xref: /aosp_15_r20/external/swiftshader/third_party/llvm-16.0/llvm/lib/CodeGen/RegisterCoalescer.cpp (revision 03ce13f70fcc45d86ee91b7ee4cab1936a95046e)
1 //===- RegisterCoalescer.cpp - Generic Register Coalescing Interface ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the generic RegisterCoalescer interface which
10 // is used as the common interface used by all clients and
11 // implementations of register coalescing.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "RegisterCoalescer.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/CodeGen/LiveInterval.h"
25 #include "llvm/CodeGen/LiveIntervals.h"
26 #include "llvm/CodeGen/LiveRangeEdit.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineInstrBuilder.h"
32 #include "llvm/CodeGen/MachineLoopInfo.h"
33 #include "llvm/CodeGen/MachineOperand.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/Passes.h"
36 #include "llvm/CodeGen/RegisterClassInfo.h"
37 #include "llvm/CodeGen/SlotIndexes.h"
38 #include "llvm/CodeGen/TargetInstrInfo.h"
39 #include "llvm/CodeGen/TargetOpcodes.h"
40 #include "llvm/CodeGen/TargetRegisterInfo.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/InitializePasses.h"
44 #include "llvm/MC/LaneBitmask.h"
45 #include "llvm/MC/MCInstrDesc.h"
46 #include "llvm/MC/MCRegisterInfo.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Compiler.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include <algorithm>
54 #include <cassert>
55 #include <iterator>
56 #include <limits>
57 #include <tuple>
58 #include <utility>
59 #include <vector>
60 
61 using namespace llvm;
62 
63 #define DEBUG_TYPE "regalloc"
64 
65 STATISTIC(numJoins    , "Number of interval joins performed");
66 STATISTIC(numCrossRCs , "Number of cross class joins performed");
67 STATISTIC(numCommutes , "Number of instruction commuting performed");
68 STATISTIC(numExtends  , "Number of copies extended");
69 STATISTIC(NumReMats   , "Number of instructions re-materialized");
70 STATISTIC(NumInflated , "Number of register classes inflated");
71 STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested");
72 STATISTIC(NumLaneResolves,  "Number of dead lane conflicts resolved");
73 STATISTIC(NumShrinkToUses,  "Number of shrinkToUses called");
74 
75 static cl::opt<bool> EnableJoining("join-liveintervals",
76                                    cl::desc("Coalesce copies (default=true)"),
77                                    cl::init(true), cl::Hidden);
78 
79 static cl::opt<bool> UseTerminalRule("terminal-rule",
80                                      cl::desc("Apply the terminal rule"),
81                                      cl::init(false), cl::Hidden);
82 
83 /// Temporary flag to test critical edge unsplitting.
84 static cl::opt<bool>
85 EnableJoinSplits("join-splitedges",
86   cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden);
87 
88 /// Temporary flag to test global copy optimization.
89 static cl::opt<cl::boolOrDefault>
90 EnableGlobalCopies("join-globalcopies",
91   cl::desc("Coalesce copies that span blocks (default=subtarget)"),
92   cl::init(cl::BOU_UNSET), cl::Hidden);
93 
94 static cl::opt<bool>
95 VerifyCoalescing("verify-coalescing",
96          cl::desc("Verify machine instrs before and after register coalescing"),
97          cl::Hidden);
98 
99 static cl::opt<unsigned> LateRematUpdateThreshold(
100     "late-remat-update-threshold", cl::Hidden,
101     cl::desc("During rematerialization for a copy, if the def instruction has "
102              "many other copy uses to be rematerialized, delay the multiple "
103              "separate live interval update work and do them all at once after "
104              "all those rematerialization are done. It will save a lot of "
105              "repeated work. "),
106     cl::init(100));
107 
108 static cl::opt<unsigned> LargeIntervalSizeThreshold(
109     "large-interval-size-threshold", cl::Hidden,
110     cl::desc("If the valnos size of an interval is larger than the threshold, "
111              "it is regarded as a large interval. "),
112     cl::init(100));
113 
114 static cl::opt<unsigned> LargeIntervalFreqThreshold(
115     "large-interval-freq-threshold", cl::Hidden,
116     cl::desc("For a large interval, if it is coalesed with other live "
117              "intervals many times more than the threshold, stop its "
118              "coalescing to control the compile time. "),
119     cl::init(100));
120 
121 namespace {
122 
123   class JoinVals;
124 
125   class RegisterCoalescer : public MachineFunctionPass,
126                             private LiveRangeEdit::Delegate {
127     MachineFunction* MF = nullptr;
128     MachineRegisterInfo* MRI = nullptr;
129     const TargetRegisterInfo* TRI = nullptr;
130     const TargetInstrInfo* TII = nullptr;
131     LiveIntervals *LIS = nullptr;
132     const MachineLoopInfo* Loops = nullptr;
133     AliasAnalysis *AA = nullptr;
134     RegisterClassInfo RegClassInfo;
135 
136     /// Position and VReg of a PHI instruction during coalescing.
137     struct PHIValPos {
138       SlotIndex SI;    ///< Slot where this PHI occurs.
139       Register Reg;    ///< VReg the PHI occurs in.
140       unsigned SubReg; ///< Qualifying subregister for Reg.
141     };
142 
143     /// Map from debug instruction number to PHI position during coalescing.
144     DenseMap<unsigned, PHIValPos> PHIValToPos;
145     /// Index of, for each VReg, which debug instruction numbers and
146     /// corresponding PHIs are sensitive to coalescing. Each VReg may have
147     /// multiple PHI defs, at different positions.
148     DenseMap<Register, SmallVector<unsigned, 2>> RegToPHIIdx;
149 
150     /// Debug variable location tracking -- for each VReg, maintain an
151     /// ordered-by-slot-index set of DBG_VALUEs, to help quick
152     /// identification of whether coalescing may change location validity.
153     using DbgValueLoc = std::pair<SlotIndex, MachineInstr*>;
154     DenseMap<Register, std::vector<DbgValueLoc>> DbgVRegToValues;
155 
156     /// VRegs may be repeatedly coalesced, and have many DBG_VALUEs attached.
157     /// To avoid repeatedly merging sets of DbgValueLocs, instead record
158     /// which vregs have been coalesced, and where to. This map is from
159     /// vreg => {set of vregs merged in}.
160     DenseMap<Register, SmallVector<Register, 4>> DbgMergedVRegNums;
161 
162     /// A LaneMask to remember on which subregister live ranges we need to call
163     /// shrinkToUses() later.
164     LaneBitmask ShrinkMask;
165 
166     /// True if the main range of the currently coalesced intervals should be
167     /// checked for smaller live intervals.
168     bool ShrinkMainRange = false;
169 
170     /// True if the coalescer should aggressively coalesce global copies
171     /// in favor of keeping local copies.
172     bool JoinGlobalCopies = false;
173 
174     /// True if the coalescer should aggressively coalesce fall-thru
175     /// blocks exclusively containing copies.
176     bool JoinSplitEdges = false;
177 
178     /// Copy instructions yet to be coalesced.
179     SmallVector<MachineInstr*, 8> WorkList;
180     SmallVector<MachineInstr*, 8> LocalWorkList;
181 
182     /// Set of instruction pointers that have been erased, and
183     /// that may be present in WorkList.
184     SmallPtrSet<MachineInstr*, 8> ErasedInstrs;
185 
186     /// Dead instructions that are about to be deleted.
187     SmallVector<MachineInstr*, 8> DeadDefs;
188 
189     /// Virtual registers to be considered for register class inflation.
190     SmallVector<Register, 8> InflateRegs;
191 
192     /// The collection of live intervals which should have been updated
193     /// immediately after rematerialiation but delayed until
194     /// lateLiveIntervalUpdate is called.
195     DenseSet<Register> ToBeUpdated;
196 
197     /// Record how many times the large live interval with many valnos
198     /// has been tried to join with other live interval.
199     DenseMap<Register, unsigned long> LargeLIVisitCounter;
200 
201     /// Recursively eliminate dead defs in DeadDefs.
202     void eliminateDeadDefs(LiveRangeEdit *Edit = nullptr);
203 
204     /// LiveRangeEdit callback for eliminateDeadDefs().
205     void LRE_WillEraseInstruction(MachineInstr *MI) override;
206 
207     /// Coalesce the LocalWorkList.
208     void coalesceLocals();
209 
210     /// Join compatible live intervals
211     void joinAllIntervals();
212 
213     /// Coalesce copies in the specified MBB, putting
214     /// copies that cannot yet be coalesced into WorkList.
215     void copyCoalesceInMBB(MachineBasicBlock *MBB);
216 
217     /// Tries to coalesce all copies in CurrList. Returns true if any progress
218     /// was made.
219     bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList);
220 
221     /// If one def has many copy like uses, and those copy uses are all
222     /// rematerialized, the live interval update needed for those
223     /// rematerializations will be delayed and done all at once instead
224     /// of being done multiple times. This is to save compile cost because
225     /// live interval update is costly.
226     void lateLiveIntervalUpdate();
227 
228     /// Check if the incoming value defined by a COPY at \p SLRQ in the subrange
229     /// has no value defined in the predecessors. If the incoming value is the
230     /// same as defined by the copy itself, the value is considered undefined.
231     bool copyValueUndefInPredecessors(LiveRange &S,
232                                       const MachineBasicBlock *MBB,
233                                       LiveQueryResult SLRQ);
234 
235     /// Set necessary undef flags on subregister uses after pruning out undef
236     /// lane segments from the subrange.
237     void setUndefOnPrunedSubRegUses(LiveInterval &LI, Register Reg,
238                                     LaneBitmask PrunedLanes);
239 
240     /// Attempt to join intervals corresponding to SrcReg/DstReg, which are the
241     /// src/dst of the copy instruction CopyMI.  This returns true if the copy
242     /// was successfully coalesced away. If it is not currently possible to
243     /// coalesce this interval, but it may be possible if other things get
244     /// coalesced, then it returns true by reference in 'Again'.
245     bool joinCopy(MachineInstr *CopyMI, bool &Again);
246 
247     /// Attempt to join these two intervals.  On failure, this
248     /// returns false.  The output "SrcInt" will not have been modified, so we
249     /// can use this information below to update aliases.
250     bool joinIntervals(CoalescerPair &CP);
251 
252     /// Attempt joining two virtual registers. Return true on success.
253     bool joinVirtRegs(CoalescerPair &CP);
254 
255     /// If a live interval has many valnos and is coalesced with other
256     /// live intervals many times, we regard such live interval as having
257     /// high compile time cost.
258     bool isHighCostLiveInterval(LiveInterval &LI);
259 
260     /// Attempt joining with a reserved physreg.
261     bool joinReservedPhysReg(CoalescerPair &CP);
262 
263     /// Add the LiveRange @p ToMerge as a subregister liverange of @p LI.
264     /// Subranges in @p LI which only partially interfere with the desired
265     /// LaneMask are split as necessary. @p LaneMask are the lanes that
266     /// @p ToMerge will occupy in the coalescer register. @p LI has its subrange
267     /// lanemasks already adjusted to the coalesced register.
268     void mergeSubRangeInto(LiveInterval &LI, const LiveRange &ToMerge,
269                            LaneBitmask LaneMask, CoalescerPair &CP,
270                            unsigned DstIdx);
271 
272     /// Join the liveranges of two subregisters. Joins @p RRange into
273     /// @p LRange, @p RRange may be invalid afterwards.
274     void joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
275                           LaneBitmask LaneMask, const CoalescerPair &CP);
276 
277     /// We found a non-trivially-coalescable copy. If the source value number is
278     /// defined by a copy from the destination reg see if we can merge these two
279     /// destination reg valno# into a single value number, eliminating a copy.
280     /// This returns true if an interval was modified.
281     bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI);
282 
283     /// Return true if there are definitions of IntB
284     /// other than BValNo val# that can reach uses of AValno val# of IntA.
285     bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB,
286                               VNInfo *AValNo, VNInfo *BValNo);
287 
288     /// We found a non-trivially-coalescable copy.
289     /// If the source value number is defined by a commutable instruction and
290     /// its other operand is coalesced to the copy dest register, see if we
291     /// can transform the copy into a noop by commuting the definition.
292     /// This returns a pair of two flags:
293     /// - the first element is true if an interval was modified,
294     /// - the second element is true if the destination interval needs
295     ///   to be shrunk after deleting the copy.
296     std::pair<bool,bool> removeCopyByCommutingDef(const CoalescerPair &CP,
297                                                   MachineInstr *CopyMI);
298 
299     /// We found a copy which can be moved to its less frequent predecessor.
300     bool removePartialRedundancy(const CoalescerPair &CP, MachineInstr &CopyMI);
301 
302     /// If the source of a copy is defined by a
303     /// trivial computation, replace the copy by rematerialize the definition.
304     bool reMaterializeTrivialDef(const CoalescerPair &CP, MachineInstr *CopyMI,
305                                  bool &IsDefCopy);
306 
307     /// Return true if a copy involving a physreg should be joined.
308     bool canJoinPhys(const CoalescerPair &CP);
309 
310     /// Replace all defs and uses of SrcReg to DstReg and update the subregister
311     /// number if it is not zero. If DstReg is a physical register and the
312     /// existing subregister number of the def / use being updated is not zero,
313     /// make sure to set it to the correct physical subregister.
314     void updateRegDefsUses(Register SrcReg, Register DstReg, unsigned SubIdx);
315 
316     /// If the given machine operand reads only undefined lanes add an undef
317     /// flag.
318     /// This can happen when undef uses were previously concealed by a copy
319     /// which we coalesced. Example:
320     ///    %0:sub0<def,read-undef> = ...
321     ///    %1 = COPY %0           <-- Coalescing COPY reveals undef
322     ///       = use %1:sub1       <-- hidden undef use
323     void addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx,
324                       MachineOperand &MO, unsigned SubRegIdx);
325 
326     /// Handle copies of undef values. If the undef value is an incoming
327     /// PHI value, it will convert @p CopyMI to an IMPLICIT_DEF.
328     /// Returns nullptr if @p CopyMI was not in any way eliminable. Otherwise,
329     /// it returns @p CopyMI (which could be an IMPLICIT_DEF at this point).
330     MachineInstr *eliminateUndefCopy(MachineInstr *CopyMI);
331 
332     /// Check whether or not we should apply the terminal rule on the
333     /// destination (Dst) of \p Copy.
334     /// When the terminal rule applies, Copy is not profitable to
335     /// coalesce.
336     /// Dst is terminal if it has exactly one affinity (Dst, Src) and
337     /// at least one interference (Dst, Dst2). If Dst is terminal, the
338     /// terminal rule consists in checking that at least one of
339     /// interfering node, say Dst2, has an affinity of equal or greater
340     /// weight with Src.
341     /// In that case, Dst2 and Dst will not be able to be both coalesced
342     /// with Src. Since Dst2 exposes more coalescing opportunities than
343     /// Dst, we can drop \p Copy.
344     bool applyTerminalRule(const MachineInstr &Copy) const;
345 
346     /// Wrapper method for \see LiveIntervals::shrinkToUses.
347     /// This method does the proper fixing of the live-ranges when the afore
348     /// mentioned method returns true.
shrinkToUses(LiveInterval * LI,SmallVectorImpl<MachineInstr * > * Dead=nullptr)349     void shrinkToUses(LiveInterval *LI,
350                       SmallVectorImpl<MachineInstr * > *Dead = nullptr) {
351       NumShrinkToUses++;
352       if (LIS->shrinkToUses(LI, Dead)) {
353         /// Check whether or not \p LI is composed by multiple connected
354         /// components and if that is the case, fix that.
355         SmallVector<LiveInterval*, 8> SplitLIs;
356         LIS->splitSeparateComponents(*LI, SplitLIs);
357       }
358     }
359 
360     /// Wrapper Method to do all the necessary work when an Instruction is
361     /// deleted.
362     /// Optimizations should use this to make sure that deleted instructions
363     /// are always accounted for.
deleteInstr(MachineInstr * MI)364     void deleteInstr(MachineInstr* MI) {
365       ErasedInstrs.insert(MI);
366       LIS->RemoveMachineInstrFromMaps(*MI);
367       MI->eraseFromParent();
368     }
369 
370     /// Walk over function and initialize the DbgVRegToValues map.
371     void buildVRegToDbgValueMap(MachineFunction &MF);
372 
373     /// Test whether, after merging, any DBG_VALUEs would refer to a
374     /// different value number than before merging, and whether this can
375     /// be resolved. If not, mark the DBG_VALUE as being undef.
376     void checkMergingChangesDbgValues(CoalescerPair &CP, LiveRange &LHS,
377                                       JoinVals &LHSVals, LiveRange &RHS,
378                                       JoinVals &RHSVals);
379 
380     void checkMergingChangesDbgValuesImpl(Register Reg, LiveRange &OtherRange,
381                                           LiveRange &RegRange, JoinVals &Vals2);
382 
383   public:
384     static char ID; ///< Class identification, replacement for typeinfo
385 
RegisterCoalescer()386     RegisterCoalescer() : MachineFunctionPass(ID) {
387       initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
388     }
389 
390     void getAnalysisUsage(AnalysisUsage &AU) const override;
391 
392     void releaseMemory() override;
393 
394     /// This is the pass entry point.
395     bool runOnMachineFunction(MachineFunction&) override;
396 
397     /// Implement the dump method.
398     void print(raw_ostream &O, const Module* = nullptr) const override;
399   };
400 
401 } // end anonymous namespace
402 
403 char RegisterCoalescer::ID = 0;
404 
405 char &llvm::RegisterCoalescerID = RegisterCoalescer::ID;
406 
407 INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing",
408                       "Simple Register Coalescing", false, false)
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)409 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
410 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
411 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
412 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
413 INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing",
414                     "Simple Register Coalescing", false, false)
415 
416 [[nodiscard]] static bool isMoveInstr(const TargetRegisterInfo &tri,
417                                       const MachineInstr *MI, Register &Src,
418                                       Register &Dst, unsigned &SrcSub,
419                                       unsigned &DstSub) {
420     if (MI->isCopy()) {
421       Dst = MI->getOperand(0).getReg();
422       DstSub = MI->getOperand(0).getSubReg();
423       Src = MI->getOperand(1).getReg();
424       SrcSub = MI->getOperand(1).getSubReg();
425     } else if (MI->isSubregToReg()) {
426       Dst = MI->getOperand(0).getReg();
427       DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(),
428                                         MI->getOperand(3).getImm());
429       Src = MI->getOperand(2).getReg();
430       SrcSub = MI->getOperand(2).getSubReg();
431     } else
432       return false;
433     return true;
434 }
435 
436 /// Return true if this block should be vacated by the coalescer to eliminate
437 /// branches. The important cases to handle in the coalescer are critical edges
438 /// split during phi elimination which contain only copies. Simple blocks that
439 /// contain non-branches should also be vacated, but this can be handled by an
440 /// earlier pass similar to early if-conversion.
isSplitEdge(const MachineBasicBlock * MBB)441 static bool isSplitEdge(const MachineBasicBlock *MBB) {
442   if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
443     return false;
444 
445   for (const auto &MI : *MBB) {
446     if (!MI.isCopyLike() && !MI.isUnconditionalBranch())
447       return false;
448   }
449   return true;
450 }
451 
setRegisters(const MachineInstr * MI)452 bool CoalescerPair::setRegisters(const MachineInstr *MI) {
453   SrcReg = DstReg = Register();
454   SrcIdx = DstIdx = 0;
455   NewRC = nullptr;
456   Flipped = CrossClass = false;
457 
458   Register Src, Dst;
459   unsigned SrcSub = 0, DstSub = 0;
460   if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
461     return false;
462   Partial = SrcSub || DstSub;
463 
464   // If one register is a physreg, it must be Dst.
465   if (Src.isPhysical()) {
466     if (Dst.isPhysical())
467       return false;
468     std::swap(Src, Dst);
469     std::swap(SrcSub, DstSub);
470     Flipped = true;
471   }
472 
473   const MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
474 
475   if (Dst.isPhysical()) {
476     // Eliminate DstSub on a physreg.
477     if (DstSub) {
478       Dst = TRI.getSubReg(Dst, DstSub);
479       if (!Dst) return false;
480       DstSub = 0;
481     }
482 
483     // Eliminate SrcSub by picking a corresponding Dst superregister.
484     if (SrcSub) {
485       Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src));
486       if (!Dst) return false;
487     } else if (!MRI.getRegClass(Src)->contains(Dst)) {
488       return false;
489     }
490   } else {
491     // Both registers are virtual.
492     const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
493     const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
494 
495     // Both registers have subreg indices.
496     if (SrcSub && DstSub) {
497       // Copies between different sub-registers are never coalescable.
498       if (Src == Dst && SrcSub != DstSub)
499         return false;
500 
501       NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub,
502                                          SrcIdx, DstIdx);
503       if (!NewRC)
504         return false;
505     } else if (DstSub) {
506       // SrcReg will be merged with a sub-register of DstReg.
507       SrcIdx = DstSub;
508       NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub);
509     } else if (SrcSub) {
510       // DstReg will be merged with a sub-register of SrcReg.
511       DstIdx = SrcSub;
512       NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub);
513     } else {
514       // This is a straight copy without sub-registers.
515       NewRC = TRI.getCommonSubClass(DstRC, SrcRC);
516     }
517 
518     // The combined constraint may be impossible to satisfy.
519     if (!NewRC)
520       return false;
521 
522     // Prefer SrcReg to be a sub-register of DstReg.
523     // FIXME: Coalescer should support subregs symmetrically.
524     if (DstIdx && !SrcIdx) {
525       std::swap(Src, Dst);
526       std::swap(SrcIdx, DstIdx);
527       Flipped = !Flipped;
528     }
529 
530     CrossClass = NewRC != DstRC || NewRC != SrcRC;
531   }
532   // Check our invariants
533   assert(Src.isVirtual() && "Src must be virtual");
534   assert(!(Dst.isPhysical() && DstSub) && "Cannot have a physical SubIdx");
535   SrcReg = Src;
536   DstReg = Dst;
537   return true;
538 }
539 
flip()540 bool CoalescerPair::flip() {
541   if (DstReg.isPhysical())
542     return false;
543   std::swap(SrcReg, DstReg);
544   std::swap(SrcIdx, DstIdx);
545   Flipped = !Flipped;
546   return true;
547 }
548 
isCoalescable(const MachineInstr * MI) const549 bool CoalescerPair::isCoalescable(const MachineInstr *MI) const {
550   if (!MI)
551     return false;
552   Register Src, Dst;
553   unsigned SrcSub = 0, DstSub = 0;
554   if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
555     return false;
556 
557   // Find the virtual register that is SrcReg.
558   if (Dst == SrcReg) {
559     std::swap(Src, Dst);
560     std::swap(SrcSub, DstSub);
561   } else if (Src != SrcReg) {
562     return false;
563   }
564 
565   // Now check that Dst matches DstReg.
566   if (DstReg.isPhysical()) {
567     if (!Dst.isPhysical())
568       return false;
569     assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state.");
570     // DstSub could be set for a physreg from INSERT_SUBREG.
571     if (DstSub)
572       Dst = TRI.getSubReg(Dst, DstSub);
573     // Full copy of Src.
574     if (!SrcSub)
575       return DstReg == Dst;
576     // This is a partial register copy. Check that the parts match.
