1 /* deflate.c - deflate/inflate code for gzip and friends
2 *
3 * Copyright 2014 Rob Landley <[email protected]>
4 *
5 * See RFCs 1950 (zlib), 1951 (deflate), and 1952 (gzip)
6 * LSB 4.1 has gzip, gunzip, and zcat
7 *
8 * TODO: zip -d DIR -x LIST -list -quiet -no overwrite -overwrite -p to stdout
9 */
10
11 #include "toys.h"
12
13 struct deflate {
14 // Huffman codes: base offset and extra bits tables (length and distance)
15 char lenbits[29], distbits[30];
16 unsigned short lenbase[29], distbase[30];
17 void *fixdisthuff, *fixlithuff;
18
19 // CRC
20 void (*crcfunc)(struct deflate *dd, char *data, unsigned len);
21 unsigned crctable[256], crc;
22
23
24 // Tables only used for deflation
25 unsigned short *hashhead, *hashchain;
26
27 // Compressed data buffer (extra space malloced at end)
28 unsigned pos, len;
29 int infd, outfd, outbuflen;
30 char *outbuf, data[];
31 };
32
33 // little endian bit buffer
34 struct bitbuf {
35 int fd, bitpos, len, max;
36 char *buf, data[];
37 };
38
39 // malloc a struct bitbuf
bitbuf_init(int fd,int size)40 static struct bitbuf *bitbuf_init(int fd, int size)
41 {
42 struct bitbuf *bb = xzalloc(sizeof(struct bitbuf)+size);
43
44 bb->max = size;
45 bb->fd = fd;
46 bb->buf = bb->data;
47
48 return bb;
49 }
50
51 // Advance bitpos without the overhead of recording bits
52 // Loads more data when input buffer empty
53 // call with 0 to just load data, returns 0 at EOF
bitbuf_skip(struct bitbuf * bb,int bits)54 static int bitbuf_skip(struct bitbuf *bb, int bits)
55 {
56 int pos = bb->bitpos + bits + (bits<0), len;
57
58 while (pos >= (len = bb->len<<3)) {
59 pos -= len;
60 if (1 > (bb->len = read(bb->fd, bb->buf, bb->max))) {
61 if (!bits) break;
62 error_exit("inflate EOF");
63 }
64 }
65 bb->bitpos = pos;
66
67 return pos<len;
68 }
69
70 // Optimized single bit inlined version
bitbuf_bit(struct bitbuf * bb)71 static inline int bitbuf_bit(struct bitbuf *bb)
72 {
73 int bufpos = bb->bitpos>>3;
74
75 if (bufpos == bb->len) {
76 bitbuf_skip(bb, -1);
77 bufpos = 0;
78 }
79
80 return (bb->buf[bufpos]>>(bb->bitpos++&7))&1;
81 }
82
83 // Fetch the next X bits from the bitbuf, little endian
bitbuf_get(struct bitbuf * bb,int bits)84 static unsigned bitbuf_get(struct bitbuf *bb, int bits)
85 {
86 int result = 0, offset = 0;
87
88 while (bits) {
89 int click = bb->bitpos >> 3, blow, blen;
90
91 // Load more data if buffer empty
92 if (click == bb->len) {
93 bitbuf_skip(bb, -1);
94 click = 0;
95 }
96
97 // grab bits from next byte
98 blow = bb->bitpos & 7;
99 blen = 8-blow;
100 if (blen > bits) blen = bits;
101 result |= ((bb->buf[click] >> blow) & ((1<<blen)-1)) << offset;
102 offset += blen;
103 bits -= blen;
104 bb->bitpos += blen;
105 }
106
107 return result;
108 }
109
bitbuf_flush(struct bitbuf * bb)110 static void bitbuf_flush(struct bitbuf *bb)
111 {
112 if (!bb->bitpos) return;
113
114 xwrite(bb->fd, bb->buf, (bb->bitpos+7)>>3);
115 memset(bb->buf, 0, bb->max);
116 bb->bitpos = 0;
117 }
118
bitbuf_put(struct bitbuf * bb,int data,int len)119 static void bitbuf_put(struct bitbuf *bb, int data, int len)
120 {
121 while (len) {
122 int click = bb->bitpos >> 3, blow, blen;
123
124 // Flush buffer if necessary
125 if (click == bb->max) {
126 bitbuf_flush(bb);
127 click = 0;
128 }
129 blow = bb->bitpos & 7;
130 blen = 8-blow;
131 if (blen > len) blen = len;
132 bb->buf[click] |= data << blow;
