1 //===-- lib/MC/XCOFFObjectWriter.cpp - XCOFF file writer ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements XCOFF object file writer information.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/BinaryFormat/XCOFF.h"
14 #include "llvm/MC/MCAsmBackend.h"
15 #include "llvm/MC/MCAsmLayout.h"
16 #include "llvm/MC/MCAssembler.h"
17 #include "llvm/MC/MCFixup.h"
18 #include "llvm/MC/MCFixupKindInfo.h"
19 #include "llvm/MC/MCObjectWriter.h"
20 #include "llvm/MC/MCSectionXCOFF.h"
21 #include "llvm/MC/MCSymbolXCOFF.h"
22 #include "llvm/MC/MCValue.h"
23 #include "llvm/MC/MCXCOFFObjectWriter.h"
24 #include "llvm/MC/StringTableBuilder.h"
25 #include "llvm/Support/Casting.h"
26 #include "llvm/Support/EndianStream.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/MathExtras.h"
29
30 #include <deque>
31 #include <map>
32
33 using namespace llvm;
34
35 // An XCOFF object file has a limited set of predefined sections. The most
36 // important ones for us (right now) are:
37 // .text --> contains program code and read-only data.
38 // .data --> contains initialized data, function descriptors, and the TOC.
39 // .bss --> contains uninitialized data.
40 // Each of these sections is composed of 'Control Sections'. A Control Section
41 // is more commonly referred to as a csect. A csect is an indivisible unit of
42 // code or data, and acts as a container for symbols. A csect is mapped
43 // into a section based on its storage-mapping class, with the exception of
44 // XMC_RW which gets mapped to either .data or .bss based on whether it's
45 // explicitly initialized or not.
46 //
47 // We don't represent the sections in the MC layer as there is nothing
48 // interesting about them at at that level: they carry information that is
49 // only relevant to the ObjectWriter, so we materialize them in this class.
50 namespace {
51
52 constexpr unsigned DefaultSectionAlign = 4;
53 constexpr int16_t MaxSectionIndex = INT16_MAX;
54
55 // Packs the csect's alignment and type into a byte.
56 uint8_t getEncodedType(const MCSectionXCOFF *);
57
58 struct XCOFFRelocation {
59 uint32_t SymbolTableIndex;
60 uint32_t FixupOffsetInCsect;
61 uint8_t SignAndSize;
62 uint8_t Type;
63 };
64
65 // Wrapper around an MCSymbolXCOFF.
66 struct Symbol {
67 const MCSymbolXCOFF *const MCSym;
68 uint32_t SymbolTableIndex;
69
getVisibilityType__anon189233b90111::Symbol70 XCOFF::VisibilityType getVisibilityType() const {
71 return MCSym->getVisibilityType();
72 }
73
getStorageClass__anon189233b90111::Symbol74 XCOFF::StorageClass getStorageClass() const {
75 return MCSym->getStorageClass();
76 }
getSymbolTableName__anon189233b90111::Symbol77 StringRef getSymbolTableName() const { return MCSym->getSymbolTableName(); }
Symbol__anon189233b90111::Symbol78 Symbol(const MCSymbolXCOFF *MCSym) : MCSym(MCSym), SymbolTableIndex(-1) {}
79 };
80
81 // Wrapper for an MCSectionXCOFF.
82 // It can be a Csect or debug section or DWARF section and so on.
83 struct XCOFFSection {
84 const MCSectionXCOFF *const MCSec;
85 uint32_t SymbolTableIndex;
86 uint64_t Address;
87 uint64_t Size;
88
89 SmallVector<Symbol, 1> Syms;
90 SmallVector<XCOFFRelocation, 1> Relocations;
getSymbolTableName__anon189233b90111::XCOFFSection91 StringRef getSymbolTableName() const { return MCSec->getSymbolTableName(); }
getVisibilityType__anon189233b90111::XCOFFSection92 XCOFF::VisibilityType getVisibilityType() const {
93 return MCSec->getVisibilityType();
94 }
XCOFFSection__anon189233b90111::XCOFFSection95 XCOFFSection(const MCSectionXCOFF *MCSec)
96 : MCSec(MCSec), SymbolTableIndex(-1), Address(-1), Size(0) {}
97 };
98
99 // Type to be used for a container representing a set of csects with
100 // (approximately) the same storage mapping class. For example all the csects
101 // with a storage mapping class of `xmc_pr` will get placed into the same
102 // container.
103 using CsectGroup = std::deque<XCOFFSection>;
104 using CsectGroups = std::deque<CsectGroup *>;
105
106 // The basic section entry defination. This Section represents a section entry
107 // in XCOFF section header table.
108 struct SectionEntry {
109 char Name[XCOFF::NameSize];
110 // The physical/virtual address of the section. For an object file these
111 // values are equivalent, except for in the overflow section header, where
112 // the physical address specifies the number of relocation entries and the
113 // virtual address specifies the number of line number entries.
114 // TODO: Divide Address into PhysicalAddress and VirtualAddress when line
115 // number entries are supported.
116 uint64_t Address;
117 uint64_t Size;
118 uint64_t FileOffsetToData;
119 uint64_t FileOffsetToRelocations;
120 uint32_t RelocationCount;
121 int32_t Flags;
122
123 int16_t Index;
124
125 // XCOFF has special section numbers for symbols:
126 // -2 Specifies N_DEBUG, a special symbolic debugging symbol.
127 // -1 Specifies N_ABS, an absolute symbol. The symbol has a value but is not
128 // relocatable.
129 // 0 Specifies N_UNDEF, an undefined external symbol.
130 // Therefore, we choose -3 (N_DEBUG - 1) to represent a section index that
131 // hasn't been initialized.
132 static constexpr int16_t UninitializedIndex =
133 XCOFF::ReservedSectionNum::N_DEBUG - 1;
134
SectionEntry__anon189233b90111::SectionEntry135 SectionEntry(StringRef N, int32_t Flags)
136 : Name(), Address(0), Size(0), FileOffsetToData(0),
137 FileOffsetToRelocations(0), RelocationCount(0), Flags(Flags),
138 Index(UninitializedIndex) {
139 assert(N.size() <= XCOFF::NameSize && "section name too long");
140 memcpy(Name, N.data(), N.size());
141 }
142
reset__anon189233b90111::SectionEntry143 virtual void reset() {
144 Address = 0;
145 Size = 0;
146 FileOffsetToData = 0;
147 FileOffsetToRelocations = 0;
148 RelocationCount = 0;
149 Index = UninitializedIndex;
150 }
151
152 virtual ~SectionEntry() = default;
153 };
154
155 // Represents the data related to a section excluding the csects that make up
156 // the raw data of the section. The csects are stored separately as not all
157 // sections contain csects, and some sections contain csects which are better
158 // stored separately, e.g. the .data section containing read-write, descriptor,
159 // TOCBase and TOC-entry csects.
160 struct CsectSectionEntry : public SectionEntry {
161 // Virtual sections do not need storage allocated in the object file.
162 const bool IsVirtual;
163
164 // This is a section containing csect groups.
165 CsectGroups Groups;
166
CsectSectionEntry__anon189233b90111::CsectSectionEntry167 CsectSectionEntry(StringRef N, XCOFF::SectionTypeFlags Flags, bool IsVirtual,
168 CsectGroups Groups)
169 : SectionEntry(N, Flags), IsVirtual(IsVirtual), Groups(Groups) {
170 assert(N.size() <= XCOFF::NameSize && "section name too long");
171 memcpy(Name, N.data(), N.size());
172 }
173
reset__anon189233b90111::CsectSectionEntry174 void reset() override {
175 SectionEntry::reset();
176 // Clear any csects we have stored.
177 for (auto *Group : Groups)
178 Group->clear();
179 }
180
181 virtual ~CsectSectionEntry() = default;
182 };
183
184 struct DwarfSectionEntry : public SectionEntry {
185 // For DWARF section entry.
186 std::unique_ptr<XCOFFSection> DwarfSect;
187
188 // For DWARF section, we must use real size in the section header. MemorySize
189 // is for the size the DWARF section occupies including paddings.