577     return Register(TRI.getSubReg(DstReg, SrcSub)) == Dst;
578   } else {
579     // DstReg is virtual.
580     if (DstReg != Dst)
581       return false;
582     // Registers match, do the subregisters line up?
583     return TRI.composeSubRegIndices(SrcIdx, SrcSub) ==
584            TRI.composeSubRegIndices(DstIdx, DstSub);
585   }
586 }
587 
getAnalysisUsage(AnalysisUsage & AU) const588 void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const {
589   AU.setPreservesCFG();
590   AU.addRequired<AAResultsWrapperPass>();
591   AU.addRequired<LiveIntervals>();
592   AU.addPreserved<LiveIntervals>();
593   AU.addPreserved<SlotIndexes>();
594   AU.addRequired<MachineLoopInfo>();
595   AU.addPreserved<MachineLoopInfo>();
596   AU.addPreservedID(MachineDominatorsID);
597   MachineFunctionPass::getAnalysisUsage(AU);
598 }
599 
eliminateDeadDefs(LiveRangeEdit * Edit)600 void RegisterCoalescer::eliminateDeadDefs(LiveRangeEdit *Edit) {
601   if (Edit) {
602     Edit->eliminateDeadDefs(DeadDefs);
603     return;
604   }
605   SmallVector<Register, 8> NewRegs;
606   LiveRangeEdit(nullptr, NewRegs, *MF, *LIS,
607                 nullptr, this).eliminateDeadDefs(DeadDefs);
608 }
609 
LRE_WillEraseInstruction(MachineInstr * MI)610 void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) {
611   // MI may be in WorkList. Make sure we don't visit it.
612   ErasedInstrs.insert(MI);
613 }
614 
adjustCopiesBackFrom(const CoalescerPair & CP,MachineInstr * CopyMI)615 bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP,
616                                              MachineInstr *CopyMI) {
617   assert(!CP.isPartial() && "This doesn't work for partial copies.");
618   assert(!CP.isPhys() && "This doesn't work for physreg copies.");
619 
620   LiveInterval &IntA =
621     LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
622   LiveInterval &IntB =
623     LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
624   SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
625 
626   // We have a non-trivially-coalescable copy with IntA being the source and
627   // IntB being the dest, thus this defines a value number in IntB.  If the
628   // source value number (in IntA) is defined by a copy from B, see if we can
629   // merge these two pieces of B into a single value number, eliminating a copy.
630   // For example:
631   //
632   //  A3 = B0
633   //    ...
634   //  B1 = A3      <- this copy
635   //
636   // In this case, B0 can be extended to where the B1 copy lives, allowing the
637   // B1 value number to be replaced with B0 (which simplifies the B
638   // liveinterval).
639 
640   // BValNo is a value number in B that is defined by a copy from A.  'B1' in
641   // the example above.
642   LiveInterval::iterator BS = IntB.FindSegmentContaining(CopyIdx);
643   if (BS == IntB.end()) return false;
644   VNInfo *BValNo = BS->valno;
645 
646   // Get the location that B is defined at.  Two options: either this value has
647   // an unknown definition point or it is defined at CopyIdx.  If unknown, we
648   // can't process it.
649   if (BValNo->def != CopyIdx) return false;
650 
651   // AValNo is the value number in A that defines the copy, A3 in the example.
652   SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true);
653   LiveInterval::iterator AS = IntA.FindSegmentContaining(CopyUseIdx);
654   // The live segment might not exist after fun with physreg coalescing.
655   if (AS == IntA.end()) return false;
656   VNInfo *AValNo = AS->valno;
657 
658   // If AValNo is defined as a copy from IntB, we can potentially process this.
659   // Get the instruction that defines this value number.
660   MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def);
661   // Don't allow any partial copies, even if isCoalescable() allows them.
662   if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy())
663     return false;
664 
665   // Get the Segment in IntB that this value number starts with.
666   LiveInterval::iterator ValS =
667     IntB.FindSegmentContaining(AValNo->def.getPrevSlot());
668   if (ValS == IntB.end())
669     return false;
670 
671   // Make sure that the end of the live segment is inside the same block as
672   // CopyMI.
673   MachineInstr *ValSEndInst =
674     LIS->getInstructionFromIndex(ValS->end.getPrevSlot());
675   if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent())
676     return false;
677 
678   // Okay, we now know that ValS ends in the same block that the CopyMI
679   // live-range starts.  If there are no intervening live segments between them
680   // in IntB, we can merge them.
681   if (ValS+1 != BS) return false;
682 
683   LLVM_DEBUG(dbgs() << "Extending: " << printReg(IntB.reg(), TRI));
684 
685   SlotIndex FillerStart = ValS->end, FillerEnd = BS->start;
686   // We are about to delete CopyMI, so need to remove it as the 'instruction
687   // that defines this value #'. Update the valnum with the new defining
688   // instruction #.
689   BValNo->def = FillerStart;
690 
691   // Okay, we can merge them.  We need to insert a new liverange:
692   // [ValS.end, BS.begin) of either value number, then we merge the
693   // two value numbers.
694   IntB.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, BValNo));
695 
696   // Okay, merge "B1" into the same value number as "B0".
697   if (BValNo != ValS->valno)
698     IntB.MergeValueNumberInto(BValNo, ValS->valno);
699 
700   // Do the same for the subregister segments.
701   for (LiveInterval::SubRange &S : IntB.subranges()) {
702     // Check for SubRange Segments of the form [1234r,1234d:0) which can be
703     // removed to prevent creating bogus SubRange Segments.
704     LiveInterval::iterator SS = S.FindSegmentContaining(CopyIdx);
705     if (SS != S.end() && SlotIndex::isSameInstr(SS->start, SS->end)) {
706       S.removeSegment(*SS, true);
707       continue;
708     }
709     // The subrange may have ended before FillerStart. If so, extend it.
710     if (!S.getVNInfoAt(FillerStart)) {
711       SlotIndex BBStart =
712           LIS->getMBBStartIdx(LIS->getMBBFromIndex(FillerStart));
713       S.extendInBlock(BBStart, FillerStart);
714     }
715     VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
716     S.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, SubBValNo));
717     VNInfo *SubValSNo = S.getVNInfoAt(AValNo->def.getPrevSlot());
718     if (SubBValNo != SubValSNo)
719       S.MergeValueNumberInto(SubBValNo, SubValSNo);
720   }
721 
722   LLVM_DEBUG(dbgs() << "   result = " << IntB << '\n');
723 
724   // If the source instruction was killing the source register before the
725   // merge, unset the isKill marker given the live range has been extended.
726   int UIdx = ValSEndInst->findRegisterUseOperandIdx(IntB.reg(), true);
727   if (UIdx != -1) {
728     ValSEndInst->getOperand(UIdx).setIsKill(false);
729   }
730 
731   // Rewrite the copy.
732   CopyMI->substituteRegister(IntA.reg(), IntB.reg(), 0, *TRI);
733   // If the copy instruction was killing the destination register or any
734   // subrange before the merge trim the live range.
735   bool RecomputeLiveRange = AS->end == CopyIdx;
736   if (!RecomputeLiveRange) {
737     for (LiveInterval::SubRange &S : IntA.subranges()) {
738       LiveInterval::iterator SS = S.FindSegmentContaining(CopyUseIdx);
739       if (SS != S.end() && SS->end == CopyIdx) {
740         RecomputeLiveRange = true;
741         break;
742       }
743     }
744   }
745   if (RecomputeLiveRange)
746     shrinkToUses(&IntA);
747 
748   ++numExtends;
749   return true;
750 }
751 
hasOtherReachingDefs(LiveInterval & IntA,LiveInterval & IntB,VNInfo * AValNo,VNInfo * BValNo)752 bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA,
753                                              LiveInterval &IntB,
754                                              VNInfo *AValNo,
755                                              VNInfo *BValNo) {
756   // If AValNo has PHI kills, conservatively assume that IntB defs can reach
757   // the PHI values.
758   if (LIS->hasPHIKill(IntA, AValNo))
759     return true;
760 
761   for (LiveRange::Segment &ASeg : IntA.segments) {
762     if (ASeg.valno != AValNo) continue;
763     LiveInterval::iterator BI = llvm::upper_bound(IntB, ASeg.start);
764     if (BI != IntB.begin())
765       --BI;
766     for (; BI != IntB.end() && ASeg.end >= BI->start; ++BI) {
767       if (BI->valno == BValNo)
768         continue;
769       if (BI->start <= ASeg.start && BI->end > ASeg.start)
770         return true;
771       if (BI->start > ASeg.start && BI->start < ASeg.end)
772         return true;
773     }
774   }
775   return false;
776 }
777 
778 /// Copy segments with value number @p SrcValNo from liverange @p Src to live
779 /// range @Dst and use value number @p DstValNo there.
780 static std::pair<bool,bool>
addSegmentsWithValNo(LiveRange & Dst,VNInfo * DstValNo,const LiveRange & Src,const VNInfo * SrcValNo)781 addSegmentsWithValNo(LiveRange &Dst, VNInfo *DstValNo, const LiveRange &Src,
782                      const VNInfo *SrcValNo) {
783   bool Changed = false;
784   bool MergedWithDead = false;
785   for (const LiveRange::Segment &S : Src.segments) {
786     if (S.valno != SrcValNo)
787       continue;
788     // This is adding a segment from Src that ends in a copy that is about
789     // to be removed. This segment is going to be merged with a pre-existing
790     // segment in Dst. This works, except in cases when the corresponding
791     // segment in Dst is dead. For example: adding [192r,208r:1) from Src
792     // to [208r,208d:1) in Dst would create [192r,208d:1) in Dst.
793     // Recognized such cases, so that the segments can be shrunk.
794     LiveRange::Segment Added = LiveRange::Segment(S.start, S.end, DstValNo);
795     LiveRange::Segment &Merged = *Dst.addSegment(Added);
796     if (Merged.end.isDead())
797       MergedWithDead = true;
798     Changed = true;
799   }
800   return std::make_pair(Changed, MergedWithDead);
801 }
802 
803 std::pair<bool,bool>
removeCopyByCommutingDef(const CoalescerPair & CP,MachineInstr * CopyMI)804 RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP,
805                                             MachineInstr *CopyMI) {
806   assert(!CP.isPhys());
807 
808   LiveInterval &IntA =
809       LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
810   LiveInterval &IntB =
811       LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
812 
813   // We found a non-trivially-coalescable copy with IntA being the source and
814   // IntB being the dest, thus this defines a value number in IntB.  If the
815   // source value number (in IntA) is defined by a commutable instruction and
816   // its other operand is coalesced to the copy dest register, see if we can
817   // transform the copy into a noop by commuting the definition. For example,
818   //
819   //  A3 = op A2 killed B0
820   //    ...
821   //  B1 = A3      <- this copy
822   //    ...
823   //     = op A3   <- more uses
824   //
825   // ==>
826   //
827   //  B2 = op B0 killed A2
828   //    ...
829   //  B1 = B2      <- now an identity copy
830   //    ...
831   //     = op B2   <- more uses
832 
833   // BValNo is a value number in B that is defined by a copy from A. 'B1' in
834   // the example above.
835   SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
836   VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx);
837   assert(BValNo != nullptr && BValNo->def == CopyIdx);
838 
839   // AValNo is the value number in A that defines the copy, A3 in the example.
840   VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true));
841   assert(AValNo && !AValNo->isUnused() && "COPY source not live");
842   if (AValNo->isPHIDef())
843     return { false, false };
844   MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def);
845   if (!DefMI)
846     return { false, false };
847   if (!DefMI->isCommutable())
848     return { false, false };
849   // If DefMI is a two-address instruction then commuting it will change the
850   // destination register.
851   int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg());
852   assert(DefIdx != -1);
853   unsigned UseOpIdx;
854   if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
855     return { false, false };
856 
857   // FIXME: The code below tries to commute 'UseOpIdx' operand with some other
858   // commutable operand which is expressed by 'CommuteAnyOperandIndex'value
859   // passed to the method. That _other_ operand is chosen by
860   // the findCommutedOpIndices() method.
861   //
862   // That is obviously an area for improvement in case of instructions having
863   // more than 2 operands. For example, if some instruction has 3 commutable
864   // operands then all possible variants (i.e. op#1<->op#2, op#1<->op#3,
865   // op#2<->op#3) of commute transformation should be considered/tried here.
866   unsigned NewDstIdx = TargetInstrInfo::CommuteAnyOperandIndex;
867   if (!TII->findCommutedOpIndices(*DefMI, UseOpIdx, NewDstIdx))
868     return { false, false };
869 
870   MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
871   Register NewReg = NewDstMO.getReg();
872   if (NewReg != IntB.reg() || !IntB.Query(AValNo->def).isKill())
873     return { false, false };
874 
875   // Make sure there are no other definitions of IntB that would reach the
876   // uses which the new definition can reach.
877   if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
878     return { false, false };
879 
880   // If some of the uses of IntA.reg is already coalesced away, return false.
881   // It's not possible to determine whether it's safe to perform the coalescing.
882   for (MachineOperand &MO : MRI->use_nodbg_operands(IntA.reg())) {
883     MachineInstr *UseMI = MO.getParent();
884     unsigned OpNo = &MO - &UseMI->getOperand(0);
885     SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI);
886     LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
887     if (US == IntA.end() || US->valno != AValNo)
888       continue;
889     // If this use is tied to a def, we can't rewrite the register.
890     if (UseMI->isRegTiedToDefOperand(OpNo))
891       return { false, false };
892   }
893 
894   LLVM_DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t'
895                     << *DefMI);
896 
897   // At this point we have decided that it is legal to do this
898   // transformation.  Start by commuting the instruction.
899   MachineBasicBlock *MBB = DefMI->getParent();
900   MachineInstr *NewMI =
901       TII->commuteInstruction(*DefMI, false, UseOpIdx, NewDstIdx);
902   if (!NewMI)
903     return { false, false };
904   if (IntA.reg().isVirtual() && IntB.reg().isVirtual() &&
905       !MRI->constrainRegClass(IntB.reg(), MRI->getRegClass(IntA.reg())))
906     return { false, false };
907   if (NewMI != DefMI) {
908     LIS->ReplaceMachineInstrInMaps(*DefMI, *NewMI);
909     MachineBasicBlock::iterator Pos = DefMI;
910     MBB->insert(Pos, NewMI);
911     MBB->erase(DefMI);
912   }
913 
914   // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
915   // A = or A, B
916   // ...
917   // B = A
918   // ...
919   // C = killed A
920   // ...
921   //   = B
922 
923   // Update uses of IntA of the specific Val# with IntB.
924   for (MachineOperand &UseMO :
925        llvm::make_early_inc_range(MRI->use_operands(IntA.reg()))) {
926     if (UseMO.isUndef())
927       continue;
928     MachineInstr *UseMI = UseMO.getParent();
929     if (UseMI->isDebugInstr()) {
930       // FIXME These don't have an instruction index.  Not clear we have enough
931       // info to decide whether to do this replacement or not.  For now do it.
932       UseMO.setReg(NewReg);
933       continue;
934     }
935     SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI).getRegSlot(true);
936     LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
937     assert(US != IntA.end() && "Use must be live");
938     if (US->valno != AValNo)
939       continue;
940     // Kill flags are no longer accurate. They are recomputed after RA.
941     UseMO.setIsKill(false);
942     if (NewReg.isPhysical())
943       UseMO.substPhysReg(NewReg, *TRI);
944     else
945       UseMO.setReg(NewReg);
946     if (UseMI == CopyMI)
947       continue;
948     if (!UseMI->isCopy())
949       continue;
950     if (UseMI->getOperand(0).getReg() != IntB.reg() ||
951         UseMI->getOperand(0).getSubReg())
952       continue;
953 
954     // This copy will become a noop. If it's defining a new val#, merge it into
955     // BValNo.
956     SlotIndex DefIdx = UseIdx.getRegSlot();
957     VNInfo *DVNI = IntB.getVNInfoAt(DefIdx);
958     if (!DVNI)
959       continue;
960     LLVM_DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI);
961     assert(DVNI->def == DefIdx);
962     BValNo = IntB.MergeValueNumberInto(DVNI, BValNo);
963     for (LiveInterval::SubRange &S : IntB.subranges()) {
964       VNInfo *SubDVNI = S.getVNInfoAt(DefIdx);
965       if (!SubDVNI)
966         continue;
967       VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
968       assert(SubBValNo->def == CopyIdx);
969       S.MergeValueNumberInto(SubDVNI, SubBValNo);
970     }
971 
972     deleteInstr(UseMI);
973   }
974 
975   // Extend BValNo by merging in IntA live segments of AValNo. Val# definition
976   // is updated.
977   bool ShrinkB = false;
978   BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
979   if (IntA.hasSubRanges() || IntB.hasSubRanges()) {
980     if (!IntA.hasSubRanges()) {
981       LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntA.reg());
982       IntA.createSubRangeFrom(Allocator, Mask, IntA);
983     } else if (!IntB.hasSubRanges()) {
984       LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntB.reg());
985       IntB.createSubRangeFrom(Allocator, Mask, IntB);
986     }
987     SlotIndex AIdx = CopyIdx.getRegSlot(true);
988     LaneBitmask MaskA;
989     const SlotIndexes &Indexes = *LIS->getSlotIndexes();
990     for (LiveInterval::SubRange &SA : IntA.subranges()) {
991       VNInfo *ASubValNo = SA.getVNInfoAt(AIdx);
992       // Even if we are dealing with a full copy, some lanes can
993       // still be undefined.
994       // E.g.,
995       // undef A.subLow = ...
996       // B = COPY A <== A.subHigh is undefined here and does
997       //                not have a value number.
998       if (!ASubValNo)
999         continue;
1000       MaskA |= SA.LaneMask;
1001 
1002       IntB.refineSubRanges(
1003           Allocator, SA.LaneMask,
1004           [&Allocator, &SA, CopyIdx, ASubValNo,
1005            &ShrinkB](LiveInterval::SubRange &SR) {
1006             VNInfo *BSubValNo = SR.empty() ? SR.getNextValue(CopyIdx, Allocator)
1007                                            : SR.getVNInfoAt(CopyIdx);
1008             assert(BSubValNo != nullptr);
1009             auto P = addSegmentsWithValNo(SR, BSubValNo, SA, ASubValNo);
1010             ShrinkB |= P.second;
1011             if (P.first)
1012               BSubValNo->def = ASubValNo->def;
1013           },
1014           Indexes, *TRI);
1015     }
1016     // Go over all subranges of IntB that have not been covered by IntA,
1017     // and delete the segments starting at CopyIdx. This can happen if
1018     // IntA has undef lanes that are defined in IntB.
1019     for (LiveInterval::SubRange &SB : IntB.subranges()) {
1020       if ((SB.LaneMask & MaskA).any())
1021         continue;
1022       if (LiveRange::Segment *S = SB.getSegmentContaining(CopyIdx))
1023         if (S->start.getBaseIndex() == CopyIdx.getBaseIndex())
1024           SB.removeSegment(*S, true);
1025     }
1026   }
1027 
1028   BValNo->def = AValNo->def;
1029   auto P = addSegmentsWithValNo(IntB, BValNo, IntA, AValNo);
1030   ShrinkB |= P.second;
1031   LLVM_DEBUG(dbgs() << "\t\textended: " << IntB << '\n');
1032 
1033   LIS->removeVRegDefAt(IntA, AValNo->def);
1034 
1035   LLVM_DEBUG(dbgs() << "\t\ttrimmed:  " << IntA << '\n');
1036   ++numCommutes;
1037   return { true, ShrinkB };
1038 }
1039 
1040 /// For copy B = A in BB2, if A is defined by A = B in BB0 which is a
1041 /// predecessor of BB2, and if B is not redefined on the way from A = B
1042 /// in BB0 to B = A in BB2, B = A in BB2 is partially redundant if the
1043 /// execution goes through the path from BB0 to BB2. We may move B = A
1044 /// to the predecessor without such reversed copy.
1045 /// So we will transform the program from:
1046 ///   BB0:
1047 ///      A = B;    BB1:
1048 ///       ...         ...
1049 ///     /     \      /
1050 ///             BB2:
1051 ///               ...
1052 ///               B = A;
1053 ///
1054 /// to:
1055 ///
1056 ///   BB0:         BB1:
1057 ///      A = B;        ...
1058 ///       ...          B = A;
1059 ///     /     \       /
1060 ///             BB2:
1061 ///               ...
1062 ///
1063 /// A special case is when BB0 and BB2 are the same BB which is the only
1064 /// BB in a loop:
1065 ///   BB1:
1066 ///        ...
1067 ///   BB0/BB2:  ----
1068 ///        B = A;   |
1069 ///        ...      |
1070 ///        A = B;   |
1071 ///          |-------
1072 ///          |
1073 /// We may hoist B = A from BB0/BB2 to BB1.
1074 ///
1075 /// The major preconditions for correctness to remove such partial
1076 /// redundancy include:
1077 /// 1. A in B = A in BB2 is defined by a PHI in BB2, and one operand of
1078 ///    the PHI is defined by the reversed copy A = B in BB0.
1079 /// 2. No B is referenced from the start of BB2 to B = A.
1080 /// 3. No B is defined from A = B to the end of BB0.
1081 /// 4. BB1 has only one successor.
1082 ///
1083 /// 2 and 4 implicitly ensure B is not live at the end of BB1.
1084 /// 4 guarantees BB2 is hotter than BB1, so we can only move a copy to a
1085 /// colder place, which not only prevent endless loop, but also make sure
1086 /// the movement of copy is beneficial.
removePartialRedundancy(const CoalescerPair & CP,MachineInstr & CopyMI)1087 bool RegisterCoalescer::removePartialRedundancy(const CoalescerPair &CP,
1088                                                 MachineInstr &CopyMI) {
1089   assert(!CP.isPhys());
1090   if (!CopyMI.isFullCopy())
1091     return false;
1092 
1093   MachineBasicBlock &MBB = *CopyMI.getParent();
1094   // If this block is the target of an invoke/inlineasm_br, moving the copy into
1095   // the predecessor is tricker, and we don't handle it.
1096   if (MBB.isEHPad() || MBB.isInlineAsmBrIndirectTarget())
1097     return false;
1098 
1099   if (MBB.pred_size() != 2)
1100     return false;
1101 
1102   LiveInterval &IntA =
1103       LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
1104   LiveInterval &IntB =
1105       LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
1106 
1107   // A is defined by PHI at the entry of MBB.
1108   SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(true);
1109   VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx);
1110   assert(AValNo && !AValNo->isUnused() && "COPY source not live");
1111   if (!AValNo->isPHIDef())
1112     return false;
1113 
1114   // No B is referenced before CopyMI in MBB.
1115   if (IntB.overlaps(LIS->getMBBStartIdx(&MBB), CopyIdx))
1116     return false;
1117 
1118   // MBB has two predecessors: one contains A = B so no copy will be inserted
1119   // for it. The other one will have a copy moved from MBB.
1120   bool FoundReverseCopy = false;
1121   MachineBasicBlock *CopyLeftBB = nullptr;
1122   for (MachineBasicBlock *Pred : MBB.predecessors()) {
1123     VNInfo *PVal = IntA.getVNInfoBefore(LIS->getMBBEndIdx(Pred));
1124     MachineInstr *DefMI = LIS->getInstructionFromIndex(PVal->def);
1125     if (!DefMI || !DefMI->isFullCopy()) {
1126       CopyLeftBB = Pred;
1127       continue;
1128     }
1129     // Check DefMI is a reverse copy and it is in BB Pred.
