1Runtime Security Engine (RSE)
2=============================
3
4This document focuses on the relationship between the Runtime Security Engine
5(RSE) and the application processor (AP). According to the ARM reference design
6the RSE is an independent core next to the AP and the SCP on the same die. It
7provides fundamental security guarantees and runtime services for the rest of
8the system (e.g.: trusted boot, measured boot, platform attestation,
9key management, and key derivation).
10
11At power up RSE boots first from its private ROM code. It validates and loads
12its own images and the initial images of SCP and AP. When AP and SCP are
13released from reset and their initial code is loaded then they continue their
14own boot process, which is the same as on non-RSE systems. Please refer to the
15``RSE documentation`` [1]_ for more details about the RSE boot flow.
16
17The last stage of the RSE firmware is a persistent, runtime component. Much
18like AP_BL31, this is a passive entity which has no periodical task to do and
19just waits for external requests from other subsystems. RSE and other
20subsystems can communicate with each other over message exchange. RSE waits
21in idle for the incoming request, handles them, and sends a response then goes
22back to idle.
23
24RSE communication layer
25-----------------------
26
27The communication between RSE and other subsystems are primarily relying on the
28Message Handling Unit (MHU) module. The number of MHU interfaces between RSE
29and other cores is IMPDEF. Besides MHU other modules also could take part in
30the communication. RSE is capable of mapping the AP memory to its address space.
31Thereby either RSE core itself or a DMA engine if it is present, can move the
32data between memory belonging to RSE or AP. In this way, a bigger amount of data
33can be transferred in a short time.
34
35The MHU comes in pairs. There is a sender and receiver side. They are connected
36to each other. An MHU interface consists of two pairs of MHUs, one sender and
37one receiver on both sides. Bidirectional communication is possible over an
38interface. One pair provides message sending from AP to RSE and the other pair
39from RSE to AP. The sender and receiver are connected via channels. There is an
40IMPDEF number of channels (e.g: 4-16) between a sender and a receiver module.
41
42The RSE communication layer provides two ways for message exchange:
43
44- ``Embedded messaging``: The full message, including header and payload, are
45  exchanged over the MHU channels. A channel is capable of delivering a single
46  word. The sender writes the data to the channel register on its side and the
47  receiver can read the data from the channel on the other side. One dedicated
48  channel is used for signalling. It does not deliver any payload it is just
49  meant for signalling that the sender loaded the data to the channel registers
50  so the receiver can read them. The receiver uses the same channel to signal
51  that data was read. Signalling happens via IRQ. If the message is longer than
52  the data fit to the channel registers then the message is sent over in
53  multiple rounds. Both, sender and receiver allocate a local buffer for the
54  messages. Data is copied from/to these buffers to/from the channel registers.
55- ``Pointer-access messaging``: The message header and the payload are
56  separated and they are conveyed in different ways. The header is sent
57  over the channels, similar to the embedded messaging but the payload is
58  copied over by RSE core (or by DMA) between the sender and the receiver. This
59  could be useful in the case of long messages because transaction time is less
60  compared to the embedded messaging mode. Small payloads are copied by the RSE
61  core because setting up DMA would require more CPU cycles. The payload is
62  either copied into an internal buffer or directly read-written by RSE. Actual
63  behavior depends on RSE setup, whether the partition supports memory-mapped
64  ``iovec``. Therefore, the sender must handle both cases and prevent access to
65  the memory, where payload data lives, while the RSE handles the request.
66
67The RSE communication layer supports both ways of messaging in parallel. It is
68decided at runtime based on the message size which way to transfer the message.
69
70.. code-block:: bash
71
72    +----------------------------------------------+       +-------------------+
73    |                                              |       |                   |
74    |                      AP                      |       |                   |
75    |                                              |  +--->|       SRAM        |
76    +----------------------------------------------|  |    |                   |
77    |              BL1 / BL2 / BL31                |  |    |                   |
78    +----------------------------------------------+  |    +-------------------+
79             |                           ^            |        ^           ^
80             |  send                 IRQ | receive    |direct  |           |
81             V                           |            |access  |           |
82    +--------------------+    +--------------------+  |        |           |
83    |      MHU sender    |    |    MHU receiver    |  |        | Copy data |
84    +--------------------+    +--------------------+  |        |           |
85       | |           | |          | |           | |   |        |           |
86       | | channels  | |          | | channels  | |   |        |           |
87       | | e.g: 4-16 | |          | | e.g: 4-16 | |   |        V           |
88    +--------------------+    +--------------------+  |    +-------+       |
89    |     MHU receiver   |    |     MHU sender     |  | +->|  DMA  |       |
90    +--------------------+    +--------------------+  | |  +-------+       |
91             |                           ^            | |      ^           |
92        IRQ  |  receive                  | send       | |      | Copy data |
93             V                           |            | |      V           V
94    +----------------------------------------------+  | |  +-------------------+
95    |                                              |--+-+  |                   |
96    |                  RSE                         |       |      SRAM         |
97    |                                              |       |                   |
98    +----------------------------------------------+       +-------------------+
99
100.. Note::
101
102    The RSE communication layer is not prepared for concurrent execution. The
103    current use case only requires message exchange during the boot phase. In
104    the boot phase, only a single core is running and the rest of the cores are
105    in reset.
