(Register SrcReg, Register DstReg, unsigned SubIdx);
315
316 /// If the given machine operand reads only undefined lanes add an undef
317 /// flag.
318 /// This can happen when undef uses were previously concealed by a copy
319 /// which we coalesced. Example:
320 /// %0:sub0<def,read-undef> = ...
321 /// %1 = COPY %0 <-- Coalescing COPY reveals undef
322 /// = use %1:sub1 <-- hidden undef use
323 void addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx,
324 MachineOperand &MO, unsigned SubRegIdx);
325
326 /// Handle copies of undef values. If the undef value is an incoming
327 /// PHI value, it will convert @p CopyMI to an IMPLICIT_DEF.
328 /// Returns nullptr if @p CopyMI was not in any way eliminable. Otherwise,
329 /// it returns @p CopyMI (which could be an IMPLICIT_DEF at this point).
330 MachineInstr *eliminateUndefCopy(MachineInstr *CopyMI);
331
332 /// Check whether or not we should apply the terminal rule on the
333 /// destination (Dst) of \p Copy.
334 /// When the terminal rule applies, Copy is not profitable to
335 /// coalesce.
336 /// Dst is terminal if it has exactly one affinity (Dst, Src) and
337 /// at least one interference (Dst, Dst2). If Dst is terminal, the
338 /// terminal rule consists in checking that at least one of
339 /// interfering node, say Dst2, has an affinity of equal or greater
340 /// weight with Src.
341 /// In that case, Dst2 and Dst will not be able to be both coalesced
342 /// with Src. Since Dst2 exposes more coalescing opportunities than
343 /// Dst, we can drop \p Copy.
344 bool applyTerminalRule(const MachineInstr &Copy) const;
345
346 /// Wrapper method for \see LiveIntervals::shrinkToUses.
347 /// This method does the proper fixing of the live-ranges when the afore
348 /// mentioned method returns true.
shrinkToUses(LiveInterval * LI,SmallVectorImpl<MachineInstr * > * Dead=nullptr)349 void shrinkToUses(LiveInterval *LI,
350 SmallVectorImpl<MachineInstr * > *Dead = nullptr) {
351 NumShrinkToUses++;
352 if (LIS->shrinkToUses(LI, Dead)) {
353 /// Check whether or not \p LI is composed by multiple connected
354 /// components and if that is the case, fix that.
355 SmallVector<LiveInterval*, 8> SplitLIs;
356 LIS->splitSeparateComponents(*LI, SplitLIs);
357 }
358 }
359
360 /// Wrapper Method to do all the necessary work when an Instruction is
361 /// deleted.
362 /// Optimizations should use this to make sure that deleted instructions
363 /// are always accounted for.
deleteInstr(MachineInstr * MI)364 void deleteInstr(MachineInstr* MI) {
365 ErasedInstrs.insert(MI);
366 LIS->RemoveMachineInstrFromMaps(*MI);
367 MI->eraseFromParent();
368 }
369
370 /// Walk over function and initialize the DbgVRegToValues map.
371 void buildVRegToDbgValueMap(MachineFunction &MF);
372
373 /// Test whether, after merging, any DBG_VALUEs would refer to a
374 /// different value number than before merging, and whether this can
375 /// be resolved. If not, mark the DBG_VALUE as being undef.
376 void checkMergingChangesDbgValues(CoalescerPair &CP, LiveRange &LHS,
377 JoinVals &LHSVals, LiveRange &RHS,
378 JoinVals &RHSVals);
379
380 void checkMergingChangesDbgValuesImpl(Register Reg, LiveRange &OtherRange,
381 LiveRange &RegRange, JoinVals &Vals2);
382
383 public:
384 static char ID; ///< Class identification, replacement for typeinfo
385
RegisterCoalescer()386 RegisterCoalescer() : MachineFunctionPass(ID) {
387 initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
388 }
389
390 void getAnalysisUsage(AnalysisUsage &AU) const override;
391
392 void releaseMemory() override;
393
394 /// This is the pass entry point.
395 bool runOnMachineFunction(MachineFunction&) override;
396
397 /// Implement the dump method.
398 void print(raw_ostream &O, const Module* = nullptr) const override;
399 };
400
401 } // end anonymous namespace
402
403 char RegisterCoalescer::ID = 0;
404
405 char &llvm::RegisterCoalescerID = RegisterCoalescer::ID;
406
407 INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing",
408 "Simple Register Coalescing", false, false)
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)409 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
410 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
411 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
412 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
413 INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing",
414 "Simple Register Coalescing", false, false)
415
416 [[nodiscard]] static bool isMoveInstr(const TargetRegisterInfo &tri,
417 const MachineInstr *MI, Register &Src,
418 Register &Dst, unsigned &SrcSub,
419 unsigned &DstSub) {
420 if (MI->isCopy()) {
421 Dst = MI->getOperand(0).getReg();
422 DstSub = MI->getOperand(0).getSubReg();
423 Src = MI->getOperand(1).getReg();
424 SrcSub = MI->getOperand(1).getSubReg();
425 } else if (MI->isSubregToReg()) {
426 Dst = MI->getOperand(0).getReg();
427 DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(),
428 MI->getOperand(3).getImm());
429 Src = MI->getOperand(2).getReg();
430 SrcSub = MI->getOperand(2).getSubReg();
431 } else
432 return false;
433 return true;
434 }
435
436 /// Return true if this block should be vacated by the coalescer to eliminate
437 /// branches. The important cases to handle in the coalescer are critical edges
438 /// split during phi elimination which contain only copies. Simple blocks that
439 /// contain non-branches should also be vacated, but this can be handled by an
440 /// earlier pass similar to early if-conversion.
isSplitEdge(const MachineBasicBlock * MBB)441 static bool isSplitEdge(const MachineBasicBlock *MBB) {
442 if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
443 return false;
444
445 for (const auto &MI : *MBB) {
446 if (!MI.isCopyLike() && !MI.isUnconditionalBranch())
447 return false;
448 }
449 return true;
450 }
451
setRegisters(const MachineInstr * MI)452 bool CoalescerPair::setRegisters(const MachineInstr *MI) {
453 SrcReg = DstReg = Register();
454 SrcIdx = DstIdx = 0;
455 NewRC = nullptr;
456 Flipped = CrossClass = false;
457
458 Register Src, Dst;
459 unsigned SrcSub = 0, DstSub = 0;
460 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
461 return false;
462 Partial = SrcSub || DstSub;
463
464 // If one register is a physreg, it must be Dst.
465 if (Src.isPhysical()) {
466 if (Dst.isPhysical())
467 return false;
468 std::swap(Src, Dst);
469 std::swap(SrcSub, DstSub);
470 Flipped = true;
471 }
472
473 const MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
474
475 if (Dst.isPhysical()) {
476 // Eliminate DstSub on a physreg.
477 if (DstSub) {
478 Dst = TRI.getSubReg(Dst, DstSub);
479 if (!Dst) return false;
480 DstSub = 0;
481 }
482
483 // Eliminate SrcSub by picking a corresponding Dst superregister.
484 if (SrcSub) {
485 Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src));
486 if (!Dst) return false;
487 } else if (!MRI.getRegClass(Src)->contains(Dst)) {
488 return false;
489 }
490 } else {
491 // Both registers are virtual.
492 const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
493 const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
494
495 // Both registers have subreg indices.
496 if (SrcSub && DstSub) {
497 // Copies between different sub-registers are never coalescable.
498 if (Src == Dst && SrcSub != DstSub)
499 return false;
500
501 NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub,
502 SrcIdx, DstIdx);
503 if (!NewRC)
504 return false;
505 } else if (DstSub) {
506 // SrcReg will be merged with a sub-register of DstReg.
507 SrcIdx = DstSub;
508 NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub);
509 } else if (SrcSub) {
510 // DstReg will be merged with a sub-register of SrcReg.
511 DstIdx = SrcSub;
512 NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub);
513 } else {
514 // This is a straight copy without sub-registers.
515 NewRC = TRI.getCommonSubClass(DstRC, SrcRC);
516 }
517
518 // The combined constraint may be impossible to satisfy.
519 if (!NewRC)
520 return false;
521
522 // Prefer SrcReg to be a sub-register of DstReg.
523 // FIXME: Coalescer should support subregs symmetrically.
524 if (DstIdx && !SrcIdx) {
525 std::swap(Src, Dst);
526 std::swap(SrcIdx, DstIdx);
527 Flipped = !Flipped;
528 }
529
530 CrossClass = NewRC != DstRC || NewRC != SrcRC;
531 }
532 // Check our invariants
533 assert(Src.isVirtual() && "Src must be virtual");
534 assert(!(Dst.isPhysical() && DstSub) && "Cannot have a physical SubIdx");
535 SrcReg = Src;
536 DstReg = Dst;
537 return true;
538 }
539
flip()540 bool CoalescerPair::flip() {
541 if (DstReg.isPhysical())
542 return false;
543 std::swap(SrcReg, DstReg);
544 std::swap(SrcIdx, DstIdx);
545 Flipped = !Flipped;
546 return true;
547 }
548
isCoalescable(const MachineInstr * MI) const549 bool CoalescerPair::isCoalescable(const MachineInstr *MI) const {
550 if (!MI)
551 return false;
552 Register Src, Dst;
553 unsigned SrcSub = 0, DstSub = 0;
554 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
555 return false;
556
557 // Find the virtual register that is SrcReg.
558 if (Dst == SrcReg) {
559 std::swap(Src, Dst);
560 std::swap(SrcSub, DstSub);
561 } else if (Src != SrcReg) {
562 return false;
563 }
564
565 // Now check that Dst matches DstReg.
566 if (DstReg.isPhysical()) {
567 if (!Dst.isPhysical())
568 return false;
569 assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state.");
570 // DstSub could be set for a physreg from INSERT_SUBREG.
571 if (DstSub)
572 Dst = TRI.getSubReg(Dst, DstSub);
573 // Full copy of Src.
574 if (!SrcSub)
575 return DstReg == Dst;
576 // This is a partial register copy. Check that the parts match.
577 return Register(TRI.getSubReg(DstReg, SrcSub)) == Dst;
578 } else {
579 // DstReg is virtual.
580 if (DstReg != Dst)
581 return false;
582 // Registers match, do the subregisters line up?
583 return TRI.composeSubRegIndices(SrcIdx, SrcSub) ==
584 TRI.composeSubRegIndices(DstIdx, DstSub);
585 }
586 }
587
getAnalysisUsage(AnalysisUsage & AU) const588 void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const {
589 AU.setPreservesCFG();
590 AU.addRequired<AAResultsWrapperPass>();
591 AU.addRequired<LiveIntervals>();
592 AU.addPreserved<LiveIntervals>();
593 AU.addPreserved<SlotIndexes>();
594 AU.addRequired<MachineLoopInfo>();
595 AU.addPreserved<MachineLoopInfo>();
596 AU.addPreservedID(MachineDominatorsID);
597 MachineFunctionPass::getAnalysisUsage(AU);
598 }
599
eliminateDeadDefs(LiveRangeEdit * Edit)600 void RegisterCoalescer::eliminateDeadDefs(LiveRangeEdit *Edit) {
601 if (Edit) {
602 Edit->eliminateDeadDefs(DeadDefs);
603 return;
604 }
605 SmallVector<Register, 8> NewRegs;
606 LiveRangeEdit(nullptr, NewRegs, *MF, *LIS,
607 nullptr, this).eliminateDeadDefs(DeadDefs);
608 }
609
LRE_WillEraseInstruction(MachineInstr * MI)610 void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) {
611 // MI may be in WorkList. Make sure we don't visit it.
612 ErasedInstrs.insert(MI);
613 }
614
adjustCopiesBackFrom(const CoalescerPair & CP,MachineInstr * CopyMI)615 bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP,
616 MachineInstr *CopyMI) {
617 assert(!CP.isPartial() && "This doesn't work for partial copies.");
618 assert(!CP.isPhys() && "This doesn't work for physreg copies.");
619
620 LiveInterval &IntA =
621 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
622 LiveInterval &IntB =
623 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
624 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
625
626 // We have a non-trivially-coalescable copy with IntA being the source and
627 // IntB being the dest, thus this defines a value number in IntB. If the
628 // source value number (in IntA) is defined by a copy from B, see if we can
629 // merge these two pieces of B into a single value number, eliminating a copy.
630 // For example:
631 //
632 // A3 = B0
633 // ...
634 // B1 = A3 <- this copy
635 //
636 // In this case, B0 can be extended to where the B1 copy lives, allowing the
637 // B1 value number to be replaced with B0 (which simplifies the B
638 // liveinterval).
639
640 // BValNo is a value number in B that is defined by a copy from A. 'B1' in
641 // the example above.
642 LiveInterval::iterator BS = IntB.FindSegmentContaining(CopyIdx);
643 if (BS == IntB.end()) return false;
644 VNInfo *BValNo = BS->valno;
645
646 // Get the location that B is defined at. Two options: either this value has
647 // an unknown definition point or it is defined at CopyIdx. If unknown, we
648 // can't process it.
649 if (BValNo->def != CopyIdx) return false;
650
651 // AValNo is the value number in A that defines the copy, A3 in the example.
652 SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true);
653 LiveInterval::iterator AS = IntA.FindSegmentContaining(CopyUseIdx);
654 // The live segment might not exist after fun with physreg coalescing.
655 if (AS == IntA.end()) return false;
656 VNInfo *AValNo = AS->valno;
657
658 // If AValNo is defined as a copy from IntB, we can potentially process this.
659 // Get the instruction that defines this value number.
660 MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def);
661 // Don't allow any partial copies, even if isCoalescable() allows them.
662 if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy())
663 return false;
664
665 // Get the Segment in IntB that this value number starts with.
666 LiveInterval::iterator ValS =
667 IntB.FindSegmentContaining(AValNo->def.getPrevSlot());
668 if (ValS == IntB.end())
669 return false;
670
671 // Make sure that the end of the live segment is inside the same block as
672 // CopyMI.
673 MachineInstr *ValSEndInst =
674 LIS->getInstructionFromIndex(ValS->end.getPrevSlot());
675 if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent())
676 return false;
677
678 // Okay, we now know that ValS ends in the same block that the CopyMI
679 // live-range starts. If there are no intervening live segments between them
680 // in IntB, we can merge them.
681 if (ValS+1 != BS) return false;
682
683 LLVM_DEBUG(dbgs() << "Extending: " << printReg(IntB.reg(), TRI));
684
685 SlotIndex FillerStart = ValS->end, FillerEnd = BS->start;
686 // We are about to delete CopyMI, so need to remove it as the 'instruction
687 // that defines this value #'. Update the valnum with the new defining
688 // instruction #.
689 BValNo->def = FillerStart;
690
691 // Okay, we can merge them. We need to insert a new liverange:
692 // [ValS.end, BS.begin) of either value number, then we merge the
693 // two value numbers.
694 IntB.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, BValNo));
695
696 // Okay, merge "B1" into the same value number as "B0".
697 if (BValNo != ValS->valno)
698 IntB.MergeValueNumberInto(BValNo, ValS->valno);
699
700 // Do the same for the subregister segments.
701 for (LiveInterval::SubRange &S : IntB.subranges()) {
702 // Check for SubRange Segments of the form [1234r,1234d:0) which can be
703 // removed to prevent creating bogus SubRange Segments.
704 LiveInterval::iterator SS = S.FindSegmentContaining(CopyIdx);
705 if (SS != S.end() && SlotIndex::isSameInstr(SS->start, SS->end)) {
706 S.removeSegment(*SS, true);
707 continue;
708 }
709 // The subrange may have ended before FillerStart. If so, extend it.
710 if (!S.getVNInfoAt(FillerStart)) {
711 SlotIndex BBStart =
712 LIS->getMBBStartIdx(LIS->getMBBFromIndex(FillerStart));
713 S.extendInBlock(BBStart, FillerStart);
714 }
715 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
716 S.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, SubBValNo));
717 VNInfo *SubValSNo = S.getVNInfoAt(AValNo->def.getPrevSlot());
718 if (SubBValNo != SubValSNo)
719 S.MergeValueNumberInto(SubBValNo, SubValSNo);
720 }
721
722 LLVM_DEBUG(dbgs() << " result = " << IntB << '\n');
723
724 // If the source instruction was killing the source register before the
725 // merge, unset the isKill marker given the live range has been extended.
726 int UIdx = ValSEndInst->findRegisterUseOperandIdx(IntB.reg(), true);
727 if (UIdx != -1) {
728 ValSEndInst->getOperand(UIdx).setIsKill(false);
729 }
730
731 // Rewrite the copy.
732 CopyMI->substituteRegister(IntA.reg(), IntB.reg(), 0, *TRI);
733 // If the copy instruction was killing the destination register or any
734 // subrange before the merge trim the live range.
735 bool RecomputeLiveRange = AS->end == CopyIdx;
736 if (!RecomputeLiveRange) {
737 for (LiveInterval::SubRange &S : IntA.subranges()) {
738 LiveInterval::iterator SS = S.FindSegmentContaining(CopyUseIdx);
739 if (SS != S.end() && SS->end == CopyIdx) {
740 RecomputeLiveRange = true;
741 break;
742 }
743 }
744 }
745 if (RecomputeLiveRange)
746 shrinkToUses(&IntA);
747
748 ++numExtends;
749 return true;
750 }
751
hasOtherReachingDefs(LiveInterval & IntA,LiveInterval & IntB,VNInfo * AValNo,VNInfo * BValNo)752 bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA,
753 LiveInterval &IntB,
754 VNInfo *AValNo,
755 VNInfo *BValNo) {
756 // If AValNo has PHI kills, conservatively assume that IntB defs can reach
757 // the PHI values.
758 if (LIS->hasPHIKill(IntA, AValNo))
759 return true;
760
761 for (LiveRange::Segment &ASeg : IntA.segments) {
762 if (ASeg.valno != AValNo) continue;
763 LiveInterval::iterator BI = llvm::upper_bound(IntB, ASeg.start);
764 if (BI != IntB.begin())
765 --BI;
766 for (; BI != IntB.end() && ASeg.end >= BI->start; ++BI) {
767 if (BI->valno == BValNo)
768 continue;
769 if (BI->start <= ASeg.start && BI->end > ASeg.start)
770 return true;
771 if (BI->start > ASeg.start && BI->start < ASeg.end)
772 return true;
773 }
774 }
775 return false;
776 }
777
778 /// Copy segments with value number @p SrcValNo from liverange @p Src to live
779 /// range @Dst and use value number @p DstValNo there.
780 static std::pair<bool,bool>
addSegmentsWithValNo(LiveRange & Dst,VNInfo * DstValNo,const LiveRange & Src,const VNInfo * SrcValNo)781 addSegmentsWithValNo(LiveRange &Dst, VNInfo *DstValNo, const LiveRange &Src,
782 const VNInfo *SrcValNo) {
783 bool Changed = false;
784 bool MergedWithDead = false;
785 for (const LiveRange::Segment &S : Src.segments) {
786 if (S.valno != SrcValNo)
787 continue;
788 // This is adding a segment from Src that ends in a copy that is about
789 // to be removed. This segment is going to be merged with a pre-existing
790 // segment in Dst. This works, except in cases when the corresponding
791 // segment in Dst is dead. For example: adding [192r,208r:1) from Src
792 // to [208r,208d:1) in Dst would create [192r,208d:1) in Dst.
793 // Recognized such cases, so that the segments can be shrunk.
794 LiveRange::Segment Added = LiveRange::Segment(S.start, S.end, DstValNo);
795 LiveRange::Segment &Merged = *Dst.addSegment(Added);
796 if (Merged.end.isDead())
797 MergedWithDead = true;
798 Changed = true;
799 }
800 return std::make_pair(Changed, MergedWithDead);
801 }
802
803 std::pair<bool,bool>
removeCopyByCommutingDef(const CoalescerPair & CP,MachineInstr * CopyMI)804 RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP,
805 MachineInstr *CopyMI) {
806 assert(!CP.isPhys());
807
808 LiveInterval &IntA =
809 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
810 LiveInterval &IntB =
811 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
812
813 // We found a non-trivially-coalescable copy with IntA being the source and
814 // IntB being the dest, thus this defines a value number in IntB. If the
815 // source value number (in IntA) is defined by a commutable instruction and
816 // its other operand is coalesced to the copy dest register, see if we can
817 // transform the copy into a noop by commuting the definition. For example,
818 //
819 // A3 = op A2 killed B0
820 // ...
821 // B1 = A3 <- this copy
822 // ...
823 // = op A3 <- more uses
824 //
825 // ==>
826 //
827 // B2 = op B0 killed A2
828 // ...
829 // B1 = B2 <- now an identity copy
830 // ...
831 // = op B2 <- more uses
832
833 // BValNo is a value number in B that is defined by a copy from A. 'B1' in
834 // the example above.
835 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
836 VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx);
837 assert(BValNo != nullptr && BValNo->def == CopyIdx);
838
839 // AValNo is the value number in A that defines the copy, A3 in the example.
840 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true));
841 assert(AValNo && !AValNo->isUnused() && "COPY source not live");
842 if (AValNo->isPHIDef())
843 return { false, false };
844 MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def);
845 if (!DefMI)
846 return { false, false };
847 if (!DefMI->isCommutable())
848 return { false, false };
849 // If DefMI is a two-address instruction then commuting it will change the
850 // destination register.