1130     if (DefMI->getOperand(0).getReg() != IntA.reg() ||
1131         DefMI->getOperand(1).getReg() != IntB.reg() ||
1132         DefMI->getParent() != Pred) {
1133       CopyLeftBB = Pred;
1134       continue;
1135     }
1136     // If there is any other def of B after DefMI and before the end of Pred,
1137     // we need to keep the copy of B = A at the end of Pred if we remove
1138     // B = A from MBB.
1139     bool ValB_Changed = false;
1140     for (auto *VNI : IntB.valnos) {
1141       if (VNI->isUnused())
1142         continue;
1143       if (PVal->def < VNI->def && VNI->def < LIS->getMBBEndIdx(Pred)) {
1144         ValB_Changed = true;
1145         break;
1146       }
1147     }
1148     if (ValB_Changed) {
1149       CopyLeftBB = Pred;
1150       continue;
1151     }
1152     FoundReverseCopy = true;
1153   }
1154 
1155   // If no reverse copy is found in predecessors, nothing to do.
1156   if (!FoundReverseCopy)
1157     return false;
1158 
1159   // If CopyLeftBB is nullptr, it means every predecessor of MBB contains
1160   // reverse copy, CopyMI can be removed trivially if only IntA/IntB is updated.
1161   // If CopyLeftBB is not nullptr, move CopyMI from MBB to CopyLeftBB and
1162   // update IntA/IntB.
1163   //
1164   // If CopyLeftBB is not nullptr, ensure CopyLeftBB has a single succ so
1165   // MBB is hotter than CopyLeftBB.
1166   if (CopyLeftBB && CopyLeftBB->succ_size() > 1)
1167     return false;
1168 
1169   // Now (almost sure it's) ok to move copy.
1170   if (CopyLeftBB) {
1171     // Position in CopyLeftBB where we should insert new copy.
1172     auto InsPos = CopyLeftBB->getFirstTerminator();
1173 
1174     // Make sure that B isn't referenced in the terminators (if any) at the end
1175     // of the predecessor since we're about to insert a new definition of B
1176     // before them.
1177     if (InsPos != CopyLeftBB->end()) {
1178       SlotIndex InsPosIdx = LIS->getInstructionIndex(*InsPos).getRegSlot(true);
1179       if (IntB.overlaps(InsPosIdx, LIS->getMBBEndIdx(CopyLeftBB)))
1180         return false;
1181     }
1182 
1183     LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Move the copy to "
1184                       << printMBBReference(*CopyLeftBB) << '\t' << CopyMI);
1185 
1186     // Insert new copy to CopyLeftBB.
1187     MachineInstr *NewCopyMI = BuildMI(*CopyLeftBB, InsPos, CopyMI.getDebugLoc(),
1188                                       TII->get(TargetOpcode::COPY), IntB.reg())
1189                                   .addReg(IntA.reg());
1190     SlotIndex NewCopyIdx =
1191         LIS->InsertMachineInstrInMaps(*NewCopyMI).getRegSlot();
1192     IntB.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator());
1193     for (LiveInterval::SubRange &SR : IntB.subranges())
1194       SR.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator());
1195 
1196     // If the newly created Instruction has an address of an instruction that was
1197     // deleted before (object recycled by the allocator) it needs to be removed from
1198     // the deleted list.
1199     ErasedInstrs.erase(NewCopyMI);
1200   } else {
1201     LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Remove the copy from "
1202                       << printMBBReference(MBB) << '\t' << CopyMI);
1203   }
1204 
1205   // Remove CopyMI.
1206   // Note: This is fine to remove the copy before updating the live-ranges.
1207   // While updating the live-ranges, we only look at slot indices and
1208   // never go back to the instruction.
1209   // Mark instructions as deleted.
1210   deleteInstr(&CopyMI);
1211 
1212   // Update the liveness.
1213   SmallVector<SlotIndex, 8> EndPoints;
1214   VNInfo *BValNo = IntB.Query(CopyIdx).valueOutOrDead();
1215   LIS->pruneValue(*static_cast<LiveRange *>(&IntB), CopyIdx.getRegSlot(),
1216                   &EndPoints);
1217   BValNo->markUnused();
1218   // Extend IntB to the EndPoints of its original live interval.
1219   LIS->extendToIndices(IntB, EndPoints);
1220 
1221   // Now, do the same for its subranges.
1222   for (LiveInterval::SubRange &SR : IntB.subranges()) {
1223     EndPoints.clear();
1224     VNInfo *BValNo = SR.Query(CopyIdx).valueOutOrDead();
1225     assert(BValNo && "All sublanes should be live");
1226     LIS->pruneValue(SR, CopyIdx.getRegSlot(), &EndPoints);
1227     BValNo->markUnused();
1228     // We can have a situation where the result of the original copy is live,
1229     // but is immediately dead in this subrange, e.g. [336r,336d:0). That makes
1230     // the copy appear as an endpoint from pruneValue(), but we don't want it
1231     // to because the copy has been removed.  We can go ahead and remove that
1232     // endpoint; there is no other situation here that there could be a use at
1233     // the same place as we know that the copy is a full copy.
1234     for (unsigned I = 0; I != EndPoints.size(); ) {
1235       if (SlotIndex::isSameInstr(EndPoints[I], CopyIdx)) {
1236         EndPoints[I] = EndPoints.back();
1237         EndPoints.pop_back();
1238         continue;
1239       }
1240       ++I;
1241     }
1242     SmallVector<SlotIndex, 8> Undefs;
1243     IntB.computeSubRangeUndefs(Undefs, SR.LaneMask, *MRI,
1244                                *LIS->getSlotIndexes());
1245     LIS->extendToIndices(SR, EndPoints, Undefs);
1246   }
1247   // If any dead defs were extended, truncate them.
1248   shrinkToUses(&IntB);
1249 
1250   // Finally, update the live-range of IntA.
1251   shrinkToUses(&IntA);
1252   return true;
1253 }
1254 
1255 /// Returns true if @p MI defines the full vreg @p Reg, as opposed to just
1256 /// defining a subregister.
definesFullReg(const MachineInstr & MI,Register Reg)1257 static bool definesFullReg(const MachineInstr &MI, Register Reg) {
1258   assert(!Reg.isPhysical() && "This code cannot handle physreg aliasing");
1259 
1260   for (const MachineOperand &Op : MI.operands()) {
1261     if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg)
1262       continue;
1263     // Return true if we define the full register or don't care about the value
1264     // inside other subregisters.
1265     if (Op.getSubReg() == 0 || Op.isUndef())
1266       return true;
1267   }
1268   return false;
1269 }
1270 
reMaterializeTrivialDef(const CoalescerPair & CP,MachineInstr * CopyMI,bool & IsDefCopy)1271 bool RegisterCoalescer::reMaterializeTrivialDef(const CoalescerPair &CP,
1272                                                 MachineInstr *CopyMI,
1273                                                 bool &IsDefCopy) {
1274   IsDefCopy = false;
1275   Register SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg();
1276   unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx();
1277   Register DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
1278   unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx();
1279   if (SrcReg.isPhysical())
1280     return false;
1281 
1282   LiveInterval &SrcInt = LIS->getInterval(SrcReg);
1283   SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI);
1284   VNInfo *ValNo = SrcInt.Query(CopyIdx).valueIn();
1285   if (!ValNo)
1286     return false;
1287   if (ValNo->isPHIDef() || ValNo->isUnused())
1288     return false;
1289   MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def);
1290   if (!DefMI)
1291     return false;
1292   if (DefMI->isCopyLike()) {
1293     IsDefCopy = true;
1294     return false;
1295   }
1296   if (!TII->isAsCheapAsAMove(*DefMI))
1297     return false;
1298 
1299   SmallVector<Register, 8> NewRegs;
1300   LiveRangeEdit Edit(&SrcInt, NewRegs, *MF, *LIS, nullptr, this);
1301   if (!Edit.checkRematerializable(ValNo, DefMI))
1302     return false;
1303 
1304   if (!definesFullReg(*DefMI, SrcReg))
1305     return false;
1306   bool SawStore = false;
1307   if (!DefMI->isSafeToMove(AA, SawStore))
1308     return false;
1309   const MCInstrDesc &MCID = DefMI->getDesc();
1310   if (MCID.getNumDefs() != 1)
1311     return false;
1312   // Only support subregister destinations when the def is read-undef.
1313   MachineOperand &DstOperand = CopyMI->getOperand(0);
1314   Register CopyDstReg = DstOperand.getReg();
1315   if (DstOperand.getSubReg() && !DstOperand.isUndef())
1316     return false;
1317 
1318   // If both SrcIdx and DstIdx are set, correct rematerialization would widen
1319   // the register substantially (beyond both source and dest size). This is bad
1320   // for performance since it can cascade through a function, introducing many
1321   // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers
1322   // around after a few subreg copies).
1323   if (SrcIdx && DstIdx)
1324     return false;
1325 
1326   const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF);
1327   if (!DefMI->isImplicitDef()) {
1328     if (DstReg.isPhysical()) {
1329       Register NewDstReg = DstReg;
1330 
1331       unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(),
1332                                               DefMI->getOperand(0).getSubReg());
1333       if (NewDstIdx)
1334         NewDstReg = TRI->getSubReg(DstReg, NewDstIdx);
1335 
1336       // Finally, make sure that the physical subregister that will be
1337       // constructed later is permitted for the instruction.
1338       if (!DefRC->contains(NewDstReg))
1339         return false;
1340     } else {
1341       // Theoretically, some stack frame reference could exist. Just make sure
1342       // it hasn't actually happened.
1343       assert(DstReg.isVirtual() &&
1344              "Only expect to deal with virtual or physical registers");
1345     }
1346   }
1347 
1348   LiveRangeEdit::Remat RM(ValNo);
1349   RM.OrigMI = DefMI;
1350   if (!Edit.canRematerializeAt(RM, ValNo, CopyIdx, true))
1351     return false;
1352 
1353   DebugLoc DL = CopyMI->getDebugLoc();
1354   MachineBasicBlock *MBB = CopyMI->getParent();
1355   MachineBasicBlock::iterator MII =
1356     std::next(MachineBasicBlock::iterator(CopyMI));
1357   Edit.rematerializeAt(*MBB, MII, DstReg, RM, *TRI, false, SrcIdx, CopyMI);
1358   MachineInstr &NewMI = *std::prev(MII);
1359   NewMI.setDebugLoc(DL);
1360 
1361   // In a situation like the following:
1362   //     %0:subreg = instr              ; DefMI, subreg = DstIdx
1363   //     %1        = copy %0:subreg ; CopyMI, SrcIdx = 0
1364   // instead of widening %1 to the register class of %0 simply do:
1365   //     %1 = instr
1366   const TargetRegisterClass *NewRC = CP.getNewRC();
1367   if (DstIdx != 0) {
1368     MachineOperand &DefMO = NewMI.getOperand(0);
1369     if (DefMO.getSubReg() == DstIdx) {
1370       assert(SrcIdx == 0 && CP.isFlipped()
1371              && "Shouldn't have SrcIdx+DstIdx at this point");
1372       const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
1373       const TargetRegisterClass *CommonRC =
1374         TRI->getCommonSubClass(DefRC, DstRC);
1375       if (CommonRC != nullptr) {
1376         NewRC = CommonRC;
1377 
1378         // Instruction might contain "undef %0:subreg" as use operand:
1379         //   %0:subreg = instr op_1, ..., op_N, undef %0:subreg, op_N+2, ...
1380         //
1381         // Need to check all operands.
1382         for (MachineOperand &MO : NewMI.operands()) {
1383           if (MO.isReg() && MO.getReg() == DstReg && MO.getSubReg() == DstIdx) {
1384             MO.setSubReg(0);
1385           }
1386         }
1387 
1388         DstIdx = 0;
1389         DefMO.setIsUndef(false); // Only subregs can have def+undef.
1390       }
1391     }
1392   }
1393 
1394   // CopyMI may have implicit operands, save them so that we can transfer them
1395   // over to the newly materialized instruction after CopyMI is removed.
1396   SmallVector<MachineOperand, 4> ImplicitOps;
1397   ImplicitOps.reserve(CopyMI->getNumOperands() -
1398                       CopyMI->getDesc().getNumOperands());
1399   for (unsigned I = CopyMI->getDesc().getNumOperands(),
1400                 E = CopyMI->getNumOperands();
1401        I != E; ++I) {
1402     MachineOperand &MO = CopyMI->getOperand(I);
1403     if (MO.isReg()) {
1404       assert(MO.isImplicit() && "No explicit operands after implicit operands.");
1405       // Discard VReg implicit defs.
1406       if (MO.getReg().isPhysical())
1407         ImplicitOps.push_back(MO);
1408     }
1409   }
1410 
1411   CopyMI->eraseFromParent();
1412   ErasedInstrs.insert(CopyMI);
1413 
1414   // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86).
1415   // We need to remember these so we can add intervals once we insert
1416   // NewMI into SlotIndexes.
1417   SmallVector<MCRegister, 4> NewMIImplDefs;
1418   for (unsigned i = NewMI.getDesc().getNumOperands(),
1419                 e = NewMI.getNumOperands();
1420        i != e; ++i) {
1421     MachineOperand &MO = NewMI.getOperand(i);
1422     if (MO.isReg() && MO.isDef()) {
1423       assert(MO.isImplicit() && MO.isDead() && MO.getReg().isPhysical());
1424       NewMIImplDefs.push_back(MO.getReg().asMCReg());
1425     }
1426   }
1427 
1428   if (DstReg.isVirtual()) {
1429     unsigned NewIdx = NewMI.getOperand(0).getSubReg();
1430 
1431     if (DefRC != nullptr) {
1432       if (NewIdx)
1433         NewRC = TRI->getMatchingSuperRegClass(NewRC, DefRC, NewIdx);
1434       else
1435         NewRC = TRI->getCommonSubClass(NewRC, DefRC);
1436       assert(NewRC && "subreg chosen for remat incompatible with instruction");
1437     }
1438     // Remap subranges to new lanemask and change register class.
1439     LiveInterval &DstInt = LIS->getInterval(DstReg);
1440     for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1441       SR.LaneMask = TRI->composeSubRegIndexLaneMask(DstIdx, SR.LaneMask);
1442     }
1443     MRI->setRegClass(DstReg, NewRC);
1444 
1445     // Update machine operands and add flags.
1446     updateRegDefsUses(DstReg, DstReg, DstIdx);
1447     NewMI.getOperand(0).setSubReg(NewIdx);
1448     // updateRegDefUses can add an "undef" flag to the definition, since
1449     // it will replace DstReg with DstReg.DstIdx. If NewIdx is 0, make
1450     // sure that "undef" is not set.
1451     if (NewIdx == 0)
1452       NewMI.getOperand(0).setIsUndef(false);
1453     // Add dead subregister definitions if we are defining the whole register
1454     // but only part of it is live.
1455     // This could happen if the rematerialization instruction is rematerializing
1456     // more than actually is used in the register.
1457     // An example would be:
1458     // %1 = LOAD CONSTANTS 5, 8 ; Loading both 5 and 8 in different subregs
1459     // ; Copying only part of the register here, but the rest is undef.
1460     // %2:sub_16bit<def, read-undef> = COPY %1:sub_16bit
1461     // ==>
1462     // ; Materialize all the constants but only using one
1463     // %2 = LOAD_CONSTANTS 5, 8
1464     //
1465     // at this point for the part that wasn't defined before we could have
1466     // subranges missing the definition.
1467     if (NewIdx == 0 && DstInt.hasSubRanges()) {
1468       SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI);
1469       SlotIndex DefIndex =
1470           CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber());
1471       LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(DstReg);
1472       VNInfo::Allocator& Alloc = LIS->getVNInfoAllocator();
1473       for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1474         if (!SR.liveAt(DefIndex))
1475           SR.createDeadDef(DefIndex, Alloc);
1476         MaxMask &= ~SR.LaneMask;
1477       }
1478       if (MaxMask.any()) {
1479         LiveInterval::SubRange *SR = DstInt.createSubRange(Alloc, MaxMask);
1480         SR->createDeadDef(DefIndex, Alloc);
1481       }
1482     }
1483 
1484     // Make sure that the subrange for resultant undef is removed
1485     // For example:
1486     //   %1:sub1<def,read-undef> = LOAD CONSTANT 1
1487     //   %2 = COPY %1
1488     // ==>
1489     //   %2:sub1<def, read-undef> = LOAD CONSTANT 1
1490     //     ; Correct but need to remove the subrange for %2:sub0
1491     //     ; as it is now undef
1492     if (NewIdx != 0 && DstInt.hasSubRanges()) {
1493       // The affected subregister segments can be removed.
1494       SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI);
1495       LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(NewIdx);
1496       bool UpdatedSubRanges = false;
1497       SlotIndex DefIndex =
1498           CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber());
1499       VNInfo::Allocator &Alloc = LIS->getVNInfoAllocator();
1500       for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1501         if ((SR.LaneMask & DstMask).none()) {
1502           LLVM_DEBUG(dbgs()
1503                      << "Removing undefined SubRange "
1504                      << PrintLaneMask(SR.LaneMask) << " : " << SR << "\n");
1505           // VNI is in ValNo - remove any segments in this SubRange that have this ValNo
1506           if (VNInfo *RmValNo = SR.getVNInfoAt(CurrIdx.getRegSlot())) {
1507             SR.removeValNo(RmValNo);
1508             UpdatedSubRanges = true;
1509           }
1510         } else {
1511           // We know that this lane is defined by this instruction,
1512           // but at this point it may be empty because it is not used by
1513           // anything. This happens when updateRegDefUses adds the missing
1514           // lanes. Assign that lane a dead def so that the interferences
1515           // are properly modeled.
1516           if (SR.empty())
1517             SR.createDeadDef(DefIndex, Alloc);
1518         }
1519       }
1520       if (UpdatedSubRanges)
1521         DstInt.removeEmptySubRanges();
1522     }
1523   } else if (NewMI.getOperand(0).getReg() != CopyDstReg) {
1524     // The New instruction may be defining a sub-register of what's actually
1525     // been asked for. If so it must implicitly define the whole thing.
1526     assert(DstReg.isPhysical() &&
1527            "Only expect virtual or physical registers in remat");
1528     NewMI.getOperand(0).setIsDead(true);
1529     NewMI.addOperand(MachineOperand::CreateReg(
1530         CopyDstReg, true /*IsDef*/, true /*IsImp*/, false /*IsKill*/));
1531     // Record small dead def live-ranges for all the subregisters
1532     // of the destination register.
1533     // Otherwise, variables that live through may miss some
1534     // interferences, thus creating invalid allocation.
1535     // E.g., i386 code:
1536     // %1 = somedef ; %1 GR8
1537     // %2 = remat ; %2 GR32
1538     // CL = COPY %2.sub_8bit
1539     // = somedef %1 ; %1 GR8
1540     // =>
1541     // %1 = somedef ; %1 GR8
1542     // dead ECX = remat ; implicit-def CL
1543     // = somedef %1 ; %1 GR8
1544     // %1 will see the interferences with CL but not with CH since
1545     // no live-ranges would have been created for ECX.
1546     // Fix that!
1547     SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
1548     for (MCRegUnitIterator Units(NewMI.getOperand(0).getReg(), TRI);
1549          Units.isValid(); ++Units)
1550       if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
1551         LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
1552   }
1553 
1554   if (NewMI.getOperand(0).getSubReg())
1555     NewMI.getOperand(0).setIsUndef();
1556 
1557   // Transfer over implicit operands to the rematerialized instruction.
1558   for (MachineOperand &MO : ImplicitOps)
1559     NewMI.addOperand(MO);
1560 
1561   SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
1562   for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) {
1563     MCRegister Reg = NewMIImplDefs[i];
1564     for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
1565       if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
1566         LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
1567   }
1568 
1569   LLVM_DEBUG(dbgs() << "Remat: " << NewMI);
1570   ++NumReMats;
1571 
1572   // If the virtual SrcReg is completely eliminated, update all DBG_VALUEs
1573   // to describe DstReg instead.
1574   if (MRI->use_nodbg_empty(SrcReg)) {
1575     for (MachineOperand &UseMO :
1576          llvm::make_early_inc_range(MRI->use_operands(SrcReg))) {
1577       MachineInstr *UseMI = UseMO.getParent();
1578       if (UseMI->isDebugInstr()) {
1579         if (DstReg.isPhysical())
1580           UseMO.substPhysReg(DstReg, *TRI);
1581         else
1582           UseMO.setReg(DstReg);
1583         // Move the debug value directly after the def of the rematerialized
1584         // value in DstReg.
1585         MBB->splice(std::next(NewMI.getIterator()), UseMI->getParent(), UseMI);
1586         LLVM_DEBUG(dbgs() << "\t\tupdated: " << *UseMI);
1587       }
1588     }
1589   }
1590 
1591   if (ToBeUpdated.count(SrcReg))
1592     return true;
1593 
1594   unsigned NumCopyUses = 0;
1595   for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) {
1596     if (UseMO.getParent()->isCopyLike())
1597       NumCopyUses++;
1598   }
1599   if (NumCopyUses < LateRematUpdateThreshold) {
1600     // The source interval can become smaller because we removed a use.
1601     shrinkToUses(&SrcInt, &DeadDefs);
1602     if (!DeadDefs.empty())
1603       eliminateDeadDefs(&Edit);
1604   } else {
1605     ToBeUpdated.insert(SrcReg);
1606   }
1607   return true;
1608 }
1609 
eliminateUndefCopy(MachineInstr * CopyMI)1610 MachineInstr *RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI) {
1611   // ProcessImplicitDefs may leave some copies of <undef> values, it only
1612   // removes local variables. When we have a copy like:
1613   //
1614   //   %1 = COPY undef %2
1615   //
1616   // We delete the copy and remove the corresponding value number from %1.
1617   // Any uses of that value number are marked as <undef>.
1618 
1619   // Note that we do not query CoalescerPair here but redo isMoveInstr as the
1620   // CoalescerPair may have a new register class with adjusted subreg indices
1621   // at this point.
1622   Register SrcReg, DstReg;
1623   unsigned SrcSubIdx = 0, DstSubIdx = 0;
1624   if(!isMoveInstr(*TRI, CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx))
1625     return nullptr;
1626 
1627   SlotIndex Idx = LIS->getInstructionIndex(*CopyMI);
1628   const LiveInterval &SrcLI = LIS->getInterval(SrcReg);
1629   // CopyMI is undef iff SrcReg is not live before the instruction.
1630   if (SrcSubIdx != 0 && SrcLI.hasSubRanges()) {
1631     LaneBitmask SrcMask = TRI->getSubRegIndexLaneMask(SrcSubIdx);
1632     for (const LiveInterval::SubRange &SR : SrcLI.subranges()) {
1633       if ((SR.LaneMask & SrcMask).none())
1634         continue;
1635       if (SR.liveAt(Idx))
1636         return nullptr;
1637     }
1638   } else if (SrcLI.liveAt(Idx))
1639     return nullptr;
1640 
1641   // If the undef copy defines a live-out value (i.e. an input to a PHI def),
1642   // then replace it with an IMPLICIT_DEF.