190 uint32_t MemorySize;
191
DwarfSectionEntry__anon189233b90111::DwarfSectionEntry192 DwarfSectionEntry(StringRef N, int32_t Flags,
193 std::unique_ptr<XCOFFSection> Sect)
194 : SectionEntry(N, Flags | XCOFF::STYP_DWARF), DwarfSect(std::move(Sect)),
195 MemorySize(0) {
196 assert(DwarfSect->MCSec->isDwarfSect() &&
197 "This should be a DWARF section!");
198 assert(N.size() <= XCOFF::NameSize && "section name too long");
199 memcpy(Name, N.data(), N.size());
200 }
201
202 DwarfSectionEntry(DwarfSectionEntry &&s) = default;
203
204 virtual ~DwarfSectionEntry() = default;
205 };
206
207 struct ExceptionTableEntry {
208 const MCSymbol *Trap;
209 uint64_t TrapAddress;
210 unsigned Lang;
211 unsigned Reason;
212
ExceptionTableEntry__anon189233b90111::ExceptionTableEntry213 ExceptionTableEntry(const MCSymbol *Trap, unsigned Lang, unsigned Reason)
214 : Trap(Trap), Lang(Lang), Reason(Reason) {}
215 };
216
217 struct ExceptionInfo {
218 const MCSymbol *FunctionSymbol;
219 unsigned FunctionSize;
220 std::vector<ExceptionTableEntry> Entries;
221 };
222
223 struct ExceptionSectionEntry : public SectionEntry {
224 std::map<const StringRef, ExceptionInfo> ExceptionTable;
225 bool isDebugEnabled = false;
226
ExceptionSectionEntry__anon189233b90111::ExceptionSectionEntry227 ExceptionSectionEntry(StringRef N, int32_t Flags)
228 : SectionEntry(N, Flags | XCOFF::STYP_EXCEPT) {
229 assert(N.size() <= XCOFF::NameSize && "Section too long.");
230 memcpy(Name, N.data(), N.size());
231 }
232
233 virtual ~ExceptionSectionEntry() = default;
234 };
235
236 class XCOFFObjectWriter : public MCObjectWriter {
237
238 uint32_t SymbolTableEntryCount = 0;
239 uint64_t SymbolTableOffset = 0;
240 uint16_t SectionCount = 0;
241 uint32_t PaddingsBeforeDwarf = 0;
242 std::vector<std::pair<std::string, size_t>> FileNames;
243 bool HasVisibility = false;
244
245 support::endian::Writer W;
246 std::unique_ptr<MCXCOFFObjectTargetWriter> TargetObjectWriter;
247 StringTableBuilder Strings;
248
249 const uint64_t MaxRawDataSize =
250 TargetObjectWriter->is64Bit() ? UINT64_MAX : UINT32_MAX;
251
252 // Maps the MCSection representation to its corresponding XCOFFSection
253 // wrapper. Needed for finding the XCOFFSection to insert an MCSymbol into
254 // from its containing MCSectionXCOFF.
255 DenseMap<const MCSectionXCOFF *, XCOFFSection *> SectionMap;
256
257 // Maps the MCSymbol representation to its corrresponding symbol table index.
258 // Needed for relocation.
259 DenseMap<const MCSymbol *, uint32_t> SymbolIndexMap;
260
261 // CsectGroups. These store the csects which make up different parts of
262 // the sections. Should have one for each set of csects that get mapped into
263 // the same section and get handled in a 'similar' way.
264 CsectGroup UndefinedCsects;
265 CsectGroup ProgramCodeCsects;
266 CsectGroup ReadOnlyCsects;
267 CsectGroup DataCsects;
268 CsectGroup FuncDSCsects;
269 CsectGroup TOCCsects;
270 CsectGroup BSSCsects;
271 CsectGroup TDataCsects;
272 CsectGroup TBSSCsects;
273
274 // The Predefined sections.
275 CsectSectionEntry Text;
276 CsectSectionEntry Data;
277 CsectSectionEntry BSS;
278 CsectSectionEntry TData;
279 CsectSectionEntry TBSS;
280
281 // All the XCOFF sections, in the order they will appear in the section header
282 // table.
283 std::array<CsectSectionEntry *const, 5> Sections{
284 {&Text, &Data, &BSS, &TData, &TBSS}};
285
286 std::vector<DwarfSectionEntry> DwarfSections;
287 std::vector<SectionEntry> OverflowSections;
288
289 ExceptionSectionEntry ExceptionSection;
290
291 CsectGroup &getCsectGroup(const MCSectionXCOFF *MCSec);
292
293 void reset() override;
294
295 void executePostLayoutBinding(MCAssembler &, const MCAsmLayout &) override;
296
297 void recordRelocation(MCAssembler &, const MCAsmLayout &, const MCFragment *,
298 const MCFixup &, MCValue, uint64_t &) override;
299
300 uint64_t writeObject(MCAssembler &, const MCAsmLayout &) override;
301
is64Bit() const302 bool is64Bit() const { return TargetObjectWriter->is64Bit(); }
303 bool nameShouldBeInStringTable(const StringRef &);
304 void writeSymbolName(const StringRef &);
305
306 void writeSymbolEntryForCsectMemberLabel(const Symbol &SymbolRef,
307 const XCOFFSection &CSectionRef,
308 int16_t SectionIndex,
309 uint64_t SymbolOffset);
310 void writeSymbolEntryForControlSection(const XCOFFSection &CSectionRef,
311 int16_t SectionIndex,
312 XCOFF::StorageClass StorageClass);
313 void writeSymbolEntryForDwarfSection(const XCOFFSection &DwarfSectionRef,
314 int16_t SectionIndex);
315 void writeFileHeader();
316 void writeAuxFileHeader();
317 void writeSectionHeader(const SectionEntry *Sec);
318 void writeSectionHeaderTable();
319 void writeSections(const MCAssembler &Asm, const MCAsmLayout &Layout);
320 void writeSectionForControlSectionEntry(const MCAssembler &Asm,
321 const MCAsmLayout &Layout,
322 const CsectSectionEntry &CsectEntry,
323 uint64_t &CurrentAddressLocation);
324 void writeSectionForDwarfSectionEntry(const MCAssembler &Asm,
325 const MCAsmLayout &Layout,
326 const DwarfSectionEntry &DwarfEntry,
327 uint64_t &CurrentAddressLocation);
328 void writeSectionForExceptionSectionEntry(
329 const MCAssembler &Asm, const MCAsmLayout &Layout,
330 ExceptionSectionEntry &ExceptionEntry, uint64_t &CurrentAddressLocation);
331 void writeSymbolTable(const MCAsmLayout &Layout);
332 void writeSymbolAuxDwarfEntry(uint64_t LengthOfSectionPortion,
333 uint64_t NumberOfRelocEnt = 0);
334 void writeSymbolAuxCsectEntry(uint64_t SectionOrLength,
335 uint8_t SymbolAlignmentAndType,
336 uint8_t StorageMappingClass);
337 void writeSymbolAuxFunctionEntry(uint32_t EntryOffset, uint32_t FunctionSize,
338 uint64_t LineNumberPointer,
339 uint32_t EndIndex);
340 void writeSymbolAuxExceptionEntry(uint64_t EntryOffset, uint32_t FunctionSize,
341 uint32_t EndIndex);
342 void writeSymbolEntry(StringRef SymbolName, uint64_t Value,
343 int16_t SectionNumber, uint16_t SymbolType,
344 uint8_t StorageClass, uint8_t NumberOfAuxEntries = 1);
345 void writeRelocations();
346 void writeRelocation(XCOFFRelocation Reloc, const XCOFFSection &Section);
347
348 // Called after all the csects and symbols have been processed by
349 // `executePostLayoutBinding`, this function handles building up the majority
350 // of the structures in the object file representation. Namely:
351 // *) Calculates physical/virtual addresses, raw-pointer offsets, and section
352 // sizes.
353 // *) Assigns symbol table indices.
354 // *) Builds up the section header table by adding any non-empty sections to
355 // `Sections`.
356 void assignAddressesAndIndices(const MCAsmLayout &);
357 // Called after relocations are recorded.
358 void finalizeSectionInfo();
359 void finalizeRelocationInfo(SectionEntry *Sec, uint64_t RelCount);
360 void calcOffsetToRelocations(SectionEntry *Sec, uint64_t &RawPointer);
361
362 void addExceptionEntry(const MCSymbol *Symbol, const MCSymbol *Trap,
363 unsigned LanguageCode, unsigned ReasonCode,
364 unsigned FunctionSize, bool hasDebug) override;
hasExceptionSection()365 bool hasExceptionSection() {
366 return !ExceptionSection.ExceptionTable.empty();
367 }
368 unsigned getExceptionSectionSize();
369 unsigned getExceptionOffset(const MCSymbol *Symbol);
370
auxiliaryHeaderSize() const371 size_t auxiliaryHeaderSize() const {
372 // 64-bit object files have no auxiliary header.
373 return HasVisibility && !is64Bit() ? XCOFF::AuxFileHeaderSizeShort : 0;
374 }
375
376 public:
377 XCOFFObjectWriter(std::unique_ptr<MCXCOFFObjectTargetWriter> MOTW,
378 raw_pwrite_stream &OS);
379
writeWord(uint64_t Word)380 void writeWord(uint64_t Word) {
381 is64Bit() ? W.write<uint64_t>(Word) : W.write<uint32_t>(Word);
382 }
383 };
384
XCOFFObjectWriter(std::unique_ptr<MCXCOFFObjectTargetWriter> MOTW,raw_pwrite_stream & OS)385 XCOFFObjectWriter::XCOFFObjectWriter(
386 std::unique_ptr<MCXCOFFObjectTargetWriter> MOTW, raw_pwrite_stream &OS)
387 : W(OS, support::big), TargetObjectWriter(std::move(MOTW)),
388 Strings(StringTableBuilder::XCOFF),
389 Text(".text", XCOFF::STYP_TEXT, /* IsVirtual */ false,
390 CsectGroups{&ProgramCodeCsects, &ReadOnlyCsects}),
391 Data(".data", XCOFF::STYP_DATA, /* IsVirtual */ false,
392 CsectGroups{&DataCsects, &FuncDSCsects, &TOCCsects}),
393 BSS(".bss", XCOFF::STYP_BSS, /* IsVirtual */ true,
394 CsectGroups{&BSSCsects}),
395 TData(".tdata", XCOFF::STYP_TDATA, /* IsVirtual */ false,
396 CsectGroups{&TDataCsects}),
397 TBSS(".tbss", XCOFF::STYP_TBSS, /* IsVirtual */ true,
398 CsectGroups{&TBSSCsects}),
399 ExceptionSection(".except", XCOFF::STYP_EXCEPT) {}
400
reset()401 void XCOFFObjectWriter::reset() {
402 // Clear the mappings we created.