851 int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg());
852 assert(DefIdx != -1);
853 unsigned UseOpIdx;
854 if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
855 return { false, false };
856
857 // FIXME: The code below tries to commute 'UseOpIdx' operand with some other
858 // commutable operand which is expressed by 'CommuteAnyOperandIndex'value
859 // passed to the method. That _other_ operand is chosen by
860 // the findCommutedOpIndices() method.
861 //
862 // That is obviously an area for improvement in case of instructions having
863 // more than 2 operands. For example, if some instruction has 3 commutable
864 // operands then all possible variants (i.e. op#1<->op#2, op#1<->op#3,
865 // op#2<->op#3) of commute transformation should be considered/tried here.
866 unsigned NewDstIdx = TargetInstrInfo::CommuteAnyOperandIndex;
867 if (!TII->findCommutedOpIndices(*DefMI, UseOpIdx, NewDstIdx))
868 return { false, false };
869
870 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
871 Register NewReg = NewDstMO.getReg();
872 if (NewReg != IntB.reg() || !IntB.Query(AValNo->def).isKill())
873 return { false, false };
874
875 // Make sure there are no other definitions of IntB that would reach the
876 // uses which the new definition can reach.
877 if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
878 return { false, false };
879
880 // If some of the uses of IntA.reg is already coalesced away, return false.
881 // It's not possible to determine whether it's safe to perform the coalescing.
882 for (MachineOperand &MO : MRI->use_nodbg_operands(IntA.reg())) {
883 MachineInstr *UseMI = MO.getParent();
884 unsigned OpNo = &MO - &UseMI->getOperand(0);
885 SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI);
886 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
887 if (US == IntA.end() || US->valno != AValNo)
888 continue;
889 // If this use is tied to a def, we can't rewrite the register.
890 if (UseMI->isRegTiedToDefOperand(OpNo))
891 return { false, false };
892 }
893
894 LLVM_DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t'
895 << *DefMI);
896
897 // At this point we have decided that it is legal to do this
898 // transformation. Start by commuting the instruction.
899 MachineBasicBlock *MBB = DefMI->getParent();
900 MachineInstr *NewMI =
901 TII->commuteInstruction(*DefMI, false, UseOpIdx, NewDstIdx);
902 if (!NewMI)
903 return { false, false };
904 if (IntA.reg().isVirtual() && IntB.reg().isVirtual() &&
905 !MRI->constrainRegClass(IntB.reg(), MRI->getRegClass(IntA.reg())))
906 return { false, false };
907 if (NewMI != DefMI) {
908 LIS->ReplaceMachineInstrInMaps(*DefMI, *NewMI);
909 MachineBasicBlock::iterator Pos = DefMI;
910 MBB->insert(Pos, NewMI);
911 MBB->erase(DefMI);
912 }
913
914 // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
915 // A = or A, B
916 // ...
917 // B = A
918 // ...
919 // C = killed A
920 // ...
921 // = B
922
923 // Update uses of IntA of the specific Val# with IntB.
924 for (MachineOperand &UseMO :
925 llvm::make_early_inc_range(MRI->use_operands(IntA.reg()))) {
926 if (UseMO.isUndef())
927 continue;
928 MachineInstr *UseMI = UseMO.getParent();
929 if (UseMI->isDebugInstr()) {
930 // FIXME These don't have an instruction index. Not clear we have enough
931 // info to decide whether to do this replacement or not. For now do it.
932 UseMO.setReg(NewReg);
933 continue;
934 }
935 SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI).getRegSlot(true);
936 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
937 assert(US != IntA.end() && "Use must be live");
938 if (US->valno != AValNo)
939 continue;
940 // Kill flags are no longer accurate. They are recomputed after RA.
941 UseMO.setIsKill(false);
942 if (NewReg.isPhysical())
943 UseMO.substPhysReg(NewReg, *TRI);
944 else
945 UseMO.setReg(NewReg);
946 if (UseMI == CopyMI)
947 continue;
948 if (!UseMI->isCopy())
949 continue;
950 if (UseMI->getOperand(0).getReg() != IntB.reg() ||
951 UseMI->getOperand(0).getSubReg())
952 continue;
953
954 // This copy will become a noop. If it's defining a new val#, merge it into
955 // BValNo.
956 SlotIndex DefIdx = UseIdx.getRegSlot();
957 VNInfo *DVNI = IntB.getVNInfoAt(DefIdx);
958 if (!DVNI)
959 continue;
960 LLVM_DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI);
961 assert(DVNI->def == DefIdx);
962 BValNo = IntB.MergeValueNumberInto(DVNI, BValNo);
963 for (LiveInterval::SubRange &S : IntB.subranges()) {
964 VNInfo *SubDVNI = S.getVNInfoAt(DefIdx);
965 if (!SubDVNI)
966 continue;
967 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
968 assert(SubBValNo->def == CopyIdx);
969 S.MergeValueNumberInto(SubDVNI, SubBValNo);
970 }
971
972 deleteInstr(UseMI);
973 }
974
975 // Extend BValNo by merging in IntA live segments of AValNo. Val# definition
976 // is updated.
977 bool ShrinkB = false;
978 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
979 if (IntA.hasSubRanges() || IntB.hasSubRanges()) {
980 if (!IntA.hasSubRanges()) {
981 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntA.reg());
982 IntA.createSubRangeFrom(Allocator, Mask, IntA);
983 } else if (!IntB.hasSubRanges()) {
984 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntB.reg());
985 IntB.createSubRangeFrom(Allocator, Mask, IntB);
986 }
987 SlotIndex AIdx = CopyIdx.getRegSlot(true);
988 LaneBitmask MaskA;
989 const SlotIndexes &Indexes = *LIS->getSlotIndexes();
990 for (LiveInterval::SubRange &SA : IntA.subranges()) {
991 VNInfo *ASubValNo = SA.getVNInfoAt(AIdx);
992 // Even if we are dealing with a full copy, some lanes can
993 // still be undefined.
994 // E.g.,
995 // undef A.subLow = ...
996 // B = COPY A <== A.subHigh is undefined here and does
997 // not have a value number.
998 if (!ASubValNo)
999 continue;
1000 MaskA |= SA.LaneMask;
1001
1002 IntB.refineSubRanges(
1003 Allocator, SA.LaneMask,
1004 [&Allocator, &SA, CopyIdx, ASubValNo,
1005 &ShrinkB](LiveInterval::SubRange &SR) {
1006 VNInfo *BSubValNo = SR.empty() ? SR.getNextValue(CopyIdx, Allocator)
1007 : SR.getVNInfoAt(CopyIdx);
1008 assert(BSubValNo != nullptr);
1009 auto P = addSegmentsWithValNo(SR, BSubValNo, SA, ASubValNo);
1010 ShrinkB |= P.second;
1011 if (P.first)
1012 BSubValNo->def = ASubValNo->def;
1013 },
1014 Indexes, *TRI);
1015 }
1016 // Go over all subranges of IntB that have not been covered by IntA,
1017 // and delete the segments starting at CopyIdx. This can happen if
1018 // IntA has undef lanes that are defined in IntB.
1019 for (LiveInterval::SubRange &SB : IntB.subranges()) {
1020 if ((SB.LaneMask & MaskA).any())
1021 continue;
1022 if (LiveRange::Segment *S = SB.getSegmentContaining(CopyIdx))
1023 if (S->start.getBaseIndex() == CopyIdx.getBaseIndex())
1024 SB.removeSegment(*S, true);
1025 }
1026 }
1027
1028 BValNo->def = AValNo->def;
1029 auto P = addSegmentsWithValNo(IntB, BValNo, IntA, AValNo);
1030 ShrinkB |= P.second;
1031 LLVM_DEBUG(dbgs() << "\t\textended: " << IntB << '\n');
1032
1033 LIS->removeVRegDefAt(IntA, AValNo->def);
1034
1035 LLVM_DEBUG(dbgs() << "\t\ttrimmed: " << IntA << '\n');
1036 ++numCommutes;
1037 return { true, ShrinkB };
1038 }
1039
1040 /// For copy B = A in BB2, if A is defined by A = B in BB0 which is a
1041 /// predecessor of BB2, and if B is not redefined on the way from A = B
1042 /// in BB0 to B = A in BB2, B = A in BB2 is partially redundant if the
1043 /// execution goes through the path from BB0 to BB2. We may move B = A
1044 /// to the predecessor without such reversed copy.
1045 /// So we will transform the program from:
1046 /// BB0:
1047 /// A = B; BB1:
1048 /// ... ...
1049 /// / \ /
1050 /// BB2:
1051 /// ...
1052 /// B = A;
1053 ///
1054 /// to:
1055 ///
1056 /// BB0: BB1:
1057 /// A = B; ...
1058 /// ... B = A;
1059 /// / \ /
1060 /// BB2:
1061 /// ...
1062 ///
1063 /// A special case is when BB0 and BB2 are the same BB which is the only
1064 /// BB in a loop:
1065 /// BB1:
1066 /// ...
1067 /// BB0/BB2: ----
1068 /// B = A; |
1069 /// ... |
1070 /// A = B; |
1071 /// |-------
1072 /// |
1073 /// We may hoist B = A from BB0/BB2 to BB1.
1074 ///
1075 /// The major preconditions for correctness to remove such partial
1076 /// redundancy include:
1077 /// 1. A in B = A in BB2 is defined by a PHI in BB2, and one operand of
1078 /// the PHI is defined by the reversed copy A = B in BB0.
1079 /// 2. No B is referenced from the start of BB2 to B = A.
1080 /// 3. No B is defined from A = B to the end of BB0.
1081 /// 4. BB1 has only one successor.
1082 ///
1083 /// 2 and 4 implicitly ensure B is not live at the end of BB1.
1084 /// 4 guarantees BB2 is hotter than BB1, so we can only move a copy to a
1085 /// colder place, which not only prevent endless loop, but also make sure
1086 /// the movement of copy is beneficial.
removePartialRedundancy(const CoalescerPair & CP,MachineInstr & CopyMI)1087 bool RegisterCoalescer::removePartialRedundancy(const CoalescerPair &CP,
1088 MachineInstr &CopyMI) {
1089 assert(!CP.isPhys());
1090 if (!CopyMI.isFullCopy())
1091 return false;
1092
1093 MachineBasicBlock &MBB = *CopyMI.getParent();
1094 // If this block is the target of an invoke/inlineasm_br, moving the copy into
1095 // the predecessor is tricker, and we don't handle it.
1096 if (MBB.isEHPad() || MBB.isInlineAsmBrIndirectTarget())
1097 return false;
1098
1099 if (MBB.pred_size() != 2)
1100 return false;
1101
1102 LiveInterval &IntA =
1103 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
1104 LiveInterval &IntB =
1105 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
1106
1107 // A is defined by PHI at the entry of MBB.
1108 SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(true);
1109 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx);
1110 assert(AValNo && !AValNo->isUnused() && "COPY source not live");
1111 if (!AValNo->isPHIDef())
1112 return false;
1113
1114 // No B is referenced before CopyMI in MBB.
1115 if (IntB.overlaps(LIS->getMBBStartIdx(&MBB), CopyIdx))
1116 return false;
1117
1118 // MBB has two predecessors: one contains A = B so no copy will be inserted
1119 // for it. The other one will have a copy moved from MBB.
1120 bool FoundReverseCopy = false;
1121 MachineBasicBlock *CopyLeftBB = nullptr;
1122 for (MachineBasicBlock *Pred : MBB.predecessors()) {
1123 VNInfo *PVal = IntA.getVNInfoBefore(LIS->getMBBEndIdx(Pred));
1124 MachineInstr *DefMI = LIS->getInstructionFromIndex(PVal->def);
1125 if (!DefMI || !DefMI->isFullCopy()) {
1126 CopyLeftBB = Pred;
1127 continue;
1128 }
1129 // Check DefMI is a reverse copy and it is in BB Pred.
1130 if (DefMI->getOperand(0).getReg() != IntA.reg() ||
1131 DefMI->getOperand(1).getReg() != IntB.reg() ||
1132 DefMI->getParent() != Pred) {
1133 CopyLeftBB = Pred;
1134 continue;
1135 }
1136 // If there is any other def of B after DefMI and before the end of Pred,
1137 // we need to keep the copy of B = A at the end of Pred if we remove
1138 // B = A from MBB.
1139 bool ValB_Changed = false;
1140 for (auto *VNI : IntB.valnos) {
1141 if (VNI->isUnused())
1142 continue;
1143 if (PVal->def < VNI->def && VNI->def < LIS->getMBBEndIdx(Pred)) {
1144 ValB_Changed = true;
1145 break;
1146 }
1147 }
1148 if (ValB_Changed) {
1149 CopyLeftBB = Pred;
1150 continue;
1151 }
1152 FoundReverseCopy = true;
1153 }
1154
1155 // If no reverse copy is found in predecessors, nothing to do.
1156 if (!FoundReverseCopy)
1157 return false;
1158
1159 // If CopyLeftBB is nullptr, it means every predecessor of MBB contains
1160 // reverse copy, CopyMI can be removed trivially if only IntA/IntB is updated.
1161 // If CopyLeftBB is not nullptr, move CopyMI from MBB to CopyLeftBB and
1162 // update IntA/IntB.
1163 //
1164 // If CopyLeftBB is not nullptr, ensure CopyLeftBB has a single succ so
1165 // MBB is hotter than CopyLeftBB.
1166 if (CopyLeftBB && CopyLeftBB->succ_size() > 1)
1167 return false;
1168
1169 // Now (almost sure it's) ok to move copy.
1170 if (CopyLeftBB) {
1171 // Position in CopyLeftBB where we should insert new copy.
1172 auto InsPos = CopyLeftBB->getFirstTerminator();
1173
1174 // Make sure that B isn't referenced in the terminators (if any) at the end
1175 // of the predecessor since we're about to insert a new definition of B
1176 // before them.
1177 if (InsPos != CopyLeftBB->end()) {
1178 SlotIndex InsPosIdx = LIS->getInstructionIndex(*InsPos).getRegSlot(true);
1179 if (IntB.overlaps(InsPosIdx, LIS->getMBBEndIdx(CopyLeftBB)))
1180 return false;
1181 }
1182
1183 LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Move the copy to "
1184 << printMBBReference(*CopyLeftBB) << '\t' << CopyMI);
1185
1186 // Insert new copy to CopyLeftBB.
1187 MachineInstr *NewCopyMI = BuildMI(*CopyLeftBB, InsPos, CopyMI.getDebugLoc(),
1188 TII->get(TargetOpcode::COPY), IntB.reg())
1189 .addReg(IntA.reg());
1190 SlotIndex NewCopyIdx =
1191 LIS->InsertMachineInstrInMaps(*NewCopyMI).getRegSlot();
1192 IntB.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator());
1193 for (LiveInterval::SubRange &SR : IntB.subranges())
1194 SR.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator());
1195
1196 // If the newly created Instruction has an address of an instruction that was
1197 // deleted before (object recycled by the allocator) it needs to be removed from
1198 // the deleted list.
1199 ErasedInstrs.erase(NewCopyMI);
1200 } else {
1201 LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Remove the copy from "
1202 << printMBBReference(MBB) << '\t' << CopyMI);
1203 }
1204
1205 // Remove CopyMI.
1206 // Note: This is fine to remove the copy before updating the live-ranges.
1207 // While updating the live-ranges, we only look at slot indices and
1208 // never go back to the instruction.
1209 // Mark instructions as deleted.
1210 deleteInstr(&CopyMI);
1211
1212 // Update the liveness.
1213 SmallVector<SlotIndex, 8> EndPoints;
1214 VNInfo *BValNo = IntB.Query(CopyIdx).valueOutOrDead();
1215 LIS->pruneValue(*static_cast<LiveRange *>(&IntB), CopyIdx.getRegSlot(),
1216 &EndPoints);
1217 BValNo->markUnused();
1218 // Extend IntB to the EndPoints of its original live interval.
1219 LIS->extendToIndices(IntB, EndPoints);
1220
1221 // Now, do the same for its subranges.
1222 for (LiveInterval::SubRange &SR : IntB.subranges()) {
1223 EndPoints.clear();
1224 VNInfo *BValNo = SR.Query(CopyIdx).valueOutOrDead();
1225 assert(BValNo && "All sublanes should be live");
1226 LIS->pruneValue(SR, CopyIdx.getRegSlot(), &EndPoints);
1227 BValNo->markUnused();
1228 // We can have a situation where the result of the original copy is live,
1229 // but is immediately dead in this subrange, e.g. [336r,336d:0). That makes
1230 // the copy appear as an endpoint from pruneValue(), but we don't want it
1231 // to because the copy has been removed. We can go ahead and remove that
1232 // endpoint; there is no other situation here that there could be a use at
1233 // the same place as we know that the copy is a full copy.
1234 for (unsigned I = 0; I != EndPoints.size(); ) {
1235 if (SlotIndex::isSameInstr(EndPoints[I], CopyIdx)) {
1236 EndPoints[I] = EndPoints.back();
1237 EndPoints.pop_back();
1238 continue;
1239 }
1240 ++I;
1241 }
1242 SmallVector<SlotIndex, 8> Undefs;
1243 IntB.computeSubRangeUndefs(Undefs, SR.LaneMask, *MRI,
1244 *LIS->getSlotIndexes());
1245 LIS->extendToIndices(SR, EndPoints, Undefs);
1246 }
1247 // If any dead defs were extended, truncate them.
1248 shrinkToUses(&IntB);
1249
1250 // Finally, update the live-range of IntA.
1251 shrinkToUses(&IntA);
1252 return true;
1253 }
1254
1255 /// Returns true if @p MI defines the full vreg @p Reg, as opposed to just
1256 /// defining a subregister.
definesFullReg(const MachineInstr & MI,Register Reg)1257 static bool definesFullReg(const MachineInstr &MI, Register Reg) {
1258 assert(!Reg.isPhysical() && "This code cannot handle physreg aliasing");
1259
1260 for (const MachineOperand &Op : MI.operands()) {
1261 if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg)
1262 continue;
1263 // Return true if we define the full register or don't care about the value
1264 // inside other subregisters.
1265 if (Op.getSubReg() == 0 || Op.isUndef())
1266 return true;
1267 }
1268 return false;
1269 }
1270
reMaterializeTrivialDef(const CoalescerPair & CP,MachineInstr * CopyMI,bool & IsDefCopy)1271 bool RegisterCoalescer::reMaterializeTrivialDef(const CoalescerPair &CP,
1272 MachineInstr *CopyMI,
1273 bool &IsDefCopy) {
1274 IsDefCopy = false;
1275 Register SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg();
1276 unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx();
1277 Register DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
1278 unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx();
1279 if (SrcReg.isPhysical())
1280 return false;
1281
1282 LiveInterval &SrcInt = LIS->getInterval(SrcReg);
1283 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI);
1284 VNInfo *ValNo = SrcInt.Query(CopyIdx).valueIn();
1285 if (!ValNo)
1286 return false;
1287 if (ValNo->isPHIDef() || ValNo->isUnused())
1288 return false;
1289 MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def);
1290 if (!DefMI)
1291 return false;
1292 if (DefMI->isCopyLike()) {
1293 IsDefCopy = true;
1294 return false;
1295 }
1296 if (!TII->isAsCheapAsAMove(*DefMI))
1297 return false;
1298
1299 SmallVector<Register, 8> NewRegs;
1300 LiveRangeEdit Edit(&SrcInt, NewRegs, *MF, *LIS, nullptr, this);
1301 if (!Edit.checkRematerializable(ValNo, DefMI))
1302 return false;
1303
1304 if (!definesFullReg(*DefMI, SrcReg))
1305 return false;
1306 bool SawStore = false;
1307 if (!DefMI->isSafeToMove(AA, SawStore))
1308 return false;
1309 const MCInstrDesc &MCID = DefMI->getDesc();
1310 if (MCID.getNumDefs() != 1)
1311 return false;
1312 // Only support subregister destinations when the def is read-undef.
1313 MachineOperand &DstOperand = CopyMI->getOperand(0);
1314 Register CopyDstReg = DstOperand.getReg();
1315 if (DstOperand.getSubReg() && !DstOperand.isUndef())
1316 return false;
1317
1318 // If both SrcIdx and DstIdx are set, correct rematerialization would widen
1319 // the register substantially (beyond both source and dest size). This is bad
1320 // for performance since it can cascade through a function, introducing many
1321 // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers
1322 // around after a few subreg copies).
1323 if (SrcIdx && DstIdx)
1324 return false;
1325
1326 const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF);
1327 if (!DefMI->isImplicitDef()) {
1328 if (DstReg.isPhysical()) {
1329 Register NewDstReg = DstReg;
1330
1331 unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(),
1332 DefMI->getOperand(0).getSubReg());
1333 if (NewDstIdx)
1334 NewDstReg = TRI->getSubReg(DstReg, NewDstIdx);
1335
1336 // Finally, make sure that the physical subregister that will be
1337 // constructed later is permitted for the instruction.
1338 if (!DefRC->contains(NewDstReg))
1339 return false;
1340 } else {
1341 // Theoretically, some stack frame reference could exist. Just make sure
1342 // it hasn't actually happened.