1643   LiveInterval &DstLI = LIS->getInterval(DstReg);
1644   SlotIndex RegIndex = Idx.getRegSlot();
1645   LiveRange::Segment *Seg = DstLI.getSegmentContaining(RegIndex);
1646   assert(Seg != nullptr && "No segment for defining instruction");
1647   VNInfo *V = DstLI.getVNInfoAt(Seg->end);
1648 
1649   // The source interval may also have been on an undef use, in which case the
1650   // copy introduced a live value.
1651   if (((V && V->isPHIDef()) || (!V && !DstLI.liveAt(Idx)))) {
1652     CopyMI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
1653     for (unsigned i = CopyMI->getNumOperands(); i != 0; --i) {
1654       MachineOperand &MO = CopyMI->getOperand(i-1);
1655       if (MO.isReg() && MO.isUse())
1656         CopyMI->removeOperand(i-1);
1657     }
1658     LLVM_DEBUG(dbgs() << "\tReplaced copy of <undef> value with an "
1659                "implicit def\n");
1660     return CopyMI;
1661   }
1662 
1663   // Remove any DstReg segments starting at the instruction.
1664   LLVM_DEBUG(dbgs() << "\tEliminating copy of <undef> value\n");
1665 
1666   // Remove value or merge with previous one in case of a subregister def.
1667   if (VNInfo *PrevVNI = DstLI.getVNInfoAt(Idx)) {
1668     VNInfo *VNI = DstLI.getVNInfoAt(RegIndex);
1669     DstLI.MergeValueNumberInto(VNI, PrevVNI);
1670 
1671     // The affected subregister segments can be removed.
1672     LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(DstSubIdx);
1673     for (LiveInterval::SubRange &SR : DstLI.subranges()) {
1674       if ((SR.LaneMask & DstMask).none())
1675         continue;
1676 
1677       VNInfo *SVNI = SR.getVNInfoAt(RegIndex);
1678       assert(SVNI != nullptr && SlotIndex::isSameInstr(SVNI->def, RegIndex));
1679       SR.removeValNo(SVNI);
1680     }
1681     DstLI.removeEmptySubRanges();
1682   } else
1683     LIS->removeVRegDefAt(DstLI, RegIndex);
1684 
1685   // Mark uses as undef.
1686   for (MachineOperand &MO : MRI->reg_nodbg_operands(DstReg)) {
1687     if (MO.isDef() /*|| MO.isUndef()*/)
1688       continue;
1689     const MachineInstr &MI = *MO.getParent();
1690     SlotIndex UseIdx = LIS->getInstructionIndex(MI);
1691     LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg());
1692     bool isLive;
1693     if (!UseMask.all() && DstLI.hasSubRanges()) {
1694       isLive = false;
1695       for (const LiveInterval::SubRange &SR : DstLI.subranges()) {
1696         if ((SR.LaneMask & UseMask).none())
1697           continue;
1698         if (SR.liveAt(UseIdx)) {
1699           isLive = true;
1700           break;
1701         }
1702       }
1703     } else
1704       isLive = DstLI.liveAt(UseIdx);
1705     if (isLive)
1706       continue;
1707     MO.setIsUndef(true);
1708     LLVM_DEBUG(dbgs() << "\tnew undef: " << UseIdx << '\t' << MI);
1709   }
1710 
1711   // A def of a subregister may be a use of the other subregisters, so
1712   // deleting a def of a subregister may also remove uses. Since CopyMI
1713   // is still part of the function (but about to be erased), mark all
1714   // defs of DstReg in it as <undef>, so that shrinkToUses would
1715   // ignore them.
1716   for (MachineOperand &MO : CopyMI->operands())
1717     if (MO.isReg() && MO.isDef() && MO.getReg() == DstReg)
1718       MO.setIsUndef(true);
1719   LIS->shrinkToUses(&DstLI);
1720 
1721   return CopyMI;
1722 }
1723 
addUndefFlag(const LiveInterval & Int,SlotIndex UseIdx,MachineOperand & MO,unsigned SubRegIdx)1724 void RegisterCoalescer::addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx,
1725                                      MachineOperand &MO, unsigned SubRegIdx) {
1726   LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubRegIdx);
1727   if (MO.isDef())
1728     Mask = ~Mask;
1729   bool IsUndef = true;
1730   for (const LiveInterval::SubRange &S : Int.subranges()) {
1731     if ((S.LaneMask & Mask).none())
1732       continue;
1733     if (S.liveAt(UseIdx)) {
1734       IsUndef = false;
1735       break;
1736     }
1737   }
1738   if (IsUndef) {
1739     MO.setIsUndef(true);
1740     // We found out some subregister use is actually reading an undefined
1741     // value. In some cases the whole vreg has become undefined at this
1742     // point so we have to potentially shrink the main range if the
1743     // use was ending a live segment there.
1744     LiveQueryResult Q = Int.Query(UseIdx);
1745     if (Q.valueOut() == nullptr)
1746       ShrinkMainRange = true;
1747   }
1748 }
1749 
updateRegDefsUses(Register SrcReg,Register DstReg,unsigned SubIdx)1750 void RegisterCoalescer::updateRegDefsUses(Register SrcReg, Register DstReg,
1751                                           unsigned SubIdx) {
1752   bool DstIsPhys = DstReg.isPhysical();
1753   LiveInterval *DstInt = DstIsPhys ? nullptr : &LIS->getInterval(DstReg);
1754 
1755   if (DstInt && DstInt->hasSubRanges() && DstReg != SrcReg) {
1756     for (MachineOperand &MO : MRI->reg_operands(DstReg)) {
1757       unsigned SubReg = MO.getSubReg();
1758       if (SubReg == 0 || MO.isUndef())
1759         continue;
1760       MachineInstr &MI = *MO.getParent();
1761       if (MI.isDebugInstr())
1762         continue;
1763       SlotIndex UseIdx = LIS->getInstructionIndex(MI).getRegSlot(true);
1764       addUndefFlag(*DstInt, UseIdx, MO, SubReg);
1765     }
1766   }
1767 
1768   SmallPtrSet<MachineInstr*, 8> Visited;
1769   for (MachineRegisterInfo::reg_instr_iterator
1770        I = MRI->reg_instr_begin(SrcReg), E = MRI->reg_instr_end();
1771        I != E; ) {
1772     MachineInstr *UseMI = &*(I++);
1773 
1774     // Each instruction can only be rewritten once because sub-register
1775     // composition is not always idempotent. When SrcReg != DstReg, rewriting
1776     // the UseMI operands removes them from the SrcReg use-def chain, but when
1777     // SrcReg is DstReg we could encounter UseMI twice if it has multiple
1778     // operands mentioning the virtual register.
1779     if (SrcReg == DstReg && !Visited.insert(UseMI).second)
1780       continue;
1781 
1782     SmallVector<unsigned,8> Ops;
1783     bool Reads, Writes;
1784     std::tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops);
1785 
1786     // If SrcReg wasn't read, it may still be the case that DstReg is live-in
1787     // because SrcReg is a sub-register.
1788     if (DstInt && !Reads && SubIdx && !UseMI->isDebugInstr())
1789       Reads = DstInt->liveAt(LIS->getInstructionIndex(*UseMI));
1790 
1791     // Replace SrcReg with DstReg in all UseMI operands.
1792     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1793       MachineOperand &MO = UseMI->getOperand(Ops[i]);
1794 
1795       // Adjust <undef> flags in case of sub-register joins. We don't want to
1796       // turn a full def into a read-modify-write sub-register def and vice
1797       // versa.
1798       if (SubIdx && MO.isDef())
1799         MO.setIsUndef(!Reads);
1800 
1801       // A subreg use of a partially undef (super) register may be a complete
1802       // undef use now and then has to be marked that way.
1803       if (MO.isUse() && !DstIsPhys) {
1804         unsigned SubUseIdx = TRI->composeSubRegIndices(SubIdx, MO.getSubReg());
1805         if (SubUseIdx != 0 && MRI->shouldTrackSubRegLiveness(DstReg)) {
1806           if (!DstInt->hasSubRanges()) {
1807             BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
1808             LaneBitmask FullMask = MRI->getMaxLaneMaskForVReg(DstInt->reg());
1809             LaneBitmask UsedLanes = TRI->getSubRegIndexLaneMask(SubIdx);
1810             LaneBitmask UnusedLanes = FullMask & ~UsedLanes;
1811             DstInt->createSubRangeFrom(Allocator, UsedLanes, *DstInt);
1812             // The unused lanes are just empty live-ranges at this point.
1813             // It is the caller responsibility to set the proper
1814             // dead segments if there is an actual dead def of the
1815             // unused lanes. This may happen with rematerialization.
1816             DstInt->createSubRange(Allocator, UnusedLanes);
1817           }
1818           SlotIndex MIIdx = UseMI->isDebugInstr()
1819             ? LIS->getSlotIndexes()->getIndexBefore(*UseMI)
1820             : LIS->getInstructionIndex(*UseMI);
1821           SlotIndex UseIdx = MIIdx.getRegSlot(true);
1822           addUndefFlag(*DstInt, UseIdx, MO, SubUseIdx);
1823         }
1824       }
1825 
1826       if (DstIsPhys)
1827         MO.substPhysReg(DstReg, *TRI);
1828       else
1829         MO.substVirtReg(DstReg, SubIdx, *TRI);
1830     }
1831 
1832     LLVM_DEBUG({
1833       dbgs() << "\t\tupdated: ";
1834       if (!UseMI->isDebugInstr())
1835         dbgs() << LIS->getInstructionIndex(*UseMI) << "\t";
1836       dbgs() << *UseMI;
1837     });
1838   }
1839 }
1840 
canJoinPhys(const CoalescerPair & CP)1841 bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) {
1842   // Always join simple intervals that are defined by a single copy from a
1843   // reserved register. This doesn't increase register pressure, so it is
1844   // always beneficial.
1845   if (!MRI->isReserved(CP.getDstReg())) {
1846     LLVM_DEBUG(dbgs() << "\tCan only merge into reserved registers.\n");
1847     return false;
1848   }
1849 
1850   LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg());
1851   if (JoinVInt.containsOneValue())
1852     return true;
1853 
1854   LLVM_DEBUG(
1855       dbgs() << "\tCannot join complex intervals into reserved register.\n");
1856   return false;
1857 }
1858 
copyValueUndefInPredecessors(LiveRange & S,const MachineBasicBlock * MBB,LiveQueryResult SLRQ)1859 bool RegisterCoalescer::copyValueUndefInPredecessors(
1860     LiveRange &S, const MachineBasicBlock *MBB, LiveQueryResult SLRQ) {
1861   for (const MachineBasicBlock *Pred : MBB->predecessors()) {
1862     SlotIndex PredEnd = LIS->getMBBEndIdx(Pred);
1863     if (VNInfo *V = S.getVNInfoAt(PredEnd.getPrevSlot())) {
1864       // If this is a self loop, we may be reading the same value.
1865       if (V->id != SLRQ.valueOutOrDead()->id)
1866         return false;
1867     }
1868   }
1869 
1870   return true;
1871 }
1872 
setUndefOnPrunedSubRegUses(LiveInterval & LI,Register Reg,LaneBitmask PrunedLanes)1873 void RegisterCoalescer::setUndefOnPrunedSubRegUses(LiveInterval &LI,
1874                                                    Register Reg,
1875                                                    LaneBitmask PrunedLanes) {
1876   // If we had other instructions in the segment reading the undef sublane
1877   // value, we need to mark them with undef.
1878   for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
1879     unsigned SubRegIdx = MO.getSubReg();
1880     if (SubRegIdx == 0 || MO.isUndef())
1881       continue;
1882 
1883     LaneBitmask SubRegMask = TRI->getSubRegIndexLaneMask(SubRegIdx);
1884     SlotIndex Pos = LIS->getInstructionIndex(*MO.getParent());
1885     for (LiveInterval::SubRange &S : LI.subranges()) {
1886       if (!S.liveAt(Pos) && (PrunedLanes & SubRegMask).any()) {
1887         MO.setIsUndef();
1888         break;
1889       }
1890     }
1891   }
1892 
1893   LI.removeEmptySubRanges();
1894 
1895   // A def of a subregister may be a use of other register lanes. Replacing
1896   // such a def with a def of a different register will eliminate the use,
1897   // and may cause the recorded live range to be larger than the actual
1898   // liveness in the program IR.
1899   LIS->shrinkToUses(&LI);
1900 }
1901 
joinCopy(MachineInstr * CopyMI,bool & Again)1902 bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) {
1903   Again = false;
1904   LLVM_DEBUG(dbgs() << LIS->getInstructionIndex(*CopyMI) << '\t' << *CopyMI);
1905 
1906   CoalescerPair CP(*TRI);
1907   if (!CP.setRegisters(CopyMI)) {
1908     LLVM_DEBUG(dbgs() << "\tNot coalescable.\n");
1909     return false;
1910   }
1911 
1912   if (CP.getNewRC()) {
1913     auto SrcRC = MRI->getRegClass(CP.getSrcReg());
1914     auto DstRC = MRI->getRegClass(CP.getDstReg());
1915     unsigned SrcIdx = CP.getSrcIdx();
1916     unsigned DstIdx = CP.getDstIdx();
1917     if (CP.isFlipped()) {
1918       std::swap(SrcIdx, DstIdx);
1919       std::swap(SrcRC, DstRC);
1920     }
1921     if (!TRI->shouldCoalesce(CopyMI, SrcRC, SrcIdx, DstRC, DstIdx,
1922                              CP.getNewRC(), *LIS)) {
1923       LLVM_DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n");
1924       return false;
1925     }
1926   }
1927 
1928   // Dead code elimination. This really should be handled by MachineDCE, but
1929   // sometimes dead copies slip through, and we can't generate invalid live
1930   // ranges.
1931   if (!CP.isPhys() && CopyMI->allDefsAreDead()) {
1932     LLVM_DEBUG(dbgs() << "\tCopy is dead.\n");
1933     DeadDefs.push_back(CopyMI);
1934     eliminateDeadDefs();
1935     return true;
1936   }
1937 
1938   // Eliminate undefs.
1939   if (!CP.isPhys()) {
1940     // If this is an IMPLICIT_DEF, leave it alone, but don't try to coalesce.
1941     if (MachineInstr *UndefMI = eliminateUndefCopy(CopyMI)) {
1942       if (UndefMI->isImplicitDef())
1943         return false;
1944       deleteInstr(CopyMI);
1945       return false;  // Not coalescable.
1946     }
1947   }
1948 
1949   // Coalesced copies are normally removed immediately, but transformations
1950   // like removeCopyByCommutingDef() can inadvertently create identity copies.
1951   // When that happens, just join the values and remove the copy.
1952   if (CP.getSrcReg() == CP.getDstReg()) {
1953     LiveInterval &LI = LIS->getInterval(CP.getSrcReg());
1954     LLVM_DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n');
1955     const SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI);
1956     LiveQueryResult LRQ = LI.Query(CopyIdx);
1957     if (VNInfo *DefVNI = LRQ.valueDefined()) {
1958       VNInfo *ReadVNI = LRQ.valueIn();
1959       assert(ReadVNI && "No value before copy and no <undef> flag.");
1960       assert(ReadVNI != DefVNI && "Cannot read and define the same value.");
1961 
1962       // Track incoming undef lanes we need to eliminate from the subrange.
1963       LaneBitmask PrunedLanes;
1964       MachineBasicBlock *MBB = CopyMI->getParent();
1965 
1966       // Process subregister liveranges.
1967       for (LiveInterval::SubRange &S : LI.subranges()) {
1968         LiveQueryResult SLRQ = S.Query(CopyIdx);
1969         if (VNInfo *SDefVNI = SLRQ.valueDefined()) {
1970           if (VNInfo *SReadVNI = SLRQ.valueIn())
1971             SDefVNI = S.MergeValueNumberInto(SDefVNI, SReadVNI);
1972 
1973           // If this copy introduced an undef subrange from an incoming value,
1974           // we need to eliminate the undef live in values from the subrange.
1975           if (copyValueUndefInPredecessors(S, MBB, SLRQ)) {
1976             LLVM_DEBUG(dbgs() << "Incoming sublane value is undef at copy\n");
1977             PrunedLanes |= S.LaneMask;
1978             S.removeValNo(SDefVNI);
1979           }
1980         }
1981       }
1982 
1983       LI.MergeValueNumberInto(DefVNI, ReadVNI);
1984       if (PrunedLanes.any()) {
1985         LLVM_DEBUG(dbgs() << "Pruning undef incoming lanes: "
1986                           << PrunedLanes << '\n');
1987         setUndefOnPrunedSubRegUses(LI, CP.getSrcReg(), PrunedLanes);
1988       }
1989 
1990       LLVM_DEBUG(dbgs() << "\tMerged values:          " << LI << '\n');
1991     }
1992     deleteInstr(CopyMI);
1993     return true;
1994   }
1995 
1996   // Enforce policies.
1997   if (CP.isPhys()) {
1998     LLVM_DEBUG(dbgs() << "\tConsidering merging "
1999                       << printReg(CP.getSrcReg(), TRI) << " with "
2000                       << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n');
2001     if (!canJoinPhys(CP)) {
2002       // Before giving up coalescing, if definition of source is defined by
2003       // trivial computation, try rematerializing it.
2004       bool IsDefCopy = false;
2005       if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
2006         return true;
2007       if (IsDefCopy)
2008         Again = true;  // May be possible to coalesce later.
2009       return false;
2010     }
2011   } else {
2012     // When possible, let DstReg be the larger interval.
2013     if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() >
2014                            LIS->getInterval(CP.getDstReg()).size())
2015       CP.flip();
2016 
2017     LLVM_DEBUG({
2018       dbgs() << "\tConsidering merging to "
2019              << TRI->getRegClassName(CP.getNewRC()) << " with ";
2020       if (CP.getDstIdx() && CP.getSrcIdx())
2021         dbgs() << printReg(CP.getDstReg()) << " in "
2022                << TRI->getSubRegIndexName(CP.getDstIdx()) << " and "
2023                << printReg(CP.getSrcReg()) << " in "
2024                << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n';
2025       else
2026         dbgs() << printReg(CP.getSrcReg(), TRI) << " in "
2027                << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n';
2028     });
2029   }
2030 
2031   ShrinkMask = LaneBitmask::getNone();
2032   ShrinkMainRange = false;
2033 
2034   // Okay, attempt to join these two intervals.  On failure, this returns false.
2035   // Otherwise, if one of the intervals being joined is a physreg, this method
2036   // always canonicalizes DstInt to be it.  The output "SrcInt" will not have
2037   // been modified, so we can use this information below to update aliases.
2038   if (!joinIntervals(CP)) {
2039     // Coalescing failed.
2040 
2041     // If definition of source is defined by trivial computation, try
2042     // rematerializing it.
2043     bool IsDefCopy = false;
2044     if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
2045       return true;
2046 
2047     // If we can eliminate the copy without merging the live segments, do so
2048     // now.
2049     if (!CP.isPartial() && !CP.isPhys()) {
2050       bool Changed = adjustCopiesBackFrom(CP, CopyMI);
2051       bool Shrink = false;
2052       if (!Changed)
2053         std::tie(Changed, Shrink) = removeCopyByCommutingDef(CP, CopyMI);
2054       if (Changed) {
2055         deleteInstr(CopyMI);
2056         if (Shrink) {
2057           Register DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
2058           LiveInterval &DstLI = LIS->getInterval(DstReg);
2059           shrinkToUses(&DstLI);
2060           LLVM_DEBUG(dbgs() << "\t\tshrunk:   " << DstLI << '\n');
2061         }
2062         LLVM_DEBUG(dbgs() << "\tTrivial!\n");
2063         return true;
2064       }
2065     }
2066 
2067     // Try and see if we can partially eliminate the copy by moving the copy to
2068     // its predecessor.
2069     if (!CP.isPartial() && !CP.isPhys())
2070       if (removePartialRedundancy(CP, *CopyMI))
2071         return true;
2072 
2073     // Otherwise, we are unable to join the intervals.
2074     LLVM_DEBUG(dbgs() << "\tInterference!\n");
2075     Again = true;  // May be possible to coalesce later.
2076     return false;
2077   }
2078 
2079   // Coalescing to a virtual register that is of a sub-register class of the
2080   // other. Make sure the resulting register is set to the right register class.
2081   if (CP.isCrossClass()) {
2082     ++numCrossRCs;
2083     MRI->setRegClass(CP.getDstReg(), CP.getNewRC());
2084   }
2085 
2086   // Removing sub-register copies can ease the register class constraints.
2087   // Make sure we attempt to inflate the register class of DstReg.
2088   if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC()))
2089     InflateRegs.push_back(CP.getDstReg());
2090 
2091   // CopyMI has been erased by joinIntervals at this point. Remove it from
2092   // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back
2093   // to the work list. This keeps ErasedInstrs from growing needlessly.
2094   ErasedInstrs.erase(CopyMI);
2095 
2096   // Rewrite all SrcReg operands to DstReg.
2097   // Also update DstReg operands to include DstIdx if it is set.
2098   if (CP.getDstIdx())
2099     updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx());
2100   updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx());
2101 
2102   // Shrink subregister ranges if necessary.
2103   if (ShrinkMask.any()) {
2104     LiveInterval &LI = LIS->getInterval(CP.getDstReg());
2105     for (LiveInterval::SubRange &S : LI.subranges()) {
2106       if ((S.LaneMask & ShrinkMask).none())
2107         continue;
2108       LLVM_DEBUG(dbgs() << "Shrink LaneUses (Lane " << PrintLaneMask(S.LaneMask)
2109                         << ")\n");
2110       LIS->shrinkToUses(S, LI.reg());
2111       ShrinkMainRange = true;
2112     }
2113     LI.removeEmptySubRanges();
2114   }
2115 
2116   // CP.getSrcReg()'s live interval has been merged into CP.getDstReg's live
2117   // interval. Since CP.getSrcReg() is in ToBeUpdated set and its live interval
2118   // is not up-to-date, need to update the merged live interval here.
2119   if (ToBeUpdated.count(CP.getSrcReg()))
2120     ShrinkMainRange = true;
2121 
2122   if (ShrinkMainRange) {
2123     LiveInterval &LI = LIS->getInterval(CP.getDstReg());
2124     shrinkToUses(&LI);
2125   }
2126 
2127   // SrcReg is guaranteed to be the register whose live interval that is
2128   // being merged.
2129   LIS->removeInterval(CP.getSrcReg());
2130 
2131   // Update regalloc hint.
2132   TRI->updateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF);
2133 
2134   LLVM_DEBUG({
2135     dbgs() << "\tSuccess: " << printReg(CP.getSrcReg(), TRI, CP.getSrcIdx())
2136            << " -> " << printReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n';
2137     dbgs() << "\tResult = ";
2138     if (CP.isPhys())
2139       dbgs() << printReg(CP.getDstReg(), TRI);
2140     else
2141       dbgs() << LIS->getInterval(CP.getDstReg());
2142     dbgs() << '\n';
2143   });
2144 
2145   ++numJoins;
2146   return true;
2147 }
2148 
joinReservedPhysReg(CoalescerPair & CP)2149 bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) {
2150   Register DstReg = CP.getDstReg();
2151   Register SrcReg = CP.getSrcReg();
2152   assert(CP.isPhys() && "Must be a physreg copy");
2153   assert(MRI->isReserved(DstReg) && "Not a reserved register");
2154   LiveInterval &RHS = LIS->getInterval(SrcReg);
2155   LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n');
2156 
2157   assert(RHS.containsOneValue() && "Invalid join with reserved register");
2158 
2159   // Optimization for reserved registers like ESP. We can only merge with a
2160   // reserved physreg if RHS has a single value that is a copy of DstReg.