403 SymbolIndexMap.clear();
404 SectionMap.clear();
405
406 UndefinedCsects.clear();
407 // Reset any sections we have written to, and empty the section header table.
408 for (auto *Sec : Sections)
409 Sec->reset();
410 for (auto &DwarfSec : DwarfSections)
411 DwarfSec.reset();
412 for (auto &OverflowSec : OverflowSections)
413 OverflowSec.reset();
414 ExceptionSection.reset();
415
416 // Reset states in XCOFFObjectWriter.
417 SymbolTableEntryCount = 0;
418 SymbolTableOffset = 0;
419 SectionCount = 0;
420 PaddingsBeforeDwarf = 0;
421 Strings.clear();
422
423 MCObjectWriter::reset();
424 }
425
getCsectGroup(const MCSectionXCOFF * MCSec)426 CsectGroup &XCOFFObjectWriter::getCsectGroup(const MCSectionXCOFF *MCSec) {
427 switch (MCSec->getMappingClass()) {
428 case XCOFF::XMC_PR:
429 assert(XCOFF::XTY_SD == MCSec->getCSectType() &&
430 "Only an initialized csect can contain program code.");
431 return ProgramCodeCsects;
432 case XCOFF::XMC_RO:
433 assert(XCOFF::XTY_SD == MCSec->getCSectType() &&
434 "Only an initialized csect can contain read only data.");
435 return ReadOnlyCsects;
436 case XCOFF::XMC_RW:
437 if (XCOFF::XTY_CM == MCSec->getCSectType())
438 return BSSCsects;
439
440 if (XCOFF::XTY_SD == MCSec->getCSectType())
441 return DataCsects;
442
443 report_fatal_error("Unhandled mapping of read-write csect to section.");
444 case XCOFF::XMC_DS:
445 return FuncDSCsects;
446 case XCOFF::XMC_BS:
447 assert(XCOFF::XTY_CM == MCSec->getCSectType() &&
448 "Mapping invalid csect. CSECT with bss storage class must be "
449 "common type.");
450 return BSSCsects;
451 case XCOFF::XMC_TL:
452 assert(XCOFF::XTY_SD == MCSec->getCSectType() &&
453 "Mapping invalid csect. CSECT with tdata storage class must be "
454 "an initialized csect.");
455 return TDataCsects;
456 case XCOFF::XMC_UL:
457 assert(XCOFF::XTY_CM == MCSec->getCSectType() &&
458 "Mapping invalid csect. CSECT with tbss storage class must be "
459 "an uninitialized csect.");
460 return TBSSCsects;
461 case XCOFF::XMC_TC0:
462 assert(XCOFF::XTY_SD == MCSec->getCSectType() &&
463 "Only an initialized csect can contain TOC-base.");
464 assert(TOCCsects.empty() &&
465 "We should have only one TOC-base, and it should be the first csect "
466 "in this CsectGroup.");
467 return TOCCsects;
468 case XCOFF::XMC_TC:
469 case XCOFF::XMC_TE:
470 case XCOFF::XMC_TD:
471 assert(XCOFF::XTY_SD == MCSec->getCSectType() &&
472 "Only an initialized csect can contain TC entry.");
473 assert(!TOCCsects.empty() &&
474 "We should at least have a TOC-base in this CsectGroup.");
475 return TOCCsects;
476 default:
477 report_fatal_error("Unhandled mapping of csect to section.");
478 }
479 }
480
getContainingCsect(const MCSymbolXCOFF * XSym)481 static MCSectionXCOFF *getContainingCsect(const MCSymbolXCOFF *XSym) {
482 if (XSym->isDefined())
483 return cast<MCSectionXCOFF>(XSym->getFragment()->getParent());
484 return XSym->getRepresentedCsect();
485 }
486
executePostLayoutBinding(MCAssembler & Asm,const MCAsmLayout & Layout)487 void XCOFFObjectWriter::executePostLayoutBinding(MCAssembler &Asm,
488 const MCAsmLayout &Layout) {
489 for (const auto &S : Asm) {
490 const auto *MCSec = cast<const MCSectionXCOFF>(&S);
491 assert(SectionMap.find(MCSec) == SectionMap.end() &&
492 "Cannot add a section twice.");
493
494 // If the name does not fit in the storage provided in the symbol table
495 // entry, add it to the string table.
496 if (nameShouldBeInStringTable(MCSec->getSymbolTableName()))
497 Strings.add(MCSec->getSymbolTableName());
498 if (MCSec->isCsect()) {
499 // A new control section. Its CsectSectionEntry should already be staticly
500 // generated as Text/Data/BSS/TDATA/TBSS. Add this section to the group of
501 // the CsectSectionEntry.
502 assert(XCOFF::XTY_ER != MCSec->getCSectType() &&
503 "An undefined csect should not get registered.");
504 CsectGroup &Group = getCsectGroup(MCSec);
505 Group.emplace_back(MCSec);
506 SectionMap[MCSec] = &Group.back();
507 } else if (MCSec->isDwarfSect()) {
508 // A new DwarfSectionEntry.
509 std::unique_ptr<XCOFFSection> DwarfSec =
510 std::make_unique<XCOFFSection>(MCSec);
511 SectionMap[MCSec] = DwarfSec.get();
512
513 DwarfSectionEntry SecEntry(MCSec->getName(),
514 *MCSec->getDwarfSubtypeFlags(),
515 std::move(DwarfSec));
516 DwarfSections.push_back(std::move(SecEntry));
517 } else
518 llvm_unreachable("unsupport section type!");
519 }
520
521 for (const MCSymbol &S : Asm.symbols()) {
522 // Nothing to do for temporary symbols.
523 if (S.isTemporary())
524 continue;
525
526 const MCSymbolXCOFF *XSym = cast<MCSymbolXCOFF>(&S);
527 const MCSectionXCOFF *ContainingCsect = getContainingCsect(XSym);
528
529 if (XSym->getVisibilityType() != XCOFF::SYM_V_UNSPECIFIED)
530 HasVisibility = true;
531
532 if (ContainingCsect->getCSectType() == XCOFF::XTY_ER) {
533 // Handle undefined symbol.
534 UndefinedCsects.emplace_back(ContainingCsect);
535 SectionMap[ContainingCsect] = &UndefinedCsects.back();
536 if (nameShouldBeInStringTable(ContainingCsect->getSymbolTableName()))
537 Strings.add(ContainingCsect->getSymbolTableName());
538 continue;
539 }
540
541 // If the symbol is the csect itself, we don't need to put the symbol
542 // into csect's Syms.
543 if (XSym == ContainingCsect->getQualNameSymbol())
544 continue;
545
546 // Only put a label into the symbol table when it is an external label.
547 if (!XSym->isExternal())
548 continue;
549
550 assert(SectionMap.find(ContainingCsect) != SectionMap.end() &&
551 "Expected containing csect to exist in map");
552 XCOFFSection *Csect = SectionMap[ContainingCsect];
553 // Lookup the containing csect and add the symbol to it.
554 assert(Csect->MCSec->isCsect() && "only csect is supported now!");
555 Csect->Syms.emplace_back(XSym);
556
557 // If the name does not fit in the storage provided in the symbol table
558 // entry, add it to the string table.
559 if (nameShouldBeInStringTable(XSym->getSymbolTableName()))
560 Strings.add(XSym->getSymbolTableName());
561 }
562
563 FileNames = Asm.getFileNames();
564 // Emit ".file" as the source file name when there is no file name.
565 if (FileNames.empty())
566 FileNames.emplace_back(".file", 0);
567 for (const std::pair<std::string, size_t> &F : FileNames) {
568 if (nameShouldBeInStringTable(F.first))
569 Strings.add(F.first);
570 }
571
572 Strings.finalize();
573 assignAddressesAndIndices(Layout);
574 }
575
recordRelocation(MCAssembler & Asm,const MCAsmLayout & Layout,const MCFragment * Fragment,const MCFixup & Fixup,MCValue Target,uint64_t & FixedValue)576 void XCOFFObjectWriter::recordRelocation(MCAssembler &Asm,
577 const MCAsmLayout &Layout,
578 const MCFragment *Fragment,
579 const MCFixup &Fixup, MCValue Target,
580 uint64_t &FixedValue) {
581 auto getIndex = [this](const MCSymbol *Sym,
582 const MCSectionXCOFF *ContainingCsect) {
583 // If we could not find the symbol directly in SymbolIndexMap, this symbol
584 // could either be a temporary symbol or an undefined symbol. In this case,
585 // we would need to have the relocation reference its csect instead.
586 return SymbolIndexMap.find(Sym) != SymbolIndexMap.end()
587 ? SymbolIndexMap[Sym]
588 : SymbolIndexMap[ContainingCsect->getQualNameSymbol()];
589 };
590
591 auto getVirtualAddress =
592 [this, &Layout](const MCSymbol *Sym,
593 const MCSectionXCOFF *ContainingSect) -> uint64_t {
594 // A DWARF section.
595 if (ContainingSect->isDwarfSect())
596 return Layout.getSymbolOffset(*Sym);
597
598 // A csect.
599 if (!Sym->isDefined())
600 return SectionMap[ContainingSect]->Address;
601
602 // A label.