1343 assert(DstReg.isVirtual() &&
1344 "Only expect to deal with virtual or physical registers");
1345 }
1346 }
1347
1348 LiveRangeEdit::Remat RM(ValNo);
1349 RM.OrigMI = DefMI;
1350 if (!Edit.canRematerializeAt(RM, ValNo, CopyIdx, true))
1351 return false;
1352
1353 DebugLoc DL = CopyMI->getDebugLoc();
1354 MachineBasicBlock *MBB = CopyMI->getParent();
1355 MachineBasicBlock::iterator MII =
1356 std::next(MachineBasicBlock::iterator(CopyMI));
1357 Edit.rematerializeAt(*MBB, MII, DstReg, RM, *TRI, false, SrcIdx, CopyMI);
1358 MachineInstr &NewMI = *std::prev(MII);
1359 NewMI.setDebugLoc(DL);
1360
1361 // In a situation like the following:
1362 // %0:subreg = instr ; DefMI, subreg = DstIdx
1363 // %1 = copy %0:subreg ; CopyMI, SrcIdx = 0
1364 // instead of widening %1 to the register class of %0 simply do:
1365 // %1 = instr
1366 const TargetRegisterClass *NewRC = CP.getNewRC();
1367 if (DstIdx != 0) {
1368 MachineOperand &DefMO = NewMI.getOperand(0);
1369 if (DefMO.getSubReg() == DstIdx) {
1370 assert(SrcIdx == 0 && CP.isFlipped()
1371 && "Shouldn't have SrcIdx+DstIdx at this point");
1372 const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
1373 const TargetRegisterClass *CommonRC =
1374 TRI->getCommonSubClass(DefRC, DstRC);
1375 if (CommonRC != nullptr) {
1376 NewRC = CommonRC;
1377
1378 // Instruction might contain "undef %0:subreg" as use operand:
1379 // %0:subreg = instr op_1, ..., op_N, undef %0:subreg, op_N+2, ...
1380 //
1381 // Need to check all operands.
1382 for (MachineOperand &MO : NewMI.operands()) {
1383 if (MO.isReg() && MO.getReg() == DstReg && MO.getSubReg() == DstIdx) {
1384 MO.setSubReg(0);
1385 }
1386 }
1387
1388 DstIdx = 0;
1389 DefMO.setIsUndef(false); // Only subregs can have def+undef.
1390 }
1391 }
1392 }
1393
1394 // CopyMI may have implicit operands, save them so that we can transfer them
1395 // over to the newly materialized instruction after CopyMI is removed.
1396 SmallVector<MachineOperand, 4> ImplicitOps;
1397 ImplicitOps.reserve(CopyMI->getNumOperands() -
1398 CopyMI->getDesc().getNumOperands());
1399 for (unsigned I = CopyMI->getDesc().getNumOperands(),
1400 E = CopyMI->getNumOperands();
1401 I != E; ++I) {
1402 MachineOperand &MO = CopyMI->getOperand(I);
1403 if (MO.isReg()) {
1404 assert(MO.isImplicit() && "No explicit operands after implicit operands.");
1405 // Discard VReg implicit defs.
1406 if (MO.getReg().isPhysical())
1407 ImplicitOps.push_back(MO);
1408 }
1409 }
1410
1411 CopyMI->eraseFromParent();
1412 ErasedInstrs.insert(CopyMI);
1413
1414 // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86).
1415 // We need to remember these so we can add intervals once we insert
1416 // NewMI into SlotIndexes.
1417 SmallVector<MCRegister, 4> NewMIImplDefs;
1418 for (unsigned i = NewMI.getDesc().getNumOperands(),
1419 e = NewMI.getNumOperands();
1420 i != e; ++i) {
1421 MachineOperand &MO = NewMI.getOperand(i);
1422 if (MO.isReg() && MO.isDef()) {
1423 assert(MO.isImplicit() && MO.isDead() && MO.getReg().isPhysical());
1424 NewMIImplDefs.push_back(MO.getReg().asMCReg());
1425 }
1426 }
1427
1428 if (DstReg.isVirtual()) {
1429 unsigned NewIdx = NewMI.getOperand(0).getSubReg();
1430
1431 if (DefRC != nullptr) {
1432 if (NewIdx)
1433 NewRC = TRI->getMatchingSuperRegClass(NewRC, DefRC, NewIdx);
1434 else
1435 NewRC = TRI->getCommonSubClass(NewRC, DefRC);
1436 assert(NewRC && "subreg chosen for remat incompatible with instruction");
1437 }
1438 // Remap subranges to new lanemask and change register class.
1439 LiveInterval &DstInt = LIS->getInterval(DstReg);
1440 for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1441 SR.LaneMask = TRI->composeSubRegIndexLaneMask(DstIdx, SR.LaneMask);
1442 }
1443 MRI->setRegClass(DstReg, NewRC);
1444
1445 // Update machine operands and add flags.
1446 updateRegDefsUses(DstReg, DstReg, DstIdx);
1447 NewMI.getOperand(0).setSubReg(NewIdx);
1448 // updateRegDefUses can add an "undef" flag to the definition, since
1449 // it will replace DstReg with DstReg.DstIdx. If NewIdx is 0, make
1450 // sure that "undef" is not set.
1451 if (NewIdx == 0)
1452 NewMI.getOperand(0).setIsUndef(false);
1453 // Add dead subregister definitions if we are defining the whole register
1454 // but only part of it is live.
1455 // This could happen if the rematerialization instruction is rematerializing
1456 // more than actually is used in the register.
1457 // An example would be:
1458 // %1 = LOAD CONSTANTS 5, 8 ; Loading both 5 and 8 in different subregs
1459 // ; Copying only part of the register here, but the rest is undef.
1460 // %2:sub_16bit<def, read-undef> = COPY %1:sub_16bit
1461 // ==>
1462 // ; Materialize all the constants but only using one
1463 // %2 = LOAD_CONSTANTS 5, 8
1464 //
1465 // at this point for the part that wasn't defined before we could have
1466 // subranges missing the definition.
1467 if (NewIdx == 0 && DstInt.hasSubRanges()) {
1468 SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI);
1469 SlotIndex DefIndex =
1470 CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber());
1471 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(DstReg);
1472 VNInfo::Allocator& Alloc = LIS->getVNInfoAllocator();
1473 for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1474 if (!SR.liveAt(DefIndex))
1475 SR.createDeadDef(DefIndex, Alloc);
1476 MaxMask &= ~SR.LaneMask;
1477 }
1478 if (MaxMask.any()) {
1479 LiveInterval::SubRange *SR = DstInt.createSubRange(Alloc, MaxMask);
1480 SR->createDeadDef(DefIndex, Alloc);
1481 }
1482 }
1483
1484 // Make sure that the subrange for resultant undef is removed
1485 // For example:
1486 // %1:sub1<def,read-undef> = LOAD CONSTANT 1
1487 // %2 = COPY %1
1488 // ==>
1489 // %2:sub1<def, read-undef> = LOAD CONSTANT 1
1490 // ; Correct but need to remove the subrange for %2:sub0
1491 // ; as it is now undef
1492 if (NewIdx != 0 && DstInt.hasSubRanges()) {
1493 // The affected subregister segments can be removed.
1494 SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI);
1495 LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(NewIdx);
1496 bool UpdatedSubRanges = false;
1497 SlotIndex DefIndex =
1498 CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber());
1499 VNInfo::Allocator &Alloc = LIS->getVNInfoAllocator();
1500 for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1501 if ((SR.LaneMask & DstMask).none()) {
1502 LLVM_DEBUG(dbgs()
1503 << "Removing undefined SubRange "
1504 << PrintLaneMask(SR.LaneMask) << " : " << SR << "\n");
1505 // VNI is in ValNo - remove any segments in this SubRange that have this ValNo
1506 if (VNInfo *RmValNo = SR.getVNInfoAt(CurrIdx.getRegSlot())) {
1507 SR.removeValNo(RmValNo);
1508 UpdatedSubRanges = true;
1509 }
1510 } else {
1511 // We know that this lane is defined by this instruction,
1512 // but at this point it may be empty because it is not used by
1513 // anything. This happens when updateRegDefUses adds the missing
1514 // lanes. Assign that lane a dead def so that the interferences
1515 // are properly modeled.
1516 if (SR.empty())
1517 SR.createDeadDef(DefIndex, Alloc);
1518 }
1519 }
1520 if (UpdatedSubRanges)
1521 DstInt.removeEmptySubRanges();
1522 }
1523 } else if (NewMI.getOperand(0).getReg() != CopyDstReg) {
1524 // The New instruction may be defining a sub-register of what's actually
1525 // been asked for. If so it must implicitly define the whole thing.
1526 assert(DstReg.isPhysical() &&
1527 "Only expect virtual or physical registers in remat");
1528 NewMI.getOperand(0).setIsDead(true);
1529 NewMI.addOperand(MachineOperand::CreateReg(
1530 CopyDstReg, true /*IsDef*/, true /*IsImp*/, false /*IsKill*/));
1531 // Record small dead def live-ranges for all the subregisters
1532 // of the destination register.
1533 // Otherwise, variables that live through may miss some
1534 // interferences, thus creating invalid allocation.
1535 // E.g., i386 code:
1536 // %1 = somedef ; %1 GR8
1537 // %2 = remat ; %2 GR32
1538 // CL = COPY %2.sub_8bit
1539 // = somedef %1 ; %1 GR8
1540 // =>
1541 // %1 = somedef ; %1 GR8
1542 // dead ECX = remat ; implicit-def CL
1543 // = somedef %1 ; %1 GR8
1544 // %1 will see the interferences with CL but not with CH since
1545 // no live-ranges would have been created for ECX.
1546 // Fix that!
1547 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
1548 for (MCRegUnitIterator Units(NewMI.getOperand(0).getReg(), TRI);
1549 Units.isValid(); ++Units)
1550 if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
1551 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
1552 }
1553
1554 if (NewMI.getOperand(0).getSubReg())
1555 NewMI.getOperand(0).setIsUndef();
1556
1557 // Transfer over implicit operands to the rematerialized instruction.
1558 for (MachineOperand &MO : ImplicitOps)
1559 NewMI.addOperand(MO);
1560
1561 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
1562 for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) {
1563 MCRegister Reg = NewMIImplDefs[i];
1564 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
1565 if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
1566 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
1567 }
1568
1569 LLVM_DEBUG(dbgs() << "Remat: " << NewMI);
1570 ++NumReMats;
1571
1572 // If the virtual SrcReg is completely eliminated, update all DBG_VALUEs
1573 // to describe DstReg instead.
1574 if (MRI->use_nodbg_empty(SrcReg)) {
1575 for (MachineOperand &UseMO :
1576 llvm::make_early_inc_range(MRI->use_operands(SrcReg))) {
1577 MachineInstr *UseMI = UseMO.getParent();
1578 if (UseMI->isDebugInstr()) {
1579 if (DstReg.isPhysical())
1580 UseMO.substPhysReg(DstReg, *TRI);
1581 else
1582 UseMO.setReg(DstReg);
1583 // Move the debug value directly after the def of the rematerialized
1584 // value in DstReg.
1585 MBB->splice(std::next(NewMI.getIterator()), UseMI->getParent(), UseMI);
1586 LLVM_DEBUG(dbgs() << "\t\tupdated: " << *UseMI);
1587 }
1588 }
1589 }
1590
1591 if (ToBeUpdated.count(SrcReg))
1592 return true;
1593
1594 unsigned NumCopyUses = 0;
1595 for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) {
1596 if (UseMO.getParent()->isCopyLike())
1597 NumCopyUses++;
1598 }
1599 if (NumCopyUses < LateRematUpdateThreshold) {
1600 // The source interval can become smaller because we removed a use.
1601 shrinkToUses(&SrcInt, &DeadDefs);
1602 if (!DeadDefs.empty())
1603 eliminateDeadDefs(&Edit);
1604 } else {
1605 ToBeUpdated.insert(SrcReg);
1606 }
1607 return true;
1608 }
1609
eliminateUndefCopy(MachineInstr * CopyMI)1610 MachineInstr *RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI) {
1611 // ProcessImplicitDefs may leave some copies of <undef> values, it only
1612 // removes local variables. When we have a copy like:
1613 //
1614 // %1 = COPY undef %2
1615 //
1616 // We delete the copy and remove the corresponding value number from %1.
1617 // Any uses of that value number are marked as <undef>.
1618
1619 // Note that we do not query CoalescerPair here but redo isMoveInstr as the
1620 // CoalescerPair may have a new register class with adjusted subreg indices
1621 // at this point.
1622 Register SrcReg, DstReg;
1623 unsigned SrcSubIdx = 0, DstSubIdx = 0;
1624 if(!isMoveInstr(*TRI, CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx))
1625 return nullptr;
1626
1627 SlotIndex Idx = LIS->getInstructionIndex(*CopyMI);
1628 const LiveInterval &SrcLI = LIS->getInterval(SrcReg);
1629 // CopyMI is undef iff SrcReg is not live before the instruction.
1630 if (SrcSubIdx != 0 && SrcLI.hasSubRanges()) {
1631 LaneBitmask SrcMask = TRI->getSubRegIndexLaneMask(SrcSubIdx);
1632 for (const LiveInterval::SubRange &SR : SrcLI.subranges()) {
1633 if ((SR.LaneMask & SrcMask).none())
1634 continue;
1635 if (SR.liveAt(Idx))
1636 return nullptr;
1637 }
1638 } else if (SrcLI.liveAt(Idx))
1639 return nullptr;
1640
1641 // If the undef copy defines a live-out value (i.e. an input to a PHI def),
1642 // then replace it with an IMPLICIT_DEF.
1643 LiveInterval &DstLI = LIS->getInterval(DstReg);
1644 SlotIndex RegIndex = Idx.getRegSlot();
1645 LiveRange::Segment *Seg = DstLI.getSegmentContaining(RegIndex);
1646 assert(Seg != nullptr && "No segment for defining instruction");
1647 VNInfo *V = DstLI.getVNInfoAt(Seg->end);
1648
1649 // The source interval may also have been on an undef use, in which case the
1650 // copy introduced a live value.
1651 if (((V && V->isPHIDef()) || (!V && !DstLI.liveAt(Idx)))) {
1652 CopyMI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
1653 for (unsigned i = CopyMI->getNumOperands(); i != 0; --i) {
1654 MachineOperand &MO = CopyMI->getOperand(i-1);
1655 if (MO.isReg() && MO.isUse())
1656 CopyMI->removeOperand(i-1);
1657 }
1658 LLVM_DEBUG(dbgs() << "\tReplaced copy of <undef> value with an "
1659 "implicit def\n");
1660 return CopyMI;
1661 }
1662
1663 // Remove any DstReg segments starting at the instruction.
1664 LLVM_DEBUG(dbgs() << "\tEliminating copy of <undef> value\n");
1665
1666 // Remove value or merge with previous one in case of a subregister def.
1667 if (VNInfo *PrevVNI = DstLI.getVNInfoAt(Idx)) {
1668 VNInfo *VNI = DstLI.getVNInfoAt(RegIndex);
1669 DstLI.MergeValueNumberInto(VNI, PrevVNI);
1670
1671 // The affected subregister segments can be removed.
1672 LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(DstSubIdx);
1673 for (LiveInterval::SubRange &SR : DstLI.subranges()) {
1674 if ((SR.LaneMask & DstMask).none())
1675 continue;
1676
1677 VNInfo *SVNI = SR.getVNInfoAt(RegIndex);
1678 assert(SVNI != nullptr && SlotIndex::isSameInstr(SVNI->def, RegIndex));
1679 SR.removeValNo(SVNI);
1680 }
1681 DstLI.removeEmptySubRanges();
1682 } else
1683 LIS->removeVRegDefAt(DstLI, RegIndex);
1684
1685 // Mark uses as undef.
1686 for (MachineOperand &MO : MRI->reg_nodbg_operands(DstReg)) {
1687 if (MO.isDef() /*|| MO.isUndef()*/)
1688 continue;
1689 const MachineInstr &MI = *MO.getParent();
1690 SlotIndex UseIdx = LIS->getInstructionIndex(MI);
1691 LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg());
1692 bool isLive;
1693 if (!UseMask.all() && DstLI.hasSubRanges()) {
1694 isLive = false;
1695 for (const LiveInterval::SubRange &SR : DstLI.subranges()) {
1696 if ((SR.LaneMask & UseMask).none())
1697 continue;
1698 if (SR.liveAt(UseIdx)) {
1699 isLive = true;
1700 break;
1701 }
1702 }
1703 } else
1704 isLive = DstLI.liveAt(UseIdx);
1705 if (isLive)
1706 continue;
1707 MO.setIsUndef(true);
1708 LLVM_DEBUG(dbgs() << "\tnew undef: " << UseIdx << '\t' << MI);
1709 }
1710
1711 // A def of a subregister may be a use of the other subregisters, so
1712 // deleting a def of a subregister may also remove uses. Since CopyMI
1713 // is still part of the function (but about to be erased), mark all
1714 // defs of DstReg in it as <undef>, so that shrinkToUses would
1715 // ignore them.
1716 for (MachineOperand &MO : CopyMI->operands())
1717 if (MO.isReg() && MO.isDef() && MO.getReg() == DstReg)
1718 MO.setIsUndef(true);
1719 LIS->shrinkToUses(&DstLI);
1720
1721 return CopyMI;
1722 }
1723
addUndefFlag(const LiveInterval & Int,SlotIndex UseIdx,MachineOperand & MO,unsigned SubRegIdx)1724 void RegisterCoalescer::addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx,
1725 MachineOperand &MO, unsigned SubRegIdx) {
1726 LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubRegIdx);
1727 if (MO.isDef())
1728 Mask = ~Mask;
1729 bool IsUndef = true;
1730 for (const LiveInterval::SubRange &S : Int.subranges()) {
1731 if ((S.LaneMask & Mask).none())
1732 continue;
1733 if (S.liveAt(UseIdx)) {
1734 IsUndef = false;
1735 break;
1736 }
1737 }
1738 if (IsUndef) {
1739 MO.setIsUndef(true);
1740 // We found out some subregister use is actually reading an undefined
1741 // value. In some cases the whole vreg has become undefined at this
1742 // point so we have to potentially shrink the main range if the
1743 // use was ending a live segment there.
1744 LiveQueryResult Q = Int.Query(UseIdx);
1745 if (Q.valueOut() == nullptr)
1746 ShrinkMainRange = true;
1747 }
1748 }
1749
updateRegDefsUses(Register SrcReg,Register DstReg,unsigned SubIdx)1750 void RegisterCoalescer::updateRegDefsUses(Register SrcReg, Register DstReg,
1751 unsigned SubIdx) {
1752 bool DstIsPhys = DstReg.isPhysical();
1753 LiveInterval *DstInt = DstIsPhys ? nullptr : &LIS->getInterval(DstReg);
1754
1755 if (DstInt && DstInt->hasSubRanges() && DstReg != SrcReg) {
1756 for (MachineOperand &MO : MRI->reg_operands(DstReg)) {
1757 unsigned SubReg = MO.getSubReg();
1758 if (SubReg == 0 || MO.isUndef())
1759 continue;
1760 MachineInstr &MI = *MO.getParent();
1761 if (MI.isDebugInstr())
1762 continue;
1763 SlotIndex UseIdx = LIS->getInstructionIndex(MI).getRegSlot(true);
1764 addUndefFlag(*DstInt, UseIdx, MO, SubReg);
1765 }
1766 }
1767
1768 SmallPtrSet<MachineInstr*, 8> Visited;
1769 for (MachineRegisterInfo::reg_instr_iterator
1770 I = MRI->reg_instr_begin(SrcReg), E = MRI->reg_instr_end();
1771 I != E; ) {
1772 MachineInstr *UseMI = &*(I++);
1773
1774 // Each instruction can only be rewritten once because sub-register
1775 // composition is not always idempotent. When SrcReg != DstReg, rewriting
1776 // the UseMI operands removes them from the SrcReg use-def chain, but when
1777 // SrcReg is DstReg we could encounter UseMI twice if it has multiple
1778 // operands mentioning the virtual register.
1779 if (SrcReg == DstReg && !Visited.insert(UseMI).second)
1780 continue;
1781
1782 SmallVector<unsigned,8> Ops;
1783 bool Reads, Writes;
1784 std::tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops);
1785
1786 // If SrcReg wasn't read, it may still be the case that DstReg is live-in
1787 // because SrcReg is a sub-register.
1788 if (DstInt && !Reads && SubIdx && !UseMI->isDebugInstr())
1789 Reads = DstInt->liveAt(LIS->getInstructionIndex(*UseMI));
1790
1791 // Replace SrcReg with DstReg in all UseMI operands.
1792 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1793 MachineOperand &MO = UseMI->getOperand(Ops[i]);
1794
1795 // Adjust <undef> flags in case of sub-register joins. We don't want to
1796 // turn a full def into a read-modify-write sub-register def and vice
1797 // versa.
1798 if (SubIdx && MO.isDef())
1799 MO.setIsUndef(!Reads);
1800
1801 // A subreg use of a partially undef (super) register may be a complete
1802 // undef use now and then has to be marked that way.
1803 if (MO.isUse() && !DstIsPhys) {
1804 unsigned SubUseIdx = TRI->composeSubRegIndices(SubIdx, MO.getSubReg());
1805 if (SubUseIdx != 0 && MRI->shouldTrackSubRegLiveness(DstReg)) {
1806 if (!DstInt->hasSubRanges()) {
1807 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
1808 LaneBitmask FullMask = MRI->getMaxLaneMaskForVReg(DstInt->reg());
1809 LaneBitmask UsedLanes = TRI->getSubRegIndexLaneMask(SubIdx);
1810 LaneBitmask UnusedLanes = FullMask & ~UsedLanes;
1811 DstInt->createSubRangeFrom(Allocator, UsedLanes, *DstInt);
1812 // The unused lanes are just empty live-ranges at this point.