2161   // The live range of the reserved register will look like a set of dead defs
2162   // - we don't properly track the live range of reserved registers.
2163 
2164   // Deny any overlapping intervals.  This depends on all the reserved
2165   // register live ranges to look like dead defs.
2166   if (!MRI->isConstantPhysReg(DstReg)) {
2167     for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) {
2168       // Abort if not all the regunits are reserved.
2169       for (MCRegUnitRootIterator RI(*UI, TRI); RI.isValid(); ++RI) {
2170         if (!MRI->isReserved(*RI))
2171           return false;
2172       }
2173       if (RHS.overlaps(LIS->getRegUnit(*UI))) {
2174         LLVM_DEBUG(dbgs() << "\t\tInterference: " << printRegUnit(*UI, TRI)
2175                           << '\n');
2176         return false;
2177       }
2178     }
2179 
2180     // We must also check for overlaps with regmask clobbers.
2181     BitVector RegMaskUsable;
2182     if (LIS->checkRegMaskInterference(RHS, RegMaskUsable) &&
2183         !RegMaskUsable.test(DstReg)) {
2184       LLVM_DEBUG(dbgs() << "\t\tRegMask interference\n");
2185       return false;
2186     }
2187   }
2188 
2189   // Skip any value computations, we are not adding new values to the
2190   // reserved register.  Also skip merging the live ranges, the reserved
2191   // register live range doesn't need to be accurate as long as all the
2192   // defs are there.
2193 
2194   // Delete the identity copy.
2195   MachineInstr *CopyMI;
2196   if (CP.isFlipped()) {
2197     // Physreg is copied into vreg
2198     //   %y = COPY %physreg_x
2199     //   ...  //< no other def of %physreg_x here
2200     //   use %y
2201     // =>
2202     //   ...
2203     //   use %physreg_x
2204     CopyMI = MRI->getVRegDef(SrcReg);
2205   } else {
2206     // VReg is copied into physreg:
2207     //   %y = def
2208     //   ... //< no other def or use of %physreg_x here
2209     //   %physreg_x = COPY %y
2210     // =>
2211     //   %physreg_x = def
2212     //   ...
2213     if (!MRI->hasOneNonDBGUse(SrcReg)) {
2214       LLVM_DEBUG(dbgs() << "\t\tMultiple vreg uses!\n");
2215       return false;
2216     }
2217 
2218     if (!LIS->intervalIsInOneMBB(RHS)) {
2219       LLVM_DEBUG(dbgs() << "\t\tComplex control flow!\n");
2220       return false;
2221     }
2222 
2223     MachineInstr &DestMI = *MRI->getVRegDef(SrcReg);
2224     CopyMI = &*MRI->use_instr_nodbg_begin(SrcReg);
2225     SlotIndex CopyRegIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
2226     SlotIndex DestRegIdx = LIS->getInstructionIndex(DestMI).getRegSlot();
2227 
2228     if (!MRI->isConstantPhysReg(DstReg)) {
2229       // We checked above that there are no interfering defs of the physical
2230       // register. However, for this case, where we intend to move up the def of
2231       // the physical register, we also need to check for interfering uses.
2232       SlotIndexes *Indexes = LIS->getSlotIndexes();
2233       for (SlotIndex SI = Indexes->getNextNonNullIndex(DestRegIdx);
2234            SI != CopyRegIdx; SI = Indexes->getNextNonNullIndex(SI)) {
2235         MachineInstr *MI = LIS->getInstructionFromIndex(SI);
2236         if (MI->readsRegister(DstReg, TRI)) {
2237           LLVM_DEBUG(dbgs() << "\t\tInterference (read): " << *MI);
2238           return false;
2239         }
2240       }
2241     }
2242 
2243     // We're going to remove the copy which defines a physical reserved
2244     // register, so remove its valno, etc.
2245     LLVM_DEBUG(dbgs() << "\t\tRemoving phys reg def of "
2246                       << printReg(DstReg, TRI) << " at " << CopyRegIdx << "\n");
2247 
2248     LIS->removePhysRegDefAt(DstReg.asMCReg(), CopyRegIdx);
2249     // Create a new dead def at the new def location.
2250     for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) {
2251       LiveRange &LR = LIS->getRegUnit(*UI);
2252       LR.createDeadDef(DestRegIdx, LIS->getVNInfoAllocator());
2253     }
2254   }
2255 
2256   deleteInstr(CopyMI);
2257 
2258   // We don't track kills for reserved registers.
2259   MRI->clearKillFlags(CP.getSrcReg());
2260 
2261   return true;
2262 }
2263 
2264 //===----------------------------------------------------------------------===//
2265 //                 Interference checking and interval joining
2266 //===----------------------------------------------------------------------===//
2267 //
2268 // In the easiest case, the two live ranges being joined are disjoint, and
2269 // there is no interference to consider. It is quite common, though, to have
2270 // overlapping live ranges, and we need to check if the interference can be
2271 // resolved.
2272 //
2273 // The live range of a single SSA value forms a sub-tree of the dominator tree.
2274 // This means that two SSA values overlap if and only if the def of one value
2275 // is contained in the live range of the other value. As a special case, the
2276 // overlapping values can be defined at the same index.
2277 //
2278 // The interference from an overlapping def can be resolved in these cases:
2279 //
2280 // 1. Coalescable copies. The value is defined by a copy that would become an
2281 //    identity copy after joining SrcReg and DstReg. The copy instruction will
2282 //    be removed, and the value will be merged with the source value.
2283 //
2284 //    There can be several copies back and forth, causing many values to be
2285 //    merged into one. We compute a list of ultimate values in the joined live
2286 //    range as well as a mappings from the old value numbers.
2287 //
2288 // 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI
2289 //    predecessors have a live out value. It doesn't cause real interference,
2290 //    and can be merged into the value it overlaps. Like a coalescable copy, it
2291 //    can be erased after joining.
2292 //
2293 // 3. Copy of external value. The overlapping def may be a copy of a value that
2294 //    is already in the other register. This is like a coalescable copy, but
2295 //    the live range of the source register must be trimmed after erasing the
2296 //    copy instruction:
2297 //
2298 //      %src = COPY %ext
2299 //      %dst = COPY %ext  <-- Remove this COPY, trim the live range of %ext.
2300 //
2301 // 4. Clobbering undefined lanes. Vector registers are sometimes built by
2302 //    defining one lane at a time:
2303 //
2304 //      %dst:ssub0<def,read-undef> = FOO
2305 //      %src = BAR
2306 //      %dst:ssub1 = COPY %src
2307 //
2308 //    The live range of %src overlaps the %dst value defined by FOO, but
2309 //    merging %src into %dst:ssub1 is only going to clobber the ssub1 lane
2310 //    which was undef anyway.
2311 //
2312 //    The value mapping is more complicated in this case. The final live range
2313 //    will have different value numbers for both FOO and BAR, but there is no
2314 //    simple mapping from old to new values. It may even be necessary to add
2315 //    new PHI values.
2316 //
2317 // 5. Clobbering dead lanes. A def may clobber a lane of a vector register that
2318 //    is live, but never read. This can happen because we don't compute
2319 //    individual live ranges per lane.
2320 //
2321 //      %dst = FOO
2322 //      %src = BAR
2323 //      %dst:ssub1 = COPY %src
2324 //
2325 //    This kind of interference is only resolved locally. If the clobbered
2326 //    lane value escapes the block, the join is aborted.
2327 
2328 namespace {
2329 
2330 /// Track information about values in a single virtual register about to be
2331 /// joined. Objects of this class are always created in pairs - one for each
2332 /// side of the CoalescerPair (or one for each lane of a side of the coalescer
2333 /// pair)
2334 class JoinVals {
2335   /// Live range we work on.
2336   LiveRange &LR;
2337 
2338   /// (Main) register we work on.
2339   const Register Reg;
2340 
2341   /// Reg (and therefore the values in this liverange) will end up as
2342   /// subregister SubIdx in the coalesced register. Either CP.DstIdx or
2343   /// CP.SrcIdx.
2344   const unsigned SubIdx;
2345 
2346   /// The LaneMask that this liverange will occupy the coalesced register. May
2347   /// be smaller than the lanemask produced by SubIdx when merging subranges.
2348   const LaneBitmask LaneMask;
2349 
2350   /// This is true when joining sub register ranges, false when joining main
2351   /// ranges.
2352   const bool SubRangeJoin;
2353 
2354   /// Whether the current LiveInterval tracks subregister liveness.
2355   const bool TrackSubRegLiveness;
2356 
2357   /// Values that will be present in the final live range.
2358   SmallVectorImpl<VNInfo*> &NewVNInfo;
2359 
2360   const CoalescerPair &CP;
2361   LiveIntervals *LIS;
2362   SlotIndexes *Indexes;
2363   const TargetRegisterInfo *TRI;
2364 
2365   /// Value number assignments. Maps value numbers in LI to entries in
2366   /// NewVNInfo. This is suitable for passing to LiveInterval::join().
2367   SmallVector<int, 8> Assignments;
2368 
2369   public:
2370   /// Conflict resolution for overlapping values.
2371   enum ConflictResolution {
2372     /// No overlap, simply keep this value.
2373     CR_Keep,
2374 
2375     /// Merge this value into OtherVNI and erase the defining instruction.
2376     /// Used for IMPLICIT_DEF, coalescable copies, and copies from external
2377     /// values.
2378     CR_Erase,
2379 
2380     /// Merge this value into OtherVNI but keep the defining instruction.
2381     /// This is for the special case where OtherVNI is defined by the same
2382     /// instruction.
2383     CR_Merge,
2384 
2385     /// Keep this value, and have it replace OtherVNI where possible. This
2386     /// complicates value mapping since OtherVNI maps to two different values
2387     /// before and after this def.
2388     /// Used when clobbering undefined or dead lanes.
2389     CR_Replace,
2390 
2391     /// Unresolved conflict. Visit later when all values have been mapped.
2392     CR_Unresolved,
2393 
2394     /// Unresolvable conflict. Abort the join.
2395     CR_Impossible
2396   };
2397 
2398   private:
2399   /// Per-value info for LI. The lane bit masks are all relative to the final
2400   /// joined register, so they can be compared directly between SrcReg and
2401   /// DstReg.
2402   struct Val {
2403     ConflictResolution Resolution = CR_Keep;
2404 
2405     /// Lanes written by this def, 0 for unanalyzed values.
2406     LaneBitmask WriteLanes;
2407 
2408     /// Lanes with defined values in this register. Other lanes are undef and
2409     /// safe to clobber.
2410     LaneBitmask ValidLanes;
2411 
2412     /// Value in LI being redefined by this def.
2413     VNInfo *RedefVNI = nullptr;
2414 
2415     /// Value in the other live range that overlaps this def, if any.
2416     VNInfo *OtherVNI = nullptr;
2417 
2418     /// Is this value an IMPLICIT_DEF that can be erased?
2419     ///
2420     /// IMPLICIT_DEF values should only exist at the end of a basic block that
2421     /// is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be
2422     /// safely erased if they are overlapping a live value in the other live
2423     /// interval.
2424     ///
2425     /// Weird control flow graphs and incomplete PHI handling in
2426     /// ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with
2427     /// longer live ranges. Such IMPLICIT_DEF values should be treated like
2428     /// normal values.
2429     bool ErasableImplicitDef = false;
2430 
2431     /// True when the live range of this value will be pruned because of an
2432     /// overlapping CR_Replace value in the other live range.
2433     bool Pruned = false;
2434 
2435     /// True once Pruned above has been computed.
2436     bool PrunedComputed = false;
2437 
2438     /// True if this value is determined to be identical to OtherVNI
2439     /// (in valuesIdentical). This is used with CR_Erase where the erased
2440     /// copy is redundant, i.e. the source value is already the same as
2441     /// the destination. In such cases the subranges need to be updated
2442     /// properly. See comment at pruneSubRegValues for more info.
2443     bool Identical = false;
2444 
2445     Val() = default;
2446 
isAnalyzed__anondf5cb7ca0311::JoinVals::Val2447     bool isAnalyzed() const { return WriteLanes.any(); }
2448   };
2449 
2450   /// One entry per value number in LI.
2451   SmallVector<Val, 8> Vals;
2452 
2453   /// Compute the bitmask of lanes actually written by DefMI.
2454   /// Set Redef if there are any partial register definitions that depend on the
2455   /// previous value of the register.
2456   LaneBitmask computeWriteLanes(const MachineInstr *DefMI, bool &Redef) const;
2457 
2458   /// Find the ultimate value that VNI was copied from.
2459   std::pair<const VNInfo *, Register> followCopyChain(const VNInfo *VNI) const;
2460 
2461   bool valuesIdentical(VNInfo *Value0, VNInfo *Value1, const JoinVals &Other) const;
2462 
2463   /// Analyze ValNo in this live range, and set all fields of Vals[ValNo].
2464   /// Return a conflict resolution when possible, but leave the hard cases as
2465   /// CR_Unresolved.
2466   /// Recursively calls computeAssignment() on this and Other, guaranteeing that
2467   /// both OtherVNI and RedefVNI have been analyzed and mapped before returning.
2468   /// The recursion always goes upwards in the dominator tree, making loops
2469   /// impossible.
2470   ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other);
2471 
2472   /// Compute the value assignment for ValNo in RI.
2473   /// This may be called recursively by analyzeValue(), but never for a ValNo on
2474   /// the stack.
2475   void computeAssignment(unsigned ValNo, JoinVals &Other);
2476 
2477   /// Assuming ValNo is going to clobber some valid lanes in Other.LR, compute
2478   /// the extent of the tainted lanes in the block.
2479   ///
2480   /// Multiple values in Other.LR can be affected since partial redefinitions
2481   /// can preserve previously tainted lanes.
2482   ///
2483   ///   1 %dst = VLOAD           <-- Define all lanes in %dst
2484   ///   2 %src = FOO             <-- ValNo to be joined with %dst:ssub0
2485   ///   3 %dst:ssub1 = BAR       <-- Partial redef doesn't clear taint in ssub0
2486   ///   4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read
2487   ///
2488   /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes)
2489   /// entry to TaintedVals.
2490   ///
2491   /// Returns false if the tainted lanes extend beyond the basic block.
2492   bool
2493   taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other,
2494               SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent);
2495 
2496   /// Return true if MI uses any of the given Lanes from Reg.
2497   /// This does not include partial redefinitions of Reg.
2498   bool usesLanes(const MachineInstr &MI, Register, unsigned, LaneBitmask) const;
2499 
2500   /// Determine if ValNo is a copy of a value number in LR or Other.LR that will
2501   /// be pruned:
2502   ///
2503   ///   %dst = COPY %src
2504   ///   %src = COPY %dst  <-- This value to be pruned.
2505   ///   %dst = COPY %src  <-- This value is a copy of a pruned value.
2506   bool isPrunedValue(unsigned ValNo, JoinVals &Other);
2507 
2508 public:
JoinVals(LiveRange & LR,Register Reg,unsigned SubIdx,LaneBitmask LaneMask,SmallVectorImpl<VNInfo * > & newVNInfo,const CoalescerPair & cp,LiveIntervals * lis,const TargetRegisterInfo * TRI,bool SubRangeJoin,bool TrackSubRegLiveness)2509   JoinVals(LiveRange &LR, Register Reg, unsigned SubIdx, LaneBitmask LaneMask,
2510            SmallVectorImpl<VNInfo *> &newVNInfo, const CoalescerPair &cp,
2511            LiveIntervals *lis, const TargetRegisterInfo *TRI, bool SubRangeJoin,
2512            bool TrackSubRegLiveness)
2513       : LR(LR), Reg(Reg), SubIdx(SubIdx), LaneMask(LaneMask),
2514         SubRangeJoin(SubRangeJoin), TrackSubRegLiveness(TrackSubRegLiveness),
2515         NewVNInfo(newVNInfo), CP(cp), LIS(lis), Indexes(LIS->getSlotIndexes()),
2516         TRI(TRI), Assignments(LR.getNumValNums(), -1),
2517         Vals(LR.getNumValNums()) {}
2518 
2519   /// Analyze defs in LR and compute a value mapping in NewVNInfo.
2520   /// Returns false if any conflicts were impossible to resolve.
2521   bool mapValues(JoinVals &Other);
2522 
2523   /// Try to resolve conflicts that require all values to be mapped.
2524   /// Returns false if any conflicts were impossible to resolve.
2525   bool resolveConflicts(JoinVals &Other);
2526 
2527   /// Prune the live range of values in Other.LR where they would conflict with
2528   /// CR_Replace values in LR. Collect end points for restoring the live range
2529   /// after joining.
2530   void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints,
2531                    bool changeInstrs);
2532 
2533   /// Removes subranges starting at copies that get removed. This sometimes
2534   /// happens when undefined subranges are copied around. These ranges contain
2535   /// no useful information and can be removed.
2536   void pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask);
2537 
2538   /// Pruning values in subranges can lead to removing segments in these
2539   /// subranges started by IMPLICIT_DEFs. The corresponding segments in
2540   /// the main range also need to be removed. This function will mark
2541   /// the corresponding values in the main range as pruned, so that
2542   /// eraseInstrs can do the final cleanup.
2543   /// The parameter @p LI must be the interval whose main range is the
2544   /// live range LR.
2545   void pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange);
2546 
2547   /// Erase any machine instructions that have been coalesced away.
2548   /// Add erased instructions to ErasedInstrs.
2549   /// Add foreign virtual registers to ShrinkRegs if their live range ended at
2550   /// the erased instrs.
2551   void eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
2552                    SmallVectorImpl<Register> &ShrinkRegs,
2553                    LiveInterval *LI = nullptr);
2554 
2555   /// Remove liverange defs at places where implicit defs will be removed.
2556   void removeImplicitDefs();
2557 
2558   /// Get the value assignments suitable for passing to LiveInterval::join.
getAssignments() const2559   const int *getAssignments() const { return Assignments.data(); }
2560 
2561   /// Get the conflict resolution for a value number.
getResolution(unsigned Num) const2562   ConflictResolution getResolution(unsigned Num) const {
2563     return Vals[Num].Resolution;
2564   }
2565 };
2566 
2567 } // end anonymous namespace
2568 
computeWriteLanes(const MachineInstr * DefMI,bool & Redef) const2569 LaneBitmask JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef)
2570   const {
2571   LaneBitmask L;
2572   for (const MachineOperand &MO : DefMI->operands()) {
2573     if (!MO.isReg() || MO.getReg() != Reg || !MO.isDef())
2574       continue;
2575     L |= TRI->getSubRegIndexLaneMask(
2576            TRI->composeSubRegIndices(SubIdx, MO.getSubReg()));
2577     if (MO.readsReg())
2578       Redef = true;
2579   }
2580   return L;
2581 }
2582 
2583 std::pair<const VNInfo *, Register>
followCopyChain(const VNInfo * VNI) const2584 JoinVals::followCopyChain(const VNInfo *VNI) const {
2585   Register TrackReg = Reg;
2586 
2587   while (!VNI->isPHIDef()) {
2588     SlotIndex Def = VNI->def;
2589     MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
2590     assert(MI && "No defining instruction");
2591     if (!MI->isFullCopy())
2592       return std::make_pair(VNI, TrackReg);
2593     Register SrcReg = MI->getOperand(1).getReg();
2594     if (!SrcReg.isVirtual())
2595       return std::make_pair(VNI, TrackReg);
2596 
2597     const LiveInterval &LI = LIS->getInterval(SrcReg);
2598     const VNInfo *ValueIn;
2599     // No subrange involved.
2600     if (!SubRangeJoin || !LI.hasSubRanges()) {
2601       LiveQueryResult LRQ = LI.Query(Def);
2602       ValueIn = LRQ.valueIn();
2603     } else {
2604       // Query subranges. Ensure that all matching ones take us to the same def
2605       // (allowing some of them to be undef).
2606       ValueIn = nullptr;
2607       for (const LiveInterval::SubRange &S : LI.subranges()) {
2608         // Transform lanemask to a mask in the joined live interval.
2609         LaneBitmask SMask = TRI->composeSubRegIndexLaneMask(SubIdx, S.LaneMask);
2610         if ((SMask & LaneMask).none())
2611           continue;
2612         LiveQueryResult LRQ = S.Query(Def);
2613         if (!ValueIn) {
2614           ValueIn = LRQ.valueIn();
2615           continue;
2616         }
2617         if (LRQ.valueIn() && ValueIn != LRQ.valueIn())
2618           return std::make_pair(VNI, TrackReg);
2619       }
2620     }
2621     if (ValueIn == nullptr) {
2622       // Reaching an undefined value is legitimate, for example:
2623       //
2624       // 1   undef %0.sub1 = ...  ;; %0.sub0 == undef
2625       // 2   %1 = COPY %0         ;; %1 is defined here.
2626       // 3   %0 = COPY %1         ;; Now %0.sub0 has a definition,
2627       //                          ;; but it's equivalent to "undef".
2628       return std::make_pair(nullptr, SrcReg);
2629     }
2630     VNI = ValueIn;
2631     TrackReg = SrcReg;
2632   }
2633   return std::make_pair(VNI, TrackReg);
2634 }
2635 
valuesIdentical(VNInfo * Value0,VNInfo * Value1,const JoinVals & Other) const2636 bool JoinVals::valuesIdentical(VNInfo *Value0, VNInfo *Value1,
2637                                const JoinVals &Other) const {
2638   const VNInfo *Orig0;
2639   Register Reg0;
2640   std::tie(Orig0, Reg0) = followCopyChain(Value0);
2641   if (Orig0 == Value1 && Reg0 == Other.Reg)
2642     return true;
2643 
2644   const VNInfo *Orig1;
2645   Register Reg1;
2646   std::tie(Orig1, Reg1) = Other.followCopyChain(Value1);
2647   // If both values are undefined, and the source registers are the same
2648   // register, the values are identical. Filter out cases where only one
2649   // value is defined.
2650   if (Orig0 == nullptr || Orig1 == nullptr)
2651     return Orig0 == Orig1 && Reg0 == Reg1;
2652 
2653   // The values are equal if they are defined at the same place and use the
2654   // same register. Note that we cannot compare VNInfos directly as some of
2655   // them might be from a copy created in mergeSubRangeInto()  while the other
2656   // is from the original LiveInterval.
2657   return Orig0->def == Orig1->def && Reg0 == Reg1;
2658 }
2659 
2660 JoinVals::ConflictResolution
analyzeValue(unsigned ValNo,JoinVals & Other)2661 JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) {
2662   Val &V = Vals[ValNo];
2663   assert(!V.isAnalyzed() && "Value has already been analyzed!");
2664   VNInfo *VNI = LR.getValNumInfo(ValNo);
2665   if (VNI->isUnused()) {
2666     V.WriteLanes = LaneBitmask::getAll();
2667     return CR_Keep;
2668   }
2669 
2670   // Get the instruction defining this value, compute the lanes written.