106
107Message structure
108^^^^^^^^^^^^^^^^^
109A description of the message format can be found in the ``RSE communication
110design`` [2]_ document.
111
112Source files
113^^^^^^^^^^^^
114- RSE comms:  ``drivers/arm/rse``
115- MHU driver: ``drivers/arm/mhu``
116
117
118API for communication over MHU
119^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
120The API is defined in these header files:
121
122- ``include/drivers/arm/rse_comms.h``
123- ``include/drivers/arm/mhu.h``
124
125RSE provided runtime services
126-----------------------------
127
128RSE provides the following runtime services:
129
130- ``Measured boot``: Securely store the firmware measurements which were
131  computed during the boot process and the associated metadata (image
132  description, measurement algorithm, etc.). More info on measured boot service
133  in RSE can be found in the ``measured_boot_integration_guide`` [3]_ .
134- ``Delegated attestation``: Query the platform attestation token and derive a
135  delegated attestation key. More info on the delegated attestation service
136  in RSE can be found in the ``delegated_attestation_integration_guide`` [4]_ .
137- ``OTP assets management``: Public keys used by AP during the trusted boot
138  process can be requested from RSE. Furthermore, AP can request RSE to
139  increase a non-volatile counter. Please refer to the
140  ``RSE key management`` [5]_ document for more details.
141
142Runtime service API
143^^^^^^^^^^^^^^^^^^^
144The RSE provided runtime services implement a PSA aligned API. The parameter
145encoding follows the PSA client protocol described in the
146``Firmware Framework for M`` [6]_ document in chapter 4.4. The implementation is
147restricted to the static handle use case therefore only the ``psa_call`` API is
148implemented.
149
150
151Software and API layers
152^^^^^^^^^^^^^^^^^^^^^^^
153
154.. code-block:: bash
155
156    +----------------+         +---------------------+
157    |   BL1 / BL2    |         |       BL31          |
158    +----------------+         +---------------------+
159      |                         |
160      | extend_measurement()    | get_delegated_key()
161      |                         | get_platform_token()
162      V                         V
163    +----------------+         +---------------------+
164    |  PSA protocol  |         |    PSA protocol     |
165    +----------------+         +---------------------+
166         |                               |
167         | psa_call()                    | psa_call()
168         |                               |
169         V                               V
170    +------------------------------------------------+
171    |         RSE communication protocol             |
172    +------------------------------------------------+
173         |                     ^
174         | mhu_send_data()     | mhu_receive_data()
175         |                     |
176         V                     |
177    +------------------------------------------------+
178    |                 MHU driver                     |
179    +------------------------------------------------+
180               |                      ^
181               | Register access      | IRQ
182               V                      |
183    +------------------------------------------------+
184    |             MHU HW on AP side                  |
185    +------------------------------------------------+
186                         ^
187                         | Physical wires
188                         |
189                         V
190    +------------------------------------------------+
191    |             MHU HW on RSE side                 |
192    +------------------------------------------------+
193             |                        ^
194             | IRQ                    | Register access
195             V                        |
196    +------------------------------------------------+
197    |                 MHU driver                     |
198    +------------------------------------------------+
199             |                        |
200             V                        V
201    +---------------+       +------------------------+
202    | Measured boot |       | Delegated attestation  |
203    | service       |       | service                |
204    +---------------+       +------------------------+
205
206
207RSE based Measured Boot
208-----------------------
209
210Measured Boot is the process of cryptographically measuring (computing the hash
211value of a binary) the code and critical data used at boot time. The
212measurement must be stored in a tamper-resistant way, so the security state
213of the device can be attested later to an external party. RSE provides a runtime
214service which is meant to store measurements and associated metadata alongside.
215
216Data is stored in internal SRAM which is only accessible by the secure runtime
217firmware of RSE. Data is stored in so-called measurement slots. A platform has
218IMPDEF number of measurement slots. The measurement storage follows extend
219semantics. This means that measurements are not stored directly (as it was
220taken) instead they contribute to the current value of the measurement slot.