1813 // It is the caller responsibility to set the proper
1814 // dead segments if there is an actual dead def of the
1815 // unused lanes. This may happen with rematerialization.
1816 DstInt->createSubRange(Allocator, UnusedLanes);
1817 }
1818 SlotIndex MIIdx = UseMI->isDebugInstr()
1819 ? LIS->getSlotIndexes()->getIndexBefore(*UseMI)
1820 : LIS->getInstructionIndex(*UseMI);
1821 SlotIndex UseIdx = MIIdx.getRegSlot(true);
1822 addUndefFlag(*DstInt, UseIdx, MO, SubUseIdx);
1823 }
1824 }
1825
1826 if (DstIsPhys)
1827 MO.substPhysReg(DstReg, *TRI);
1828 else
1829 MO.substVirtReg(DstReg, SubIdx, *TRI);
1830 }
1831
1832 LLVM_DEBUG({
1833 dbgs() << "\t\tupdated: ";
1834 if (!UseMI->isDebugInstr())
1835 dbgs() << LIS->getInstructionIndex(*UseMI) << "\t";
1836 dbgs() << *UseMI;
1837 });
1838 }
1839 }
1840
canJoinPhys(const CoalescerPair & CP)1841 bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) {
1842 // Always join simple intervals that are defined by a single copy from a
1843 // reserved register. This doesn't increase register pressure, so it is
1844 // always beneficial.
1845 if (!MRI->isReserved(CP.getDstReg())) {
1846 LLVM_DEBUG(dbgs() << "\tCan only merge into reserved registers.\n");
1847 return false;
1848 }
1849
1850 LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg());
1851 if (JoinVInt.containsOneValue())
1852 return true;
1853
1854 LLVM_DEBUG(
1855 dbgs() << "\tCannot join complex intervals into reserved register.\n");
1856 return false;
1857 }
1858
copyValueUndefInPredecessors(LiveRange & S,const MachineBasicBlock * MBB,LiveQueryResult SLRQ)1859 bool RegisterCoalescer::copyValueUndefInPredecessors(
1860 LiveRange &S, const MachineBasicBlock *MBB, LiveQueryResult SLRQ) {
1861 for (const MachineBasicBlock *Pred : MBB->predecessors()) {
1862 SlotIndex PredEnd = LIS->getMBBEndIdx(Pred);
1863 if (VNInfo *V = S.getVNInfoAt(PredEnd.getPrevSlot())) {
1864 // If this is a self loop, we may be reading the same value.
1865 if (V->id != SLRQ.valueOutOrDead()->id)
1866 return false;
1867 }
1868 }
1869
1870 return true;
1871 }
1872
setUndefOnPrunedSubRegUses(LiveInterval & LI,Register Reg,LaneBitmask PrunedLanes)1873 void RegisterCoalescer::setUndefOnPrunedSubRegUses(LiveInterval &LI,
1874 Register Reg,
1875 LaneBitmask PrunedLanes) {
1876 // If we had other instructions in the segment reading the undef sublane
1877 // value, we need to mark them with undef.
1878 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
1879 unsigned SubRegIdx = MO.getSubReg();
1880 if (SubRegIdx == 0 || MO.isUndef())
1881 continue;
1882
1883 LaneBitmask SubRegMask = TRI->getSubRegIndexLaneMask(SubRegIdx);
1884 SlotIndex Pos = LIS->getInstructionIndex(*MO.getParent());
1885 for (LiveInterval::SubRange &S : LI.subranges()) {
1886 if (!S.liveAt(Pos) && (PrunedLanes & SubRegMask).any()) {
1887 MO.setIsUndef();
1888 break;
1889 }
1890 }
1891 }
1892
1893 LI.removeEmptySubRanges();
1894
1895 // A def of a subregister may be a use of other register lanes. Replacing
1896 // such a def with a def of a different register will eliminate the use,
1897 // and may cause the recorded live range to be larger than the actual
1898 // liveness in the program IR.
1899 LIS->shrinkToUses(&LI);
1900 }
1901
joinCopy(MachineInstr * CopyMI,bool & Again)1902 bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) {
1903 Again = false;
1904 LLVM_DEBUG(dbgs() << LIS->getInstructionIndex(*CopyMI) << '\t' << *CopyMI);
1905
1906 CoalescerPair CP(*TRI);
1907 if (!CP.setRegisters(CopyMI)) {
1908 LLVM_DEBUG(dbgs() << "\tNot coalescable.\n");
1909 return false;
1910 }
1911
1912 if (CP.getNewRC()) {
1913 auto SrcRC = MRI->getRegClass(CP.getSrcReg());
1914 auto DstRC = MRI->getRegClass(CP.getDstReg());
1915 unsigned SrcIdx = CP.getSrcIdx();
1916 unsigned DstIdx = CP.getDstIdx();
1917 if (CP.isFlipped()) {
1918 std::swap(SrcIdx, DstIdx);
1919 std::swap(SrcRC, DstRC);
1920 }
1921 if (!TRI->shouldCoalesce(CopyMI, SrcRC, SrcIdx, DstRC, DstIdx,
1922 CP.getNewRC(), *LIS)) {
1923 LLVM_DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n");
1924 return false;
1925 }
1926 }
1927
1928 // Dead code elimination. This really should be handled by MachineDCE, but
1929 // sometimes dead copies slip through, and we can't generate invalid live
1930 // ranges.
1931 if (!CP.isPhys() && CopyMI->allDefsAreDead()) {
1932 LLVM_DEBUG(dbgs() << "\tCopy is dead.\n");
1933 DeadDefs.push_back(CopyMI);
1934 eliminateDeadDefs();
1935 return true;
1936 }
1937
1938 // Eliminate undefs.
1939 if (!CP.isPhys()) {
1940 // If this is an IMPLICIT_DEF, leave it alone, but don't try to coalesce.
1941 if (MachineInstr *UndefMI = eliminateUndefCopy(CopyMI)) {
1942 if (UndefMI->isImplicitDef())
1943 return false;
1944 deleteInstr(CopyMI);
1945 return false; // Not coalescable.
1946 }
1947 }
1948
1949 // Coalesced copies are normally removed immediately, but transformations
1950 // like removeCopyByCommutingDef() can inadvertently create identity copies.
1951 // When that happens, just join the values and remove the copy.
1952 if (CP.getSrcReg() == CP.getDstReg()) {
1953 LiveInterval &LI = LIS->getInterval(CP.getSrcReg());
1954 LLVM_DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n');
1955 const SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI);
1956 LiveQueryResult LRQ = LI.Query(CopyIdx);
1957 if (VNInfo *DefVNI = LRQ.valueDefined()) {
1958 VNInfo *ReadVNI = LRQ.valueIn();
1959 assert(ReadVNI && "No value before copy and no <undef> flag.");
1960 assert(ReadVNI != DefVNI && "Cannot read and define the same value.");
1961
1962 // Track incoming undef lanes we need to eliminate from the subrange.
1963 LaneBitmask PrunedLanes;
1964 MachineBasicBlock *MBB = CopyMI->getParent();
1965
1966 // Process subregister liveranges.
1967 for (LiveInterval::SubRange &S : LI.subranges()) {
1968 LiveQueryResult SLRQ = S.Query(CopyIdx);
1969 if (VNInfo *SDefVNI = SLRQ.valueDefined()) {
1970 if (VNInfo *SReadVNI = SLRQ.valueIn())
1971 SDefVNI = S.MergeValueNumberInto(SDefVNI, SReadVNI);
1972
1973 // If this copy introduced an undef subrange from an incoming value,
1974 // we need to eliminate the undef live in values from the subrange.
1975 if (copyValueUndefInPredecessors(S, MBB, SLRQ)) {
1976 LLVM_DEBUG(dbgs() << "Incoming sublane value is undef at copy\n");
1977 PrunedLanes |= S.LaneMask;
1978 S.removeValNo(SDefVNI);
1979 }
1980 }
1981 }
1982
1983 LI.MergeValueNumberInto(DefVNI, ReadVNI);
1984 if (PrunedLanes.any()) {
1985 LLVM_DEBUG(dbgs() << "Pruning undef incoming lanes: "
1986 << PrunedLanes << '\n');
1987 setUndefOnPrunedSubRegUses(LI, CP.getSrcReg(), PrunedLanes);
1988 }
1989
1990 LLVM_DEBUG(dbgs() << "\tMerged values: " << LI << '\n');
1991 }
1992 deleteInstr(CopyMI);
1993 return true;
1994 }
1995
1996 // Enforce policies.
1997 if (CP.isPhys()) {
1998 LLVM_DEBUG(dbgs() << "\tConsidering merging "
1999 << printReg(CP.getSrcReg(), TRI) << " with "
2000 << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n');
2001 if (!canJoinPhys(CP)) {
2002 // Before giving up coalescing, if definition of source is defined by
2003 // trivial computation, try rematerializing it.
2004 bool IsDefCopy = false;
2005 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
2006 return true;
2007 if (IsDefCopy)
2008 Again = true; // May be possible to coalesce later.
2009 return false;
2010 }
2011 } else {
2012 // When possible, let DstReg be the larger interval.
2013 if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() >
2014 LIS->getInterval(CP.getDstReg()).size())
2015 CP.flip();
2016
2017 LLVM_DEBUG({
2018 dbgs() << "\tConsidering merging to "
2019 << TRI->getRegClassName(CP.getNewRC()) << " with ";
2020 if (CP.getDstIdx() && CP.getSrcIdx())
2021 dbgs() << printReg(CP.getDstReg()) << " in "
2022 << TRI->getSubRegIndexName(CP.getDstIdx()) << " and "
2023 << printReg(CP.getSrcReg()) << " in "
2024 << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n';
2025 else
2026 dbgs() << printReg(CP.getSrcReg(), TRI) << " in "
2027 << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n';
2028 });
2029 }
2030
2031 ShrinkMask = LaneBitmask::getNone();
2032 ShrinkMainRange = false;
2033
2034 // Okay, attempt to join these two intervals. On failure, this returns false.
2035 // Otherwise, if one of the intervals being joined is a physreg, this method
2036 // always canonicalizes DstInt to be it. The output "SrcInt" will not have
2037 // been modified, so we can use this information below to update aliases.
2038 if (!joinIntervals(CP)) {
2039 // Coalescing failed.
2040
2041 // If definition of source is defined by trivial computation, try
2042 // rematerializing it.
2043 bool IsDefCopy = false;
2044 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
2045 return true;
2046
2047 // If we can eliminate the copy without merging the live segments, do so
2048 // now.
2049 if (!CP.isPartial() && !CP.isPhys()) {
2050 bool Changed = adjustCopiesBackFrom(CP, CopyMI);
2051 bool Shrink = false;
2052 if (!Changed)
2053 std::tie(Changed, Shrink) = removeCopyByCommutingDef(CP, CopyMI);
2054 if (Changed) {
2055 deleteInstr(CopyMI);
2056 if (Shrink) {
2057 Register DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
2058 LiveInterval &DstLI = LIS->getInterval(DstReg);
2059 shrinkToUses(&DstLI);
2060 LLVM_DEBUG(dbgs() << "\t\tshrunk: " << DstLI << '\n');
2061 }
2062 LLVM_DEBUG(dbgs() << "\tTrivial!\n");
2063 return true;
2064 }
2065 }
2066
2067 // Try and see if we can partially eliminate the copy by moving the copy to
2068 // its predecessor.
2069 if (!CP.isPartial() && !CP.isPhys())
2070 if (removePartialRedundancy(CP, *CopyMI))
2071 return true;
2072
2073 // Otherwise, we are unable to join the intervals.
2074 LLVM_DEBUG(dbgs() << "\tInterference!\n");
2075 Again = true; // May be possible to coalesce later.
2076 return false;
2077 }
2078
2079 // Coalescing to a virtual register that is of a sub-register class of the
2080 // other. Make sure the resulting register is set to the right register class.
2081 if (CP.isCrossClass()) {
2082 ++numCrossRCs;
2083 MRI->setRegClass(CP.getDstReg(), CP.getNewRC());
2084 }
2085
2086 // Removing sub-register copies can ease the register class constraints.
2087 // Make sure we attempt to inflate the register class of DstReg.
2088 if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC()))
2089 InflateRegs.push_back(CP.getDstReg());
2090
2091 // CopyMI has been erased by joinIntervals at this point. Remove it from
2092 // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back
2093 // to the work list. This keeps ErasedInstrs from growing needlessly.
2094 ErasedInstrs.erase(CopyMI);
2095
2096 // Rewrite all SrcReg operands to DstReg.
2097 // Also update DstReg operands to include DstIdx if it is set.
2098 if (CP.getDstIdx())
2099 updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx());
2100 updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx());
2101
2102 // Shrink subregister ranges if necessary.
2103 if (ShrinkMask.any()) {
2104 LiveInterval &LI = LIS->getInterval(CP.getDstReg());
2105 for (LiveInterval::SubRange &S : LI.subranges()) {
2106 if ((S.LaneMask & ShrinkMask).none())
2107 continue;
2108 LLVM_DEBUG(dbgs() << "Shrink LaneUses (Lane " << PrintLaneMask(S.LaneMask)
2109 << ")\n");
2110 LIS->shrinkToUses(S, LI.reg());
2111 ShrinkMainRange = true;
2112 }
2113 LI.removeEmptySubRanges();
2114 }
2115
2116 // CP.getSrcReg()'s live interval has been merged into CP.getDstReg's live
2117 // interval. Since CP.getSrcReg() is in ToBeUpdated set and its live interval
2118 // is not up-to-date, need to update the merged live interval here.
2119 if (ToBeUpdated.count(CP.getSrcReg()))
2120 ShrinkMainRange = true;
2121
2122 if (ShrinkMainRange) {
2123 LiveInterval &LI = LIS->getInterval(CP.getDstReg());
2124 shrinkToUses(&LI);
2125 }
2126
2127 // SrcReg is guaranteed to be the register whose live interval that is
2128 // being merged.
2129 LIS->removeInterval(CP.getSrcReg());
2130
2131 // Update regalloc hint.
2132 TRI->updateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF);
2133
2134 LLVM_DEBUG({
2135 dbgs() << "\tSuccess: " << printReg(CP.getSrcReg(), TRI, CP.getSrcIdx())
2136 << " -> " << printReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n';
2137 dbgs() << "\tResult = ";
2138 if (CP.isPhys())
2139 dbgs() << printReg(CP.getDstReg(), TRI);
2140 else
2141 dbgs() << LIS->getInterval(CP.getDstReg());
2142 dbgs() << '\n';
2143 });
2144
2145 ++numJoins;
2146 return true;
2147 }
2148
joinReservedPhysReg(CoalescerPair & CP)2149 bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) {
2150 Register DstReg = CP.getDstReg();
2151 Register SrcReg = CP.getSrcReg();
2152 assert(CP.isPhys() && "Must be a physreg copy");
2153 assert(MRI->isReserved(DstReg) && "Not a reserved register");
2154 LiveInterval &RHS = LIS->getInterval(SrcReg);
2155 LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n');
2156
2157 assert(RHS.containsOneValue() && "Invalid join with reserved register");
2158
2159 // Optimization for reserved registers like ESP. We can only merge with a
2160 // reserved physreg if RHS has a single value that is a copy of DstReg.
2161 // The live range of the reserved register will look like a set of dead defs
2162 // - we don't properly track the live range of reserved registers.
2163
2164 // Deny any overlapping intervals. This depends on all the reserved
2165 // register live ranges to look like dead defs.
2166 if (!MRI->isConstantPhysReg(DstReg)) {
2167 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) {
2168 // Abort if not all the regunits are reserved.
2169 for (MCRegUnitRootIterator RI(*UI, TRI); RI.isValid(); ++RI) {
2170 if (!MRI->isReserved(*RI))
2171 return false;
2172 }
2173 if (RHS.overlaps(LIS->getRegUnit(*UI))) {
2174 LLVM_DEBUG(dbgs() << "\t\tInterference: " << printRegUnit(*UI, TRI)
2175 << '\n');
2176 return false;
2177 }
2178 }
2179
2180 // We must also check for overlaps with regmask clobbers.
2181 BitVector RegMaskUsable;
2182 if (LIS->checkRegMaskInterference(RHS, RegMaskUsable) &&
2183 !RegMaskUsable.test(DstReg)) {
2184 LLVM_DEBUG(dbgs() << "\t\tRegMask interference\n");
2185 return false;
2186 }
2187 }
2188
2189 // Skip any value computations, we are not adding new values to the
2190 // reserved register. Also skip merging the live ranges, the reserved
2191 // register live range doesn't need to be accurate as long as all the
2192 // defs are there.
2193
2194 // Delete the identity copy.
2195 MachineInstr *CopyMI;
2196 if (CP.isFlipped()) {
2197 // Physreg is copied into vreg
2198 // %y = COPY %physreg_x
2199 // ... //< no other def of %physreg_x here
2200 // use %y
2201 // =>
2202 // ...
2203 // use %physreg_x
2204 CopyMI = MRI->getVRegDef(SrcReg);
2205 } else {
2206 // VReg is copied into physreg:
2207 // %y = def
2208 // ... //< no other def or use of %physreg_x here
2209 // %physreg_x = COPY %y
2210 // =>
2211 // %physreg_x = def
2212 // ...
2213 if (!MRI->hasOneNonDBGUse(SrcReg)) {
2214 LLVM_DEBUG(dbgs() << "\t\tMultiple vreg uses!\n");
2215 return false;
2216 }
2217
2218 if (!LIS->intervalIsInOneMBB(RHS)) {
2219 LLVM_DEBUG(dbgs() << "\t\tComplex control flow!\n");
2220 return false;
2221 }
2222
2223 MachineInstr &DestMI = *MRI->getVRegDef(SrcReg);
2224 CopyMI = &*MRI->use_instr_nodbg_begin(SrcReg);
2225 SlotIndex CopyRegIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
2226 SlotIndex DestRegIdx = LIS->getInstructionIndex(DestMI).getRegSlot();
2227
2228 if (!MRI->isConstantPhysReg(DstReg)) {
2229 // We checked above that there are no interfering defs of the physical
2230 // register. However, for this case, where we intend to move up the def of
2231 // the physical register, we also need to check for interfering uses.
2232 SlotIndexes *Indexes = LIS->getSlotIndexes();
2233 for (SlotIndex SI = Indexes->getNextNonNullIndex(DestRegIdx);
2234 SI != CopyRegIdx; SI = Indexes->getNextNonNullIndex(SI)) {
2235 MachineInstr *MI = LIS->getInstructionFromIndex(SI);
2236 if (MI->readsRegister(DstReg, TRI)) {
2237 LLVM_DEBUG(dbgs() << "\t\tInterference (read): " << *MI);
2238 return false;
2239 }
2240 }
2241 }
2242
2243 // We're going to remove the copy which defines a physical reserved
2244 // register, so remove its valno, etc.
2245 LLVM_DEBUG(dbgs() << "\t\tRemoving phys reg def of "
2246 << printReg(DstReg, TRI) << " at " << CopyRegIdx << "\n");
2247
2248 LIS->removePhysRegDefAt(DstReg.asMCReg(), CopyRegIdx);
2249 // Create a new dead def at the new def location.
2250 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) {
2251 LiveRange &LR = LIS->getRegUnit(*UI);
2252 LR.createDeadDef(DestRegIdx, LIS->getVNInfoAllocator());
2253 }
2254 }
2255
2256 deleteInstr(CopyMI);
2257
2258 // We don't track kills for reserved registers.
2259 MRI->clearKillFlags(CP.getSrcReg());
2260
2261 return true;
2262 }
2263
2264 //===----------------------------------------------------------------------===//
2265 // Interference checking and interval joining
2266 //===----------------------------------------------------------------------===//
2267 //
2268 // In the easiest case, the two live ranges being joined are disjoint, and
2269 // there is no interference to consider. It is quite common, though, to have
2270 // overlapping live ranges, and we need to check if the interference can be
2271 // resolved.
2272 //
2273 // The live range of a single SSA value forms a sub-tree of the dominator tree.
2274 // This means that two SSA values overlap if and only if the def of one value
2275 // is contained in the live range of the other value. As a special case, the
2276 // overlapping values can be defined at the same index.
2277 //
2278 // The interference from an overlapping def can be resolved in these cases:
2279 //
2280 // 1. Coalescable copies. The value is defined by a copy that would become an
2281 // identity copy after joining SrcReg and DstReg. The copy instruction will
2282 // be removed, and the value will be merged with the source value.
2283 //
2284 // There can be several copies back and forth, causing many values to be
2285 // merged into one. We compute a list of ultimate values in the joined live
2286 // range as well as a mappings from the old value numbers.
2287 //
2288 // 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI
2289 // predecessors have a live out value. It doesn't cause real interference,
2290 // and can be merged into the value it overlaps. Like a coalescable copy, it
2291 // can be erased after joining.
2292 //
2293 // 3. Copy of external value. The overlapping def may be a copy of a value that
2294 // is already in the other register. This is like a coalescable copy, but
2295 // the live range of the source register must be trimmed after erasing the
2296 // copy instruction:
2297 //
2298 // %src = COPY %ext
2299 // %dst = COPY %ext <-- Remove this COPY, trim the live range of %ext.