2671   const MachineInstr *DefMI = nullptr;
2672   if (VNI->isPHIDef()) {
2673     // Conservatively assume that all lanes in a PHI are valid.
2674     LaneBitmask Lanes = SubRangeJoin ? LaneBitmask::getLane(0)
2675                                      : TRI->getSubRegIndexLaneMask(SubIdx);
2676     V.ValidLanes = V.WriteLanes = Lanes;
2677   } else {
2678     DefMI = Indexes->getInstructionFromIndex(VNI->def);
2679     assert(DefMI != nullptr);
2680     if (SubRangeJoin) {
2681       // We don't care about the lanes when joining subregister ranges.
2682       V.WriteLanes = V.ValidLanes = LaneBitmask::getLane(0);
2683       if (DefMI->isImplicitDef()) {
2684         V.ValidLanes = LaneBitmask::getNone();
2685         V.ErasableImplicitDef = true;
2686       }
2687     } else {
2688       bool Redef = false;
2689       V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef);
2690 
2691       // If this is a read-modify-write instruction, there may be more valid
2692       // lanes than the ones written by this instruction.
2693       // This only covers partial redef operands. DefMI may have normal use
2694       // operands reading the register. They don't contribute valid lanes.
2695       //
2696       // This adds ssub1 to the set of valid lanes in %src:
2697       //
2698       //   %src:ssub1 = FOO
2699       //
2700       // This leaves only ssub1 valid, making any other lanes undef:
2701       //
2702       //   %src:ssub1<def,read-undef> = FOO %src:ssub2
2703       //
2704       // The <read-undef> flag on the def operand means that old lane values are
2705       // not important.
2706       if (Redef) {
2707         V.RedefVNI = LR.Query(VNI->def).valueIn();
2708         assert((TrackSubRegLiveness || V.RedefVNI) &&
2709                "Instruction is reading nonexistent value");
2710         if (V.RedefVNI != nullptr) {
2711           computeAssignment(V.RedefVNI->id, Other);
2712           V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes;
2713         }
2714       }
2715 
2716       // An IMPLICIT_DEF writes undef values.
2717       if (DefMI->isImplicitDef()) {
2718         // We normally expect IMPLICIT_DEF values to be live only until the end
2719         // of their block. If the value is really live longer and gets pruned in
2720         // another block, this flag is cleared again.
2721         //
2722         // Clearing the valid lanes is deferred until it is sure this can be
2723         // erased.
2724         V.ErasableImplicitDef = true;
2725       }
2726     }
2727   }
2728 
2729   // Find the value in Other that overlaps VNI->def, if any.
2730   LiveQueryResult OtherLRQ = Other.LR.Query(VNI->def);
2731 
2732   // It is possible that both values are defined by the same instruction, or
2733   // the values are PHIs defined in the same block. When that happens, the two
2734   // values should be merged into one, but not into any preceding value.
2735   // The first value defined or visited gets CR_Keep, the other gets CR_Merge.
2736   if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) {
2737     assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ");
2738 
2739     // One value stays, the other is merged. Keep the earlier one, or the first
2740     // one we see.
2741     if (OtherVNI->def < VNI->def)
2742       Other.computeAssignment(OtherVNI->id, *this);
2743     else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) {
2744       // This is an early-clobber def overlapping a live-in value in the other
2745       // register. Not mergeable.
2746       V.OtherVNI = OtherLRQ.valueIn();
2747       return CR_Impossible;
2748     }
2749     V.OtherVNI = OtherVNI;
2750     Val &OtherV = Other.Vals[OtherVNI->id];
2751     // Keep this value, check for conflicts when analyzing OtherVNI. Avoid
2752     // revisiting OtherVNI->id in JoinVals::computeAssignment() below before it
2753     // is assigned.
2754     if (!OtherV.isAnalyzed() || Other.Assignments[OtherVNI->id] == -1)
2755       return CR_Keep;
2756     // Both sides have been analyzed now.
2757     // Allow overlapping PHI values. Any real interference would show up in a
2758     // predecessor, the PHI itself can't introduce any conflicts.
2759     if (VNI->isPHIDef())
2760       return CR_Merge;
2761     if ((V.ValidLanes & OtherV.ValidLanes).any())
2762       // Overlapping lanes can't be resolved.
2763       return CR_Impossible;
2764     else
2765       return CR_Merge;
2766   }
2767 
2768   // No simultaneous def. Is Other live at the def?
2769   V.OtherVNI = OtherLRQ.valueIn();
2770   if (!V.OtherVNI)
2771     // No overlap, no conflict.
2772     return CR_Keep;
2773 
2774   assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ");
2775 
2776   // We have overlapping values, or possibly a kill of Other.
2777   // Recursively compute assignments up the dominator tree.
2778   Other.computeAssignment(V.OtherVNI->id, *this);
2779   Val &OtherV = Other.Vals[V.OtherVNI->id];
2780 
2781   if (OtherV.ErasableImplicitDef) {
2782     // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block.
2783     // This shouldn't normally happen, but ProcessImplicitDefs can leave such
2784     // IMPLICIT_DEF instructions behind, and there is nothing wrong with it
2785     // technically.
2786     //
2787     // When it happens, treat that IMPLICIT_DEF as a normal value, and don't try
2788     // to erase the IMPLICIT_DEF instruction.
2789     if (DefMI &&
2790         DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) {
2791       LLVM_DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def
2792                  << " extends into "
2793                  << printMBBReference(*DefMI->getParent())
2794                  << ", keeping it.\n");
2795       OtherV.ErasableImplicitDef = false;
2796     } else {
2797       // We deferred clearing these lanes in case we needed to save them
2798       OtherV.ValidLanes &= ~OtherV.WriteLanes;
2799     }
2800   }
2801 
2802   // Allow overlapping PHI values. Any real interference would show up in a
2803   // predecessor, the PHI itself can't introduce any conflicts.
2804   if (VNI->isPHIDef())
2805     return CR_Replace;
2806 
2807   // Check for simple erasable conflicts.
2808   if (DefMI->isImplicitDef())
2809     return CR_Erase;
2810 
2811   // Include the non-conflict where DefMI is a coalescable copy that kills
2812   // OtherVNI. We still want the copy erased and value numbers merged.
2813   if (CP.isCoalescable(DefMI)) {
2814     // Some of the lanes copied from OtherVNI may be undef, making them undef
2815     // here too.
2816     V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes;
2817     return CR_Erase;
2818   }
2819 
2820   // This may not be a real conflict if DefMI simply kills Other and defines
2821   // VNI.
2822   if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def)
2823     return CR_Keep;
2824 
2825   // Handle the case where VNI and OtherVNI can be proven to be identical:
2826   //
2827   //   %other = COPY %ext
2828   //   %this  = COPY %ext <-- Erase this copy
2829   //
2830   if (DefMI->isFullCopy() && !CP.isPartial() &&
2831       valuesIdentical(VNI, V.OtherVNI, Other)) {
2832     V.Identical = true;
2833     return CR_Erase;
2834   }
2835 
2836   // The remaining checks apply to the lanes, which aren't tracked here.  This
2837   // was already decided to be OK via the following CR_Replace condition.
2838   // CR_Replace.
2839   if (SubRangeJoin)
2840     return CR_Replace;
2841 
2842   // If the lanes written by this instruction were all undef in OtherVNI, it is
2843   // still safe to join the live ranges. This can't be done with a simple value
2844   // mapping, though - OtherVNI will map to multiple values:
2845   //
2846   //   1 %dst:ssub0 = FOO                <-- OtherVNI
2847   //   2 %src = BAR                      <-- VNI
2848   //   3 %dst:ssub1 = COPY killed %src    <-- Eliminate this copy.
2849   //   4 BAZ killed %dst
2850   //   5 QUUX killed %src
2851   //
2852   // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace
2853   // handles this complex value mapping.
2854   if ((V.WriteLanes & OtherV.ValidLanes).none())
2855     return CR_Replace;
2856 
2857   // If the other live range is killed by DefMI and the live ranges are still
2858   // overlapping, it must be because we're looking at an early clobber def:
2859   //
2860   //   %dst<def,early-clobber> = ASM killed %src
2861   //
2862   // In this case, it is illegal to merge the two live ranges since the early
2863   // clobber def would clobber %src before it was read.
2864   if (OtherLRQ.isKill()) {
2865     // This case where the def doesn't overlap the kill is handled above.
2866     assert(VNI->def.isEarlyClobber() &&
2867            "Only early clobber defs can overlap a kill");
2868     return CR_Impossible;
2869   }
2870 
2871   // VNI is clobbering live lanes in OtherVNI, but there is still the
2872   // possibility that no instructions actually read the clobbered lanes.
2873   // If we're clobbering all the lanes in OtherVNI, at least one must be read.
2874   // Otherwise Other.RI wouldn't be live here.
2875   if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes).none())
2876     return CR_Impossible;
2877 
2878   if (TrackSubRegLiveness) {
2879     auto &OtherLI = LIS->getInterval(Other.Reg);
2880     // If OtherVNI does not have subranges, it means all the lanes of OtherVNI
2881     // share the same live range, so we just need to check whether they have
2882     // any conflict bit in their LaneMask.
2883     if (!OtherLI.hasSubRanges()) {
2884       LaneBitmask OtherMask = TRI->getSubRegIndexLaneMask(Other.SubIdx);
2885       return (OtherMask & V.WriteLanes).none() ? CR_Replace : CR_Impossible;
2886     }
2887 
2888     // If we are clobbering some active lanes of OtherVNI at VNI->def, it is
2889     // impossible to resolve the conflict. Otherwise, we can just replace
2890     // OtherVNI because of no real conflict.
2891     for (LiveInterval::SubRange &OtherSR : OtherLI.subranges()) {
2892       LaneBitmask OtherMask =
2893           TRI->composeSubRegIndexLaneMask(Other.SubIdx, OtherSR.LaneMask);
2894       if ((OtherMask & V.WriteLanes).none())
2895         continue;
2896 
2897       auto OtherSRQ = OtherSR.Query(VNI->def);
2898       if (OtherSRQ.valueIn() && OtherSRQ.endPoint() > VNI->def) {
2899         // VNI is clobbering some lanes of OtherVNI, they have real conflict.
2900         return CR_Impossible;
2901       }
2902     }
2903 
2904     // VNI is NOT clobbering any lane of OtherVNI, just replace OtherVNI.
2905     return CR_Replace;
2906   }
2907 
2908   // We need to verify that no instructions are reading the clobbered lanes.
2909   // To save compile time, we'll only check that locally. Don't allow the
2910   // tainted value to escape the basic block.
2911   MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2912   if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB))
2913     return CR_Impossible;
2914 
2915   // There are still some things that could go wrong besides clobbered lanes
2916   // being read, for example OtherVNI may be only partially redefined in MBB,
2917   // and some clobbered lanes could escape the block. Save this analysis for
2918   // resolveConflicts() when all values have been mapped. We need to know
2919   // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute
2920   // that now - the recursive analyzeValue() calls must go upwards in the
2921   // dominator tree.
2922   return CR_Unresolved;
2923 }
2924 
computeAssignment(unsigned ValNo,JoinVals & Other)2925 void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) {
2926   Val &V = Vals[ValNo];
2927   if (V.isAnalyzed()) {
2928     // Recursion should always move up the dominator tree, so ValNo is not
2929     // supposed to reappear before it has been assigned.
2930     assert(Assignments[ValNo] != -1 && "Bad recursion?");
2931     return;
2932   }
2933   switch ((V.Resolution = analyzeValue(ValNo, Other))) {
2934   case CR_Erase:
2935   case CR_Merge:
2936     // Merge this ValNo into OtherVNI.
2937     assert(V.OtherVNI && "OtherVNI not assigned, can't merge.");
2938     assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion");
2939     Assignments[ValNo] = Other.Assignments[V.OtherVNI->id];
2940     LLVM_DEBUG(dbgs() << "\t\tmerge " << printReg(Reg) << ':' << ValNo << '@'
2941                       << LR.getValNumInfo(ValNo)->def << " into "
2942                       << printReg(Other.Reg) << ':' << V.OtherVNI->id << '@'
2943                       << V.OtherVNI->def << " --> @"
2944                       << NewVNInfo[Assignments[ValNo]]->def << '\n');
2945     break;
2946   case CR_Replace:
2947   case CR_Unresolved: {
2948     // The other value is going to be pruned if this join is successful.
2949     assert(V.OtherVNI && "OtherVNI not assigned, can't prune");
2950     Val &OtherV = Other.Vals[V.OtherVNI->id];
2951     // We cannot erase an IMPLICIT_DEF if we don't have valid values for all
2952     // its lanes.
2953     if (OtherV.ErasableImplicitDef &&
2954         TrackSubRegLiveness &&
2955         (OtherV.WriteLanes & ~V.ValidLanes).any()) {
2956       LLVM_DEBUG(dbgs() << "Cannot erase implicit_def with missing values\n");
2957 
2958       OtherV.ErasableImplicitDef = false;
2959       // The valid lanes written by the implicit_def were speculatively cleared
2960       // before, so make this more conservative. It may be better to track this,
2961       // I haven't found a testcase where it matters.
2962       OtherV.ValidLanes = LaneBitmask::getAll();
2963     }
2964 
2965     OtherV.Pruned = true;
2966     [[fallthrough]];
2967   }
2968   default:
2969     // This value number needs to go in the final joined live range.
2970     Assignments[ValNo] = NewVNInfo.size();
2971     NewVNInfo.push_back(LR.getValNumInfo(ValNo));
2972     break;
2973   }
2974 }
2975 
mapValues(JoinVals & Other)2976 bool JoinVals::mapValues(JoinVals &Other) {
2977   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2978     computeAssignment(i, Other);
2979     if (Vals[i].Resolution == CR_Impossible) {
2980       LLVM_DEBUG(dbgs() << "\t\tinterference at " << printReg(Reg) << ':' << i
2981                         << '@' << LR.getValNumInfo(i)->def << '\n');
2982       return false;
2983     }
2984   }
2985   return true;
2986 }
2987 
2988 bool JoinVals::
taintExtent(unsigned ValNo,LaneBitmask TaintedLanes,JoinVals & Other,SmallVectorImpl<std::pair<SlotIndex,LaneBitmask>> & TaintExtent)2989 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other,
2990             SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent) {
2991   VNInfo *VNI = LR.getValNumInfo(ValNo);
2992   MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2993   SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB);
2994 
2995   // Scan Other.LR from VNI.def to MBBEnd.
2996   LiveInterval::iterator OtherI = Other.LR.find(VNI->def);
2997   assert(OtherI != Other.LR.end() && "No conflict?");
2998   do {
2999     // OtherI is pointing to a tainted value. Abort the join if the tainted
3000     // lanes escape the block.
3001     SlotIndex End = OtherI->end;
3002     if (End >= MBBEnd) {
3003       LLVM_DEBUG(dbgs() << "\t\ttaints global " << printReg(Other.Reg) << ':'
3004                         << OtherI->valno->id << '@' << OtherI->start << '\n');
3005       return false;
3006     }
3007     LLVM_DEBUG(dbgs() << "\t\ttaints local " << printReg(Other.Reg) << ':'
3008                       << OtherI->valno->id << '@' << OtherI->start << " to "
3009                       << End << '\n');
3010     // A dead def is not a problem.
3011     if (End.isDead())
3012       break;
3013     TaintExtent.push_back(std::make_pair(End, TaintedLanes));
3014 
3015     // Check for another def in the MBB.
3016     if (++OtherI == Other.LR.end() || OtherI->start >= MBBEnd)
3017       break;
3018 
3019     // Lanes written by the new def are no longer tainted.
3020     const Val &OV = Other.Vals[OtherI->valno->id];
3021     TaintedLanes &= ~OV.WriteLanes;
3022     if (!OV.RedefVNI)
3023       break;
3024   } while (TaintedLanes.any());
3025   return true;
3026 }
3027 
usesLanes(const MachineInstr & MI,Register Reg,unsigned SubIdx,LaneBitmask Lanes) const3028 bool JoinVals::usesLanes(const MachineInstr &MI, Register Reg, unsigned SubIdx,
3029                          LaneBitmask Lanes) const {
3030   if (MI.isDebugOrPseudoInstr())
3031     return false;
3032   for (const MachineOperand &MO : MI.operands()) {
3033     if (!MO.isReg() || MO.isDef() || MO.getReg() != Reg)
3034       continue;
3035     if (!MO.readsReg())
3036       continue;
3037     unsigned S = TRI->composeSubRegIndices(SubIdx, MO.getSubReg());
3038     if ((Lanes & TRI->getSubRegIndexLaneMask(S)).any())
3039       return true;
3040   }
3041   return false;
3042 }
3043 
resolveConflicts(JoinVals & Other)3044 bool JoinVals::resolveConflicts(JoinVals &Other) {
3045   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3046     Val &V = Vals[i];
3047     assert(V.Resolution != CR_Impossible && "Unresolvable conflict");
3048     if (V.Resolution != CR_Unresolved)
3049       continue;
3050     LLVM_DEBUG(dbgs() << "\t\tconflict at " << printReg(Reg) << ':' << i << '@'
3051                       << LR.getValNumInfo(i)->def
3052                       << ' ' << PrintLaneMask(LaneMask) << '\n');
3053     if (SubRangeJoin)
3054       return false;
3055 
3056     ++NumLaneConflicts;
3057     assert(V.OtherVNI && "Inconsistent conflict resolution.");
3058     VNInfo *VNI = LR.getValNumInfo(i);
3059     const Val &OtherV = Other.Vals[V.OtherVNI->id];
3060 
3061     // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the
3062     // join, those lanes will be tainted with a wrong value. Get the extent of
3063     // the tainted lanes.
3064     LaneBitmask TaintedLanes = V.WriteLanes & OtherV.ValidLanes;
3065     SmallVector<std::pair<SlotIndex, LaneBitmask>, 8> TaintExtent;
3066     if (!taintExtent(i, TaintedLanes, Other, TaintExtent))
3067       // Tainted lanes would extend beyond the basic block.
3068       return false;
3069 
3070     assert(!TaintExtent.empty() && "There should be at least one conflict.");
3071 
3072     // Now look at the instructions from VNI->def to TaintExtent (inclusive).
3073     MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
3074     MachineBasicBlock::iterator MI = MBB->begin();
3075     if (!VNI->isPHIDef()) {
3076       MI = Indexes->getInstructionFromIndex(VNI->def);
3077       if (!VNI->def.isEarlyClobber()) {
3078         // No need to check the instruction defining VNI for reads.
3079         ++MI;
3080       }
3081     }
3082     assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) &&
3083            "Interference ends on VNI->def. Should have been handled earlier");
3084     MachineInstr *LastMI =
3085       Indexes->getInstructionFromIndex(TaintExtent.front().first);
3086     assert(LastMI && "Range must end at a proper instruction");
3087     unsigned TaintNum = 0;
3088     while (true) {
3089       assert(MI != MBB->end() && "Bad LastMI");
3090       if (usesLanes(*MI, Other.Reg, Other.SubIdx, TaintedLanes)) {
3091         LLVM_DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI);
3092         return false;
3093       }
3094       // LastMI is the last instruction to use the current value.
3095       if (&*MI == LastMI) {
3096         if (++TaintNum == TaintExtent.size())
3097           break;
3098         LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first);
3099         assert(LastMI && "Range must end at a proper instruction");
3100         TaintedLanes = TaintExtent[TaintNum].second;
3101       }
3102       ++MI;
3103     }
3104 
3105     // The tainted lanes are unused.
3106     V.Resolution = CR_Replace;
3107     ++NumLaneResolves;
3108   }
3109   return true;
3110 }
3111 
isPrunedValue(unsigned ValNo,JoinVals & Other)3112 bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) {
3113   Val &V = Vals[ValNo];
3114   if (V.Pruned || V.PrunedComputed)
3115     return V.Pruned;
3116 
3117   if (V.Resolution != CR_Erase && V.Resolution != CR_Merge)
3118     return V.Pruned;
3119 
3120   // Follow copies up the dominator tree and check if any intermediate value
3121   // has been pruned.
3122   V.PrunedComputed = true;
3123   V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this);
3124   return V.Pruned;
3125 }
3126 
pruneValues(JoinVals & Other,SmallVectorImpl<SlotIndex> & EndPoints,bool changeInstrs)3127 void JoinVals::pruneValues(JoinVals &Other,
3128                            SmallVectorImpl<SlotIndex> &EndPoints,
3129                            bool changeInstrs) {
3130   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3131     SlotIndex Def = LR.getValNumInfo(i)->def;
3132     switch (Vals[i].Resolution) {
3133     case CR_Keep:
3134       break;
3135     case CR_Replace: {
3136       // This value takes precedence over the value in Other.LR.
3137       LIS->pruneValue(Other.LR, Def, &EndPoints);
3138       // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF
3139       // instructions are only inserted to provide a live-out value for PHI
3140       // predecessors, so the instruction should simply go away once its value
3141       // has been replaced.
3142       Val &OtherV = Other.Vals[Vals[i].OtherVNI->id];
3143       bool EraseImpDef = OtherV.ErasableImplicitDef &&
3144                          OtherV.Resolution == CR_Keep;
3145       if (!Def.isBlock()) {
3146         if (changeInstrs) {
3147           // Remove <def,read-undef> flags. This def is now a partial redef.
3148           // Also remove dead flags since the joined live range will
3149           // continue past this instruction.
3150           for (MachineOperand &MO :
3151                Indexes->getInstructionFromIndex(Def)->operands()) {
3152             if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) {
3153               if (MO.getSubReg() != 0 && MO.isUndef() && !EraseImpDef)
3154                 MO.setIsUndef(false);
3155               MO.setIsDead(false);
3156             }
3157           }
3158         }
3159         // This value will reach instructions below, but we need to make sure
3160         // the live range also reaches the instruction at Def.
3161         if (!EraseImpDef)
3162           EndPoints.push_back(Def);
3163       }
3164       LLVM_DEBUG(dbgs() << "\t\tpruned " << printReg(Other.Reg) << " at " << Def
3165                         << ": " << Other.LR << '\n');
3166       break;
3167     }
3168     case CR_Erase:
3169     case CR_Merge:
3170       if (isPrunedValue(i, Other)) {
3171         // This value is ultimately a copy of a pruned value in LR or Other.LR.
3172         // We can no longer trust the value mapping computed by
3173         // computeAssignment(), the value that was originally copied could have
3174         // been replaced.
3175         LIS->pruneValue(LR, Def, &EndPoints);
3176         LLVM_DEBUG(dbgs() << "\t\tpruned all of " << printReg(Reg) << " at "
3177                           << Def << ": " << LR << '\n');
3178       }
3179       break;
3180     case CR_Unresolved:
3181     case CR_Impossible:
3182       llvm_unreachable("Unresolved conflicts");
3183     }
3184   }
3185 }
3186 
3187 // Check if the segment consists of a copied live-through value (i.e. the copy
3188 // in the block only extended the liveness, of an undef value which we may need
3189 // to handle).
isLiveThrough(const LiveQueryResult Q)3190 static bool isLiveThrough(const LiveQueryResult Q) {
3191   return Q.valueIn() && Q.valueIn()->isPHIDef() && Q.valueIn() == Q.valueOut();
3192 }
3193 
3194 /// Consider the following situation when coalescing the copy between
3195 /// %31 and %45 at 800. (The vertical lines represent live range segments.)