221The extension implements this logic, where ``||`` stands for concatenation:
222
223.. code-block:: bash
224
225    new_value_of_measurement_slot = Hash(old_value_of_measurement_slot || measurement)
226
227Supported hash algorithms: sha-256, sha-512
228
229Measured Boot API
230^^^^^^^^^^^^^^^^^
231
232Defined here:
233
234- ``include/lib/psa/measured_boot.h``
235
236.. code-block:: c
237
238    psa_status_t
239    rse_measured_boot_extend_measurement(uint8_t        index,
240                                         const uint8_t *signer_id,
241                                         size_t         signer_id_size,
242                                         const uint8_t *version,
243                                         size_t         version_size,
244                                         uint32_t       measurement_algo,
245                                         const uint8_t *sw_type,
246                                         size_t         sw_type_size,
247                                         const uint8_t *measurement_value,
248                                         size_t         measurement_value_size,
249                                         bool           lock_measurement);
250
251Measured Boot Metadata
252^^^^^^^^^^^^^^^^^^^^^^
253
254The following metadata can be stored alongside the measurement:
255
256- ``Signer-id``: Mandatory. The hash of the firmware image signing public key.
257- ``Measurement algorithm``: Optional. The hash algorithm which was used to
258  compute the measurement (e.g.: sha-256, etc.).
259- ``Version info``: Optional. The firmware version info (e.g.: 2.7).
260- ``SW type``: Optional. Short text description (e.g.: BL1, BL2, BL31, etc.)
261
262.. Note::
263    Version info is not implemented in TF-A yet.
264
265
266The caller must specify in which measurement slot to extend a certain
267measurement and metadata. A measurement slot can be extended by multiple
268measurements. The default value is IMPDEF. All measurement slot is cleared at
269reset, there is no other way to clear them. In the reference implementation,
270the measurement slots are initialized to 0. At the first call to extend the
271measurement in a slot, the extend operation uses the default value of the
272measurement slot. All upcoming extend operation on the same slot contributes
273to the previous value of that measurement slot.
274
275The following rules are kept when a slot is extended multiple times:
276
277- ``Signer-id`` must be the same as the previous call(s), otherwise a
278  PSA_ERROR_NOT_PERMITTED error code is returned.
279
280- ``Measurement algorithm``: must be the same as the previous call(s),
281  otherwise, a PSA_ERROR_NOT_PERMITTED error code is returned.
282
283In case of error no further action is taken (slot is not locked). If there is
284a valid data in a sub-sequent call then measurement slot will be extended. The
285rest of the metadata is handled as follows when a measurement slot is extended
286multiple times:
287
288- ``SW type``: Cleared.
289- ``Version info``: Cleared.
290
291.. Note::
292
293    Extending multiple measurements in the same slot leads to some metadata
294    information loss. Since RSE is not constrained on special HW resources to
295    store the measurements and metadata, therefore it is worth considering to
296    store all of them one by one in distinct slots. However, they are one-by-one
297    included in the platform attestation token. So, the number of distinct
298    firmware image measurements has an impact on the size of the attestation
299    token.
300
301The allocation of the measurement slot among RSE, Root and Realm worlds is
302platform dependent. The platform must provide an allocation of the measurement
303slot at build time. An example can be found in
304``tf-a/plat/arm/board/tc/tc_bl1_measured_boot.c``
305Furthermore, the memory, which holds the metadata is also statically allocated
306in RSE memory. Some of the fields have a static value (measurement algorithm),
307and some of the values have a dynamic value (measurement value) which is updated
308by the bootloaders when the firmware image is loaded and measured. The metadata
309structure is defined in
310``include/drivers/measured_boot/rse/rse_measured_boot.h``.
311
312.. code-block:: c
313
314    struct rse_mboot_metadata {
315            unsigned int id;
316            uint8_t slot;
317            uint8_t signer_id[SIGNER_ID_MAX_SIZE];
318            size_t  signer_id_size;
319            uint8_t version[VERSION_MAX_SIZE];
320            size_t  version_size;
321            uint8_t sw_type[SW_TYPE_MAX_SIZE];
322            size_t  sw_type_size;
323            void    *pk_oid;
324            bool    lock_measurement;
325    };
326
327Signer-ID API
328^^^^^^^^^^^^^
329
330This function calculates the hash of a public key (signer-ID) using the
331``Measurement algorithm`` and stores it in the ``rse_mboot_metadata`` field
332named ``signer_id``.