2300 //
2301 // 4. Clobbering undefined lanes. Vector registers are sometimes built by
2302 // defining one lane at a time:
2303 //
2304 // %dst:ssub0<def,read-undef> = FOO
2305 // %src = BAR
2306 // %dst:ssub1 = COPY %src
2307 //
2308 // The live range of %src overlaps the %dst value defined by FOO, but
2309 // merging %src into %dst:ssub1 is only going to clobber the ssub1 lane
2310 // which was undef anyway.
2311 //
2312 // The value mapping is more complicated in this case. The final live range
2313 // will have different value numbers for both FOO and BAR, but there is no
2314 // simple mapping from old to new values. It may even be necessary to add
2315 // new PHI values.
2316 //
2317 // 5. Clobbering dead lanes. A def may clobber a lane of a vector register that
2318 // is live, but never read. This can happen because we don't compute
2319 // individual live ranges per lane.
2320 //
2321 // %dst = FOO
2322 // %src = BAR
2323 // %dst:ssub1 = COPY %src
2324 //
2325 // This kind of interference is only resolved locally. If the clobbered
2326 // lane value escapes the block, the join is aborted.
2327
2328 namespace {
2329
2330 /// Track information about values in a single virtual register about to be
2331 /// joined. Objects of this class are always created in pairs - one for each
2332 /// side of the CoalescerPair (or one for each lane of a side of the coalescer
2333 /// pair)
2334 class JoinVals {
2335 /// Live range we work on.
2336 LiveRange &LR;
2337
2338 /// (Main) register we work on.
2339 const Register Reg;
2340
2341 /// Reg (and therefore the values in this liverange) will end up as
2342 /// subregister SubIdx in the coalesced register. Either CP.DstIdx or
2343 /// CP.SrcIdx.
2344 const unsigned SubIdx;
2345
2346 /// The LaneMask that this liverange will occupy the coalesced register. May
2347 /// be smaller than the lanemask produced by SubIdx when merging subranges.
2348 const LaneBitmask LaneMask;
2349
2350 /// This is true when joining sub register ranges, false when joining main
2351 /// ranges.
2352 const bool SubRangeJoin;
2353
2354 /// Whether the current LiveInterval tracks subregister liveness.
2355 const bool TrackSubRegLiveness;
2356
2357 /// Values that will be present in the final live range.
2358 SmallVectorImpl<VNInfo*> &NewVNInfo;
2359
2360 const CoalescerPair &CP;
2361 LiveIntervals *LIS;
2362 SlotIndexes *Indexes;
2363 const TargetRegisterInfo *TRI;
2364
2365 /// Value number assignments. Maps value numbers in LI to entries in
2366 /// NewVNInfo. This is suitable for passing to LiveInterval::join().
2367 SmallVector<int, 8> Assignments;
2368
2369 public:
2370 /// Conflict resolution for overlapping values.
2371 enum ConflictResolution {
2372 /// No overlap, simply keep this value.
2373 CR_Keep,
2374
2375 /// Merge this value into OtherVNI and erase the defining instruction.
2376 /// Used for IMPLICIT_DEF, coalescable copies, and copies from external
2377 /// values.
2378 CR_Erase,
2379
2380 /// Merge this value into OtherVNI but keep the defining instruction.
2381 /// This is for the special case where OtherVNI is defined by the same
2382 /// instruction.
2383 CR_Merge,
2384
2385 /// Keep this value, and have it replace OtherVNI where possible. This
2386 /// complicates value mapping since OtherVNI maps to two different values
2387 /// before and after this def.
2388 /// Used when clobbering undefined or dead lanes.
2389 CR_Replace,
2390
2391 /// Unresolved conflict. Visit later when all values have been mapped.
2392 CR_Unresolved,
2393
2394 /// Unresolvable conflict. Abort the join.
2395 CR_Impossible
2396 };
2397
2398 private:
2399 /// Per-value info for LI. The lane bit masks are all relative to the final
2400 /// joined register, so they can be compared directly between SrcReg and
2401 /// DstReg.
2402 struct Val {
2403 ConflictResolution Resolution = CR_Keep;
2404
2405 /// Lanes written by this def, 0 for unanalyzed values.
2406 LaneBitmask WriteLanes;
2407
2408 /// Lanes with defined values in this register. Other lanes are undef and
2409 /// safe to clobber.
2410 LaneBitmask ValidLanes;
2411
2412 /// Value in LI being redefined by this def.
2413 VNInfo *RedefVNI = nullptr;
2414
2415 /// Value in the other live range that overlaps this def, if any.
2416 VNInfo *OtherVNI = nullptr;
2417
2418 /// Is this value an IMPLICIT_DEF that can be erased?
2419 ///
2420 /// IMPLICIT_DEF values should only exist at the end of a basic block that
2421 /// is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be
2422 /// safely erased if they are overlapping a live value in the other live
2423 /// interval.
2424 ///
2425 /// Weird control flow graphs and incomplete PHI handling in
2426 /// ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with
2427 /// longer live ranges. Such IMPLICIT_DEF values should be treated like
2428 /// normal values.
2429 bool ErasableImplicitDef = false;
2430
2431 /// True when the live range of this value will be pruned because of an
2432 /// overlapping CR_Replace value in the other live range.
2433 bool Pruned = false;
2434
2435 /// True once Pruned above has been computed.
2436 bool PrunedComputed = false;
2437
2438 /// True if this value is determined to be identical to OtherVNI
2439 /// (in valuesIdentical). This is used with CR_Erase where the erased
2440 /// copy is redundant, i.e. the source value is already the same as
2441 /// the destination. In such cases the subranges need to be updated
2442 /// properly. See comment at pruneSubRegValues for more info.
2443 bool Identical = false;
2444
2445 Val() = default;
2446
isAnalyzed__anondf5cb7ca0311::JoinVals::Val2447 bool isAnalyzed() const { return WriteLanes.any(); }
2448 };
2449
2450 /// One entry per value number in LI.
2451 SmallVector<Val, 8> Vals;
2452
2453 /// Compute the bitmask of lanes actually written by DefMI.
2454 /// Set Redef if there are any partial register definitions that depend on the
2455 /// previous value of the register.
2456 LaneBitmask computeWriteLanes(const MachineInstr *DefMI, bool &Redef) const;
2457
2458 /// Find the ultimate value that VNI was copied from.
2459 std::pair<const VNInfo *, Register> followCopyChain(const VNInfo *VNI) const;
2460
2461 bool valuesIdentical(VNInfo *Value0, VNInfo *Value1, const JoinVals &Other) const;
2462
2463 /// Analyze ValNo in this live range, and set all fields of Vals[ValNo].
2464 /// Return a conflict resolution when possible, but leave the hard cases as
2465 /// CR_Unresolved.
2466 /// Recursively calls computeAssignment() on this and Other, guaranteeing that
2467 /// both OtherVNI and RedefVNI have been analyzed and mapped before returning.
2468 /// The recursion always goes upwards in the dominator tree, making loops
2469 /// impossible.
2470 ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other);
2471
2472 /// Compute the value assignment for ValNo in RI.
2473 /// This may be called recursively by analyzeValue(), but never for a ValNo on
2474 /// the stack.
2475 void computeAssignment(unsigned ValNo, JoinVals &Other);
2476
2477 /// Assuming ValNo is going to clobber some valid lanes in Other.LR, compute
2478 /// the extent of the tainted lanes in the block.
2479 ///
2480 /// Multiple values in Other.LR can be affected since partial redefinitions
2481 /// can preserve previously tainted lanes.
2482 ///
2483 /// 1 %dst = VLOAD <-- Define all lanes in %dst
2484 /// 2 %src = FOO <-- ValNo to be joined with %dst:ssub0
2485 /// 3 %dst:ssub1 = BAR <-- Partial redef doesn't clear taint in ssub0
2486 /// 4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read
2487 ///
2488 /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes)
2489 /// entry to TaintedVals.
2490 ///
2491 /// Returns false if the tainted lanes extend beyond the basic block.
2492 bool
2493 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other,
2494 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent);
2495
2496 /// Return true if MI uses any of the given Lanes from Reg.
2497 /// This does not include partial redefinitions of Reg.
2498 bool usesLanes(const MachineInstr &MI, Register, unsigned, LaneBitmask) const;
2499
2500 /// Determine if ValNo is a copy of a value number in LR or Other.LR that will
2501 /// be pruned:
2502 ///
2503 /// %dst = COPY %src
2504 /// %src = COPY %dst <-- This value to be pruned.
2505 /// %dst = COPY %src <-- This value is a copy of a pruned value.
2506 bool isPrunedValue(unsigned ValNo, JoinVals &Other);
2507
2508 public:
JoinVals(LiveRange & LR,Register Reg,unsigned SubIdx,LaneBitmask LaneMask,SmallVectorImpl<VNInfo * > & newVNInfo,const CoalescerPair & cp,LiveIntervals * lis,const TargetRegisterInfo * TRI,bool SubRangeJoin,bool TrackSubRegLiveness)2509 JoinVals(LiveRange &LR, Register Reg, unsigned SubIdx, LaneBitmask LaneMask,
2510 SmallVectorImpl<VNInfo *> &newVNInfo, const CoalescerPair &cp,
2511 LiveIntervals *lis, const TargetRegisterInfo *TRI, bool SubRangeJoin,
2512 bool TrackSubRegLiveness)
2513 : LR(LR), Reg(Reg), SubIdx(SubIdx), LaneMask(LaneMask),
2514 SubRangeJoin(SubRangeJoin), TrackSubRegLiveness(TrackSubRegLiveness),
2515 NewVNInfo(newVNInfo), CP(cp), LIS(lis), Indexes(LIS->getSlotIndexes()),
2516 TRI(TRI), Assignments(LR.getNumValNums(), -1),
2517 Vals(LR.getNumValNums()) {}
2518
2519 /// Analyze defs in LR and compute a value mapping in NewVNInfo.
2520 /// Returns false if any conflicts were impossible to resolve.
2521 bool mapValues(JoinVals &Other);
2522
2523 /// Try to resolve conflicts that require all values to be mapped.
2524 /// Returns false if any conflicts were impossible to resolve.
2525 bool resolveConflicts(JoinVals &Other);
2526
2527 /// Prune the live range of values in Other.LR where they would conflict with
2528 /// CR_Replace values in LR. Collect end points for restoring the live range
2529 /// after joining.
2530 void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints,
2531 bool changeInstrs);
2532
2533 /// Removes subranges starting at copies that get removed. This sometimes
2534 /// happens when undefined subranges are copied around. These ranges contain
2535 /// no useful information and can be removed.
2536 void pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask);
2537
2538 /// Pruning values in subranges can lead to removing segments in these
2539 /// subranges started by IMPLICIT_DEFs. The corresponding segments in
2540 /// the main range also need to be removed. This function will mark
2541 /// the corresponding values in the main range as pruned, so that
2542 /// eraseInstrs can do the final cleanup.
2543 /// The parameter @p LI must be the interval whose main range is the
2544 /// live range LR.
2545 void pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange);
2546
2547 /// Erase any machine instructions that have been coalesced away.
2548 /// Add erased instructions to ErasedInstrs.
2549 /// Add foreign virtual registers to ShrinkRegs if their live range ended at
2550 /// the erased instrs.
2551 void eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
2552 SmallVectorImpl<Register> &ShrinkRegs,
2553 LiveInterval *LI = nullptr);
2554
2555 /// Remove liverange defs at places where implicit defs will be removed.
2556 void removeImplicitDefs();
2557
2558 /// Get the value assignments suitable for passing to LiveInterval::join.
getAssignments() const2559 const int *getAssignments() const { return Assignments.data(); }
2560
2561 /// Get the conflict resolution for a value number.
getResolution(unsigned Num) const2562 ConflictResolution getResolution(unsigned Num) const {
2563 return Vals[Num].Resolution;
2564 }
2565 };
2566
2567 } // end anonymous namespace
2568
computeWriteLanes(const MachineInstr * DefMI,bool & Redef) const2569 LaneBitmask JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef)
2570 const {
2571 LaneBitmask L;
2572 for (const MachineOperand &MO : DefMI->operands()) {
2573 if (!MO.isReg() || MO.getReg() != Reg || !MO.isDef())
2574 continue;
2575 L |= TRI->getSubRegIndexLaneMask(
2576 TRI->composeSubRegIndices(SubIdx, MO.getSubReg()));
2577 if (MO.readsReg())
2578 Redef = true;
2579 }
2580 return L;
2581 }
2582
2583 std::pair<const VNInfo *, Register>
followCopyChain(const VNInfo * VNI) const2584 JoinVals::followCopyChain(const VNInfo *VNI) const {
2585 Register TrackReg = Reg;
2586
2587 while (!VNI->isPHIDef()) {
2588 SlotIndex Def = VNI->def;
2589 MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
2590 assert(MI && "No defining instruction");
2591 if (!MI->isFullCopy())
2592 return std::make_pair(VNI, TrackReg);
2593 Register SrcReg = MI->getOperand(1).getReg();
2594 if (!SrcReg.isVirtual())
2595 return std::make_pair(VNI, TrackReg);
2596
2597 const LiveInterval &LI = LIS->getInterval(SrcReg);
2598 const VNInfo *ValueIn;
2599 // No subrange involved.
2600 if (!SubRangeJoin || !LI.hasSubRanges()) {
2601 LiveQueryResult LRQ = LI.Query(Def);
2602 ValueIn = LRQ.valueIn();
2603 } else {
2604 // Query subranges. Ensure that all matching ones take us to the same def
2605 // (allowing some of them to be undef).
2606 ValueIn = nullptr;
2607 for (const LiveInterval::SubRange &S : LI.subranges()) {
2608 // Transform lanemask to a mask in the joined live interval.
2609 LaneBitmask SMask = TRI->composeSubRegIndexLaneMask(SubIdx, S.LaneMask);
2610 if ((SMask & LaneMask).none())
2611 continue;
2612 LiveQueryResult LRQ = S.Query(Def);
2613 if (!ValueIn) {
2614 ValueIn = LRQ.valueIn();
2615 continue;
2616 }
2617 if (LRQ.valueIn() && ValueIn != LRQ.valueIn())
2618 return std::make_pair(VNI, TrackReg);
2619 }
2620 }
2621 if (ValueIn == nullptr) {
2622 // Reaching an undefined value is legitimate, for example:
2623 //
2624 // 1 undef %0.sub1 = ... ;; %0.sub0 == undef
2625 // 2 %1 = COPY %0 ;; %1 is defined here.
2626 // 3 %0 = COPY %1 ;; Now %0.sub0 has a definition,
2627 // ;; but it's equivalent to "undef".
2628 return std::make_pair(nullptr, SrcReg);
2629 }
2630 VNI = ValueIn;
2631 TrackReg = SrcReg;
2632 }
2633 return std::make_pair(VNI, TrackReg);
2634 }
2635
valuesIdentical(VNInfo * Value0,VNInfo * Value1,const JoinVals & Other) const2636 bool JoinVals::valuesIdentical(VNInfo *Value0, VNInfo *Value1,
2637 const JoinVals &Other) const {
2638 const VNInfo *Orig0;
2639 Register Reg0;
2640 std::tie(Orig0, Reg0) = followCopyChain(Value0);
2641 if (Orig0 == Value1 && Reg0 == Other.Reg)
2642 return true;
2643
2644 const VNInfo *Orig1;
2645 Register Reg1;
2646 std::tie(Orig1, Reg1) = Other.followCopyChain(Value1);
2647 // If both values are undefined, and the source registers are the same
2648 // register, the values are identical. Filter out cases where only one
2649 // value is defined.
2650 if (Orig0 == nullptr || Orig1 == nullptr)
2651 return Orig0 == Orig1 && Reg0 == Reg1;
2652
2653 // The values are equal if they are defined at the same place and use the
2654 // same register. Note that we cannot compare VNInfos directly as some of
2655 // them might be from a copy created in mergeSubRangeInto() while the other
2656 // is from the original LiveInterval.
2657 return Orig0->def == Orig1->def && Reg0 == Reg1;
2658 }
2659
2660 JoinVals::ConflictResolution
analyzeValue(unsigned ValNo,JoinVals & Other)2661 JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) {
2662 Val &V = Vals[ValNo];
2663 assert(!V.isAnalyzed() && "Value has already been analyzed!");
2664 VNInfo *VNI = LR.getValNumInfo(ValNo);
2665 if (VNI->isUnused()) {
2666 V.WriteLanes = LaneBitmask::getAll();
2667 return CR_Keep;
2668 }
2669
2670 // Get the instruction defining this value, compute the lanes written.
2671 const MachineInstr *DefMI = nullptr;
2672 if (VNI->isPHIDef()) {
2673 // Conservatively assume that all lanes in a PHI are valid.
2674 LaneBitmask Lanes = SubRangeJoin ? LaneBitmask::getLane(0)
2675 : TRI->getSubRegIndexLaneMask(SubIdx);
2676 V.ValidLanes = V.WriteLanes = Lanes;
2677 } else {
2678 DefMI = Indexes->getInstructionFromIndex(VNI->def);
2679 assert(DefMI != nullptr);
2680 if (SubRangeJoin) {
2681 // We don't care about the lanes when joining subregister ranges.
2682 V.WriteLanes = V.ValidLanes = LaneBitmask::getLane(0);
2683 if (DefMI->isImplicitDef()) {
2684 V.ValidLanes = LaneBitmask::getNone();
2685 V.ErasableImplicitDef = true;
2686 }
2687 } else {
2688 bool Redef = false;
2689 V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef);
2690
2691 // If this is a read-modify-write instruction, there may be more valid
2692 // lanes than the ones written by this instruction.
2693 // This only covers partial redef operands. DefMI may have normal use
2694 // operands reading the register. They don't contribute valid lanes.
2695 //
2696 // This adds ssub1 to the set of valid lanes in %src:
2697 //
2698 // %src:ssub1 = FOO
2699 //
2700 // This leaves only ssub1 valid, making any other lanes undef:
2701 //
2702 // %src:ssub1<def,read-undef> = FOO %src:ssub2
2703 //
2704 // The <read-undef> flag on the def operand means that old lane values are
2705 // not important.
2706 if (Redef) {
2707 V.RedefVNI = LR.Query(VNI->def).valueIn();
2708 assert((TrackSubRegLiveness || V.RedefVNI) &&
2709 "Instruction is reading nonexistent value");
2710 if (V.RedefVNI != nullptr) {
2711 computeAssignment(V.RedefVNI->id, Other);
2712 V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes;
2713 }
2714 }
2715
2716 // An IMPLICIT_DEF writes undef values.
2717 if (DefMI->isImplicitDef()) {
2718 // We normally expect IMPLICIT_DEF values to be live only until the end
2719 // of their block. If the value is really live longer and gets pruned in
2720 // another block, this flag is cleared again.
2721 //
2722 // Clearing the valid lanes is deferred until it is sure this can be
2723 // erased.
2724 V.ErasableImplicitDef = true;
2725 }
2726 }
2727 }
2728
2729 // Find the value in Other that overlaps VNI->def, if any.
2730 LiveQueryResult OtherLRQ = Other.LR.Query(VNI->def);
2731
2732 // It is possible that both values are defined by the same instruction, or
2733 // the values are PHIs defined in the same block. When that happens, the two
2734 // values should be merged into one, but not into any preceding value.
2735 // The first value defined or visited gets CR_Keep, the other gets CR_Merge.
2736 if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) {
2737 assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ");
2738
2739 // One value stays, the other is merged. Keep the earlier one, or the first
2740 // one we see.
2741 if (OtherVNI->def < VNI->def)
2742 Other.computeAssignment(OtherVNI->id, *this);
2743 else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) {
2744 // This is an early-clobber def overlapping a live-in value in the other
2745 // register. Not mergeable.
2746 V.OtherVNI = OtherLRQ.valueIn();
2747 return CR_Impossible;
2748 }
2749 V.OtherVNI = OtherVNI;
2750 Val &OtherV = Other.Vals[OtherVNI->id];
2751 // Keep this value, check for conflicts when analyzing OtherVNI. Avoid
2752 // revisiting OtherVNI->id in JoinVals::computeAssignment() below before it
2753 // is assigned.
2754 if (!OtherV.isAnalyzed() || Other.Assignments[OtherVNI->id] == -1)
2755 return CR_Keep;
2756 // Both sides have been analyzed now.
2757 // Allow overlapping PHI values. Any real interference would show up in a
2758 // predecessor, the PHI itself can't introduce any conflicts.
2759 if (VNI->isPHIDef())
2760 return CR_Merge;
2761 if ((V.ValidLanes & OtherV.ValidLanes).any())
2762 // Overlapping lanes can't be resolved.
2763 return CR_Impossible;
2764 else
2765 return CR_Merge;
2766 }
2767
2768 // No simultaneous def. Is Other live at the def?
2769 V.OtherVNI = OtherLRQ.valueIn();
2770 if (!V.OtherVNI)
2771 // No overlap, no conflict.
2772 return CR_Keep;
2773
2774 assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ");
2775
2776 // We have overlapping values, or possibly a kill of Other.
2777 // Recursively compute assignments up the dominator tree.
2778 Other.computeAssignment(V.OtherVNI->id, *this);
2779 Val &OtherV = Other.Vals[V.OtherVNI->id];
2780
2781 if (OtherV.ErasableImplicitDef) {
2782 // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block.