3196 ///
3197 ///                              Main range         Subrange 0004 (sub2)
3198 ///                              %31    %45           %31    %45
3199 ///  544    %45 = COPY %28               +                    +
3200 ///                                      | v1                 | v1
3201 ///  560B bb.1:                          +                    +
3202 ///  624        = %45.sub2               | v2                 | v2
3203 ///  800    %31 = COPY %45        +      +             +      +
3204 ///                               | v0                 | v0
3205 ///  816    %31.sub1 = ...        +                    |
3206 ///  880    %30 = COPY %31        | v1                 +
3207 ///  928    %45 = COPY %30        |      +                    +
3208 ///                               |      | v0                 | v0  <--+
3209 ///  992B   ; backedge -> bb.1    |      +                    +        |
3210 /// 1040        = %31.sub0        +                                    |
3211 ///                                                 This value must remain
3212 ///                                                 live-out!
3213 ///
3214 /// Assuming that %31 is coalesced into %45, the copy at 928 becomes
3215 /// redundant, since it copies the value from %45 back into it. The
3216 /// conflict resolution for the main range determines that %45.v0 is
3217 /// to be erased, which is ok since %31.v1 is identical to it.
3218 /// The problem happens with the subrange for sub2: it has to be live
3219 /// on exit from the block, but since 928 was actually a point of
3220 /// definition of %45.sub2, %45.sub2 was not live immediately prior
3221 /// to that definition. As a result, when 928 was erased, the value v0
3222 /// for %45.sub2 was pruned in pruneSubRegValues. Consequently, an
3223 /// IMPLICIT_DEF was inserted as a "backedge" definition for %45.sub2,
3224 /// providing an incorrect value to the use at 624.
3225 ///
3226 /// Since the main-range values %31.v1 and %45.v0 were proved to be
3227 /// identical, the corresponding values in subranges must also be the
3228 /// same. A redundant copy is removed because it's not needed, and not
3229 /// because it copied an undefined value, so any liveness that originated
3230 /// from that copy cannot disappear. When pruning a value that started
3231 /// at the removed copy, the corresponding identical value must be
3232 /// extended to replace it.
pruneSubRegValues(LiveInterval & LI,LaneBitmask & ShrinkMask)3233 void JoinVals::pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask) {
3234   // Look for values being erased.
3235   bool DidPrune = false;
3236   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3237     Val &V = Vals[i];
3238     // We should trigger in all cases in which eraseInstrs() does something.
3239     // match what eraseInstrs() is doing, print a message so
3240     if (V.Resolution != CR_Erase &&
3241         (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned))
3242       continue;
3243 
3244     // Check subranges at the point where the copy will be removed.
3245     SlotIndex Def = LR.getValNumInfo(i)->def;
3246     SlotIndex OtherDef;
3247     if (V.Identical)
3248       OtherDef = V.OtherVNI->def;
3249 
3250     // Print message so mismatches with eraseInstrs() can be diagnosed.
3251     LLVM_DEBUG(dbgs() << "\t\tExpecting instruction removal at " << Def
3252                       << '\n');
3253     for (LiveInterval::SubRange &S : LI.subranges()) {
3254       LiveQueryResult Q = S.Query(Def);
3255 
3256       // If a subrange starts at the copy then an undefined value has been
3257       // copied and we must remove that subrange value as well.
3258       VNInfo *ValueOut = Q.valueOutOrDead();
3259       if (ValueOut != nullptr && (Q.valueIn() == nullptr ||
3260                                   (V.Identical && V.Resolution == CR_Erase &&
3261                                    ValueOut->def == Def))) {
3262         LLVM_DEBUG(dbgs() << "\t\tPrune sublane " << PrintLaneMask(S.LaneMask)
3263                           << " at " << Def << "\n");
3264         SmallVector<SlotIndex,8> EndPoints;
3265         LIS->pruneValue(S, Def, &EndPoints);
3266         DidPrune = true;
3267         // Mark value number as unused.
3268         ValueOut->markUnused();
3269 
3270         if (V.Identical && S.Query(OtherDef).valueOutOrDead()) {
3271           // If V is identical to V.OtherVNI (and S was live at OtherDef),
3272           // then we can't simply prune V from S. V needs to be replaced
3273           // with V.OtherVNI.
3274           LIS->extendToIndices(S, EndPoints);
3275         }
3276 
3277         // We may need to eliminate the subrange if the copy introduced a live
3278         // out undef value.
3279         if (ValueOut->isPHIDef())
3280           ShrinkMask |= S.LaneMask;
3281         continue;
3282       }
3283 
3284       // If a subrange ends at the copy, then a value was copied but only
3285       // partially used later. Shrink the subregister range appropriately.
3286       //
3287       // Ultimately this calls shrinkToUses, so assuming ShrinkMask is
3288       // conservatively correct.
3289       if ((Q.valueIn() != nullptr && Q.valueOut() == nullptr) ||
3290           (V.Resolution == CR_Erase && isLiveThrough(Q))) {
3291         LLVM_DEBUG(dbgs() << "\t\tDead uses at sublane "
3292                           << PrintLaneMask(S.LaneMask) << " at " << Def
3293                           << "\n");
3294         ShrinkMask |= S.LaneMask;
3295       }
3296     }
3297   }
3298   if (DidPrune)
3299     LI.removeEmptySubRanges();
3300 }
3301 
3302 /// Check if any of the subranges of @p LI contain a definition at @p Def.
isDefInSubRange(LiveInterval & LI,SlotIndex Def)3303 static bool isDefInSubRange(LiveInterval &LI, SlotIndex Def) {
3304   for (LiveInterval::SubRange &SR : LI.subranges()) {
3305     if (VNInfo *VNI = SR.Query(Def).valueOutOrDead())
3306       if (VNI->def == Def)
3307         return true;
3308   }
3309   return false;
3310 }
3311 
pruneMainSegments(LiveInterval & LI,bool & ShrinkMainRange)3312 void JoinVals::pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange) {
3313   assert(&static_cast<LiveRange&>(LI) == &LR);
3314 
3315   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3316     if (Vals[i].Resolution != CR_Keep)
3317       continue;
3318     VNInfo *VNI = LR.getValNumInfo(i);
3319     if (VNI->isUnused() || VNI->isPHIDef() || isDefInSubRange(LI, VNI->def))
3320       continue;
3321     Vals[i].Pruned = true;
3322     ShrinkMainRange = true;
3323   }
3324 }
3325 
removeImplicitDefs()3326 void JoinVals::removeImplicitDefs() {
3327   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3328     Val &V = Vals[i];
3329     if (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned)
3330       continue;
3331 
3332     VNInfo *VNI = LR.getValNumInfo(i);
3333     VNI->markUnused();
3334     LR.removeValNo(VNI);
3335   }
3336 }
3337 
eraseInstrs(SmallPtrSetImpl<MachineInstr * > & ErasedInstrs,SmallVectorImpl<Register> & ShrinkRegs,LiveInterval * LI)3338 void JoinVals::eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
3339                            SmallVectorImpl<Register> &ShrinkRegs,
3340                            LiveInterval *LI) {
3341   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3342     // Get the def location before markUnused() below invalidates it.
3343     VNInfo *VNI = LR.getValNumInfo(i);
3344     SlotIndex Def = VNI->def;
3345     switch (Vals[i].Resolution) {
3346     case CR_Keep: {
3347       // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any
3348       // longer. The IMPLICIT_DEF instructions are only inserted by
3349       // PHIElimination to guarantee that all PHI predecessors have a value.
3350       if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned)
3351         break;
3352       // Remove value number i from LR.
3353       // For intervals with subranges, removing a segment from the main range
3354       // may require extending the previous segment: for each definition of
3355       // a subregister, there will be a corresponding def in the main range.
3356       // That def may fall in the middle of a segment from another subrange.
3357       // In such cases, removing this def from the main range must be
3358       // complemented by extending the main range to account for the liveness
3359       // of the other subrange.
3360       // The new end point of the main range segment to be extended.
3361       SlotIndex NewEnd;
3362       if (LI != nullptr) {
3363         LiveRange::iterator I = LR.FindSegmentContaining(Def);
3364         assert(I != LR.end());
3365         // Do not extend beyond the end of the segment being removed.
3366         // The segment may have been pruned in preparation for joining
3367         // live ranges.
3368         NewEnd = I->end;
3369       }
3370 
3371       LR.removeValNo(VNI);
3372       // Note that this VNInfo is reused and still referenced in NewVNInfo,
3373       // make it appear like an unused value number.
3374       VNI->markUnused();
3375 
3376       if (LI != nullptr && LI->hasSubRanges()) {
3377         assert(static_cast<LiveRange*>(LI) == &LR);
3378         // Determine the end point based on the subrange information:
3379         // minimum of (earliest def of next segment,
3380         //             latest end point of containing segment)
3381         SlotIndex ED, LE;
3382         for (LiveInterval::SubRange &SR : LI->subranges()) {
3383           LiveRange::iterator I = SR.find(Def);
3384           if (I == SR.end())
3385             continue;
3386           if (I->start > Def)
3387             ED = ED.isValid() ? std::min(ED, I->start) : I->start;
3388           else
3389             LE = LE.isValid() ? std::max(LE, I->end) : I->end;
3390         }
3391         if (LE.isValid())
3392           NewEnd = std::min(NewEnd, LE);
3393         if (ED.isValid())
3394           NewEnd = std::min(NewEnd, ED);
3395 
3396         // We only want to do the extension if there was a subrange that
3397         // was live across Def.
3398         if (LE.isValid()) {
3399           LiveRange::iterator S = LR.find(Def);
3400           if (S != LR.begin())
3401             std::prev(S)->end = NewEnd;
3402         }
3403       }
3404       LLVM_DEBUG({
3405         dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LR << '\n';
3406         if (LI != nullptr)
3407           dbgs() << "\t\t  LHS = " << *LI << '\n';
3408       });
3409       [[fallthrough]];
3410     }
3411 
3412     case CR_Erase: {
3413       MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
3414       assert(MI && "No instruction to erase");
3415       if (MI->isCopy()) {
3416         Register Reg = MI->getOperand(1).getReg();
3417         if (Reg.isVirtual() && Reg != CP.getSrcReg() && Reg != CP.getDstReg())
3418           ShrinkRegs.push_back(Reg);
3419       }
3420       ErasedInstrs.insert(MI);
3421       LLVM_DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI);
3422       LIS->RemoveMachineInstrFromMaps(*MI);
3423       MI->eraseFromParent();
3424       break;
3425     }
3426     default:
3427       break;
3428     }
3429   }
3430 }
3431 
joinSubRegRanges(LiveRange & LRange,LiveRange & RRange,LaneBitmask LaneMask,const CoalescerPair & CP)3432 void RegisterCoalescer::joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
3433                                          LaneBitmask LaneMask,
3434                                          const CoalescerPair &CP) {
3435   SmallVector<VNInfo*, 16> NewVNInfo;
3436   JoinVals RHSVals(RRange, CP.getSrcReg(), CP.getSrcIdx(), LaneMask,
3437                    NewVNInfo, CP, LIS, TRI, true, true);
3438   JoinVals LHSVals(LRange, CP.getDstReg(), CP.getDstIdx(), LaneMask,
3439                    NewVNInfo, CP, LIS, TRI, true, true);
3440 
3441   // Compute NewVNInfo and resolve conflicts (see also joinVirtRegs())
3442   // We should be able to resolve all conflicts here as we could successfully do
3443   // it on the mainrange already. There is however a problem when multiple
3444   // ranges get mapped to the "overflow" lane mask bit which creates unexpected
3445   // interferences.
3446   if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) {
3447     // We already determined that it is legal to merge the intervals, so this
3448     // should never fail.
3449     llvm_unreachable("*** Couldn't join subrange!\n");
3450   }
3451   if (!LHSVals.resolveConflicts(RHSVals) ||
3452       !RHSVals.resolveConflicts(LHSVals)) {
3453     // We already determined that it is legal to merge the intervals, so this
3454     // should never fail.
3455     llvm_unreachable("*** Couldn't join subrange!\n");
3456   }
3457 
3458   // The merging algorithm in LiveInterval::join() can't handle conflicting
3459   // value mappings, so we need to remove any live ranges that overlap a
3460   // CR_Replace resolution. Collect a set of end points that can be used to
3461   // restore the live range after joining.
3462   SmallVector<SlotIndex, 8> EndPoints;
3463   LHSVals.pruneValues(RHSVals, EndPoints, false);
3464   RHSVals.pruneValues(LHSVals, EndPoints, false);
3465 
3466   LHSVals.removeImplicitDefs();
3467   RHSVals.removeImplicitDefs();
3468 
3469   LRange.verify();
3470   RRange.verify();
3471 
3472   // Join RRange into LHS.
3473   LRange.join(RRange, LHSVals.getAssignments(), RHSVals.getAssignments(),
3474               NewVNInfo);
3475 
3476   LLVM_DEBUG(dbgs() << "\t\tjoined lanes: " << PrintLaneMask(LaneMask)
3477                     << ' ' << LRange << "\n");
3478   if (EndPoints.empty())
3479     return;
3480 
3481   // Recompute the parts of the live range we had to remove because of
3482   // CR_Replace conflicts.
3483   LLVM_DEBUG({
3484     dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: ";
3485     for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) {
3486       dbgs() << EndPoints[i];
3487       if (i != n-1)
3488         dbgs() << ',';
3489     }
3490     dbgs() << ":  " << LRange << '\n';
3491   });
3492   LIS->extendToIndices(LRange, EndPoints);
3493 }
3494 
mergeSubRangeInto(LiveInterval & LI,const LiveRange & ToMerge,LaneBitmask LaneMask,CoalescerPair & CP,unsigned ComposeSubRegIdx)3495 void RegisterCoalescer::mergeSubRangeInto(LiveInterval &LI,
3496                                           const LiveRange &ToMerge,
3497                                           LaneBitmask LaneMask,
3498                                           CoalescerPair &CP,
3499                                           unsigned ComposeSubRegIdx) {
3500   BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
3501   LI.refineSubRanges(
3502       Allocator, LaneMask,
3503       [this, &Allocator, &ToMerge, &CP](LiveInterval::SubRange &SR) {
3504         if (SR.empty()) {
3505           SR.assign(ToMerge, Allocator);
3506         } else {
3507           // joinSubRegRange() destroys the merged range, so we need a copy.
3508           LiveRange RangeCopy(ToMerge, Allocator);
3509           joinSubRegRanges(SR, RangeCopy, SR.LaneMask, CP);
3510         }
3511       },
3512       *LIS->getSlotIndexes(), *TRI, ComposeSubRegIdx);
3513 }
3514 
isHighCostLiveInterval(LiveInterval & LI)3515 bool RegisterCoalescer::isHighCostLiveInterval(LiveInterval &LI) {
3516   if (LI.valnos.size() < LargeIntervalSizeThreshold)
3517     return false;
3518   auto &Counter = LargeLIVisitCounter[LI.reg()];
3519   if (Counter < LargeIntervalFreqThreshold) {
3520     Counter++;
3521     return false;
3522   }
3523   return true;
3524 }
3525 
joinVirtRegs(CoalescerPair & CP)3526 bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) {
3527   SmallVector<VNInfo*, 16> NewVNInfo;
3528   LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
3529   LiveInterval &LHS = LIS->getInterval(CP.getDstReg());
3530   bool TrackSubRegLiveness = MRI->shouldTrackSubRegLiveness(*CP.getNewRC());
3531   JoinVals RHSVals(RHS, CP.getSrcReg(), CP.getSrcIdx(), LaneBitmask::getNone(),
3532                    NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness);
3533   JoinVals LHSVals(LHS, CP.getDstReg(), CP.getDstIdx(), LaneBitmask::getNone(),
3534                    NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness);
3535 
3536   LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << "\n\t\tLHS = " << LHS << '\n');
3537 
3538   if (isHighCostLiveInterval(LHS) || isHighCostLiveInterval(RHS))
3539     return false;
3540 
3541   // First compute NewVNInfo and the simple value mappings.
3542   // Detect impossible conflicts early.
3543   if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals))
3544     return false;
3545 
3546   // Some conflicts can only be resolved after all values have been mapped.
3547   if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals))
3548     return false;
3549 
3550   // All clear, the live ranges can be merged.
3551   if (RHS.hasSubRanges() || LHS.hasSubRanges()) {
3552     BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
3553 
3554     // Transform lanemasks from the LHS to masks in the coalesced register and
3555     // create initial subranges if necessary.
3556     unsigned DstIdx = CP.getDstIdx();
3557     if (!LHS.hasSubRanges()) {
3558       LaneBitmask Mask = DstIdx == 0 ? CP.getNewRC()->getLaneMask()
3559                                      : TRI->getSubRegIndexLaneMask(DstIdx);
3560       // LHS must support subregs or we wouldn't be in this codepath.
3561       assert(Mask.any());
3562       LHS.createSubRangeFrom(Allocator, Mask, LHS);
3563     } else if (DstIdx != 0) {
3564       // Transform LHS lanemasks to new register class if necessary.
3565       for (LiveInterval::SubRange &R : LHS.subranges()) {
3566         LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(DstIdx, R.LaneMask);
3567         R.LaneMask = Mask;
3568       }
3569     }
3570     LLVM_DEBUG(dbgs() << "\t\tLHST = " << printReg(CP.getDstReg()) << ' ' << LHS
3571                       << '\n');
3572 
3573     // Determine lanemasks of RHS in the coalesced register and merge subranges.
3574     unsigned SrcIdx = CP.getSrcIdx();
3575     if (!RHS.hasSubRanges()) {
3576       LaneBitmask Mask = SrcIdx == 0 ? CP.getNewRC()->getLaneMask()
3577                                      : TRI->getSubRegIndexLaneMask(SrcIdx);
3578       mergeSubRangeInto(LHS, RHS, Mask, CP, DstIdx);
3579     } else {
3580       // Pair up subranges and merge.
3581       for (LiveInterval::SubRange &R : RHS.subranges()) {
3582         LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(SrcIdx, R.LaneMask);
3583         mergeSubRangeInto(LHS, R, Mask, CP, DstIdx);
3584       }
3585     }
3586     LLVM_DEBUG(dbgs() << "\tJoined SubRanges " << LHS << "\n");
3587 
3588     // Pruning implicit defs from subranges may result in the main range
3589     // having stale segments.
3590     LHSVals.pruneMainSegments(LHS, ShrinkMainRange);
3591 
3592     LHSVals.pruneSubRegValues(LHS, ShrinkMask);
3593     RHSVals.pruneSubRegValues(LHS, ShrinkMask);
3594   }
3595 
3596   // The merging algorithm in LiveInterval::join() can't handle conflicting
3597   // value mappings, so we need to remove any live ranges that overlap a
3598   // CR_Replace resolution. Collect a set of end points that can be used to
3599   // restore the live range after joining.
3600   SmallVector<SlotIndex, 8> EndPoints;
3601   LHSVals.pruneValues(RHSVals, EndPoints, true);
3602   RHSVals.pruneValues(LHSVals, EndPoints, true);
3603 
3604   // Erase COPY and IMPLICIT_DEF instructions. This may cause some external
3605   // registers to require trimming.
3606   SmallVector<Register, 8> ShrinkRegs;
3607   LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs, &LHS);
3608   RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
3609   while (!ShrinkRegs.empty())
3610     shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val()));
3611 
3612   // Scan and mark undef any DBG_VALUEs that would refer to a different value.
3613   checkMergingChangesDbgValues(CP, LHS, LHSVals, RHS, RHSVals);
3614 
3615   // If the RHS covers any PHI locations that were tracked for debug-info, we
3616   // must update tracking information to reflect the join.
3617   auto RegIt = RegToPHIIdx.find(CP.getSrcReg());
3618   if (RegIt != RegToPHIIdx.end()) {
3619     // Iterate over all the debug instruction numbers assigned this register.
3620     for (unsigned InstID : RegIt->second) {
3621       auto PHIIt = PHIValToPos.find(InstID);
3622       assert(PHIIt != PHIValToPos.end());
3623       const SlotIndex &SI = PHIIt->second.SI;
3624 
3625       // Does the RHS cover the position of this PHI?
3626       auto LII = RHS.find(SI);
3627       if (LII == RHS.end() || LII->start > SI)
3628         continue;
3629 
3630       // Accept two kinds of subregister movement:
3631       //  * When we merge from one register class into a larger register:
3632       //        %1:gr16 = some-inst
3633       //                ->
3634       //        %2:gr32.sub_16bit = some-inst
3635       //  * When the PHI is already in a subregister, and the larger class
3636       //    is coalesced:
3637       //        %2:gr32.sub_16bit = some-inst
3638       //        %3:gr32 = COPY %2
3639       //                ->
3640       //        %3:gr32.sub_16bit = some-inst
3641       // Test for subregister move:
3642       if (CP.getSrcIdx() != 0 || CP.getDstIdx() != 0)
3643         // If we're moving between different subregisters, ignore this join.
3644         // The PHI will not get a location, dropping variable locations.
3645         if (PHIIt->second.SubReg && PHIIt->second.SubReg != CP.getSrcIdx())
3646           continue;
3647 
3648       // Update our tracking of where the PHI is.
3649       PHIIt->second.Reg = CP.getDstReg();
3650 
3651       // If we merge into a sub-register of a larger class (test above),
3652       // update SubReg.
3653       if (CP.getSrcIdx() != 0)
3654         PHIIt->second.SubReg = CP.getSrcIdx();
3655     }
3656 
3657     // Rebuild the register index in RegToPHIIdx to account for PHIs tracking
3658     // different VRegs now. Copy old collection of debug instruction numbers and
3659     // erase the old one:
3660     auto InstrNums = RegIt->second;
3661     RegToPHIIdx.erase(RegIt);
3662 
3663     // There might already be PHIs being tracked in the destination VReg. Insert
3664     // into an existing tracking collection, or insert a new one.
3665     RegIt = RegToPHIIdx.find(CP.getDstReg());
3666     if (RegIt != RegToPHIIdx.end())
3667       RegIt->second.insert(RegIt->second.end(), InstrNums.begin(),
3668                            InstrNums.end());
3669     else
3670       RegToPHIIdx.insert({CP.getDstReg(), InstrNums});
3671   }
3672 
3673   // Join RHS into LHS.
3674   LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo);
3675 
3676   // Kill flags are going to be wrong if the live ranges were overlapping.
3677   // Eventually, we should simply clear all kill flags when computing live
3678   // ranges. They are reinserted after register allocation.
3679   MRI->clearKillFlags(LHS.reg());
3680   MRI->clearKillFlags(RHS.reg());
3681 
3682   if (!EndPoints.empty()) {
3683     // Recompute the parts of the live range we had to remove because of
3684     // CR_Replace conflicts.