603 assert(Sym->isDefined() && "not a valid object that has address!");
604 return SectionMap[ContainingSect]->Address + Layout.getSymbolOffset(*Sym);
605 };
606
607 const MCSymbol *const SymA = &Target.getSymA()->getSymbol();
608
609 MCAsmBackend &Backend = Asm.getBackend();
610 bool IsPCRel = Backend.getFixupKindInfo(Fixup.getKind()).Flags &
611 MCFixupKindInfo::FKF_IsPCRel;
612
613 uint8_t Type;
614 uint8_t SignAndSize;
615 std::tie(Type, SignAndSize) =
616 TargetObjectWriter->getRelocTypeAndSignSize(Target, Fixup, IsPCRel);
617
618 const MCSectionXCOFF *SymASec = getContainingCsect(cast<MCSymbolXCOFF>(SymA));
619 assert(SectionMap.find(SymASec) != SectionMap.end() &&
620 "Expected containing csect to exist in map.");
621
622 const uint32_t Index = getIndex(SymA, SymASec);
623 if (Type == XCOFF::RelocationType::R_POS ||
624 Type == XCOFF::RelocationType::R_TLS)
625 // The FixedValue should be symbol's virtual address in this object file
626 // plus any constant value that we might get.
627 FixedValue = getVirtualAddress(SymA, SymASec) + Target.getConstant();
628 else if (Type == XCOFF::RelocationType::R_TLSM)
629 // The FixedValue should always be zero since the region handle is only
630 // known at load time.
631 FixedValue = 0;
632 else if (Type == XCOFF::RelocationType::R_TOC ||
633 Type == XCOFF::RelocationType::R_TOCL) {
634 // For non toc-data external symbols, R_TOC type relocation will relocate to
635 // data symbols that have XCOFF::XTY_SD type csect. For toc-data external
636 // symbols, R_TOC type relocation will relocate to data symbols that have
637 // XCOFF_ER type csect. For XCOFF_ER kind symbols, there will be no TOC
638 // entry for them, so the FixedValue should always be 0.
639 if (SymASec->getCSectType() == XCOFF::XTY_ER) {
640 FixedValue = 0;
641 } else {
642 // The FixedValue should be the TOC entry offset from the TOC-base plus
643 // any constant offset value.
644 const int64_t TOCEntryOffset = SectionMap[SymASec]->Address -
645 TOCCsects.front().Address +
646 Target.getConstant();
647 if (Type == XCOFF::RelocationType::R_TOC && !isInt<16>(TOCEntryOffset))
648 report_fatal_error("TOCEntryOffset overflows in small code model mode");
649
650 FixedValue = TOCEntryOffset;
651 }
652 } else if (Type == XCOFF::RelocationType::R_RBR) {
653 MCSectionXCOFF *ParentSec = cast<MCSectionXCOFF>(Fragment->getParent());
654 assert((SymASec->getMappingClass() == XCOFF::XMC_PR &&
655 ParentSec->getMappingClass() == XCOFF::XMC_PR) &&
656 "Only XMC_PR csect may have the R_RBR relocation.");
657
658 // The address of the branch instruction should be the sum of section
659 // address, fragment offset and Fixup offset.
660 uint64_t BRInstrAddress = SectionMap[ParentSec]->Address +
661 Layout.getFragmentOffset(Fragment) +
662 Fixup.getOffset();
663 // The FixedValue should be the difference between SymA csect address and BR
664 // instr address plus any constant value.
665 FixedValue =
666 SectionMap[SymASec]->Address - BRInstrAddress + Target.getConstant();
667 }
668
669 assert((Fixup.getOffset() <=
670 MaxRawDataSize - Layout.getFragmentOffset(Fragment)) &&
671 "Fragment offset + fixup offset is overflowed.");
672 uint32_t FixupOffsetInCsect =
673 Layout.getFragmentOffset(Fragment) + Fixup.getOffset();
674
675 XCOFFRelocation Reloc = {Index, FixupOffsetInCsect, SignAndSize, Type};
676 MCSectionXCOFF *RelocationSec = cast<MCSectionXCOFF>(Fragment->getParent());
677 assert(SectionMap.find(RelocationSec) != SectionMap.end() &&
678 "Expected containing csect to exist in map.");
679 SectionMap[RelocationSec]->Relocations.push_back(Reloc);
680
681 if (!Target.getSymB())
682 return;
683
684 const MCSymbol *const SymB = &Target.getSymB()->getSymbol();
685 if (SymA == SymB)
686 report_fatal_error("relocation for opposite term is not yet supported");
687
688 const MCSectionXCOFF *SymBSec = getContainingCsect(cast<MCSymbolXCOFF>(SymB));
689 assert(SectionMap.find(SymBSec) != SectionMap.end() &&
690 "Expected containing csect to exist in map.");
691 if (SymASec == SymBSec)
692 report_fatal_error(
693 "relocation for paired relocatable term is not yet supported");
694
695 assert(Type == XCOFF::RelocationType::R_POS &&
696 "SymA must be R_POS here if it's not opposite term or paired "
697 "relocatable term.");
698 const uint32_t IndexB = getIndex(SymB, SymBSec);
699 // SymB must be R_NEG here, given the general form of Target(MCValue) is
700 // "SymbolA - SymbolB + imm64".
701 const uint8_t TypeB = XCOFF::RelocationType::R_NEG;
702 XCOFFRelocation RelocB = {IndexB, FixupOffsetInCsect, SignAndSize, TypeB};
703 SectionMap[RelocationSec]->Relocations.push_back(RelocB);
704 // We already folded "SymbolA + imm64" above when Type is R_POS for SymbolA,
705 // now we just need to fold "- SymbolB" here.
706 FixedValue -= getVirtualAddress(SymB, SymBSec);
707 }
708
writeSections(const MCAssembler & Asm,const MCAsmLayout & Layout)709 void XCOFFObjectWriter::writeSections(const MCAssembler &Asm,
710 const MCAsmLayout &Layout) {
711 uint64_t CurrentAddressLocation = 0;
712 for (const auto *Section : Sections)
713 writeSectionForControlSectionEntry(Asm, Layout, *Section,
714 CurrentAddressLocation);
715 for (const auto &DwarfSection : DwarfSections)
716 writeSectionForDwarfSectionEntry(Asm, Layout, DwarfSection,
717 CurrentAddressLocation);
718 writeSectionForExceptionSectionEntry(Asm, Layout, ExceptionSection,
719 CurrentAddressLocation);
720 }
721
writeObject(MCAssembler & Asm,const MCAsmLayout & Layout)722 uint64_t XCOFFObjectWriter::writeObject(MCAssembler &Asm,
723 const MCAsmLayout &Layout) {
724 // We always emit a timestamp of 0 for reproducibility, so ensure incremental
725 // linking is not enabled, in case, like with Windows COFF, such a timestamp
726 // is incompatible with incremental linking of XCOFF.
727 if (Asm.isIncrementalLinkerCompatible())
728 report_fatal_error("Incremental linking not supported for XCOFF.");
729
730 finalizeSectionInfo();
731 uint64_t StartOffset = W.OS.tell();
732
733 writeFileHeader();
734 writeAuxFileHeader();
735 writeSectionHeaderTable();
736 writeSections(Asm, Layout);
737 writeRelocations();
738 writeSymbolTable(Layout);
739 // Write the string table.
740 Strings.write(W.OS);
741
742 return W.OS.tell() - StartOffset;
743 }
744
nameShouldBeInStringTable(const StringRef & SymbolName)745 bool XCOFFObjectWriter::nameShouldBeInStringTable(const StringRef &SymbolName) {
746 return SymbolName.size() > XCOFF::NameSize || is64Bit();
747 }
748
writeSymbolName(const StringRef & SymbolName)749 void XCOFFObjectWriter::writeSymbolName(const StringRef &SymbolName) {
750 // Magic, Offset or SymbolName.