2783 // This shouldn't normally happen, but ProcessImplicitDefs can leave such
2784 // IMPLICIT_DEF instructions behind, and there is nothing wrong with it
2785 // technically.
2786 //
2787 // When it happens, treat that IMPLICIT_DEF as a normal value, and don't try
2788 // to erase the IMPLICIT_DEF instruction.
2789 if (DefMI &&
2790 DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) {
2791 LLVM_DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def
2792 << " extends into "
2793 << printMBBReference(*DefMI->getParent())
2794 << ", keeping it.\n");
2795 OtherV.ErasableImplicitDef = false;
2796 } else {
2797 // We deferred clearing these lanes in case we needed to save them
2798 OtherV.ValidLanes &= ~OtherV.WriteLanes;
2799 }
2800 }
2801
2802 // Allow overlapping PHI values. Any real interference would show up in a
2803 // predecessor, the PHI itself can't introduce any conflicts.
2804 if (VNI->isPHIDef())
2805 return CR_Replace;
2806
2807 // Check for simple erasable conflicts.
2808 if (DefMI->isImplicitDef())
2809 return CR_Erase;
2810
2811 // Include the non-conflict where DefMI is a coalescable copy that kills
2812 // OtherVNI. We still want the copy erased and value numbers merged.
2813 if (CP.isCoalescable(DefMI)) {
2814 // Some of the lanes copied from OtherVNI may be undef, making them undef
2815 // here too.
2816 V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes;
2817 return CR_Erase;
2818 }
2819
2820 // This may not be a real conflict if DefMI simply kills Other and defines
2821 // VNI.
2822 if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def)
2823 return CR_Keep;
2824
2825 // Handle the case where VNI and OtherVNI can be proven to be identical:
2826 //
2827 // %other = COPY %ext
2828 // %this = COPY %ext <-- Erase this copy
2829 //
2830 if (DefMI->isFullCopy() && !CP.isPartial() &&
2831 valuesIdentical(VNI, V.OtherVNI, Other)) {
2832 V.Identical = true;
2833 return CR_Erase;
2834 }
2835
2836 // The remaining checks apply to the lanes, which aren't tracked here. This
2837 // was already decided to be OK via the following CR_Replace condition.
2838 // CR_Replace.
2839 if (SubRangeJoin)
2840 return CR_Replace;
2841
2842 // If the lanes written by this instruction were all undef in OtherVNI, it is
2843 // still safe to join the live ranges. This can't be done with a simple value
2844 // mapping, though - OtherVNI will map to multiple values:
2845 //
2846 // 1 %dst:ssub0 = FOO <-- OtherVNI
2847 // 2 %src = BAR <-- VNI
2848 // 3 %dst:ssub1 = COPY killed %src <-- Eliminate this copy.
2849 // 4 BAZ killed %dst
2850 // 5 QUUX killed %src
2851 //
2852 // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace
2853 // handles this complex value mapping.
2854 if ((V.WriteLanes & OtherV.ValidLanes).none())
2855 return CR_Replace;
2856
2857 // If the other live range is killed by DefMI and the live ranges are still
2858 // overlapping, it must be because we're looking at an early clobber def:
2859 //
2860 // %dst<def,early-clobber> = ASM killed %src
2861 //
2862 // In this case, it is illegal to merge the two live ranges since the early
2863 // clobber def would clobber %src before it was read.
2864 if (OtherLRQ.isKill()) {
2865 // This case where the def doesn't overlap the kill is handled above.
2866 assert(VNI->def.isEarlyClobber() &&
2867 "Only early clobber defs can overlap a kill");
2868 return CR_Impossible;
2869 }
2870
2871 // VNI is clobbering live lanes in OtherVNI, but there is still the
2872 // possibility that no instructions actually read the clobbered lanes.
2873 // If we're clobbering all the lanes in OtherVNI, at least one must be read.
2874 // Otherwise Other.RI wouldn't be live here.
2875 if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes).none())
2876 return CR_Impossible;
2877
2878 if (TrackSubRegLiveness) {
2879 auto &OtherLI = LIS->getInterval(Other.Reg);
2880 // If OtherVNI does not have subranges, it means all the lanes of OtherVNI
2881 // share the same live range, so we just need to check whether they have
2882 // any conflict bit in their LaneMask.
2883 if (!OtherLI.hasSubRanges()) {
2884 LaneBitmask OtherMask = TRI->getSubRegIndexLaneMask(Other.SubIdx);
2885 return (OtherMask & V.WriteLanes).none() ? CR_Replace : CR_Impossible;
2886 }
2887
2888 // If we are clobbering some active lanes of OtherVNI at VNI->def, it is
2889 // impossible to resolve the conflict. Otherwise, we can just replace
2890 // OtherVNI because of no real conflict.
2891 for (LiveInterval::SubRange &OtherSR : OtherLI.subranges()) {
2892 LaneBitmask OtherMask =
2893 TRI->composeSubRegIndexLaneMask(Other.SubIdx, OtherSR.LaneMask);
2894 if ((OtherMask & V.WriteLanes).none())
2895 continue;
2896
2897 auto OtherSRQ = OtherSR.Query(VNI->def);
2898 if (OtherSRQ.valueIn() && OtherSRQ.endPoint() > VNI->def) {
2899 // VNI is clobbering some lanes of OtherVNI, they have real conflict.
2900 return CR_Impossible;
2901 }
2902 }
2903
2904 // VNI is NOT clobbering any lane of OtherVNI, just replace OtherVNI.
2905 return CR_Replace;
2906 }
2907
2908 // We need to verify that no instructions are reading the clobbered lanes.
2909 // To save compile time, we'll only check that locally. Don't allow the
2910 // tainted value to escape the basic block.
2911 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2912 if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB))
2913 return CR_Impossible;
2914
2915 // There are still some things that could go wrong besides clobbered lanes
2916 // being read, for example OtherVNI may be only partially redefined in MBB,
2917 // and some clobbered lanes could escape the block. Save this analysis for
2918 // resolveConflicts() when all values have been mapped. We need to know
2919 // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute
2920 // that now - the recursive analyzeValue() calls must go upwards in the
2921 // dominator tree.
2922 return CR_Unresolved;
2923 }
2924
computeAssignment(unsigned ValNo,JoinVals & Other)2925 void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) {
2926 Val &V = Vals[ValNo];
2927 if (V.isAnalyzed()) {
2928 // Recursion should always move up the dominator tree, so ValNo is not
2929 // supposed to reappear before it has been assigned.
2930 assert(Assignments[ValNo] != -1 && "Bad recursion?");
2931 return;
2932 }
2933 switch ((V.Resolution = analyzeValue(ValNo, Other))) {
2934 case CR_Erase:
2935 case CR_Merge:
2936 // Merge this ValNo into OtherVNI.
2937 assert(V.OtherVNI && "OtherVNI not assigned, can't merge.");
2938 assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion");
2939 Assignments[ValNo] = Other.Assignments[V.OtherVNI->id];
2940 LLVM_DEBUG(dbgs() << "\t\tmerge " << printReg(Reg) << ':' << ValNo << '@'
2941 << LR.getValNumInfo(ValNo)->def << " into "
2942 << printReg(Other.Reg) << ':' << V.OtherVNI->id << '@'
2943 << V.OtherVNI->def << " --> @"
2944 << NewVNInfo[Assignments[ValNo]]->def << '\n');
2945 break;
2946 case CR_Replace:
2947 case CR_Unresolved: {
2948 // The other value is going to be pruned if this join is successful.
2949 assert(V.OtherVNI && "OtherVNI not assigned, can't prune");
2950 Val &OtherV = Other.Vals[V.OtherVNI->id];
2951 // We cannot erase an IMPLICIT_DEF if we don't have valid values for all
2952 // its lanes.
2953 if (OtherV.ErasableImplicitDef &&
2954 TrackSubRegLiveness &&
2955 (OtherV.WriteLanes & ~V.ValidLanes).any()) {
2956 LLVM_DEBUG(dbgs() << "Cannot erase implicit_def with missing values\n");
2957
2958 OtherV.ErasableImplicitDef = false;
2959 // The valid lanes written by the implicit_def were speculatively cleared
2960 // before, so make this more conservative. It may be better to track this,
2961 // I haven't found a testcase where it matters.
2962 OtherV.ValidLanes = LaneBitmask::getAll();
2963 }
2964
2965 OtherV.Pruned = true;
2966 [[fallthrough]];
2967 }
2968 default:
2969 // This value number needs to go in the final joined live range.
2970 Assignments[ValNo] = NewVNInfo.size();
2971 NewVNInfo.push_back(LR.getValNumInfo(ValNo));
2972 break;
2973 }
2974 }
2975
mapValues(JoinVals & Other)2976 bool JoinVals::mapValues(JoinVals &Other) {
2977 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2978 computeAssignment(i, Other);
2979 if (Vals[i].Resolution == CR_Impossible) {
2980 LLVM_DEBUG(dbgs() << "\t\tinterference at " << printReg(Reg) << ':' << i
2981 << '@' << LR.getValNumInfo(i)->def << '\n');
2982 return false;
2983 }
2984 }
2985 return true;
2986 }
2987
2988 bool JoinVals::
taintExtent(unsigned ValNo,LaneBitmask TaintedLanes,JoinVals & Other,SmallVectorImpl<std::pair<SlotIndex,LaneBitmask>> & TaintExtent)2989 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other,
2990 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent) {
2991 VNInfo *VNI = LR.getValNumInfo(ValNo);
2992 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2993 SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB);
2994
2995 // Scan Other.LR from VNI.def to MBBEnd.
2996 LiveInterval::iterator OtherI = Other.LR.find(VNI->def);
2997 assert(OtherI != Other.LR.end() && "No conflict?");
2998 do {
2999 // OtherI is pointing to a tainted value. Abort the join if the tainted
3000 // lanes escape the block.
3001 SlotIndex End = OtherI->end;
3002 if (End >= MBBEnd) {
3003 LLVM_DEBUG(dbgs() << "\t\ttaints global " << printReg(Other.Reg) << ':'
3004 << OtherI->valno->id << '@' << OtherI->start << '\n');
3005 return false;
3006 }
3007 LLVM_DEBUG(dbgs() << "\t\ttaints local " << printReg(Other.Reg) << ':'
3008 << OtherI->valno->id << '@' << OtherI->start << " to "
3009 << End << '\n');
3010 // A dead def is not a problem.
3011 if (End.isDead())
3012 break;
3013 TaintExtent.push_back(std::make_pair(End, TaintedLanes));
3014
3015 // Check for another def in the MBB.
3016 if (++OtherI == Other.LR.end() || OtherI->start >= MBBEnd)
3017 break;
3018
3019 // Lanes written by the new def are no longer tainted.
3020 const Val &OV = Other.Vals[OtherI->valno->id];
3021 TaintedLanes &= ~OV.WriteLanes;
3022 if (!OV.RedefVNI)
3023 break;
3024 } while (TaintedLanes.any());
3025 return true;
3026 }
3027
usesLanes(const MachineInstr & MI,Register Reg,unsigned SubIdx,LaneBitmask Lanes) const3028 bool JoinVals::usesLanes(const MachineInstr &MI, Register Reg, unsigned SubIdx,
3029 LaneBitmask Lanes) const {
3030 if (MI.isDebugOrPseudoInstr())
3031 return false;
3032 for (const MachineOperand &MO : MI.operands()) {
3033 if (!MO.isReg() || MO.isDef() || MO.getReg() != Reg)
3034 continue;
3035 if (!MO.readsReg())
3036 continue;
3037 unsigned S = TRI->composeSubRegIndices(SubIdx, MO.getSubReg());
3038 if ((Lanes & TRI->getSubRegIndexLaneMask(S)).any())
3039 return true;
3040 }
3041 return false;
3042 }
3043
resolveConflicts(JoinVals & Other)3044 bool JoinVals::resolveConflicts(JoinVals &Other) {
3045 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3046 Val &V = Vals[i];
3047 assert(V.Resolution != CR_Impossible && "Unresolvable conflict");
3048 if (V.Resolution != CR_Unresolved)
3049 continue;
3050 LLVM_DEBUG(dbgs() << "\t\tconflict at " << printReg(Reg) << ':' << i << '@'
3051 << LR.getValNumInfo(i)->def
3052 << ' ' << PrintLaneMask(LaneMask) << '\n');
3053 if (SubRangeJoin)
3054 return false;
3055
3056 ++NumLaneConflicts;
3057 assert(V.OtherVNI && "Inconsistent conflict resolution.");
3058 VNInfo *VNI = LR.getValNumInfo(i);
3059 const Val &OtherV = Other.Vals[V.OtherVNI->id];
3060
3061 // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the
3062 // join, those lanes will be tainted with a wrong value. Get the extent of
3063 // the tainted lanes.
3064 LaneBitmask TaintedLanes = V.WriteLanes & OtherV.ValidLanes;
3065 SmallVector<std::pair<SlotIndex, LaneBitmask>, 8> TaintExtent;
3066 if (!taintExtent(i, TaintedLanes, Other, TaintExtent))
3067 // Tainted lanes would extend beyond the basic block.
3068 return false;
3069
3070 assert(!TaintExtent.empty() && "There should be at least one conflict.");
3071
3072 // Now look at the instructions from VNI->def to TaintExtent (inclusive).
3073 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
3074 MachineBasicBlock::iterator MI = MBB->begin();
3075 if (!VNI->isPHIDef()) {
3076 MI = Indexes->getInstructionFromIndex(VNI->def);
3077 if (!VNI->def.isEarlyClobber()) {
3078 // No need to check the instruction defining VNI for reads.
3079 ++MI;
3080 }
3081 }
3082 assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) &&
3083 "Interference ends on VNI->def. Should have been handled earlier");
3084 MachineInstr *LastMI =
3085 Indexes->getInstructionFromIndex(TaintExtent.front().first);
3086 assert(LastMI && "Range must end at a proper instruction");
3087 unsigned TaintNum = 0;
3088 while (true) {
3089 assert(MI != MBB->end() && "Bad LastMI");
3090 if (usesLanes(*MI, Other.Reg, Other.SubIdx, TaintedLanes)) {
3091 LLVM_DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI);
3092 return false;
3093 }
3094 // LastMI is the last instruction to use the current value.
3095 if (&*MI == LastMI) {
3096 if (++TaintNum == TaintExtent.size())
3097 break;
3098 LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first);
3099 assert(LastMI && "Range must end at a proper instruction");
3100 TaintedLanes = TaintExtent[TaintNum].second;
3101 }
3102 ++MI;
3103 }
3104
3105 // The tainted lanes are unused.
3106 V.Resolution = CR_Replace;
3107 ++NumLaneResolves;
3108 }
3109 return true;
3110 }
3111
isPrunedValue(unsigned ValNo,JoinVals & Other)3112 bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) {
3113 Val &V = Vals[ValNo];
3114 if (V.Pruned || V.PrunedComputed)
3115 return V.Pruned;
3116
3117 if (V.Resolution != CR_Erase && V.Resolution != CR_Merge)
3118 return V.Pruned;
3119
3120 // Follow copies up the dominator tree and check if any intermediate value
3121 // has been pruned.
3122 V.PrunedComputed = true;
3123 V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this);
3124 return V.Pruned;
3125 }
3126
pruneValues(JoinVals & Other,SmallVectorImpl<SlotIndex> & EndPoints,bool changeInstrs)3127 void JoinVals::pruneValues(JoinVals &Other,
3128 SmallVectorImpl<SlotIndex> &EndPoints,
3129 bool changeInstrs) {
3130 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3131 SlotIndex Def = LR.getValNumInfo(i)->def;
3132 switch (Vals[i].Resolution) {
3133 case CR_Keep:
3134 break;
3135 case CR_Replace: {
3136 // This value takes precedence over the value in Other.LR.
3137 LIS->pruneValue(Other.LR, Def, &EndPoints);
3138 // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF
3139 // instructions are only inserted to provide a live-out value for PHI
3140 // predecessors, so the instruction should simply go away once its value
3141 // has been replaced.
3142 Val &OtherV = Other.Vals[Vals[i].OtherVNI->id];
3143 bool EraseImpDef = OtherV.ErasableImplicitDef &&
3144 OtherV.Resolution == CR_Keep;
3145 if (!Def.isBlock()) {
3146 if (changeInstrs) {
3147 // Remove <def,read-undef> flags. This def is now a partial redef.
3148 // Also remove dead flags since the joined live range will
3149 // continue past this instruction.
3150 for (MachineOperand &MO :
3151 Indexes->getInstructionFromIndex(Def)->operands()) {
3152 if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) {
3153 if (MO.getSubReg() != 0 && MO.isUndef() && !EraseImpDef)
3154 MO.setIsUndef(false);
3155 MO.setIsDead(false);
3156 }
3157 }
3158 }
3159 // This value will reach instructions below, but we need to make sure
3160 // the live range also reaches the instruction at Def.
3161 if (!EraseImpDef)
3162 EndPoints.push_back(Def);
3163 }
3164 LLVM_DEBUG(dbgs() << "\t\tpruned " << printReg(Other.Reg) << " at " << Def
3165 << ": " << Other.LR << '\n');
3166 break;
3167 }
3168 case CR_Erase:
3169 case CR_Merge:
3170 if (isPrunedValue(i, Other)) {
3171 // This value is ultimately a copy of a pruned value in LR or Other.LR.
3172 // We can no longer trust the value mapping computed by
3173 // computeAssignment(), the value that was originally copied could have
3174 // been replaced.
3175 LIS->pruneValue(LR, Def, &EndPoints);
3176 LLVM_DEBUG(dbgs() << "\t\tpruned all of " << printReg(Reg) << " at "
3177 << Def << ": " << LR << '\n');
3178 }
3179 break;
3180 case CR_Unresolved:
3181 case CR_Impossible:
3182 llvm_unreachable("Unresolved conflicts");
3183 }
3184 }
3185 }
3186
3187 // Check if the segment consists of a copied live-through value (i.e. the copy
3188 // in the block only extended the liveness, of an undef value which we may need
3189 // to handle).
isLiveThrough(const LiveQueryResult Q)3190 static bool isLiveThrough(const LiveQueryResult Q) {
3191 return Q.valueIn() && Q.valueIn()->isPHIDef() && Q.valueIn() == Q.valueOut();
3192 }
3193
3194 /// Consider the following situation when coalescing the copy between
3195 /// %31 and %45 at 800. (The vertical lines represent live range segments.)
3196 ///
3197 /// Main range Subrange 0004 (sub2)
3198 /// %31 %45 %31 %45
3199 /// 544 %45 = COPY %28 + +
3200 /// | v1 | v1
3201 /// 560B bb.1: + +
3202 /// 624 = %45.sub2 | v2 | v2
3203 /// 800 %31 = COPY %45 + + + +
3204 /// | v0 | v0
3205 /// 816 %31.sub1 = ... + |
3206 /// 880 %30 = COPY %31 | v1 +
3207 /// 928 %45 = COPY %30 | + +
3208 /// | | v0 | v0 <--+
3209 /// 992B ; backedge -> bb.1 | + + |
3210 /// 1040 = %31.sub0 + |
3211 /// This value must remain
3212 /// live-out!
3213 ///
3214 /// Assuming that %31 is coalesced into %45, the copy at 928 becomes
3215 /// redundant, since it copies the value from %45 back into it. The
3216 /// conflict resolution for the main range determines that %45.v0 is
3217 /// to be erased, which is ok since %31.v1 is identical to it.
3218 /// The problem happens with the subrange for sub2: it has to be live
3219 /// on exit from the block, but since 928 was actually a point of
3220 /// definition of %45.sub2, %45.sub2 was not live immediately prior
3221 /// to that definition. As a result, when 928 was erased, the value v0
3222 /// for %45.sub2 was pruned in pruneSubRegValues. Consequently, an
3223 /// IMPLICIT_DEF was inserted as a "backedge" definition for %45.sub2,
3224 /// providing an incorrect value to the use at 624.
3225 ///
3226 /// Since the main-range values %31.v1 and %45.v0 were proved to be
3227 /// identical, the corresponding values in subranges must also be the
3228 /// same. A redundant copy is removed because it's not needed, and not
3229 /// because it copied an undefined value, so any liveness that originated
3230 /// from that copy cannot disappear. When pruning a value that started
3231 /// at the removed copy, the corresponding identical value must be
3232 /// extended to replace it.
pruneSubRegValues(LiveInterval & LI,LaneBitmask & ShrinkMask)3233 void JoinVals::pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask) {
3234 // Look for values being erased.
3235 bool DidPrune = false;
3236 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3237 Val &V = Vals[i];
3238 // We should trigger in all cases in which eraseInstrs() does something.
3239 // match what eraseInstrs() is doing, print a message so
3240 if (V.Resolution != CR_Erase &&
3241 (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned))
3242 continue;
3243
3244 // Check subranges at the point where the copy will be removed.
3245 SlotIndex Def = LR.getValNumInfo(i)->def;
3246 SlotIndex OtherDef;
3247 if (V.Identical)
3248 OtherDef = V.OtherVNI->def;
3249
3250 // Print message so mismatches with eraseInstrs() can be diagnosed.
3251 LLVM_DEBUG(dbgs() << "\t\tExpecting instruction removal at " << Def
3252 << '\n');
3253 for (LiveInterval::SubRange &S : LI.subranges()) {
3254 LiveQueryResult Q = S.Query(Def);
3255
3256 // If a subrange starts at the copy then an undefined value has been
3257 // copied and we must remove that subrange value as well.