133 bb->bitpos += blen;
134 data >>= blen;
135 len -= blen;
136 }
137 }
138
139 // Output inflated data
inflate_out(struct deflate * dd,int len)140 static void inflate_out(struct deflate *dd, int len)
141 {
142 if (!len) return;
143 if (dd->outfd!=-1) xwrite(dd->outfd, dd->data, len);
144 else if (len>dd->outbuflen) error_exit("inflate too big");
145 else {
146 memcpy(dd->outbuf, dd->data, len);
147 dd->outbuf += len;
148 dd->outbuflen -= len;
149 }
150 if (dd->crcfunc) dd->crcfunc(dd, dd->data, len);
151 }
152
output_byte(struct deflate * dd,char sym)153 static void output_byte(struct deflate *dd, char sym)
154 {
155 int pos = dd->pos++ & 32767;
156
157 dd->data[pos] = sym;
158 if (pos == 32767) inflate_out(dd, 32768);
159 }
160
161 // Huffman coding uses bits to traverse a binary tree to a leaf node,
162 // By placing frequently occurring symbols at shorter paths, frequently
163 // used symbols may be represented in fewer bits than uncommon symbols.
164 // (length[0] isn't used but code's clearer if it's there.)
165
166 struct huff {
167 unsigned short length[16]; // How many symbols have this bit length?
168 unsigned short symbol[288]; // sorted by bit length, then ascending order
169 };
170
171 // Create simple huffman tree from array of bit lengths.
172
173 // The symbols in the huffman trees are sorted (first by bit length
174 // of the code to reach them, then by symbol number). This means that given
175 // the bit length of each symbol, we can construct a unique tree.
len2huff(struct huff * huff,char bitlen[],int len)176 static void len2huff(struct huff *huff, char bitlen[], int len)
177 {
178 int offset[16];
179 int i;
180
181 // Count number of codes at each bit length
182 memset(huff, 0, sizeof(struct huff));
183 for (i = 0; i<len; i++) huff->length[bitlen[i]]++;
184
185 // Sort symbols by bit length, then symbol. Get list of starting positions
186 // for each group, then write each symbol to next position within its group.
187 *huff->length = *offset = 0;
188 for (i = 1; i<16; i++) offset[i] = offset[i-1] + huff->length[i-1];
189 for (i = 0; i<len; i++) if (bitlen[i]) huff->symbol[offset[bitlen[i]]++] = i;
190 }
191
192 // Fetch and decode next huffman coded symbol from bitbuf.
193 // This takes advantage of the sorting to navigate the tree as an array:
194 // each time we fetch a bit we have all the codes at that bit level in
195 // order with no gaps.
huff_and_puff(struct bitbuf * bb,struct huff * huff)196 static unsigned huff_and_puff(struct bitbuf *bb, struct huff *huff)
197 {
198 unsigned short *length = huff->length;
199 int start = 0, offset = 0;
200
201 // Traverse through the bit lengths until our code is in this range
202 for (;;) {
203 offset = (offset << 1) | bitbuf_bit(bb);
204 start += *++length;
205 if ((offset -= *length) < 0) break;
206 if ((length - huff->length) & 16) error_exit("bad symbol");
207 }
208
209 return huff->symbol[start + offset];
210 }
211
212 // Decompress deflated data from bitbuf to dd->outfd.
inflate(struct deflate * dd,struct bitbuf * bb)213 static void inflate(struct deflate *dd, struct bitbuf *bb)
214 {
215 dd->crc = ~0;
216
217 // repeat until spanked
218 for (;;) {
219 int final, type;
220
221 final = bitbuf_get(bb, 1);
222 type = bitbuf_get(bb, 2);
223
224 if (type == 3) error_exit("bad type");
225
226 // Uncompressed block?