751 if (nameShouldBeInStringTable(SymbolName)) {
752 W.write<int32_t>(0);
753 W.write<uint32_t>(Strings.getOffset(SymbolName));
754 } else {
755 char Name[XCOFF::NameSize + 1];
756 std::strncpy(Name, SymbolName.data(), XCOFF::NameSize);
757 ArrayRef<char> NameRef(Name, XCOFF::NameSize);
758 W.write(NameRef);
759 }
760 }
761
writeSymbolEntry(StringRef SymbolName,uint64_t Value,int16_t SectionNumber,uint16_t SymbolType,uint8_t StorageClass,uint8_t NumberOfAuxEntries)762 void XCOFFObjectWriter::writeSymbolEntry(StringRef SymbolName, uint64_t Value,
763 int16_t SectionNumber,
764 uint16_t SymbolType,
765 uint8_t StorageClass,
766 uint8_t NumberOfAuxEntries) {
767 if (is64Bit()) {
768 W.write<uint64_t>(Value);
769 W.write<uint32_t>(Strings.getOffset(SymbolName));
770 } else {
771 writeSymbolName(SymbolName);
772 W.write<uint32_t>(Value);
773 }
774 W.write<int16_t>(SectionNumber);
775 W.write<uint16_t>(SymbolType);
776 W.write<uint8_t>(StorageClass);
777 W.write<uint8_t>(NumberOfAuxEntries);
778 }
779
writeSymbolAuxCsectEntry(uint64_t SectionOrLength,uint8_t SymbolAlignmentAndType,uint8_t StorageMappingClass)780 void XCOFFObjectWriter::writeSymbolAuxCsectEntry(uint64_t SectionOrLength,
781 uint8_t SymbolAlignmentAndType,
782 uint8_t StorageMappingClass) {
783 W.write<uint32_t>(is64Bit() ? Lo_32(SectionOrLength) : SectionOrLength);
784 W.write<uint32_t>(0); // ParameterHashIndex
785 W.write<uint16_t>(0); // TypeChkSectNum
786 W.write<uint8_t>(SymbolAlignmentAndType);
787 W.write<uint8_t>(StorageMappingClass);
788 if (is64Bit()) {
789 W.write<uint32_t>(Hi_32(SectionOrLength));
790 W.OS.write_zeros(1); // Reserved
791 W.write<uint8_t>(XCOFF::AUX_CSECT);
792 } else {
793 W.write<uint32_t>(0); // StabInfoIndex
794 W.write<uint16_t>(0); // StabSectNum
795 }
796 }
797
writeSymbolAuxDwarfEntry(uint64_t LengthOfSectionPortion,uint64_t NumberOfRelocEnt)798 void XCOFFObjectWriter::writeSymbolAuxDwarfEntry(
799 uint64_t LengthOfSectionPortion, uint64_t NumberOfRelocEnt) {
800 writeWord(LengthOfSectionPortion);
801 if (!is64Bit())
802 W.OS.write_zeros(4); // Reserved
803 writeWord(NumberOfRelocEnt);
804 if (is64Bit()) {
805 W.OS.write_zeros(1); // Reserved
806 W.write<uint8_t>(XCOFF::AUX_SECT);
807 } else {
808 W.OS.write_zeros(6); // Reserved
809 }
810 }
811
writeSymbolEntryForCsectMemberLabel(const Symbol & SymbolRef,const XCOFFSection & CSectionRef,int16_t SectionIndex,uint64_t SymbolOffset)812 void XCOFFObjectWriter::writeSymbolEntryForCsectMemberLabel(
813 const Symbol &SymbolRef, const XCOFFSection &CSectionRef,
814 int16_t SectionIndex, uint64_t SymbolOffset) {
815 assert(SymbolOffset <= MaxRawDataSize - CSectionRef.Address &&
816 "Symbol address overflowed.");
817
818 auto Entry = ExceptionSection.ExceptionTable.find(SymbolRef.MCSym->getName());
819 if (Entry != ExceptionSection.ExceptionTable.end()) {
820 writeSymbolEntry(SymbolRef.getSymbolTableName(),
821 CSectionRef.Address + SymbolOffset, SectionIndex,
822 // In the old version of the 32-bit XCOFF interpretation,
823 // symbols may require bit 10 (0x0020) to be set if the
824 // symbol is a function, otherwise the bit should be 0.
825 is64Bit() ? SymbolRef.getVisibilityType()
826 : SymbolRef.getVisibilityType() | 0x0020,
827 SymbolRef.getStorageClass(),
828 (is64Bit() && ExceptionSection.isDebugEnabled) ? 3 : 2);
829 if (is64Bit() && ExceptionSection.isDebugEnabled) {
830 // On 64 bit with debugging enabled, we have a csect, exception, and
831 // function auxilliary entries, so we must increment symbol index by 4.
832 writeSymbolAuxExceptionEntry(
833 ExceptionSection.FileOffsetToData +
834 getExceptionOffset(Entry->second.FunctionSymbol),
835 Entry->second.FunctionSize,
836 SymbolIndexMap[Entry->second.FunctionSymbol] + 4);
837 }
838 // For exception section entries, csect and function auxilliary entries
839 // must exist. On 64-bit there is also an exception auxilliary entry.
840 writeSymbolAuxFunctionEntry(
841 ExceptionSection.FileOffsetToData +
842 getExceptionOffset(Entry->second.FunctionSymbol),
843 Entry->second.FunctionSize, 0,
844 (is64Bit() && ExceptionSection.isDebugEnabled)
845 ? SymbolIndexMap[Entry->second.FunctionSymbol] + 4
846 : SymbolIndexMap[Entry->second.FunctionSymbol] + 3);
847 } else {
848 writeSymbolEntry(SymbolRef.getSymbolTableName(),
849 CSectionRef.Address + SymbolOffset, SectionIndex,
850 SymbolRef.getVisibilityType(),
851 SymbolRef.getStorageClass());
852 }
853 writeSymbolAuxCsectEntry(CSectionRef.SymbolTableIndex, XCOFF::XTY_LD,
854 CSectionRef.MCSec->getMappingClass());
855 }
856
writeSymbolEntryForDwarfSection(const XCOFFSection & DwarfSectionRef,int16_t SectionIndex)857 void XCOFFObjectWriter::writeSymbolEntryForDwarfSection(
858 const XCOFFSection &DwarfSectionRef, int16_t SectionIndex) {
859 assert(DwarfSectionRef.MCSec->isDwarfSect() && "Not a DWARF section!");
860
861 writeSymbolEntry(DwarfSectionRef.getSymbolTableName(), /*Value=*/0,
862 SectionIndex, /*SymbolType=*/0, XCOFF::C_DWARF);
863
864 writeSymbolAuxDwarfEntry(DwarfSectionRef.Size);
865 }
866
writeSymbolEntryForControlSection(const XCOFFSection & CSectionRef,int16_t SectionIndex,XCOFF::StorageClass StorageClass)867 void XCOFFObjectWriter::writeSymbolEntryForControlSection(
868 const XCOFFSection &CSectionRef, int16_t SectionIndex,
869 XCOFF::StorageClass StorageClass) {
870 writeSymbolEntry(CSectionRef.getSymbolTableName(), CSectionRef.Address,
871 SectionIndex, CSectionRef.getVisibilityType(), StorageClass);
872
873 writeSymbolAuxCsectEntry(CSectionRef.Size, getEncodedType(CSectionRef.MCSec),
874 CSectionRef.MCSec->getMappingClass());
875 }
876
writeSymbolAuxFunctionEntry(uint32_t EntryOffset,uint32_t FunctionSize,uint64_t LineNumberPointer,uint32_t EndIndex)877 void XCOFFObjectWriter::writeSymbolAuxFunctionEntry(uint32_t EntryOffset,
878 uint32_t FunctionSize,
879 uint64_t LineNumberPointer,
880 uint32_t EndIndex) {
881 if (is64Bit())
882 writeWord(LineNumberPointer);
883 else
884 W.write<uint32_t>(EntryOffset);
885 W.write<uint32_t>(FunctionSize);
886 if (!is64Bit())
887 writeWord(LineNumberPointer);
888 W.write<uint32_t>(EndIndex);
889 if (is64Bit()) {
890 W.OS.write_zeros(1);
891 W.write<uint8_t>(XCOFF::AUX_FCN);
892 } else {
893 W.OS.write_zeros(2);
894 }
895 }
896
writeSymbolAuxExceptionEntry(uint64_t EntryOffset,uint32_t FunctionSize,uint32_t EndIndex)897 void XCOFFObjectWriter::writeSymbolAuxExceptionEntry(uint64_t EntryOffset,
898 uint32_t FunctionSize,
899 uint32_t EndIndex) {
900 assert(is64Bit() && "Exception auxilliary entries are 64-bit only.");
901 W.write<uint64_t>(EntryOffset);
902 W.write<uint32_t>(FunctionSize);
903 W.write<uint32_t>(EndIndex);
904 W.OS.write_zeros(1); // Pad (unused)
905 W.write<uint8_t>(XCOFF::AUX_EXCEPT);
906 }
907
writeFileHeader()908 void XCOFFObjectWriter::writeFileHeader() {
909 W.write<uint16_t>(is64Bit() ? XCOFF::XCOFF64 : XCOFF::XCOFF32);
910 W.write<uint16_t>(SectionCount);
911 W.write<int32_t>(0); // TimeStamp
912 writeWord(SymbolTableOffset);
913 if (is64Bit()) {
914 W.write<uint16_t>(auxiliaryHeaderSize());
915 W.write<uint16_t>(0); // Flags
916 W.write<int32_t>(SymbolTableEntryCount);
917 } else {
918 W.write<int32_t>(SymbolTableEntryCount);
919 W.write<uint16_t>(auxiliaryHeaderSize());
920 W.write<uint16_t>(0); // Flags
921 }
922 }
923
writeAuxFileHeader()924 void XCOFFObjectWriter::writeAuxFileHeader() {
925 if (!auxiliaryHeaderSize())
926 return;
927 W.write<uint16_t>(0); // Magic
928 W.write<uint16_t>(
929 XCOFF::NEW_XCOFF_INTERPRET); // Version. The new interpretation of the
930 // n_type field in the symbol table entry is
931 // used in XCOFF32.
932 W.write<uint32_t>(Sections[0]->Size); // TextSize
933 W.write<uint32_t>(Sections[1]->Size); // InitDataSize
934 W.write<uint32_t>(Sections[2]->Size); // BssDataSize
935 W.write<uint32_t>(0); // EntryPointAddr
936 W.write<uint32_t>(Sections[0]->Address); // TextStartAddr
937 W.write<uint32_t>(Sections[1]->Address); // DataStartAddr
938 }
939
writeSectionHeader(const SectionEntry * Sec)940 void XCOFFObjectWriter::writeSectionHeader(const SectionEntry *Sec) {
941 bool IsDwarf = (Sec->Flags & XCOFF::STYP_DWARF) != 0;
942 bool IsOvrflo = (Sec->Flags & XCOFF::STYP_OVRFLO) != 0;
943 // Nothing to write for this Section.