3258 VNInfo *ValueOut = Q.valueOutOrDead();
3259 if (ValueOut != nullptr && (Q.valueIn() == nullptr ||
3260 (V.Identical && V.Resolution == CR_Erase &&
3261 ValueOut->def == Def))) {
3262 LLVM_DEBUG(dbgs() << "\t\tPrune sublane " << PrintLaneMask(S.LaneMask)
3263 << " at " << Def << "\n");
3264 SmallVector<SlotIndex,8> EndPoints;
3265 LIS->pruneValue(S, Def, &EndPoints);
3266 DidPrune = true;
3267 // Mark value number as unused.
3268 ValueOut->markUnused();
3269
3270 if (V.Identical && S.Query(OtherDef).valueOutOrDead()) {
3271 // If V is identical to V.OtherVNI (and S was live at OtherDef),
3272 // then we can't simply prune V from S. V needs to be replaced
3273 // with V.OtherVNI.
3274 LIS->extendToIndices(S, EndPoints);
3275 }
3276
3277 // We may need to eliminate the subrange if the copy introduced a live
3278 // out undef value.
3279 if (ValueOut->isPHIDef())
3280 ShrinkMask |= S.LaneMask;
3281 continue;
3282 }
3283
3284 // If a subrange ends at the copy, then a value was copied but only
3285 // partially used later. Shrink the subregister range appropriately.
3286 //
3287 // Ultimately this calls shrinkToUses, so assuming ShrinkMask is
3288 // conservatively correct.
3289 if ((Q.valueIn() != nullptr && Q.valueOut() == nullptr) ||
3290 (V.Resolution == CR_Erase && isLiveThrough(Q))) {
3291 LLVM_DEBUG(dbgs() << "\t\tDead uses at sublane "
3292 << PrintLaneMask(S.LaneMask) << " at " << Def
3293 << "\n");
3294 ShrinkMask |= S.LaneMask;
3295 }
3296 }
3297 }
3298 if (DidPrune)
3299 LI.removeEmptySubRanges();
3300 }
3301
3302 /// Check if any of the subranges of @p LI contain a definition at @p Def.
isDefInSubRange(LiveInterval & LI,SlotIndex Def)3303 static bool isDefInSubRange(LiveInterval &LI, SlotIndex Def) {
3304 for (LiveInterval::SubRange &SR : LI.subranges()) {
3305 if (VNInfo *VNI = SR.Query(Def).valueOutOrDead())
3306 if (VNI->def == Def)
3307 return true;
3308 }
3309 return false;
3310 }
3311
pruneMainSegments(LiveInterval & LI,bool & ShrinkMainRange)3312 void JoinVals::pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange) {
3313 assert(&static_cast<LiveRange&>(LI) == &LR);
3314
3315 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3316 if (Vals[i].Resolution != CR_Keep)
3317 continue;
3318 VNInfo *VNI = LR.getValNumInfo(i);
3319 if (VNI->isUnused() || VNI->isPHIDef() || isDefInSubRange(LI, VNI->def))
3320 continue;
3321 Vals[i].Pruned = true;
3322 ShrinkMainRange = true;
3323 }
3324 }
3325
removeImplicitDefs()3326 void JoinVals::removeImplicitDefs() {
3327 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3328 Val &V = Vals[i];
3329 if (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned)
3330 continue;
3331
3332 VNInfo *VNI = LR.getValNumInfo(i);
3333 VNI->markUnused();
3334 LR.removeValNo(VNI);
3335 }
3336 }
3337
eraseInstrs(SmallPtrSetImpl<MachineInstr * > & ErasedInstrs,SmallVectorImpl<Register> & ShrinkRegs,LiveInterval * LI)3338 void JoinVals::eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
3339 SmallVectorImpl<Register> &ShrinkRegs,
3340 LiveInterval *LI) {
3341 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3342 // Get the def location before markUnused() below invalidates it.
3343 VNInfo *VNI = LR.getValNumInfo(i);
3344 SlotIndex Def = VNI->def;
3345 switch (Vals[i].Resolution) {
3346 case CR_Keep: {
3347 // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any
3348 // longer. The IMPLICIT_DEF instructions are only inserted by
3349 // PHIElimination to guarantee that all PHI predecessors have a value.
3350 if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned)
3351 break;
3352 // Remove value number i from LR.
3353 // For intervals with subranges, removing a segment from the main range
3354 // may require extending the previous segment: for each definition of
3355 // a subregister, there will be a corresponding def in the main range.
3356 // That def may fall in the middle of a segment from another subrange.
3357 // In such cases, removing this def from the main range must be
3358 // complemented by extending the main range to account for the liveness
3359 // of the other subrange.
3360 // The new end point of the main range segment to be extended.
3361 SlotIndex NewEnd;
3362 if (LI != nullptr) {
3363 LiveRange::iterator I = LR.FindSegmentContaining(Def);
3364 assert(I != LR.end());
3365 // Do not extend beyond the end of the segment being removed.
3366 // The segment may have been pruned in preparation for joining
3367 // live ranges.
3368 NewEnd = I->end;
3369 }
3370
3371 LR.removeValNo(VNI);
3372 // Note that this VNInfo is reused and still referenced in NewVNInfo,
3373 // make it appear like an unused value number.
3374 VNI->markUnused();
3375
3376 if (LI != nullptr && LI->hasSubRanges()) {
3377 assert(static_cast<LiveRange*>(LI) == &LR);
3378 // Determine the end point based on the subrange information:
3379 // minimum of (earliest def of next segment,
3380 // latest end point of containing segment)
3381 SlotIndex ED, LE;
3382 for (LiveInterval::SubRange &SR : LI->subranges()) {
3383 LiveRange::iterator I = SR.find(Def);
3384 if (I == SR.end())
3385 continue;
3386 if (I->start > Def)
3387 ED = ED.isValid() ? std::min(ED, I->start) : I->start;
3388 else
3389 LE = LE.isValid() ? std::max(LE, I->end) : I->end;
3390 }
3391 if (LE.isValid())
3392 NewEnd = std::min(NewEnd, LE);
3393 if (ED.isValid())
3394 NewEnd = std::min(NewEnd, ED);
3395
3396 // We only want to do the extension if there was a subrange that
3397 // was live across Def.
3398 if (LE.isValid()) {
3399 LiveRange::iterator S = LR.find(Def);
3400 if (S != LR.begin())
3401 std::prev(S)->end = NewEnd;
3402 }
3403 }
3404 LLVM_DEBUG({
3405 dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LR << '\n';
3406 if (LI != nullptr)
3407 dbgs() << "\t\t LHS = " << *LI << '\n';
3408 });
3409 [[fallthrough]];
3410 }
3411
3412 case CR_Erase: {
3413 MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
3414 assert(MI && "No instruction to erase");
3415 if (MI->isCopy()) {
3416 Register Reg = MI->getOperand(1).getReg();
3417 if (Reg.isVirtual() && Reg != CP.getSrcReg() && Reg != CP.getDstReg())
3418 ShrinkRegs.push_back(Reg);
3419 }
3420 ErasedInstrs.insert(MI);
3421 LLVM_DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI);
3422 LIS->RemoveMachineInstrFromMaps(*MI);
3423 MI->eraseFromParent();
3424 break;
3425 }
3426 default:
3427 break;
3428 }
3429 }
3430 }
3431
joinSubRegRanges(LiveRange & LRange,LiveRange & RRange,LaneBitmask LaneMask,const CoalescerPair & CP)3432 void RegisterCoalescer::joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
3433 LaneBitmask LaneMask,
3434 const CoalescerPair &CP) {
3435 SmallVector<VNInfo*, 16> NewVNInfo;
3436 JoinVals RHSVals(RRange, CP.getSrcReg(), CP.getSrcIdx(), LaneMask,
3437 NewVNInfo, CP, LIS, TRI, true, true);
3438 JoinVals LHSVals(LRange, CP.getDstReg(), CP.getDstIdx(), LaneMask,
3439 NewVNInfo, CP, LIS, TRI, true, true);
3440
3441 // Compute NewVNInfo and resolve conflicts (see also joinVirtRegs())
3442 // We should be able to resolve all conflicts here as we could successfully do
3443 // it on the mainrange already. There is however a problem when multiple
3444 // ranges get mapped to the "overflow" lane mask bit which creates unexpected
3445 // interferences.
3446 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) {
3447 // We already determined that it is legal to merge the intervals, so this
3448 // should never fail.
3449 llvm_unreachable("*** Couldn't join subrange!\n");
3450 }
3451 if (!LHSVals.resolveConflicts(RHSVals) ||
3452 !RHSVals.resolveConflicts(LHSVals)) {
3453 // We already determined that it is legal to merge the intervals, so this
3454 // should never fail.
3455 llvm_unreachable("*** Couldn't join subrange!\n");
3456 }
3457
3458 // The merging algorithm in LiveInterval::join() can't handle conflicting
3459 // value mappings, so we need to remove any live ranges that overlap a
3460 // CR_Replace resolution. Collect a set of end points that can be used to
3461 // restore the live range after joining.
3462 SmallVector<SlotIndex, 8> EndPoints;
3463 LHSVals.pruneValues(RHSVals, EndPoints, false);
3464 RHSVals.pruneValues(LHSVals, EndPoints, false);
3465
3466 LHSVals.removeImplicitDefs();
3467 RHSVals.removeImplicitDefs();
3468
3469 LRange.verify();
3470 RRange.verify();
3471
3472 // Join RRange into LHS.
3473 LRange.join(RRange, LHSVals.getAssignments(), RHSVals.getAssignments(),
3474 NewVNInfo);
3475
3476 LLVM_DEBUG(dbgs() << "\t\tjoined lanes: " << PrintLaneMask(LaneMask)
3477 << ' ' << LRange << "\n");
3478 if (EndPoints.empty())
3479 return;
3480
3481 // Recompute the parts of the live range we had to remove because of
3482 // CR_Replace conflicts.
3483 LLVM_DEBUG({
3484 dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: ";
3485 for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) {
3486 dbgs() << EndPoints[i];
3487 if (i != n-1)
3488 dbgs() << ',';
3489 }
3490 dbgs() << ": " << LRange << '\n';
3491 });
3492 LIS->extendToIndices(LRange, EndPoints);
3493 }
3494
mergeSubRangeInto(LiveInterval & LI,const LiveRange & ToMerge,LaneBitmask LaneMask,CoalescerPair & CP,unsigned ComposeSubRegIdx)3495 void RegisterCoalescer::mergeSubRangeInto(LiveInterval &LI,
3496 const LiveRange &ToMerge,
3497 LaneBitmask LaneMask,
3498 CoalescerPair &CP,
3499 unsigned ComposeSubRegIdx) {
3500 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
3501 LI.refineSubRanges(
3502 Allocator, LaneMask,
3503 [this, &Allocator, &ToMerge, &CP](LiveInterval::SubRange &SR) {
3504 if (SR.empty()) {
3505 SR.assign(ToMerge, Allocator);
3506 } else {
3507 // joinSubRegRange() destroys the merged range, so we need a copy.
3508 LiveRange RangeCopy(ToMerge, Allocator);
3509 joinSubRegRanges(SR, RangeCopy, SR.LaneMask, CP);
3510 }
3511 },
3512 *LIS->getSlotIndexes(), *TRI, ComposeSubRegIdx);
3513 }
3514
isHighCostLiveInterval(LiveInterval & LI)3515 bool RegisterCoalescer::isHighCostLiveInterval(LiveInterval &LI) {
3516 if (LI.valnos.size() < LargeIntervalSizeThreshold)
3517 return false;
3518 auto &Counter = LargeLIVisitCounter[LI.reg()];
3519 if (Counter < LargeIntervalFreqThreshold) {
3520 Counter++;
3521 return false;
3522 }
3523 return true;
3524 }
3525
joinVirtRegs(CoalescerPair & CP)3526 bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) {
3527 SmallVector<VNInfo*, 16> NewVNInfo;
3528 LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
3529 LiveInterval &LHS = LIS->getInterval(CP.getDstReg());
3530 bool TrackSubRegLiveness = MRI->shouldTrackSubRegLiveness(*CP.getNewRC());
3531 JoinVals RHSVals(RHS, CP.getSrcReg(), CP.getSrcIdx(), LaneBitmask::getNone(),
3532 NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness);
3533 JoinVals LHSVals(LHS, CP.getDstReg(), CP.getDstIdx(), LaneBitmask::getNone(),
3534 NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness);
3535
3536 LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << "\n\t\tLHS = " << LHS << '\n');
3537
3538 if (isHighCostLiveInterval(LHS) || isHighCostLiveInterval(RHS))
3539 return false;
3540
3541 // First compute NewVNInfo and the simple value mappings.
3542 // Detect impossible conflicts early.
3543 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals))
3544 return false;
3545
3546 // Some conflicts can only be resolved after all values have been mapped.
3547 if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals))
3548 return false;
3549
3550 // All clear, the live ranges can be merged.
3551 if (RHS.hasSubRanges() || LHS.hasSubRanges()) {
3552 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
3553
3554 // Transform lanemasks from the LHS to masks in the coalesced register and
3555 // create initial subranges if necessary.
3556 unsigned DstIdx = CP.getDstIdx();
3557 if (!LHS.hasSubRanges()) {
3558 LaneBitmask Mask = DstIdx == 0 ? CP.getNewRC()->getLaneMask()
3559 : TRI->getSubRegIndexLaneMask(DstIdx);
3560 // LHS must support subregs or we wouldn't be in this codepath.
3561 assert(Mask.any());
3562 LHS.createSubRangeFrom(Allocator, Mask, LHS);
3563 } else if (DstIdx != 0) {
3564 // Transform LHS lanemasks to new register class if necessary.
3565 for (LiveInterval::SubRange &R : LHS.subranges()) {
3566 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(DstIdx, R.LaneMask);
3567 R.LaneMask = Mask;
3568 }
3569 }
3570 LLVM_DEBUG(dbgs() << "\t\tLHST = " << printReg(CP.getDstReg()) << ' ' << LHS
3571 << '\n');
3572
3573 // Determine lanemasks of RHS in the coalesced register and merge subranges.
3574 unsigned SrcIdx = CP.getSrcIdx();
3575 if (!RHS.hasSubRanges()) {
3576 LaneBitmask Mask = SrcIdx == 0 ? CP.getNewRC()->getLaneMask()
3577 : TRI->getSubRegIndexLaneMask(SrcIdx);
3578 mergeSubRangeInto(LHS, RHS, Mask, CP, DstIdx);
3579 } else {
3580 // Pair up subranges and merge.
3581 for (LiveInterval::SubRange &R : RHS.subranges()) {
3582 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(SrcIdx, R.LaneMask);
3583 mergeSubRangeInto(LHS, R, Mask, CP, DstIdx);
3584 }
3585 }
3586 LLVM_DEBUG(dbgs() << "\tJoined SubRanges " << LHS << "\n");
3587
3588 // Pruning implicit defs from subranges may result in the main range
3589 // having stale segments.
3590 LHSVals.pruneMainSegments(LHS, ShrinkMainRange);
3591
3592 LHSVals.pruneSubRegValues(LHS, ShrinkMask);
3593 RHSVals.pruneSubRegValues(LHS, ShrinkMask);
3594 }
3595
3596 // The merging algorithm in LiveInterval::join() can't handle conflicting
3597 // value mappings, so we need to remove any live ranges that overlap a
3598 // CR_Replace resolution. Collect a set of end points that can be used to
3599 // restore the live range after joining.
3600 SmallVector<SlotIndex, 8> EndPoints;
3601 LHSVals.pruneValues(RHSVals, EndPoints, true);
3602 RHSVals.pruneValues(LHSVals, EndPoints, true);
3603
3604 // Erase COPY and IMPLICIT_DEF instructions. This may cause some external
3605 // registers to require trimming.
3606 SmallVector<Register, 8> ShrinkRegs;
3607 LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs, &LHS);
3608 RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
3609 while (!ShrinkRegs.empty())
3610 shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val()));
3611
3612 // Scan and mark undef any DBG_VALUEs that would refer to a different value.
3613 checkMergingChangesDbgValues(CP, LHS, LHSVals, RHS, RHSVals);
3614
3615 // If the RHS covers any PHI locations that were tracked for debug-info, we
3616 // must update tracking information to reflect the join.
3617 auto RegIt = RegToPHIIdx.find(CP.getSrcReg());
3618 if (RegIt != RegToPHIIdx.end()) {
3619 // Iterate over all the debug instruction numbers assigned this register.
3620 for (unsigned InstID : RegIt->second) {
3621 auto PHIIt = PHIValToPos.find(InstID);
3622 assert(PHIIt != PHIValToPos.end());
3623 const SlotIndex &SI = PHIIt->second.SI;
3624
3625 // Does the RHS cover the position of this PHI?
3626 auto LII = RHS.find(SI);
3627 if (LII == RHS.end() || LII->start > SI)
3628 continue;
3629
3630 // Accept two kinds of subregister movement:
3631 // * When we merge from one register class into a larger register:
3632 // %1:gr16 = some-inst
3633 // ->
3634 // %2:gr32.sub_16bit = some-inst
3635 // * When the PHI is already in a subregister, and the larger class
3636 // is coalesced:
3637 // %2:gr32.sub_16bit = some-inst
3638 // %3:gr32 = COPY %2
3639 // ->
3640 // %3:gr32.sub_16bit = some-inst
3641 // Test for subregister move:
3642 if (CP.getSrcIdx() != 0 || CP.getDstIdx() != 0)
3643 // If we're moving between different subregisters, ignore this join.
3644 // The PHI will not get a location, dropping variable locations.
3645 if (PHIIt->second.SubReg && PHIIt->second.SubReg != CP.getSrcIdx())
3646 continue;
3647
3648 // Update our tracking of where the PHI is.
3649 PHIIt->second.Reg = CP.getDstReg();
3650
3651 // If we merge into a sub-register of a larger class (test above),
3652 // update SubReg.
3653 if (CP.getSrcIdx() != 0)
3654 PHIIt->second.SubReg = CP.getSrcIdx();
3655 }
3656
3657 // Rebuild the register index in RegToPHIIdx to account for PHIs tracking
3658 // different VRegs now. Copy old collection of debug instruction numbers and
3659 // erase the old one:
3660 auto InstrNums = RegIt->second;
3661 RegToPHIIdx.erase(RegIt);
3662
3663 // There might already be PHIs being tracked in the destination VReg. Insert
3664 // into an existing tracking collection, or insert a new one.
3665 RegIt = RegToPHIIdx.find(CP.getDstReg());
3666 if (RegIt != RegToPHIIdx.end())
3667 RegIt->second.insert(RegIt->second.end(), InstrNums.begin(),
3668 InstrNums.end());
3669 else
3670 RegToPHIIdx.insert({CP.getDstReg(), InstrNums});
3671 }
3672
3673 // Join RHS into LHS.
3674 LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo);
3675
3676 // Kill flags are going to be wrong if the live ranges were overlapping.
3677 // Eventually, we should simply clear all kill flags when computing live
3678 // ranges. They are reinserted after register allocation.
3679 MRI->clearKillFlags(LHS.reg());
3680 MRI->clearKillFlags(RHS.reg());
3681
3682 if (!EndPoints.empty()) {
3683 // Recompute the parts of the live range we had to remove because of
3684 // CR_Replace conflicts.
3685 LLVM_DEBUG({
3686 dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: ";
3687 for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) {
3688 dbgs() << EndPoints[i];
3689 if (i != n-1)
3690 dbgs() << ',';
3691 }
3692 dbgs() << ": " << LHS << '\n';
3693 });
3694 LIS->extendToIndices((LiveRange&)LHS, EndPoints);
3695 }
3696
3697 return true;
3698 }
3699
joinIntervals(CoalescerPair & CP)3700 bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) {
3701 return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP);
3702 }
3703
buildVRegToDbgValueMap(MachineFunction & MF)3704 void RegisterCoalescer::buildVRegToDbgValueMap(MachineFunction &MF)
3705 {
3706 const SlotIndexes &Slots = *LIS->getSlotIndexes();
3707 SmallVector<MachineInstr *, 8> ToInsert;
3708
3709 // After collecting a block of DBG_VALUEs into ToInsert, enter them into the
3710 // vreg => DbgValueLoc map.
3711 auto CloseNewDVRange = [this, &ToInsert](SlotIndex Slot) {
3712 for (auto *X : ToInsert) {
3713 for (const auto &Op : X->debug_operands()) {
3714 if (Op.isReg() && Op.getReg().isVirtual())
3715 DbgVRegToValues[Op.getReg()].push_back({Slot, X});
3716 }
3717 }
3718
3719 ToInsert.clear();
3720 };
3721
3722 // Iterate over all instructions, collecting them into the ToInsert vector.
3723 // Once a non-debug instruction is found, record the slot index of the
3724 // collected DBG_VALUEs.
3725 for (auto &MBB : MF) {
3726 SlotIndex CurrentSlot = Slots.getMBBStartIdx(&MBB);
3727
3728 for (auto &MI : MBB) {
3729 if (MI.isDebugValue()) {
3730 if (any_of(MI.debug_operands(), [](const MachineOperand &MO) {
3731 return MO.isReg() && MO.getReg().isVirtual();
3732 }))
3733 ToInsert.push_back(&MI);
3734 } else if (!MI.isDebugOrPseudoInstr()) {
3735 CurrentSlot = Slots.getInstructionIndex(MI);
3736 CloseNewDVRange(CurrentSlot);
3737 }
3738 }
3739
3740 // Close range of DBG_VALUEs at the end of blocks.