333Prior to calling this function, the caller must ensure that the ``signer_id``
334field points to the zero-filled buffer.
335
336Defined here:
337
338- ``include/drivers/measured_boot/rse/rse_measured_boot.h``
339
340.. code-block:: c
341
342   int rse_mboot_set_signer_id(struct rse_mboot_metadata *metadata_ptr,
343                               const void *pk_oid,
344                               const void *pk_ptr,
345                               size_t pk_len)
346
347
348- First parameter is the pointer to the ``rse_mboot_metadata`` structure.
349- Second parameter is the pointer to the key-OID of the public key.
350- Third parameter is the pointer to the public key buffer.
351- Fourth parameter is the size of public key buffer.
352- This function returns 0 on success, a signed integer error code
353  otherwise.
354
355Build time config options
356^^^^^^^^^^^^^^^^^^^^^^^^^
357
358- ``MEASURED_BOOT``: Enable measured boot. It depends on the platform
359  implementation whether RSE or TPM (or both) backend based measured boot is
360  enabled.
361- ``MBOOT_RSE_HASH_ALG``: Determine the hash algorithm to measure the images.
362  The default value is sha-256.
363
364Measured boot flow
365^^^^^^^^^^^^^^^^^^
366
367.. figure:: ../resources/diagrams/rse_measured_boot_flow.svg
368  :align: center
369
370Sample console log
371^^^^^^^^^^^^^^^^^^
372
373.. code-block:: bash
374
375    INFO:    Measured boot extend measurement:
376    INFO:     - slot        : 6
377    INFO:     - signer_id   : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
378    INFO:                   : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
379    INFO:     - version     :
380    INFO:     - version_size: 0
381    INFO:     - sw_type     : FW_CONFIG
382    INFO:     - sw_type_size: 10
383    INFO:     - algorithm   : 2000009
384    INFO:     - measurement : aa ea d3 a7 a8 e2 ab 7d 13 a6 cb 34 99 10 b9 a1
385    INFO:                   : 1b 9f a0 52 c5 a8 b1 d7 76 f2 c1 c1 ef ca 1a df
386    INFO:     - locking     : true
387    INFO:    FCONF: Config file with image ID:31 loaded at address = 0x4001010
388    INFO:    Loading image id=24 at address 0x4001300
389    INFO:    Image id=24 loaded: 0x4001300 - 0x400153a
390    INFO:    Measured boot extend measurement:
391    INFO:     - slot        : 7
392    INFO:     - signer_id   : b0 f3 82 09 12 97 d8 3a 37 7a 72 47 1b ec 32 73
393    INFO:                   : e9 92 32 e2 49 59 f6 5e 8b 4a 4a 46 d8 22 9a da
394    INFO:     - version     :
395    INFO:     - version_size: 0
396    INFO:     - sw_type     : TB_FW_CONFIG
397    INFO:     - sw_type_size: 13
398    INFO:     - algorithm   : 2000009
399    INFO:     - measurement : 05 b9 dc 98 62 26 a7 1c 2d e5 bb af f0 90 52 28
400    INFO:                   : f2 24 15 8a 3a 56 60 95 d6 51 3a 7a 1a 50 9b b7
401    INFO:     - locking     : true
402    INFO:    FCONF: Config file with image ID:24 loaded at address = 0x4001300
403    INFO:    BL1: Loading BL2
404    INFO:    Loading image id=1 at address 0x404d000
405    INFO:    Image id=1 loaded: 0x404d000 - 0x406412a
406    INFO:    Measured boot extend measurement:
407    INFO:     - slot        : 8
408    INFO:     - signer_id   : b0 f3 82 09 12 97 d8 3a 37 7a 72 47 1b ec 32 73
409    INFO:                   : e9 92 32 e2 49 59 f6 5e 8b 4a 4a 46 d8 22 9a da
410    INFO:     - version     :
411    INFO:     - version_size: 0
412    INFO:     - sw_type     : BL_2
413    INFO:     - sw_type_size: 5
414    INFO:     - algorithm   : 2000009
415    INFO:     - measurement : 53 a1 51 75 25 90 fb a1 d9 b8 c8 34 32 3a 01 16
416    INFO:                   : c9 9e 74 91 7d 28 02 56 3f 5c 40 94 37 58 50 68
417    INFO:     - locking     : true
418
419Delegated Attestation
420---------------------
421
422Delegated Attestation Service was mainly developed to support the attestation
423flow on the ``ARM Confidential Compute Architecture`` (ARM CCA) [7]_.
424The detailed description of the delegated attestation service can be found in
425the ``Delegated Attestation Service Integration Guide`` [4]_ document.