227 if (!type) {
228 int len, nlen;
229
230 // Align to byte, read length
231 bitbuf_skip(bb, (8-bb->bitpos)&7);
232 len = bitbuf_get(bb, 16);
233 nlen = bitbuf_get(bb, 16);
234 if (len != (0xffff & ~nlen)) error_exit("bad len");
235
236 // Dump literal output data
237 while (len) {
238 int pos = bb->bitpos >> 3, bblen = bb->len - pos;
239 char *p = bb->buf+pos;
240
241 // dump bytes until done or end of current bitbuf contents
242 if (bblen > len) bblen = len;
243 pos = bblen;
244 while (pos--) output_byte(dd, *(p++));
245 bitbuf_skip(bb, bblen << 3);
246 len -= bblen;
247 }
248
249 // Compressed block
250 } else {
251 struct huff *disthuff, *lithuff;
252
253 // Dynamic huffman codes?
254 if (type == 2) {
255 struct huff *h2 = ((struct huff *)libbuf)+1;
256 int i, litlen, distlen, hufflen;
257 char *hufflen_order = "\x10\x11\x12\0\x08\x07\x09\x06\x0a\x05\x0b"
258 "\x04\x0c\x03\x0d\x02\x0e\x01\x0f", *bits;
259
260 // The huffman trees are stored as a series of bit lengths
261 litlen = bitbuf_get(bb, 5)+257; // max 288
262 distlen = bitbuf_get(bb, 5)+1; // max 32
263 hufflen = bitbuf_get(bb, 4)+4; // max 19
264
265 // The literal and distance codes are themselves compressed, in
266 // a complicated way: an array of bit lengths (hufflen many
267 // entries, each 3 bits) is used to fill out an array of 19 entries
268 // in a magic order, leaving the rest 0. Then make a tree out of it:
269 memset(bits = libbuf+1, 0, 19);
270 for (i=0; i<hufflen; i++) bits[hufflen_order[i]] = bitbuf_get(bb, 3);
271 len2huff(h2, bits, 19);
272
273 // Use that tree to read in the literal and distance bit lengths
274 for (i = 0; i < litlen + distlen;) {
275 int sym = huff_and_puff(bb, h2);
276
277 // 0-15 are literals, 16 = repeat previous code 3-6 times,
278 // 17 = 3-10 zeroes (3 bit), 18 = 11-138 zeroes (7 bit)
279 if (sym < 16) bits[i++] = sym;
280 else {
281 int len = sym & 2;
282
283 len = bitbuf_get(bb, sym-14+len+(len>>1)) + 3 + (len<<2);
284 memset(bits+i, bits[i-1] * !(sym&3), len);
285 i += len;
286 }
287 }
288 if (i > litlen+distlen) error_exit("bad tree");
289
290 len2huff(lithuff = h2, bits, litlen);
291 len2huff(disthuff = ((struct huff *)libbuf)+2, bits+litlen, distlen);
292
293 // Static huffman codes
294 } else {
295 lithuff = dd->fixlithuff;
296 disthuff = dd->fixdisthuff;
297 }
298
299 // Use huffman tables to decode block of compressed symbols
300 for (;;) {
301 int sym = huff_and_puff(bb, lithuff);
302
303 // Literal?
304 if (sym < 256) output_byte(dd, sym);
305
306 // Copy range?
307 else if (sym > 256) {
308 int len, dist;
309
310 sym -= 257;
311 len = dd->lenbase[sym] + bitbuf_get(bb, dd->lenbits[sym]);
312 sym = huff_and_puff(bb, disthuff);
313 dist = dd->distbase[sym] + bitbuf_get(bb, dd->distbits[sym]);
314 sym = dd->pos & 32767;
315
316 while (len--) output_byte(dd, dd->data[(dd->pos-dist) & 32767]);
317
318 // End of block
319 } else break;
320 }
321 }
322
323 // Was that the last block?