3741 CloseNewDVRange(Slots.getMBBEndIdx(&MBB));
3742 }
3743
3744 // Sort all DBG_VALUEs we've seen by slot number.
3745 for (auto &Pair : DbgVRegToValues)
3746 llvm::sort(Pair.second);
3747 }
3748
checkMergingChangesDbgValues(CoalescerPair & CP,LiveRange & LHS,JoinVals & LHSVals,LiveRange & RHS,JoinVals & RHSVals)3749 void RegisterCoalescer::checkMergingChangesDbgValues(CoalescerPair &CP,
3750 LiveRange &LHS,
3751 JoinVals &LHSVals,
3752 LiveRange &RHS,
3753 JoinVals &RHSVals) {
3754 auto ScanForDstReg = [&](Register Reg) {
3755 checkMergingChangesDbgValuesImpl(Reg, RHS, LHS, LHSVals);
3756 };
3757
3758 auto ScanForSrcReg = [&](Register Reg) {
3759 checkMergingChangesDbgValuesImpl(Reg, LHS, RHS, RHSVals);
3760 };
3761
3762 // Scan for potentially unsound DBG_VALUEs: examine first the register number
3763 // Reg, and then any other vregs that may have been merged into it.
3764 auto PerformScan = [this](Register Reg, std::function<void(Register)> Func) {
3765 Func(Reg);
3766 if (DbgMergedVRegNums.count(Reg))
3767 for (Register X : DbgMergedVRegNums[Reg])
3768 Func(X);
3769 };
3770
3771 // Scan for unsound updates of both the source and destination register.
3772 PerformScan(CP.getSrcReg(), ScanForSrcReg);
3773 PerformScan(CP.getDstReg(), ScanForDstReg);
3774 }
3775
checkMergingChangesDbgValuesImpl(Register Reg,LiveRange & OtherLR,LiveRange & RegLR,JoinVals & RegVals)3776 void RegisterCoalescer::checkMergingChangesDbgValuesImpl(Register Reg,
3777 LiveRange &OtherLR,
3778 LiveRange &RegLR,
3779 JoinVals &RegVals) {
3780 // Are there any DBG_VALUEs to examine?
3781 auto VRegMapIt = DbgVRegToValues.find(Reg);
3782 if (VRegMapIt == DbgVRegToValues.end())
3783 return;
3784
3785 auto &DbgValueSet = VRegMapIt->second;
3786 auto DbgValueSetIt = DbgValueSet.begin();
3787 auto SegmentIt = OtherLR.begin();
3788
3789 bool LastUndefResult = false;
3790 SlotIndex LastUndefIdx;
3791
3792 // If the "Other" register is live at a slot Idx, test whether Reg can
3793 // safely be merged with it, or should be marked undef.
3794 auto ShouldUndef = [&RegVals, &RegLR, &LastUndefResult,
3795 &LastUndefIdx](SlotIndex Idx) -> bool {
3796 // Our worst-case performance typically happens with asan, causing very
3797 // many DBG_VALUEs of the same location. Cache a copy of the most recent
3798 // result for this edge-case.
3799 if (LastUndefIdx == Idx)
3800 return LastUndefResult;
3801
3802 // If the other range was live, and Reg's was not, the register coalescer
3803 // will not have tried to resolve any conflicts. We don't know whether
3804 // the DBG_VALUE will refer to the same value number, so it must be made
3805 // undef.
3806 auto OtherIt = RegLR.find(Idx);
3807 if (OtherIt == RegLR.end())
3808 return true;
3809
3810 // Both the registers were live: examine the conflict resolution record for
3811 // the value number Reg refers to. CR_Keep meant that this value number
3812 // "won" and the merged register definitely refers to that value. CR_Erase
3813 // means the value number was a redundant copy of the other value, which
3814 // was coalesced and Reg deleted. It's safe to refer to the other register
3815 // (which will be the source of the copy).
3816 auto Resolution = RegVals.getResolution(OtherIt->valno->id);
3817 LastUndefResult = Resolution != JoinVals::CR_Keep &&
3818 Resolution != JoinVals::CR_Erase;
3819 LastUndefIdx = Idx;
3820 return LastUndefResult;
3821 };
3822
3823 // Iterate over both the live-range of the "Other" register, and the set of
3824 // DBG_VALUEs for Reg at the same time. Advance whichever one has the lowest
3825 // slot index. This relies on the DbgValueSet being ordered.
3826 while (DbgValueSetIt != DbgValueSet.end() && SegmentIt != OtherLR.end()) {
3827 if (DbgValueSetIt->first < SegmentIt->end) {
3828 // "Other" is live and there is a DBG_VALUE of Reg: test if we should
3829 // set it undef.
3830 if (DbgValueSetIt->first >= SegmentIt->start) {
3831 bool HasReg = DbgValueSetIt->second->hasDebugOperandForReg(Reg);
3832 bool ShouldUndefReg = ShouldUndef(DbgValueSetIt->first);
3833 if (HasReg && ShouldUndefReg) {
3834 // Mark undef, erase record of this DBG_VALUE to avoid revisiting.
3835 DbgValueSetIt->second->setDebugValueUndef();
3836 continue;
3837 }
3838 }
3839 ++DbgValueSetIt;
3840 } else {
3841 ++SegmentIt;
3842 }
3843 }
3844 }
3845
3846 namespace {
3847
3848 /// Information concerning MBB coalescing priority.
3849 struct MBBPriorityInfo {
3850 MachineBasicBlock *MBB;
3851 unsigned Depth;
3852 bool IsSplit;
3853
MBBPriorityInfo__anondf5cb7ca0b11::MBBPriorityInfo3854 MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit)
3855 : MBB(mbb), Depth(depth), IsSplit(issplit) {}
3856 };
3857
3858 } // end anonymous namespace
3859
3860 /// C-style comparator that sorts first based on the loop depth of the basic
3861 /// block (the unsigned), and then on the MBB number.
3862 ///
3863 /// EnableGlobalCopies assumes that the primary sort key is loop depth.
compareMBBPriority(const MBBPriorityInfo * LHS,const MBBPriorityInfo * RHS)3864 static int compareMBBPriority(const MBBPriorityInfo *LHS,
3865 const MBBPriorityInfo *RHS) {
3866 // Deeper loops first
3867 if (LHS->Depth != RHS->Depth)
3868 return LHS->Depth > RHS->Depth ? -1 : 1;
3869
3870 // Try to unsplit critical edges next.
3871 if (LHS->IsSplit != RHS->IsSplit)
3872 return LHS->IsSplit ? -1 : 1;
3873
3874 // Prefer blocks that are more connected in the CFG. This takes care of
3875 // the most difficult copies first while intervals are short.
3876 unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size();
3877 unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size();
3878 if (cl != cr)
3879 return cl > cr ? -1 : 1;
3880
3881 // As a last resort, sort by block number.
3882 return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1;
3883 }
3884
3885 /// \returns true if the given copy uses or defines a local live range.
isLocalCopy(MachineInstr * Copy,const LiveIntervals * LIS)3886 static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) {
3887 if (!Copy->isCopy())
3888 return false;
3889
3890 if (Copy->getOperand(1).isUndef())
3891 return false;
3892
3893 Register SrcReg = Copy->getOperand(1).getReg();
3894 Register DstReg = Copy->getOperand(0).getReg();
3895 if (SrcReg.isPhysical() || DstReg.isPhysical())
3896 return false;
3897
3898 return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg))
3899 || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg));
3900 }
3901
lateLiveIntervalUpdate()3902 void RegisterCoalescer::lateLiveIntervalUpdate() {
3903 for (Register reg : ToBeUpdated) {
3904 if (!LIS->hasInterval(reg))
3905 continue;
3906 LiveInterval &LI = LIS->getInterval(reg);
3907 shrinkToUses(&LI, &DeadDefs);
3908 if (!DeadDefs.empty())
3909 eliminateDeadDefs();
3910 }
3911 ToBeUpdated.clear();
3912 }
3913
3914 bool RegisterCoalescer::
copyCoalesceWorkList(MutableArrayRef<MachineInstr * > CurrList)3915 copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) {
3916 bool Progress = false;
3917 for (MachineInstr *&MI : CurrList) {
3918 if (!MI)
3919 continue;
3920 // Skip instruction pointers that have already been erased, for example by
3921 // dead code elimination.
3922 if (ErasedInstrs.count(MI)) {
3923 MI = nullptr;
3924 continue;
3925 }
3926 bool Again = false;
3927 bool Success = joinCopy(MI, Again);
3928 Progress |= Success;
3929 if (Success || !Again)
3930 MI = nullptr;
3931 }
3932 return Progress;
3933 }
3934
3935 /// Check if DstReg is a terminal node.
3936 /// I.e., it does not have any affinity other than \p Copy.
isTerminalReg(Register DstReg,const MachineInstr & Copy,const MachineRegisterInfo * MRI)3937 static bool isTerminalReg(Register DstReg, const MachineInstr &Copy,
3938 const MachineRegisterInfo *MRI) {
3939 assert(Copy.isCopyLike());
3940 // Check if the destination of this copy as any other affinity.
3941 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(DstReg))
3942 if (&MI != &Copy && MI.isCopyLike())
3943 return false;
3944 return true;
3945 }
3946
applyTerminalRule(const MachineInstr & Copy) const3947 bool RegisterCoalescer::applyTerminalRule(const MachineInstr &Copy) const {
3948 assert(Copy.isCopyLike());
3949 if (!UseTerminalRule)
3950 return false;
3951 Register SrcReg, DstReg;
3952 unsigned SrcSubReg = 0, DstSubReg = 0;
3953 if (!isMoveInstr(*TRI, &Copy, SrcReg, DstReg, SrcSubReg, DstSubReg))
3954 return false;
3955 // Check if the destination of this copy has any other affinity.
3956 if (DstReg.isPhysical() ||
3957 // If SrcReg is a physical register, the copy won't be coalesced.
3958 // Ignoring it may have other side effect (like missing
3959 // rematerialization). So keep it.
3960 SrcReg.isPhysical() || !isTerminalReg(DstReg, Copy, MRI))
3961 return false;
3962
3963 // DstReg is a terminal node. Check if it interferes with any other
3964 // copy involving SrcReg.
3965 const MachineBasicBlock *OrigBB = Copy.getParent();
3966 const LiveInterval &DstLI = LIS->getInterval(DstReg);
3967 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(SrcReg)) {
3968 // Technically we should check if the weight of the new copy is
3969 // interesting compared to the other one and update the weight
3970 // of the copies accordingly. However, this would only work if
3971 // we would gather all the copies first then coalesce, whereas
3972 // right now we interleave both actions.
3973 // For now, just consider the copies that are in the same block.
3974 if (&MI == &Copy || !MI.isCopyLike() || MI.getParent() != OrigBB)
3975 continue;
3976 Register OtherSrcReg, OtherReg;
3977 unsigned OtherSrcSubReg = 0, OtherSubReg = 0;
3978 if (!isMoveInstr(*TRI, &Copy, OtherSrcReg, OtherReg, OtherSrcSubReg,
3979 OtherSubReg))
3980 return false;
3981 if (OtherReg == SrcReg)
3982 OtherReg = OtherSrcReg;
3983 // Check if OtherReg is a non-terminal.
3984 if (OtherReg.isPhysical() || isTerminalReg(OtherReg, MI, MRI))
3985 continue;
3986 // Check that OtherReg interfere with DstReg.
3987 if (LIS->getInterval(OtherReg).overlaps(DstLI)) {
3988 LLVM_DEBUG(dbgs() << "Apply terminal rule for: " << printReg(DstReg)
3989 << '\n');
3990 return true;
3991 }
3992 }
3993 return false;
3994 }
3995
3996 void
copyCoalesceInMBB(MachineBasicBlock * MBB)3997 RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) {
3998 LLVM_DEBUG(dbgs() << MBB->getName() << ":\n");
3999
4000 // Collect all copy-like instructions in MBB. Don't start coalescing anything
4001 // yet, it might invalidate the iterator.
4002 const unsigned PrevSize = WorkList.size();
4003 if (JoinGlobalCopies) {
4004 SmallVector<MachineInstr*, 2> LocalTerminals;
4005 SmallVector<MachineInstr*, 2> GlobalTerminals;
4006 // Coalesce copies bottom-up to coalesce local defs before local uses. They
4007 // are not inherently easier to resolve, but slightly preferable until we
4008 // have local live range splitting. In particular this is required by
4009 // cmp+jmp macro fusion.
4010 for (MachineInstr &MI : *MBB) {
4011 if (!MI.isCopyLike())
4012 continue;
4013 bool ApplyTerminalRule = applyTerminalRule(MI);
4014 if (isLocalCopy(&MI, LIS)) {
4015 if (ApplyTerminalRule)
4016 LocalTerminals.push_back(&MI);
4017 else
4018 LocalWorkList.push_back(&MI);
4019 } else {
4020 if (ApplyTerminalRule)
4021 GlobalTerminals.push_back(&MI);
4022 else
4023 WorkList.push_back(&MI);
4024 }
4025 }
4026 // Append the copies evicted by the terminal rule at the end of the list.
4027 LocalWorkList.append(LocalTerminals.begin(), LocalTerminals.end());
4028 WorkList.append(GlobalTerminals.begin(), GlobalTerminals.end());
4029 }
4030 else {
4031 SmallVector<MachineInstr*, 2> Terminals;
4032 for (MachineInstr &MII : *MBB)
4033 if (MII.isCopyLike()) {
4034 if (applyTerminalRule(MII))
4035 Terminals.push_back(&MII);
4036 else
4037 WorkList.push_back(&MII);
4038 }
4039 // Append the copies evicted by the terminal rule at the end of the list.
4040 WorkList.append(Terminals.begin(), Terminals.end());
4041 }
4042 // Try coalescing the collected copies immediately, and remove the nulls.
4043 // This prevents the WorkList from getting too large since most copies are
4044 // joinable on the first attempt.
4045 MutableArrayRef<MachineInstr*>
4046 CurrList(WorkList.begin() + PrevSize, WorkList.end());
4047 if (copyCoalesceWorkList(CurrList))
4048 WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(),
4049 nullptr), WorkList.end());
4050 }
4051
coalesceLocals()4052 void RegisterCoalescer::coalesceLocals() {
4053 copyCoalesceWorkList(LocalWorkList);
4054 for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) {
4055 if (LocalWorkList[j])
4056 WorkList.push_back(LocalWorkList[j]);
4057 }
4058 LocalWorkList.clear();
4059 }
4060
joinAllIntervals()4061 void RegisterCoalescer::joinAllIntervals() {
4062 LLVM_DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
4063 assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around.");
4064
4065 std::vector<MBBPriorityInfo> MBBs;
4066 MBBs.reserve(MF->size());
4067 for (MachineBasicBlock &MBB : *MF) {
4068 MBBs.push_back(MBBPriorityInfo(&MBB, Loops->getLoopDepth(&MBB),
4069 JoinSplitEdges && isSplitEdge(&MBB)));
4070 }
4071 array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority);
4072
4073 // Coalesce intervals in MBB priority order.
4074 unsigned CurrDepth = std::numeric_limits<unsigned>::max();
4075 for (MBBPriorityInfo &MBB : MBBs) {
4076 // Try coalescing the collected local copies for deeper loops.
4077 if (JoinGlobalCopies && MBB.Depth < CurrDepth) {
4078 coalesceLocals();
4079 CurrDepth = MBB.Depth;
4080 }
4081 copyCoalesceInMBB(MBB.MBB);
4082 }
4083 lateLiveIntervalUpdate();
4084 coalesceLocals();
4085
4086 // Joining intervals can allow other intervals to be joined. Iteratively join
4087 // until we make no progress.
4088 while (copyCoalesceWorkList(WorkList))
4089 /* empty */ ;
4090 lateLiveIntervalUpdate();
4091 }
4092
releaseMemory()4093 void RegisterCoalescer::releaseMemory() {
4094 ErasedInstrs.clear();
4095 WorkList.clear();
4096 DeadDefs.clear();
4097 InflateRegs.clear();
4098 LargeLIVisitCounter.clear();
4099 }
4100
runOnMachineFunction(MachineFunction & fn)4101 bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
4102 LLVM_DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
4103 << "********** Function: " << fn.getName() << '\n');
4104
4105 // Variables changed between a setjmp and a longjump can have undefined value
4106 // after the longjmp. This behaviour can be observed if such a variable is
4107 // spilled, so longjmp won't restore the value in the spill slot.
4108 // RegisterCoalescer should not run in functions with a setjmp to avoid
4109 // merging such undefined variables with predictable ones.
4110 //
4111 // TODO: Could specifically disable coalescing registers live across setjmp
4112 // calls
4113 if (fn.exposesReturnsTwice()) {
4114 LLVM_DEBUG(
4115 dbgs() << "* Skipped as it exposes functions that returns twice.\n");
4116 return false;
4117 }
4118
4119 MF = &fn;
4120 MRI = &fn.getRegInfo();
4121 const TargetSubtargetInfo &STI = fn.getSubtarget();
4122 TRI = STI.getRegisterInfo();
4123 TII = STI.getInstrInfo();
4124 LIS = &getAnalysis<LiveIntervals>();
4125 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
4126 Loops = &getAnalysis<MachineLoopInfo>();
4127 if (EnableGlobalCopies == cl::BOU_UNSET)
4128 JoinGlobalCopies = STI.enableJoinGlobalCopies();
4129 else
4130 JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE);
4131
4132 // If there are PHIs tracked by debug-info, they will need updating during
4133 // coalescing. Build an index of those PHIs to ease updating.
4134 SlotIndexes *Slots = LIS->getSlotIndexes();
4135 for (const auto &DebugPHI : MF->DebugPHIPositions) {
4136 MachineBasicBlock *MBB = DebugPHI.second.MBB;
4137 Register Reg = DebugPHI.second.Reg;
4138 unsigned SubReg = DebugPHI.second.SubReg;
4139 SlotIndex SI = Slots->getMBBStartIdx(MBB);
4140 PHIValPos P = {SI, Reg, SubReg};
4141 PHIValToPos.insert(std::make_pair(DebugPHI.first, P));
4142 RegToPHIIdx[Reg].push_back(DebugPHI.first);
4143 }
4144
4145 // The MachineScheduler does not currently require JoinSplitEdges. This will
4146 // either be enabled unconditionally or replaced by a more general live range
4147 // splitting optimization.
4148 JoinSplitEdges = EnableJoinSplits;
4149
4150 if (VerifyCoalescing)
4151 MF->verify(this, "Before register coalescing");
4152
4153 DbgVRegToValues.clear();
4154 DbgMergedVRegNums.clear();
4155 buildVRegToDbgValueMap(fn);
4156
4157 RegClassInfo.runOnMachineFunction(fn);
4158
4159 // Join (coalesce) intervals if requested.
4160 if (EnableJoining)
4161 joinAllIntervals();
4162
4163 // After deleting a lot of copies, register classes may be less constrained.
4164 // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 ->
4165 // DPR inflation.
4166 array_pod_sort(InflateRegs.begin(), InflateRegs.end());
4167 InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()),
4168 InflateRegs.end());
4169 LLVM_DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size()
4170 << " regs.\n");
4171 for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) {
4172 Register Reg = InflateRegs[i];
4173 if (MRI->reg_nodbg_empty(Reg))
4174 continue;
4175 if (MRI->recomputeRegClass(Reg)) {
4176 LLVM_DEBUG(dbgs() << printReg(Reg) << " inflated to "
4177 << TRI->getRegClassName(MRI->getRegClass(Reg)) << '\n');
4178 ++NumInflated;
4179
4180 LiveInterval &LI = LIS->getInterval(Reg);
4181 if (LI.hasSubRanges()) {
4182 // If the inflated register class does not support subregisters anymore
4183 // remove the subranges.
4184 if (!MRI->shouldTrackSubRegLiveness(Reg)) {
4185 LI.clearSubRanges();
4186 } else {
4187 #ifndef NDEBUG
4188 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
4189 // If subranges are still supported, then the same subregs
4190 // should still be supported.
4191 for (LiveInterval::SubRange &S : LI.subranges()) {
4192 assert((S.LaneMask & ~MaxMask).none());
4193 }
4194 #endif
4195 }
4196 }
4197 }
4198 }
4199
4200 // After coalescing, update any PHIs that are being tracked by debug-info
4201 // with their new VReg locations.
4202 for (auto &p : MF->DebugPHIPositions) {
4203 auto it = PHIValToPos.find(p.first);
4204 assert(it != PHIValToPos.end());
4205 p.second.Reg = it->second.Reg;
4206 p.second.SubReg = it->second.SubReg;
4207 }
4208
4209 PHIValToPos.clear();
4210 RegToPHIIdx.clear();
4211
4212 LLVM_DEBUG(dump());
4213 if (VerifyCoalescing)
4214 MF->verify(this, "After register coalescing");
4215 return true;
4216 }
4217
print(raw_ostream & O,const Module * m) const4218 void RegisterCoalescer::print(raw_ostream &O, const Module* m) const {
4219 LIS->print(O, m);
4220 }
4221