426
427In the CCA use case, the Realm Management Monitor (RMM) relies on the delegated
428attestation service of the RSE to get a realm attestation key and the CCA
429platform token. BL31 does not use the service for its own purpose, only calls
430it on behalf of RMM. The access to MHU interface and thereby to RSE is
431restricted to BL31 only. Therefore, RMM does not have direct access, all calls
432need to go through BL31. The RMM dispatcher module of the BL31 is responsible
433for delivering the calls between the two parties.
434
435.. Note::
436     Currently the connection between the RMM dispatcher and the PSA/RSE layer
437     is not yet implemented. RMM dispatcher just returns hard coded data.
438
439Delegated Attestation API
440^^^^^^^^^^^^^^^^^^^^^^^^^
441Defined here:
442
443- ``include/lib/psa/delegated_attestation.h``
444
445.. code-block:: c
446
447    psa_status_t
448    rse_delegated_attest_get_delegated_key(uint8_t   ecc_curve,
449                                           uint32_t  key_bits,
450                                           uint8_t  *key_buf,
451                                           size_t    key_buf_size,
452                                           size_t   *key_size,
453                                           uint32_t  hash_algo);
454
455    psa_status_t
456    rse_delegated_attest_get_token(const uint8_t *dak_pub_hash,
457                                   size_t         dak_pub_hash_size,
458                                   uint8_t       *token_buf,
459                                   size_t         token_buf_size,
460                                   size_t        *token_size);
461
462Attestation flow
463^^^^^^^^^^^^^^^^
464
465.. figure:: ../resources/diagrams/rse_attestation_flow.svg
466  :align: center
467
468Sample attestation token
469^^^^^^^^^^^^^^^^^^^^^^^^
470
471Binary format:
472
473.. code-block:: bash
474
475    INFO:    DELEGATED ATTEST TEST START
476    INFO:    Get delegated attestation key start
477    INFO:    Get delegated attest key succeeds, len: 48
478    INFO:    Delegated attest key:
479    INFO:            0d 2a 66 61 d4 89 17 e1 70 c6 73 56 df f4 11 fd
480    INFO:            7d 1f 3b 8a a3 30 3d 70 4c d9 06 c3 c7 ef 29 43
481    INFO:            0f ee b5 e7 56 e0 71 74 1b c4 39 39 fd 85 f6 7b
482    INFO:    Get platform token start
483    INFO:    Get platform token succeeds, len: 1086
484    INFO:    Platform attestation token:
485    INFO:            d2 84 44 a1 01 38 22 a0 59 03 d1 a9 0a 58 20 00
486    INFO:            00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
487    INFO:            00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 19
488    INFO:            01 00 58 21 01 cb 8c 79 f7 a0 0a 6c ce 12 66 f8
489    INFO:            64 45 48 42 0e c5 10 bf 84 ee 22 18 b9 8f 11 04
490    INFO:            c7 22 31 9d fb 19 09 5c 58 20 aa aa aa aa aa aa
491    INFO:            aa aa bb bb bb bb bb bb bb bb cc cc cc cc cc cc
492    INFO:            cc cc dd dd dd dd dd dd dd dd 19 09 5b 19 30 00
493    INFO:            19 09 5f 89 a4 05 58 20 bf e6 d8 6f 88 26 f4 ff
494    INFO:            97 fb 96 c4 e6 fb c4 99 3e 46 19 fc 56 5d a2 6a
495    INFO:            df 34 c3 29 48 9a dc 38 04 67 31 2e 36 2e 30 2b
496    INFO:            30 01 64 52 54 5f 30 02 58 20 90 27 f2 46 ab 31
497    INFO:            85 36 46 c4 d7 c6 60 ed 31 0d 3c f0 14 de f0 6c
498    INFO:            24 0b de b6 7a 84 fc 3f 5b b7 a4 05 58 20 b3 60