3685     LLVM_DEBUG({
3686       dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: ";
3687       for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) {
3688         dbgs() << EndPoints[i];
3689         if (i != n-1)
3690           dbgs() << ',';
3691       }
3692       dbgs() << ":  " << LHS << '\n';
3693     });
3694     LIS->extendToIndices((LiveRange&)LHS, EndPoints);
3695   }
3696 
3697   return true;
3698 }
3699 
joinIntervals(CoalescerPair & CP)3700 bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) {
3701   return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP);
3702 }
3703 
buildVRegToDbgValueMap(MachineFunction & MF)3704 void RegisterCoalescer::buildVRegToDbgValueMap(MachineFunction &MF)
3705 {
3706   const SlotIndexes &Slots = *LIS->getSlotIndexes();
3707   SmallVector<MachineInstr *, 8> ToInsert;
3708 
3709   // After collecting a block of DBG_VALUEs into ToInsert, enter them into the
3710   // vreg => DbgValueLoc map.
3711   auto CloseNewDVRange = [this, &ToInsert](SlotIndex Slot) {
3712     for (auto *X : ToInsert) {
3713       for (const auto &Op : X->debug_operands()) {
3714         if (Op.isReg() && Op.getReg().isVirtual())
3715           DbgVRegToValues[Op.getReg()].push_back({Slot, X});
3716       }
3717     }
3718 
3719     ToInsert.clear();
3720   };
3721 
3722   // Iterate over all instructions, collecting them into the ToInsert vector.
3723   // Once a non-debug instruction is found, record the slot index of the
3724   // collected DBG_VALUEs.
3725   for (auto &MBB : MF) {
3726     SlotIndex CurrentSlot = Slots.getMBBStartIdx(&MBB);
3727 
3728     for (auto &MI : MBB) {
3729       if (MI.isDebugValue()) {
3730         if (any_of(MI.debug_operands(), [](const MachineOperand &MO) {
3731               return MO.isReg() && MO.getReg().isVirtual();
3732             }))
3733           ToInsert.push_back(&MI);
3734       } else if (!MI.isDebugOrPseudoInstr()) {
3735         CurrentSlot = Slots.getInstructionIndex(MI);
3736         CloseNewDVRange(CurrentSlot);
3737       }
3738     }
3739 
3740     // Close range of DBG_VALUEs at the end of blocks.
3741     CloseNewDVRange(Slots.getMBBEndIdx(&MBB));
3742   }
3743 
3744   // Sort all DBG_VALUEs we've seen by slot number.
3745   for (auto &Pair : DbgVRegToValues)
3746     llvm::sort(Pair.second);
3747 }
3748 
checkMergingChangesDbgValues(CoalescerPair & CP,LiveRange & LHS,JoinVals & LHSVals,LiveRange & RHS,JoinVals & RHSVals)3749 void RegisterCoalescer::checkMergingChangesDbgValues(CoalescerPair &CP,
3750                                                      LiveRange &LHS,
3751                                                      JoinVals &LHSVals,
3752                                                      LiveRange &RHS,
3753                                                      JoinVals &RHSVals) {
3754   auto ScanForDstReg = [&](Register Reg) {
3755     checkMergingChangesDbgValuesImpl(Reg, RHS, LHS, LHSVals);
3756   };
3757 
3758   auto ScanForSrcReg = [&](Register Reg) {
3759     checkMergingChangesDbgValuesImpl(Reg, LHS, RHS, RHSVals);
3760   };
3761 
3762   // Scan for potentially unsound DBG_VALUEs: examine first the register number
3763   // Reg, and then any other vregs that may have been merged into  it.
3764   auto PerformScan = [this](Register Reg, std::function<void(Register)> Func) {
3765     Func(Reg);
3766     if (DbgMergedVRegNums.count(Reg))
3767       for (Register X : DbgMergedVRegNums[Reg])
3768         Func(X);
3769   };
3770 
3771   // Scan for unsound updates of both the source and destination register.
3772   PerformScan(CP.getSrcReg(), ScanForSrcReg);
3773   PerformScan(CP.getDstReg(), ScanForDstReg);
3774 }
3775 
checkMergingChangesDbgValuesImpl(Register Reg,LiveRange & OtherLR,LiveRange & RegLR,JoinVals & RegVals)3776 void RegisterCoalescer::checkMergingChangesDbgValuesImpl(Register Reg,
3777                                                          LiveRange &OtherLR,
3778                                                          LiveRange &RegLR,
3779                                                          JoinVals &RegVals) {
3780   // Are there any DBG_VALUEs to examine?
3781   auto VRegMapIt = DbgVRegToValues.find(Reg);
3782   if (VRegMapIt == DbgVRegToValues.end())
3783     return;
3784 
3785   auto &DbgValueSet = VRegMapIt->second;
3786   auto DbgValueSetIt = DbgValueSet.begin();
3787   auto SegmentIt = OtherLR.begin();
3788 
3789   bool LastUndefResult = false;
3790   SlotIndex LastUndefIdx;
3791 
3792   // If the "Other" register is live at a slot Idx, test whether Reg can
3793   // safely be merged with it, or should be marked undef.
3794   auto ShouldUndef = [&RegVals, &RegLR, &LastUndefResult,
3795                       &LastUndefIdx](SlotIndex Idx) -> bool {
3796     // Our worst-case performance typically happens with asan, causing very
3797     // many DBG_VALUEs of the same location. Cache a copy of the most recent
3798     // result for this edge-case.
3799     if (LastUndefIdx == Idx)
3800       return LastUndefResult;
3801 
3802     // If the other range was live, and Reg's was not, the register coalescer
3803     // will not have tried to resolve any conflicts. We don't know whether
3804     // the DBG_VALUE will refer to the same value number, so it must be made
3805     // undef.
3806     auto OtherIt = RegLR.find(Idx);
3807     if (OtherIt == RegLR.end())
3808       return true;
3809 
3810     // Both the registers were live: examine the conflict resolution record for
3811     // the value number Reg refers to. CR_Keep meant that this value number
3812     // "won" and the merged register definitely refers to that value. CR_Erase
3813     // means the value number was a redundant copy of the other value, which
3814     // was coalesced and Reg deleted. It's safe to refer to the other register
3815     // (which will be the source of the copy).
3816     auto Resolution = RegVals.getResolution(OtherIt->valno->id);
3817     LastUndefResult = Resolution != JoinVals::CR_Keep &&
3818                       Resolution != JoinVals::CR_Erase;
3819     LastUndefIdx = Idx;
3820     return LastUndefResult;
3821   };
3822 
3823   // Iterate over both the live-range of the "Other" register, and the set of
3824   // DBG_VALUEs for Reg at the same time. Advance whichever one has the lowest
3825   // slot index. This relies on the DbgValueSet being ordered.
3826   while (DbgValueSetIt != DbgValueSet.end() && SegmentIt != OtherLR.end()) {
3827     if (DbgValueSetIt->first < SegmentIt->end) {
3828       // "Other" is live and there is a DBG_VALUE of Reg: test if we should
3829       // set it undef.
3830       if (DbgValueSetIt->first >= SegmentIt->start) {
3831         bool HasReg = DbgValueSetIt->second->hasDebugOperandForReg(Reg);
3832         bool ShouldUndefReg = ShouldUndef(DbgValueSetIt->first);
3833         if (HasReg && ShouldUndefReg) {
3834           // Mark undef, erase record of this DBG_VALUE to avoid revisiting.
3835           DbgValueSetIt->second->setDebugValueUndef();
3836           continue;
3837         }
3838       }
3839       ++DbgValueSetIt;
3840     } else {
3841       ++SegmentIt;
3842     }
3843   }
3844 }
3845 
3846 namespace {
3847 
3848 /// Information concerning MBB coalescing priority.
3849 struct MBBPriorityInfo {
3850   MachineBasicBlock *MBB;
3851   unsigned Depth;
3852   bool IsSplit;
3853 
MBBPriorityInfo__anondf5cb7ca0b11::MBBPriorityInfo3854   MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit)
3855     : MBB(mbb), Depth(depth), IsSplit(issplit) {}
3856 };
3857 
3858 } // end anonymous namespace
3859 
3860 /// C-style comparator that sorts first based on the loop depth of the basic
3861 /// block (the unsigned), and then on the MBB number.
3862 ///
3863 /// EnableGlobalCopies assumes that the primary sort key is loop depth.
compareMBBPriority(const MBBPriorityInfo * LHS,const MBBPriorityInfo * RHS)3864 static int compareMBBPriority(const MBBPriorityInfo *LHS,
3865                               const MBBPriorityInfo *RHS) {
3866   // Deeper loops first
3867   if (LHS->Depth != RHS->Depth)
3868     return LHS->Depth > RHS->Depth ? -1 : 1;
3869 
3870   // Try to unsplit critical edges next.
3871   if (LHS->IsSplit != RHS->IsSplit)
3872     return LHS->IsSplit ? -1 : 1;
3873 
3874   // Prefer blocks that are more connected in the CFG. This takes care of
3875   // the most difficult copies first while intervals are short.
3876   unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size();
3877   unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size();
3878   if (cl != cr)
3879     return cl > cr ? -1 : 1;
3880 
3881   // As a last resort, sort by block number.
3882   return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1;
3883 }
3884 
3885 /// \returns true if the given copy uses or defines a local live range.
isLocalCopy(MachineInstr * Copy,const LiveIntervals * LIS)3886 static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) {
3887   if (!Copy->isCopy())
3888     return false;
3889 
3890   if (Copy->getOperand(1).isUndef())
3891     return false;
3892 
3893   Register SrcReg = Copy->getOperand(1).getReg();
3894   Register DstReg = Copy->getOperand(0).getReg();
3895   if (SrcReg.isPhysical() || DstReg.isPhysical())
3896     return false;
3897 
3898   return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg))
3899     || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg));
3900 }
3901 
lateLiveIntervalUpdate()3902 void RegisterCoalescer::lateLiveIntervalUpdate() {
3903   for (Register reg : ToBeUpdated) {
3904     if (!LIS->hasInterval(reg))
3905       continue;
3906     LiveInterval &LI = LIS->getInterval(reg);
3907     shrinkToUses(&LI, &DeadDefs);
3908     if (!DeadDefs.empty())
3909       eliminateDeadDefs();
3910   }
3911   ToBeUpdated.clear();
3912 }
3913 
3914 bool RegisterCoalescer::
copyCoalesceWorkList(MutableArrayRef<MachineInstr * > CurrList)3915 copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) {
3916   bool Progress = false;
3917   for (MachineInstr *&MI : CurrList) {
3918     if (!MI)
3919       continue;
3920     // Skip instruction pointers that have already been erased, for example by
3921     // dead code elimination.
3922     if (ErasedInstrs.count(MI)) {
3923       MI = nullptr;
3924       continue;
3925     }
3926     bool Again = false;
3927     bool Success = joinCopy(MI, Again);
3928     Progress |= Success;
3929     if (Success || !Again)
3930       MI = nullptr;
3931   }
3932   return Progress;
3933 }
3934 
3935 /// Check if DstReg is a terminal node.
3936 /// I.e., it does not have any affinity other than \p Copy.
isTerminalReg(Register DstReg,const MachineInstr & Copy,const MachineRegisterInfo * MRI)3937 static bool isTerminalReg(Register DstReg, const MachineInstr &Copy,
3938                           const MachineRegisterInfo *MRI) {
3939   assert(Copy.isCopyLike());
3940   // Check if the destination of this copy as any other affinity.
3941   for (const MachineInstr &MI : MRI->reg_nodbg_instructions(DstReg))
3942     if (&MI != &Copy && MI.isCopyLike())
3943       return false;
3944   return true;
3945 }
3946 
applyTerminalRule(const MachineInstr & Copy) const3947 bool RegisterCoalescer::applyTerminalRule(const MachineInstr &Copy) const {
3948   assert(Copy.isCopyLike());
3949   if (!UseTerminalRule)
3950     return false;
3951   Register SrcReg, DstReg;
3952   unsigned SrcSubReg = 0, DstSubReg = 0;
3953   if (!isMoveInstr(*TRI, &Copy, SrcReg, DstReg, SrcSubReg, DstSubReg))
3954     return false;
3955   // Check if the destination of this copy has any other affinity.
3956   if (DstReg.isPhysical() ||
3957       // If SrcReg is a physical register, the copy won't be coalesced.
3958       // Ignoring it may have other side effect (like missing
3959       // rematerialization). So keep it.
3960       SrcReg.isPhysical() || !isTerminalReg(DstReg, Copy, MRI))
3961     return false;
3962 
3963   // DstReg is a terminal node. Check if it interferes with any other
3964   // copy involving SrcReg.
3965   const MachineBasicBlock *OrigBB = Copy.getParent();
3966   const LiveInterval &DstLI = LIS->getInterval(DstReg);
3967   for (const MachineInstr &MI : MRI->reg_nodbg_instructions(SrcReg)) {
3968     // Technically we should check if the weight of the new copy is
3969     // interesting compared to the other one and update the weight
3970     // of the copies accordingly. However, this would only work if
3971     // we would gather all the copies first then coalesce, whereas
3972     // right now we interleave both actions.
3973     // For now, just consider the copies that are in the same block.
3974     if (&MI == &Copy || !MI.isCopyLike() || MI.getParent() != OrigBB)
3975       continue;
3976     Register OtherSrcReg, OtherReg;
3977     unsigned OtherSrcSubReg = 0, OtherSubReg = 0;
3978     if (!isMoveInstr(*TRI, &Copy, OtherSrcReg, OtherReg, OtherSrcSubReg,
3979                 OtherSubReg))
3980       return false;
3981     if (OtherReg == SrcReg)
3982       OtherReg = OtherSrcReg;
3983     // Check if OtherReg is a non-terminal.
3984     if (OtherReg.isPhysical() || isTerminalReg(OtherReg, MI, MRI))
3985       continue;
3986     // Check that OtherReg interfere with DstReg.
3987     if (LIS->getInterval(OtherReg).overlaps(DstLI)) {
3988       LLVM_DEBUG(dbgs() << "Apply terminal rule for: " << printReg(DstReg)
3989                         << '\n');
3990       return true;
3991     }
3992   }
3993   return false;
3994 }
3995 
3996 void
copyCoalesceInMBB(MachineBasicBlock * MBB)3997 RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) {
3998   LLVM_DEBUG(dbgs() << MBB->getName() << ":\n");
3999 
4000   // Collect all copy-like instructions in MBB. Don't start coalescing anything
4001   // yet, it might invalidate the iterator.
4002   const unsigned PrevSize = WorkList.size();
4003   if (JoinGlobalCopies) {
4004     SmallVector<MachineInstr*, 2> LocalTerminals;
4005     SmallVector<MachineInstr*, 2> GlobalTerminals;
4006     // Coalesce copies bottom-up to coalesce local defs before local uses. They
4007     // are not inherently easier to resolve, but slightly preferable until we
4008     // have local live range splitting. In particular this is required by
4009     // cmp+jmp macro fusion.
4010     for (MachineInstr &MI : *MBB) {
4011       if (!MI.isCopyLike())
4012         continue;
4013       bool ApplyTerminalRule = applyTerminalRule(MI);
4014       if (isLocalCopy(&MI, LIS)) {
4015         if (ApplyTerminalRule)
4016           LocalTerminals.push_back(&MI);
4017         else
4018           LocalWorkList.push_back(&MI);
4019       } else {
4020         if (ApplyTerminalRule)
4021           GlobalTerminals.push_back(&MI);
4022         else
4023           WorkList.push_back(&MI);
4024       }
4025     }
4026     // Append the copies evicted by the terminal rule at the end of the list.
4027     LocalWorkList.append(LocalTerminals.begin(), LocalTerminals.end());
4028     WorkList.append(GlobalTerminals.begin(), GlobalTerminals.end());
4029   }
4030   else {
4031     SmallVector<MachineInstr*, 2> Terminals;
4032     for (MachineInstr &MII : *MBB)
4033       if (MII.isCopyLike()) {
4034         if (applyTerminalRule(MII))
4035           Terminals.push_back(&MII);
4036         else
4037           WorkList.push_back(&MII);
4038       }
4039     // Append the copies evicted by the terminal rule at the end of the list.
4040     WorkList.append(Terminals.begin(), Terminals.end());
4041   }
4042   // Try coalescing the collected copies immediately, and remove the nulls.
4043   // This prevents the WorkList from getting too large since most copies are
4044   // joinable on the first attempt.
4045   MutableArrayRef<MachineInstr*>
4046     CurrList(WorkList.begin() + PrevSize, WorkList.end());
4047   if (copyCoalesceWorkList(CurrList))
4048     WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(),
4049                                nullptr), WorkList.end());
4050 }
4051 
coalesceLocals()4052 void RegisterCoalescer::coalesceLocals() {
4053   copyCoalesceWorkList(LocalWorkList);
4054   for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) {
4055     if (LocalWorkList[j])
4056       WorkList.push_back(LocalWorkList[j]);
4057   }
4058   LocalWorkList.clear();
4059 }
4060 
joinAllIntervals()4061 void RegisterCoalescer::joinAllIntervals() {
4062   LLVM_DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
4063   assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around.");
4064 
4065   std::vector<MBBPriorityInfo> MBBs;
4066   MBBs.reserve(MF->size());
4067   for (MachineBasicBlock &MBB : *MF) {
4068     MBBs.push_back(MBBPriorityInfo(&MBB, Loops->getLoopDepth(&MBB),
4069                                    JoinSplitEdges && isSplitEdge(&MBB)));
4070   }
4071   array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority);
4072 
4073   // Coalesce intervals in MBB priority order.
4074   unsigned CurrDepth = std::numeric_limits<unsigned>::max();
4075   for (MBBPriorityInfo &MBB : MBBs) {
4076     // Try coalescing the collected local copies for deeper loops.
4077     if (JoinGlobalCopies && MBB.Depth < CurrDepth) {
4078       coalesceLocals();
4079       CurrDepth = MBB.Depth;
4080     }
4081     copyCoalesceInMBB(MBB.MBB);
4082   }
4083   lateLiveIntervalUpdate();
4084   coalesceLocals();
4085 
4086   // Joining intervals can allow other intervals to be joined.  Iteratively join
4087   // until we make no progress.
4088   while (copyCoalesceWorkList(WorkList))
4089     /* empty */ ;
4090   lateLiveIntervalUpdate();
4091 }
4092 
releaseMemory()4093 void RegisterCoalescer::releaseMemory() {
4094   ErasedInstrs.clear();
4095   WorkList.clear();
4096   DeadDefs.clear();
4097   InflateRegs.clear();
4098   LargeLIVisitCounter.clear();
4099 }
4100 
runOnMachineFunction(MachineFunction & fn)4101 bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
4102   LLVM_DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
4103                     << "********** Function: " << fn.getName() << '\n');
4104 
4105   // Variables changed between a setjmp and a longjump can have undefined value
4106   // after the longjmp. This behaviour can be observed if such a variable is
4107   // spilled, so longjmp won't restore the value in the spill slot.
4108   // RegisterCoalescer should not run in functions with a setjmp to avoid
4109   // merging such undefined variables with predictable ones.
4110   //
4111   // TODO: Could specifically disable coalescing registers live across setjmp
4112   // calls
4113   if (fn.exposesReturnsTwice()) {
4114     LLVM_DEBUG(
4115         dbgs() << "* Skipped as it exposes functions that returns twice.\n");
4116     return false;
4117   }
4118 
4119   MF = &fn;
4120   MRI = &fn.getRegInfo();
4121   const TargetSubtargetInfo &STI = fn.getSubtarget();
4122   TRI = STI.getRegisterInfo();
4123   TII = STI.getInstrInfo();
4124   LIS = &getAnalysis<LiveIntervals>();
4125   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
4126   Loops = &getAnalysis<MachineLoopInfo>();
4127   if (EnableGlobalCopies == cl::BOU_UNSET)
4128     JoinGlobalCopies = STI.enableJoinGlobalCopies();
4129   else
4130     JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE);
4131 
4132   // If there are PHIs tracked by debug-info, they will need updating during
4133   // coalescing. Build an index of those PHIs to ease updating.
4134   SlotIndexes *Slots = LIS->getSlotIndexes();
4135   for (const auto &DebugPHI : MF->DebugPHIPositions) {
4136     MachineBasicBlock *MBB = DebugPHI.second.MBB;
4137     Register Reg = DebugPHI.second.Reg;
4138     unsigned SubReg = DebugPHI.second.SubReg;
4139     SlotIndex SI = Slots->getMBBStartIdx(MBB);
4140     PHIValPos P = {SI, Reg, SubReg};
4141     PHIValToPos.insert(std::make_pair(DebugPHI.first, P));
4142     RegToPHIIdx[Reg].push_back(DebugPHI.first);
4143   }
4144 
4145   // The MachineScheduler does not currently require JoinSplitEdges. This will
4146   // either be enabled unconditionally or replaced by a more general live range
4147   // splitting optimization.
4148   JoinSplitEdges = EnableJoinSplits;
4149 
4150   if (VerifyCoalescing)
4151     MF->verify(this, "Before register coalescing");
4152 
4153   DbgVRegToValues.clear();
4154   DbgMergedVRegNums.clear();
4155   buildVRegToDbgValueMap(fn);
4156 
4157   RegClassInfo.runOnMachineFunction(fn);
4158 
4159   // Join (coalesce) intervals if requested.
4160   if (EnableJoining)
4161     joinAllIntervals();
4162 
4163   // After deleting a lot of copies, register classes may be less constrained.
4164   // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 ->
4165   // DPR inflation.
4166   array_pod_sort(InflateRegs.begin(), InflateRegs.end());
4167   InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()),
4168                     InflateRegs.end());
4169   LLVM_DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size()
4170                     << " regs.\n");
4171   for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) {
4172     Register Reg = InflateRegs[i];
4173     if (MRI->reg_nodbg_empty(Reg))
4174       continue;
4175     if (MRI->recomputeRegClass(Reg)) {
4176       LLVM_DEBUG(dbgs() << printReg(Reg) << " inflated to "
4177                         << TRI->getRegClassName(MRI->getRegClass(Reg)) << '\n');
4178       ++NumInflated;
4179 
4180       LiveInterval &LI = LIS->getInterval(Reg);
4181       if (LI.hasSubRanges()) {
4182         // If the inflated register class does not support subregisters anymore
4183         // remove the subranges.
4184         if (!MRI->shouldTrackSubRegLiveness(Reg)) {
4185           LI.clearSubRanges();
4186         } else {
4187 #ifndef NDEBUG
4188           LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
4189           // If subranges are still supported, then the same subregs
4190           // should still be supported.
4191           for (LiveInterval::SubRange &S : LI.subranges()) {
4192             assert((S.LaneMask & ~MaxMask).none());
4193           }
4194 #endif
4195         }
4196       }
4197     }
4198   }
4199 
4200   // After coalescing, update any PHIs that are being tracked by debug-info
4201   // with their new VReg locations.
4202   for (auto &p : MF->DebugPHIPositions) {
4203     auto it = PHIValToPos.find(p.first);
4204     assert(it != PHIValToPos.end());
4205     p.second.Reg = it->second.Reg;
4206     p.second.SubReg = it->second.SubReg;
4207   }
4208 
4209   PHIValToPos.clear();
4210   RegToPHIIdx.clear();
4211 
4212   LLVM_DEBUG(dump());
4213   if (VerifyCoalescing)
4214     MF->verify(this, "After register coalescing");
4215   return true;
4216 }
4217 
print(raw_ostream & O,const Module * m) const4218 void RegisterCoalescer::print(raw_ostream &O, const Module* m) const {
4219    LIS->print(O, m);
4220 }
4221