944 if (Sec->Index == SectionEntry::UninitializedIndex)
945 return;
946
947 // Write Name.
948 ArrayRef<char> NameRef(Sec->Name, XCOFF::NameSize);
949 W.write(NameRef);
950
951 // Write the Physical Address and Virtual Address.
952 // We use 0 for DWARF sections' Physical and Virtual Addresses.
953 writeWord(IsDwarf ? 0 : Sec->Address);
954 // Since line number is not supported, we set it to 0 for overflow sections.
955 writeWord((IsDwarf || IsOvrflo) ? 0 : Sec->Address);
956
957 writeWord(Sec->Size);
958 writeWord(Sec->FileOffsetToData);
959 writeWord(Sec->FileOffsetToRelocations);
960 writeWord(0); // FileOffsetToLineNumberInfo. Not supported yet.
961
962 if (is64Bit()) {
963 W.write<uint32_t>(Sec->RelocationCount);
964 W.write<uint32_t>(0); // NumberOfLineNumbers. Not supported yet.
965 W.write<int32_t>(Sec->Flags);
966 W.OS.write_zeros(4);
967 } else {
968 // For the overflow section header, s_nreloc provides a reference to the
969 // primary section header and s_nlnno must have the same value.
970 // For common section headers, if either of s_nreloc or s_nlnno are set to
971 // 65535, the other one must also be set to 65535.
972 W.write<uint16_t>(Sec->RelocationCount);
973 W.write<uint16_t>((IsOvrflo || Sec->RelocationCount == XCOFF::RelocOverflow)
974 ? Sec->RelocationCount
975 : 0); // NumberOfLineNumbers. Not supported yet.
976 W.write<int32_t>(Sec->Flags);
977 }
978 }
979
writeSectionHeaderTable()980 void XCOFFObjectWriter::writeSectionHeaderTable() {
981 for (const auto *CsectSec : Sections)
982 writeSectionHeader(CsectSec);
983 for (const auto &DwarfSec : DwarfSections)
984 writeSectionHeader(&DwarfSec);
985 for (const auto &OverflowSec : OverflowSections)
986 writeSectionHeader(&OverflowSec);
987 if (hasExceptionSection())
988 writeSectionHeader(&ExceptionSection);
989 }
990
writeRelocation(XCOFFRelocation Reloc,const XCOFFSection & Section)991 void XCOFFObjectWriter::writeRelocation(XCOFFRelocation Reloc,
992 const XCOFFSection &Section) {
993 if (Section.MCSec->isCsect())
994 writeWord(Section.Address + Reloc.FixupOffsetInCsect);
995 else {
996 // DWARF sections' address is set to 0.
997 assert(Section.MCSec->isDwarfSect() && "unsupport section type!");
998 writeWord(Reloc.FixupOffsetInCsect);
999 }
1000 W.write<uint32_t>(Reloc.SymbolTableIndex);
1001 W.write<uint8_t>(Reloc.SignAndSize);
1002 W.write<uint8_t>(Reloc.Type);
1003 }
1004
writeRelocations()1005 void XCOFFObjectWriter::writeRelocations() {
1006 for (const auto *Section : Sections) {
1007 if (Section->Index == SectionEntry::UninitializedIndex)
1008 // Nothing to write for this Section.
1009 continue;
1010
1011 for (const auto *Group : Section->Groups) {
1012 if (Group->empty())
1013 continue;
1014
1015 for (const auto &Csect : *Group) {
1016 for (const auto Reloc : Csect.Relocations)
1017 writeRelocation(Reloc, Csect);
1018 }
1019 }
1020 }
1021
1022 for (const auto &DwarfSection : DwarfSections)
1023 for (const auto &Reloc : DwarfSection.DwarfSect->Relocations)
1024 writeRelocation(Reloc, *DwarfSection.DwarfSect);
1025 }
1026
writeSymbolTable(const MCAsmLayout & Layout)1027 void XCOFFObjectWriter::writeSymbolTable(const MCAsmLayout &Layout) {
1028 // Write C_FILE symbols.
1029 // The n_name of a C_FILE symbol is the source file's name when no auxiliary
1030 // entries are present.
1031 for (const std::pair<std::string, size_t> &F : FileNames) {
1032 writeSymbolEntry(F.first, /*Value=*/0, XCOFF::ReservedSectionNum::N_DEBUG,
1033 /*SymbolType=*/0, XCOFF::C_FILE,
1034 /*NumberOfAuxEntries=*/0);
1035 }
1036
1037 for (const auto &Csect : UndefinedCsects) {
1038 writeSymbolEntryForControlSection(Csect, XCOFF::ReservedSectionNum::N_UNDEF,
1039 Csect.MCSec->getStorageClass());
1040 }
1041
1042 for (const auto *Section : Sections) {
1043 if (Section->Index == SectionEntry::UninitializedIndex)
1044 // Nothing to write for this Section.
1045 continue;
1046
1047 for (const auto *Group : Section->Groups) {
1048 if (Group->empty())
1049 continue;
1050
1051 const int16_t SectionIndex = Section->Index;
1052 for (const auto &Csect : *Group) {
1053 // Write out the control section first and then each symbol in it.
1054 writeSymbolEntryForControlSection(Csect, SectionIndex,
1055 Csect.MCSec->getStorageClass());
1056
1057 for (const auto &Sym : Csect.Syms)
1058 writeSymbolEntryForCsectMemberLabel(
1059 Sym, Csect, SectionIndex, Layout.getSymbolOffset(*(Sym.MCSym)));
1060 }
1061 }
1062 }
1063
1064 for (const auto &DwarfSection : DwarfSections)
1065 writeSymbolEntryForDwarfSection(*DwarfSection.DwarfSect,
1066 DwarfSection.Index);
1067 }
1068
finalizeRelocationInfo(SectionEntry * Sec,uint64_t RelCount)1069 void XCOFFObjectWriter::finalizeRelocationInfo(SectionEntry *Sec,
1070 uint64_t RelCount) {
1071 // Handles relocation field overflows in an XCOFF32 file. An XCOFF64 file
1072 // may not contain an overflow section header.
1073 if (!is64Bit() && (RelCount >= static_cast<uint32_t>(XCOFF::RelocOverflow))) {
1074 // Generate an overflow section header.
1075 SectionEntry SecEntry(".ovrflo", XCOFF::STYP_OVRFLO);
1076
1077 // This field specifies the file section number of the section header that
1078 // overflowed.
1079 SecEntry.RelocationCount = Sec->Index;
1080
1081 // This field specifies the number of relocation entries actually
1082 // required.
1083 SecEntry.Address = RelCount;
1084 SecEntry.Index = ++SectionCount;
1085 OverflowSections.push_back(std::move(SecEntry));
1086
1087 // The field in the primary section header is always 65535
1088 // (XCOFF::RelocOverflow).
1089 Sec->RelocationCount = XCOFF::RelocOverflow;
1090 } else {
1091 Sec->RelocationCount = RelCount;
1092 }
1093 }
1094
calcOffsetToRelocations(SectionEntry * Sec,uint64_t & RawPointer)1095 void XCOFFObjectWriter::calcOffsetToRelocations(SectionEntry *Sec,
1096 uint64_t &RawPointer) {
1097 if (!Sec->RelocationCount)
1098 return;
1099
1100 Sec->FileOffsetToRelocations = RawPointer;
1101 uint64_t RelocationSizeInSec = 0;
1102 if (!is64Bit() &&
1103 Sec->RelocationCount == static_cast<uint32_t>(XCOFF::RelocOverflow)) {
1104 // Find its corresponding overflow section.
1105 for (auto &OverflowSec : OverflowSections) {
1106 if (OverflowSec.RelocationCount == static_cast<uint32_t>(Sec->Index)) {
1107 RelocationSizeInSec =
1108 OverflowSec.Address * XCOFF::RelocationSerializationSize32;
1109
1110 // This field must have the same values as in the corresponding
1111 // primary section header.
1112 OverflowSec.FileOffsetToRelocations = Sec->FileOffsetToRelocations;
1113 }
1114 }
1115 assert(RelocationSizeInSec && "Overflow section header doesn't exist.");
1116 } else {
1117 RelocationSizeInSec = Sec->RelocationCount *
1118 (is64Bit() ? XCOFF::RelocationSerializationSize64
1119 : XCOFF::RelocationSerializationSize32);
1120 }
1121
1122 RawPointer += RelocationSizeInSec;
1123 if (RawPointer > MaxRawDataSize)
1124 report_fatal_error("Relocation data overflowed this object file.");
1125 }
1126
finalizeSectionInfo()1127 void XCOFFObjectWriter::finalizeSectionInfo() {
1128 for (auto *Section : Sections) {
1129 if (Section->Index == SectionEntry::UninitializedIndex)
1130 // Nothing to record for this Section.
1131 continue;
1132
1133 uint64_t RelCount = 0;
1134 for (const auto *Group : Section->Groups) {
1135 if (Group->empty())
1136 continue;
1137
1138 for (auto &Csect : *Group)
1139 RelCount += Csect.Relocations.size();
1140 }
1141 finalizeRelocationInfo(Section, RelCount);
1142 }
1143
1144 for (auto &DwarfSection : DwarfSections)
1145 finalizeRelocationInfo(&DwarfSection,
1146 DwarfSection.DwarfSect->Relocations.size());
1147
1148 // Calculate the RawPointer value for all headers.