499    INFO:            ca f5 c9 8c 6b 94 2a 48 82 fa 9d 48 23 ef b1 66
500    INFO:            a9 ef 6a 6e 4a a3 7c 19 19 ed 1f cc c0 49 04 67
501    INFO:            30 2e 30 2e 30 2b 30 01 64 52 54 5f 31 02 58 20
502    INFO:            52 13 15 d4 9d b2 cf 54 e4 99 37 44 40 68 f0 70
503    INFO:            7d 73 64 ae f7 08 14 b0 f7 82 ad c6 17 db a3 91
504    INFO:            a4 05 58 20 bf e6 d8 6f 88 26 f4 ff 97 fb 96 c4
505    INFO:            e6 fb c4 99 3e 46 19 fc 56 5d a2 6a df 34 c3 29
506    INFO:            48 9a dc 38 04 67 31 2e 35 2e 30 2b 30 01 64 52
507    INFO:            54 5f 32 02 58 20 8e 5d 64 7e 6f 6c c6 6f d4 4f
508    INFO:            54 b6 06 e5 47 9a cc 1b f3 7f ce 87 38 49 c5 92
509    INFO:            d8 2f 85 2e 85 42 a4 05 58 20 bf e6 d8 6f 88 26
510    INFO:            f4 ff 97 fb 96 c4 e6 fb c4 99 3e 46 19 fc 56 5d
511    INFO:            a2 6a df 34 c3 29 48 9a dc 38 04 67 31 2e 35 2e
512    INFO:            30 2b 30 01 60 02 58 20 b8 01 65 a7 78 8b c6 59
513    INFO:            42 8d 33 10 85 d1 49 0a dc 9e c3 ee df 85 1b d2
514    INFO:            f0 73 73 6a 0c 07 11 b8 a4 05 58 20 b0 f3 82 09
515    INFO:            12 97 d8 3a 37 7a 72 47 1b ec 32 73 e9 92 32 e2
516    INFO:            49 59 f6 5e 8b 4a 4a 46 d8 22 9a da 04 60 01 6a
517    INFO:            46 57 5f 43 4f 4e 46 49 47 00 02 58 20 21 9e a0
518    INFO:            13 82 e6 d7 97 5a 11 13 a3 5f 45 39 68 b1 d9 a3
519    INFO:            ea 6a ab 84 23 3b 8c 06 16 98 20 ba b9 a4 05 58
520    INFO:            20 b0 f3 82 09 12 97 d8 3a 37 7a 72 47 1b ec 32
521    INFO:            73 e9 92 32 e2 49 59 f6 5e 8b 4a 4a 46 d8 22 9a
522    INFO:            da 04 60 01 6d 54 42 5f 46 57 5f 43 4f 4e 46 49
523    INFO:            47 00 02 58 20 41 39 f6 c2 10 84 53 c5 17 ae 9a
524    INFO:            e5 be c1 20 7b cc 24 24 f3 9d 20 a8 fb c7 b3 10
525    INFO:            e3 ee af 1b 05 a4 05 58 20 b0 f3 82 09 12 97 d8
526    INFO:            3a 37 7a 72 47 1b ec 32 73 e9 92 32 e2 49 59 f6
527    INFO:            5e 8b 4a 4a 46 d8 22 9a da 04 60 01 65 42 4c 5f
528    INFO:            32 00 02 58 20 5c 96 20 e1 e3 3b 0f 2c eb c1 8e
529    INFO:            1a 02 a6 65 86 dd 34 97 a7 4c 98 13 bf 74 14 45
530    INFO:            2d 30 28 05 c3 a4 05 58 20 b0 f3 82 09 12 97 d8
531    INFO:            3a 37 7a 72 47 1b ec 32 73 e9 92 32 e2 49 59 f6
532    INFO:            5e 8b 4a 4a 46 d8 22 9a da 04 60 01 6e 53 45 43
533    INFO:            55 52 45 5f 52 54 5f 45 4c 33 00 02 58 20 f6 fb
534    INFO:            62 99 a5 0c df db 02 0b 72 5b 1c 0b 63 6e 94 ee
535    INFO:            66 50 56 3a 29 9c cb 38 f0 ec 59 99 d4 2e a4 05
536    INFO:            58 20 b0 f3 82 09 12 97 d8 3a 37 7a 72 47 1b ec
537    INFO:            32 73 e9 92 32 e2 49 59 f6 5e 8b 4a 4a 46 d8 22
538    INFO:            9a da 04 60 01 6a 48 57 5f 43 4f 4e 46 49 47 00
539    INFO:            02 58 20 98 5d 87 21 84 06 33 9d c3 1f 91 f5 68
540    INFO:            8d a0 5a f0 d7 7e 20 51 ce 3b f2 a5 c3 05 2e 3c
541    INFO:            8b 52 31 19 01 09 78 1c 68 74 74 70 3a 2f 2f 61
542    INFO:            72 6d 2e 63 6f 6d 2f 43 43 41 2d 53 53 44 2f 31
543    INFO:            2e 30 2e 30 19 09 62 71 6e 6f 74 2d 68 61 73 68
544    INFO:            2d 65 78 74 65 6e 64 65 64 19 09 61 44 ef be ad
545    INFO:            de 19 09 60 77 77 77 77 2e 74 72 75 73 74 65 64
546    INFO:            66 69 72 6d 77 61 72 65 2e 6f 72 67 58 60 29 4e