324 if (final) break;
325 }
326
327 if (dd->pos & 32767) inflate_out(dd, dd->pos&32767);
328 }
329
330 // Deflate from dd->infd to bitbuf
331 // For deflate, dd->len = input read, dd->pos = input consumed
deflate(struct deflate * dd,struct bitbuf * bb)332 static void deflate(struct deflate *dd, struct bitbuf *bb)
333 {
334 char *data = dd->data;
335 int len, final = 0;
336
337 dd->crc = ~0;
338
339 while (!final) {
340 // Read next half-window of data if we haven't hit EOF yet.
341 len = readall(dd->infd, data+(dd->len&32768), 32768);
342 if (len < 0) perror_exit("read"); // TODO: add filename
343 if (len != 32768) final++;
344 if (dd->crcfunc) dd->crcfunc(dd, data+(dd->len&32768), len);
345 // dd->len += len; crcfunc advances len TODO
346
347 // store block as literal
348 // TODO: actually compress!
349 bitbuf_put(bb, final, 1);
350 bitbuf_put(bb, 0, 1);
351
352 bitbuf_put(bb, 0, (8-bb->bitpos)&7);
353 bitbuf_put(bb, len, 16);
354 bitbuf_put(bb, 0xffff & ~len, 16);
355
356 // repeat until spanked
357 while (dd->pos != dd->len) {
358 unsigned pos = dd->pos&65535;
359
360 bitbuf_put(bb, data[pos], 8);
361
362 // need to refill buffer?
363 if (!(32767 & ++dd->pos) && !final) break;
364 }
365 }
366 bitbuf_flush(bb);
367 }
368
369 // Allocate memory for deflate/inflate.
init_deflate(int compress)370 static struct deflate *init_deflate(int compress)
371 {
372 int i, n = 1;
373 struct deflate *dd = xmalloc(sizeof(struct deflate)+32768*(compress ? 4 : 1));
374
375 memset(dd, 0, sizeof(struct deflate));
376 // decompress needs 32k history, compress adds 64k hashhead and 32k hashchain
377 if (compress) {
378 dd->hashhead = (unsigned short *)(dd->data+65536);
379 dd->hashchain = (unsigned short *)(dd->data+65536+32768);
380 }
381
382 // Calculate lenbits, lenbase, distbits, distbase
383 *dd->lenbase = 3;
384 for (i = 0; i<sizeof(dd->lenbits)-1; i++) {
385 if (i>4) {
386 if (!(i&3)) {
387 dd->lenbits[i]++;
388 n <<= 1;
389 }
390 if (i == 27) n--;
391 else dd->lenbits[i+1] = dd->lenbits[i];
392 }
393 dd->lenbase[i+1] = n + dd->lenbase[i];
394 }
395 n = 0;
396 for (i = 0; i<sizeof(dd->distbits); i++) {
397 dd->distbase[i] = 1<<n;
398 if (i) dd->distbase[i] += dd->distbase[i-1];
399 if (i>3 && !(i&1)) n++;
400 dd->distbits[i] = n;
401 }
402
403 // TODO layout and lifetime of this?
404 // Init fixed huffman tables
405 for (i=0; i<288; i++) libbuf[i] = 8 + (i>143) - ((i>255)<<1) + (i>279);
406 len2huff(dd->fixlithuff = ((struct huff *)libbuf)+3, libbuf, 288);
407 memset(libbuf, 5, 30);
408 len2huff(dd->fixdisthuff = ((struct huff *)libbuf)+4, libbuf, 30);
409
410 return dd;
411 }
412
413 // Return true/false whether we consumed a gzip header.