1149 uint64_t RawPointer =
1150 (is64Bit() ? (XCOFF::FileHeaderSize64 +
1151 SectionCount * XCOFF::SectionHeaderSize64)
1152 : (XCOFF::FileHeaderSize32 +
1153 SectionCount * XCOFF::SectionHeaderSize32)) +
1154 auxiliaryHeaderSize();
1155
1156 // Calculate the file offset to the section data.
1157 for (auto *Sec : Sections) {
1158 if (Sec->Index == SectionEntry::UninitializedIndex || Sec->IsVirtual)
1159 continue;
1160
1161 Sec->FileOffsetToData = RawPointer;
1162 RawPointer += Sec->Size;
1163 if (RawPointer > MaxRawDataSize)
1164 report_fatal_error("Section raw data overflowed this object file.");
1165 }
1166
1167 if (!DwarfSections.empty()) {
1168 RawPointer += PaddingsBeforeDwarf;
1169 for (auto &DwarfSection : DwarfSections) {
1170 DwarfSection.FileOffsetToData = RawPointer;
1171 RawPointer += DwarfSection.MemorySize;
1172 if (RawPointer > MaxRawDataSize)
1173 report_fatal_error("Section raw data overflowed this object file.");
1174 }
1175 }
1176
1177 if (hasExceptionSection()) {
1178 ExceptionSection.FileOffsetToData = RawPointer;
1179 RawPointer += ExceptionSection.Size;
1180
1181 assert(RawPointer <= MaxRawDataSize &&
1182 "Section raw data overflowed this object file.");
1183 }
1184
1185 for (auto *Sec : Sections) {
1186 if (Sec->Index != SectionEntry::UninitializedIndex)
1187 calcOffsetToRelocations(Sec, RawPointer);
1188 }
1189
1190 for (auto &DwarfSec : DwarfSections)
1191 calcOffsetToRelocations(&DwarfSec, RawPointer);
1192
1193 // TODO Error check that the number of symbol table entries fits in 32-bits
1194 // signed ...
1195 if (SymbolTableEntryCount)
1196 SymbolTableOffset = RawPointer;
1197 }
1198
addExceptionEntry(const MCSymbol * Symbol,const MCSymbol * Trap,unsigned LanguageCode,unsigned ReasonCode,unsigned FunctionSize,bool hasDebug)1199 void XCOFFObjectWriter::addExceptionEntry(
1200 const MCSymbol *Symbol, const MCSymbol *Trap, unsigned LanguageCode,
1201 unsigned ReasonCode, unsigned FunctionSize, bool hasDebug) {
1202 // If a module had debug info, debugging is enabled and XCOFF emits the
1203 // exception auxilliary entry.
1204 if (hasDebug)
1205 ExceptionSection.isDebugEnabled = true;
1206 auto Entry = ExceptionSection.ExceptionTable.find(Symbol->getName());
1207 if (Entry != ExceptionSection.ExceptionTable.end()) {
1208 Entry->second.Entries.push_back(
1209 ExceptionTableEntry(Trap, LanguageCode, ReasonCode));
1210 return;
1211 }
1212 ExceptionInfo NewEntry;
1213 NewEntry.FunctionSymbol = Symbol;
1214 NewEntry.FunctionSize = FunctionSize;
1215 NewEntry.Entries.push_back(
1216 ExceptionTableEntry(Trap, LanguageCode, ReasonCode));
1217 ExceptionSection.ExceptionTable.insert(
1218 std::pair<const StringRef, ExceptionInfo>(Symbol->getName(), NewEntry));
1219 }
1220
getExceptionSectionSize()1221 unsigned XCOFFObjectWriter::getExceptionSectionSize() {
1222 unsigned EntryNum = 0;
1223
1224 for (auto it = ExceptionSection.ExceptionTable.begin();
1225 it != ExceptionSection.ExceptionTable.end(); ++it)
1226 // The size() gets +1 to account for the initial entry containing the
1227 // symbol table index.
1228 EntryNum += it->second.Entries.size() + 1;
1229
1230 return EntryNum * (is64Bit() ? XCOFF::ExceptionSectionEntrySize64
1231 : XCOFF::ExceptionSectionEntrySize32);
1232 }
1233
getExceptionOffset(const MCSymbol * Symbol)1234 unsigned XCOFFObjectWriter::getExceptionOffset(const MCSymbol *Symbol) {
1235 unsigned EntryNum = 0;
1236 for (auto it = ExceptionSection.ExceptionTable.begin();
1237 it != ExceptionSection.ExceptionTable.end(); ++it) {
1238 if (Symbol == it->second.FunctionSymbol)
1239 break;
1240 EntryNum += it->second.Entries.size() + 1;
1241 }
1242 return EntryNum * (is64Bit() ? XCOFF::ExceptionSectionEntrySize64
1243 : XCOFF::ExceptionSectionEntrySize32);
1244 }
1245
assignAddressesAndIndices(const MCAsmLayout & Layout)1246 void XCOFFObjectWriter::assignAddressesAndIndices(const MCAsmLayout &Layout) {
1247 // The symbol table starts with all the C_FILE symbols.
1248 uint32_t SymbolTableIndex = FileNames.size();
1249
1250 // Calculate indices for undefined symbols.
1251 for (auto &Csect : UndefinedCsects) {
1252 Csect.Size = 0;
1253 Csect.Address = 0;
1254 Csect.SymbolTableIndex = SymbolTableIndex;
1255 SymbolIndexMap[Csect.MCSec->getQualNameSymbol()] = Csect.SymbolTableIndex;
1256 // 1 main and 1 auxiliary symbol table entry for each contained symbol.
1257 SymbolTableIndex += 2;
1258 }
1259
1260 // The address corrresponds to the address of sections and symbols in the
1261 // object file. We place the shared address 0 immediately after the
1262 // section header table.
1263 uint64_t Address = 0;
1264 // Section indices are 1-based in XCOFF.
1265 int32_t SectionIndex = 1;
1266 bool HasTDataSection = false;
1267
1268 for (auto *Section : Sections) {
1269 const bool IsEmpty =
1270 llvm::all_of(Section->Groups,
1271 [](const CsectGroup *Group) { return Group->empty(); });
1272 if (IsEmpty)
1273 continue;
1274
1275 if (SectionIndex > MaxSectionIndex)
1276 report_fatal_error("Section index overflow!");
1277 Section->Index = SectionIndex++;
1278 SectionCount++;
1279
1280 bool SectionAddressSet = false;
1281 // Reset the starting address to 0 for TData section.
1282 if (Section->Flags == XCOFF::STYP_TDATA) {
1283 Address = 0;
1284 HasTDataSection = true;
1285 }
1286 // Reset the starting address to 0 for TBSS section if the object file does
1287 // not contain TData Section.
1288 if ((Section->Flags == XCOFF::STYP_TBSS) && !HasTDataSection)
1289 Address = 0;
1290
1291 for (auto *Group : Section->Groups) {
1292 if (Group->empty())
1293 continue;
1294
1295 for (auto &Csect : *Group) {
1296 const MCSectionXCOFF *MCSec = Csect.MCSec;
1297 Csect.Address = alignTo(Address, MCSec->getAlign());
1298 Csect.Size = Layout.getSectionAddressSize(MCSec);
1299 Address = Csect.Address + Csect.Size;
1300 Csect.SymbolTableIndex = SymbolTableIndex;
1301 SymbolIndexMap[MCSec->getQualNameSymbol()] = Csect.SymbolTableIndex;
1302 // 1 main and 1 auxiliary symbol table entry for the csect.
1303 SymbolTableIndex += 2;
1304
1305 for (auto &Sym : Csect.Syms) {
1306 bool hasExceptEntry = false;
1307 auto Entry =
1308 ExceptionSection.ExceptionTable.find(Sym.MCSym->getName());
1309 if (Entry != ExceptionSection.ExceptionTable.end()) {
1310 hasExceptEntry = true;
1311 for (auto &TrapEntry : Entry->second.Entries) {
1312 TrapEntry.TrapAddress = Layout.getSymbolOffset(*(Sym.MCSym)) +
1313 TrapEntry.Trap->getOffset();
1314 }
1315 }
1316 Sym.SymbolTableIndex = SymbolTableIndex;
1317 SymbolIndexMap[Sym.MCSym] = Sym.SymbolTableIndex;
1318 // 1 main and 1 auxiliary symbol table entry for each contained
1319 // symbol. For symbols with exception section entries, a function
1320 // auxilliary entry is needed, and on 64-bit XCOFF with debugging
1321 // enabled, an additional exception auxilliary entry is needed.
1322 SymbolTableIndex += 2;
1323 if (hasExceptionSection() && hasExceptEntry) {
1324 if (is64Bit() && ExceptionSection.isDebugEnabled)
1325 SymbolTableIndex += 2;
1326 else
1327 SymbolTableIndex += 1;
1328 }
1329 }
1330 }
1331
1332 if (!SectionAddressSet) {
1333 Section->Address = Group->front().Address;
1334 SectionAddressSet = true;
1335 }
1336 }
1337
1338 // Make sure the address of the next section aligned to
1339 // DefaultSectionAlign.
1340 Address = alignTo(Address, DefaultSectionAlign);
1341 Section->Size = Address - Section->Address;
1342 }
1343
1344 // Start to generate DWARF sections. Sections other than DWARF section use
1345 // DefaultSectionAlign as the default alignment, while DWARF sections have
1346 // their own alignments. If these two alignments are not the same, we need
1347 // some paddings here and record the paddings bytes for FileOffsetToData
1348 // calculation.