547    INFO:            4a d3 98 1e 3b 70 9f b6 66 ed 47 33 0e 99 f0 b1
548    INFO:            c3 f2 bc b2 1d b0 ae 90 0c c4 82 ff a2 6f ae 45
549    INFO:            f6 87 09 4a 09 21 77 ec 36 1c 53 b8 a7 9b 8e f7
550    INFO:            27 eb 7a 09 da 6f fb bf cb fd b3 e5 e9 36 91 b1
551    INFO:            92 13 c1 30 16 b4 5c 49 5e c0 c1 b9 01 5c 88 2c
552    INFO:            f8 2f 3e a4 a2 6d e4 9d 31 6a 06 f7 a7 73
553    INFO:    DELEGATED ATTEST TEST END
554
555JSON format:
556
557.. code-block:: JSON
558
559    {
560        "CCA_PLATFORM_CHALLENGE": "b'0000000000000000000000000000000000000000000000000000000000000000'",
561        "CCA_PLATFORM_INSTANCE_ID": "b'01CB8C79F7A00A6CCE1266F8644548420EC510BF84EE2218B98F1104C722319DFB'",
562        "CCA_PLATFORM_IMPLEMENTATION_ID": "b'AAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBCCCCCCCCCCCCCCCCDDDDDDDDDDDDDDDD'",
563        "CCA_PLATFORM_LIFECYCLE": "secured_3000",
564        "CCA_PLATFORM_SW_COMPONENTS": [
565            {
566                "SIGNER_ID": "b'BFE6D86F8826F4FF97FB96C4E6FBC4993E4619FC565DA26ADF34C329489ADC38'",
567                "SW_COMPONENT_VERSION": "1.6.0+0",
568                "SW_COMPONENT_TYPE": "RT_0",
569                "MEASUREMENT_VALUE": "b'9027F246AB31853646C4D7C660ED310D3CF014DEF06C240BDEB67A84FC3F5BB7'"
570            },
571            {
572                "SIGNER_ID": "b'B360CAF5C98C6B942A4882FA9D4823EFB166A9EF6A6E4AA37C1919ED1FCCC049'",
573                "SW_COMPONENT_VERSION": "0.0.0+0",
574                "SW_COMPONENT_TYPE": "RT_1",
575                "MEASUREMENT_VALUE": "b'521315D49DB2CF54E49937444068F0707D7364AEF70814B0F782ADC617DBA391'"
576            },
577            {
578                "SIGNER_ID": "b'BFE6D86F8826F4FF97FB96C4E6FBC4993E4619FC565DA26ADF34C329489ADC38'",
579                "SW_COMPONENT_VERSION": "1.5.0+0",
580                "SW_COMPONENT_TYPE": "RT_2",
581                "MEASUREMENT_VALUE": "b'8E5D647E6F6CC66FD44F54B606E5479ACC1BF37FCE873849C592D82F852E8542'"
582            },
583            {
584                "SIGNER_ID": "b'BFE6D86F8826F4FF97FB96C4E6FBC4993E4619FC565DA26ADF34C329489ADC38'",
585                "SW_COMPONENT_VERSION": "1.5.0+0",
586                "SW_COMPONENT_TYPE": "",
587                "MEASUREMENT_VALUE": "b'B80165A7788BC659428D331085D1490ADC9EC3EEDF851BD2F073736A0C0711B8'"
588            },
589            {
590                "SIGNER_ID": "b'b0f382091297d83a377a72471bec3273e99232e24959f65e8b4a4a46d8229ada'",
591                "SW_COMPONENT_VERSION": "",
592                "SW_COMPONENT_TYPE": "FW_CONFIG\u0000",
593                "MEASUREMENT_VALUE": "b'219EA01382E6D7975A1113A35F453968B1D9A3EA6AAB84233B8C06169820BAB9'"
594            },
595            {
596                "SIGNER_ID": "b'b0f382091297d83a377a72471bec3273e99232e24959f65e8b4a4a46d8229ada'",
597                "SW_COMPONENT_VERSION": "",
598                "SW_COMPONENT_TYPE": "TB_FW_CONFIG\u0000",
599                "MEASUREMENT_VALUE": "b'4139F6C2108453C517AE9AE5BEC1207BCC2424F39D20A8FBC7B310E3EEAF1B05'"
600            },
601            {
602                "SIGNER_ID": "b'b0f382091297d83a377a72471bec3273e99232e24959f65e8b4a4a46d8229ada'",
603                "SW_COMPONENT_VERSION": "",
604                "SW_COMPONENT_TYPE": "BL_2\u0000",
605                "MEASUREMENT_VALUE": "b'5C9620E1E33B0F2CEBC18E1A02A66586DD3497A74C9813BF7414452D302805C3'"
606            },