is_gzip(struct bitbuf * bb)414 static int is_gzip(struct bitbuf *bb)
415 {
416 int flags;
417
418 // Confirm signature
419 if (bitbuf_get(bb, 24) != 0x088b1f || (flags = bitbuf_get(bb, 8)) > 31)
420 return 0;
421 bitbuf_skip(bb, 6*8);
422
423 // Skip extra, name, comment, header CRC fields
424 if (flags & 4) bitbuf_skip(bb, bitbuf_get(bb, 16) * 8);
425 if (flags & 8) while (bitbuf_get(bb, 8));
426 if (flags & 16) while (bitbuf_get(bb, 8));
427 if (flags & 2) bitbuf_skip(bb, 16);
428
429 return 1;
430 }
431
gzip_crc(struct deflate * dd,char * data,unsigned len)432 static void gzip_crc(struct deflate *dd, char *data, unsigned len)
433 {
434 int i;
435 unsigned crc, *crc_table = dd->crctable;
436
437 crc = dd->crc;
438 for (i = 0; i<len; i++) crc = crc_table[(crc^data[i])&0xff] ^ (crc>>8);
439 dd->crc = crc;
440 dd->len += len;
441 }
442
443 /*
444 // Start with crc = 1, or pass in last crc to append more data
445 // Deferred modulus good for paged size inputs (can't overflow for ~5500 bytes)
446 unsigned adler32(char *buf, unsigned len, unsigned crc)
447 {
448 unsigned aa = crc&((1<<16)-1), bb = crc>>16;
449
450 while (len--) {
451 aa += *buf++;
452 bb += aa;
453 }
454
455 return ((bb%65521)<<16)+aa%65521;
456 }
457 */
458
gzip_fd(int infd,int outfd)459 long long gzip_fd(int infd, int outfd)
460 {
461 struct bitbuf *bb = bitbuf_init(outfd, 4096);
462 struct deflate *dd = init_deflate(1);
463 long long rc;
464
465 // Header from RFC 1952 section 2.2:
466 // 2 ID bytes (1F, 8b), gzip method byte (8=deflate), FLAG byte (none),
467 // 4 byte MTIME (zeroed), Extra Flags (2=maximum compression),
468 // Operating System (FF=unknown)
469
470 dd->infd = infd;
471 xwrite(bb->fd, "\x1f\x8b\x08\0\0\0\0\0\x02\xff", 10);
472
473 // Little endian crc table
474 crc_init(dd->crctable, 1);
475 dd->crcfunc = gzip_crc;
476
477 deflate(dd, bb);
478
479 // tail: crc32, len32
480
481 bitbuf_put(bb, 0, (8-bb->bitpos)&7);
482 bitbuf_put(bb, ~dd->crc, 32);
483 bitbuf_put(bb, dd->len, 32);
484 rc = dd->len;
485
486 bitbuf_flush(bb);
487 free(bb);
488 free(dd);
489
490 return rc;
491 }
492
gunzip_common(struct bitbuf * bb,struct deflate * dd)493 long long gunzip_common(struct bitbuf *bb, struct deflate *dd)
494 {
495 long long rc = 0;
496
497 // Little endian crc table
498 crc_init(dd->crctable, 1);
499 dd->crcfunc = gzip_crc;
500
501 do {
502 if (!is_gzip(bb)) error_exit("not gzip");
503
504 inflate(dd, bb);
505 // tail: crc32, len32
506 bitbuf_skip(bb, (8-bb->bitpos)&7);
507 if (~dd->crc != bitbuf_get(bb, 32) || dd->len != bitbuf_get(bb, 32))
508 error_exit("bad crc");
509 rc += dd->len;
510 bitbuf_skip(bb, (8-bb->bitpos)&7);
511 dd->pos = dd->len = 0;
512 } while (bitbuf_skip(bb, 0));
513 free(bb);
514 free(dd);
515
516 return rc;
517 }
518
gunzip_mem(char * inbuf,int inlen,char * outbuf,int outlen)519 long long gunzip_mem(char *inbuf, int inlen, char *outbuf, int outlen)
520 {
521 struct bitbuf *bb = bitbuf_init(-1, 0);
522 struct deflate *dd = init_deflate(0);
523
524 bb->buf = inbuf;
525 bb->max = bb->len = inlen;
526 dd->outfd = -1;
527 dd->outbuf = outbuf;
528 dd->outbuflen = outlen;
529
530 return gunzip_common(bb, dd);
531 }
532
gunzip_fd(int infd,int outfd)533 long long gunzip_fd(int infd, int outfd)
534 {
535 struct bitbuf *bb = bitbuf_init(infd, 4096);
536 struct deflate *dd = init_deflate(0);
537
538 dd->outfd = outfd;
539 return gunzip_common(bb, dd);
540 }
541