1349 if (!DwarfSections.empty())
1350 PaddingsBeforeDwarf =
1351 alignTo(Address,
1352 (*DwarfSections.begin()).DwarfSect->MCSec->getAlign()) -
1353 Address;
1354
1355 DwarfSectionEntry *LastDwarfSection = nullptr;
1356 for (auto &DwarfSection : DwarfSections) {
1357 assert((SectionIndex <= MaxSectionIndex) && "Section index overflow!");
1358
1359 XCOFFSection &DwarfSect = *DwarfSection.DwarfSect;
1360 const MCSectionXCOFF *MCSec = DwarfSect.MCSec;
1361
1362 // Section index.
1363 DwarfSection.Index = SectionIndex++;
1364 SectionCount++;
1365
1366 // Symbol index.
1367 DwarfSect.SymbolTableIndex = SymbolTableIndex;
1368 SymbolIndexMap[MCSec->getQualNameSymbol()] = DwarfSect.SymbolTableIndex;
1369 // 1 main and 1 auxiliary symbol table entry for the csect.
1370 SymbolTableIndex += 2;
1371
1372 // Section address. Make it align to section alignment.
1373 // We use address 0 for DWARF sections' Physical and Virtual Addresses.
1374 // This address is used to tell where is the section in the final object.
1375 // See writeSectionForDwarfSectionEntry().
1376 DwarfSection.Address = DwarfSect.Address =
1377 alignTo(Address, MCSec->getAlign());
1378
1379 // Section size.
1380 // For DWARF section, we must use the real size which may be not aligned.
1381 DwarfSection.Size = DwarfSect.Size = Layout.getSectionAddressSize(MCSec);
1382
1383 Address = DwarfSection.Address + DwarfSection.Size;
1384
1385 if (LastDwarfSection)
1386 LastDwarfSection->MemorySize =
1387 DwarfSection.Address - LastDwarfSection->Address;
1388 LastDwarfSection = &DwarfSection;
1389 }
1390 if (LastDwarfSection) {
1391 // Make the final DWARF section address align to the default section
1392 // alignment for follow contents.
1393 Address = alignTo(LastDwarfSection->Address + LastDwarfSection->Size,
1394 DefaultSectionAlign);
1395 LastDwarfSection->MemorySize = Address - LastDwarfSection->Address;
1396 }
1397 if (hasExceptionSection()) {
1398 ExceptionSection.Index = SectionIndex++;
1399 SectionCount++;
1400 ExceptionSection.Address = 0;
1401 ExceptionSection.Size = getExceptionSectionSize();
1402 Address += ExceptionSection.Size;
1403 Address = alignTo(Address, DefaultSectionAlign);
1404 }
1405
1406 SymbolTableEntryCount = SymbolTableIndex;
1407 }
1408
writeSectionForControlSectionEntry(const MCAssembler & Asm,const MCAsmLayout & Layout,const CsectSectionEntry & CsectEntry,uint64_t & CurrentAddressLocation)1409 void XCOFFObjectWriter::writeSectionForControlSectionEntry(
1410 const MCAssembler &Asm, const MCAsmLayout &Layout,
1411 const CsectSectionEntry &CsectEntry, uint64_t &CurrentAddressLocation) {
1412 // Nothing to write for this Section.
1413 if (CsectEntry.Index == SectionEntry::UninitializedIndex)
1414 return;
1415
1416 // There could be a gap (without corresponding zero padding) between
1417 // sections.
1418 // There could be a gap (without corresponding zero padding) between
1419 // sections.
1420 assert(((CurrentAddressLocation <= CsectEntry.Address) ||
1421 (CsectEntry.Flags == XCOFF::STYP_TDATA) ||
1422 (CsectEntry.Flags == XCOFF::STYP_TBSS)) &&
1423 "CurrentAddressLocation should be less than or equal to section "
1424 "address if the section is not TData or TBSS.");
1425
1426 CurrentAddressLocation = CsectEntry.Address;
1427
1428 // For virtual sections, nothing to write. But need to increase
1429 // CurrentAddressLocation for later sections like DWARF section has a correct
1430 // writing location.
1431 if (CsectEntry.IsVirtual) {
1432 CurrentAddressLocation += CsectEntry.Size;
1433 return;
1434 }
1435
1436 for (const auto &Group : CsectEntry.Groups) {
1437 for (const auto &Csect : *Group) {
1438 if (uint32_t PaddingSize = Csect.Address - CurrentAddressLocation)
1439 W.OS.write_zeros(PaddingSize);
1440 if (Csect.Size)
1441 Asm.writeSectionData(W.OS, Csect.MCSec, Layout);
1442 CurrentAddressLocation = Csect.Address + Csect.Size;
1443 }
1444 }
1445
1446 // The size of the tail padding in a section is the end virtual address of
1447 // the current section minus the the end virtual address of the last csect
1448 // in that section.
1449 if (uint64_t PaddingSize =
1450 CsectEntry.Address + CsectEntry.Size - CurrentAddressLocation) {
1451 W.OS.write_zeros(PaddingSize);
1452 CurrentAddressLocation += PaddingSize;
1453 }
1454 }
1455
writeSectionForDwarfSectionEntry(const MCAssembler & Asm,const MCAsmLayout & Layout,const DwarfSectionEntry & DwarfEntry,uint64_t & CurrentAddressLocation)1456 void XCOFFObjectWriter::writeSectionForDwarfSectionEntry(
1457 const MCAssembler &Asm, const MCAsmLayout &Layout,
1458 const DwarfSectionEntry &DwarfEntry, uint64_t &CurrentAddressLocation) {
1459 // There could be a gap (without corresponding zero padding) between
1460 // sections. For example DWARF section alignment is bigger than
1461 // DefaultSectionAlign.
1462 assert(CurrentAddressLocation <= DwarfEntry.Address &&
1463 "CurrentAddressLocation should be less than or equal to section "
1464 "address.");
1465
1466 if (uint64_t PaddingSize = DwarfEntry.Address - CurrentAddressLocation)
1467 W.OS.write_zeros(PaddingSize);
1468
1469 if (DwarfEntry.Size)
1470 Asm.writeSectionData(W.OS, DwarfEntry.DwarfSect->MCSec, Layout);
1471
1472 CurrentAddressLocation = DwarfEntry.Address + DwarfEntry.Size;
1473
1474 // DWARF section size is not aligned to DefaultSectionAlign.
1475 // Make sure CurrentAddressLocation is aligned to DefaultSectionAlign.
1476 uint32_t Mod = CurrentAddressLocation % DefaultSectionAlign;
1477 uint32_t TailPaddingSize = Mod ? DefaultSectionAlign - Mod : 0;
1478 if (TailPaddingSize)
1479 W.OS.write_zeros(TailPaddingSize);
1480
1481 CurrentAddressLocation += TailPaddingSize;
1482 }
1483
writeSectionForExceptionSectionEntry(const MCAssembler & Asm,const MCAsmLayout & Layout,ExceptionSectionEntry & ExceptionEntry,uint64_t & CurrentAddressLocation)1484 void XCOFFObjectWriter::writeSectionForExceptionSectionEntry(
1485 const MCAssembler &Asm, const MCAsmLayout &Layout,
1486 ExceptionSectionEntry &ExceptionEntry, uint64_t &CurrentAddressLocation) {
1487 for (auto it = ExceptionEntry.ExceptionTable.begin();
1488 it != ExceptionEntry.ExceptionTable.end(); it++) {
1489 // For every symbol that has exception entries, you must start the entries
1490 // with an initial symbol table index entry
1491 W.write<uint32_t>(SymbolIndexMap[it->second.FunctionSymbol]);
1492 if (is64Bit()) {
1493 // 4-byte padding on 64-bit.
1494 W.OS.write_zeros(4);
1495 }
1496 W.OS.write_zeros(2);
1497 for (auto &TrapEntry : it->second.Entries) {
1498 writeWord(TrapEntry.TrapAddress);
1499 W.write<uint8_t>(TrapEntry.Lang);
1500 W.write<uint8_t>(TrapEntry.Reason);
1501 }
1502 }
1503
1504 CurrentAddressLocation += getExceptionSectionSize();
1505 }
1506
1507 // Takes the log base 2 of the alignment and shifts the result into the 5 most
1508 // significant bits of a byte, then or's in the csect type into the least
1509 // significant 3 bits.
getEncodedType(const MCSectionXCOFF * Sec)1510 uint8_t getEncodedType(const MCSectionXCOFF *Sec) {
1511 unsigned Log2Align = Log2(Sec->getAlign());
1512 // Result is a number in the range [0, 31] which fits in the 5 least
1513 // significant bits. Shift this value into the 5 most significant bits, and
1514 // bitwise-or in the csect type.
1515 uint8_t EncodedAlign = Log2Align << 3;
1516 return EncodedAlign | Sec->getCSectType();
1517 }
1518
1519 } // end anonymous namespace
1520
1521 std::unique_ptr<MCObjectWriter>
createXCOFFObjectWriter(std::unique_ptr<MCXCOFFObjectTargetWriter> MOTW,raw_pwrite_stream & OS)1522 llvm::createXCOFFObjectWriter(std::unique_ptr<MCXCOFFObjectTargetWriter> MOTW,
1523 raw_pwrite_stream &OS) {
1524 return std::make_unique<XCOFFObjectWriter>(std::move(MOTW), OS);
1525 }
1526