607            {
608                "SIGNER_ID": "b'b0f382091297d83a377a72471bec3273e99232e24959f65e8b4a4a46d8229ada'",
609                "SW_COMPONENT_VERSION": "",
610                "SW_COMPONENT_TYPE": "SECURE_RT_EL3\u0000",
611                "MEASUREMENT_VALUE": "b'F6FB6299A50CDFDB020B725B1C0B636E94EE6650563A299CCB38F0EC5999D42E'"
612            },
613            {
614                "SIGNER_ID": "b'b0f382091297d83a377a72471bec3273e99232e24959f65e8b4a4a46d8229ada'",
615                "SW_COMPONENT_VERSION": "",
616                "SW_COMPONENT_TYPE": "HW_CONFIG\u0000",
617                "MEASUREMENT_VALUE": "b'985D87218406339DC31F91F5688DA05AF0D77E2051CE3BF2A5C3052E3C8B5231'"
618            }
619        ],
620        "CCA_ATTESTATION_PROFILE": "http://arm.com/CCA-SSD/1.0.0",
621        "CCA_PLATFORM_HASH_ALGO_ID": "not-hash-extended",
622        "CCA_PLATFORM_CONFIG": "b'EFBEADDE'",
623        "CCA_PLATFORM_VERIFICATION_SERVICE": "www.trustedfirmware.org"
624    }
625
626RSE OTP Assets Management
627-------------------------
628
629RSE provides access for AP to assets in OTP, which include keys for image
630signature verification and non-volatile counters for anti-rollback protection.
631
632Non-Volatile Counter API
633^^^^^^^^^^^^^^^^^^^^^^^^
634
635AP/RSE interface for retrieving and incrementing non-volatile counters API is
636as follows.
637
638Defined here:
639
640- ``include/lib/psa/rse_platform_api.h``
641
642.. code-block:: c
643
644    psa_status_t rse_platform_nv_counter_increment(uint32_t counter_id)
645
646    psa_status_t rse_platform_nv_counter_read(uint32_t counter_id,
647            uint32_t size, uint8_t *val)
648
649Through this service, we can read/increment any of the 3 non-volatile
650counters used on an Arm CCA platform:
651
652- ``Non-volatile counter for CCA firmware (BL2, BL31, RMM).``
653- ``Non-volatile counter for secure firmware.``
654- ``Non-volatile counter for non-secure firmware.``
655
656Public Key API
657^^^^^^^^^^^^^^
658
659AP/RSE interface for reading the ROTPK is as follows.
660
661Defined here:
662
663- ``include/lib/psa/rse_platform_api.h``
664
665.. code-block:: c
666
667    psa_status_t rse_platform_key_read(enum rse_key_id_builtin_t key,
668            uint8_t *data, size_t data_size, size_t *data_length)
669
670Through this service, we can read any of the 3 ROTPKs used on an
671Arm CCA platform:
672
673- ``ROTPK for CCA firmware (BL2, BL31, RMM).``
674- ``ROTPK for secure firmware.``
675- ``ROTPK for non-secure firmware.``
676
677References
678----------
679
680.. [1] https://tf-m-user-guide.trustedfirmware.org/platform/arm/rse/readme.html
681.. [2] https://tf-m-user-guide.trustedfirmware.org/platform/arm/rse/rse_comms.html
682.. [3] https://git.trustedfirmware.org/TF-M/tf-m-extras.git/tree/partitions/measured_boot/measured_boot_integration_guide.rst
683.. [4] https://git.trustedfirmware.org/TF-M/tf-m-extras.git/tree/partitions/delegated_attestation/delegated_attest_integration_guide.rst
684.. [5] https://tf-m-user-guide.trustedfirmware.org/platform/arm/rse/rse_key_management.html
685.. [6] https://developer.arm.com/-/media/Files/pdf/PlatformSecurityArchitecture/Architect/DEN0063-PSA_Firmware_Framework-1.0.0-2.pdf?revision=2d1429fa-4b5b-461a-a60e-4ef3d8f7f4b4&hash=3BFD6F3E687F324672F18E5BE9F08EDC48087C93
686.. [7] https://developer.arm.com/documentation/DEN0096/A_a/?lang=en
687
688--------------
689
690*Copyright (c) 2023, Arm Limited. All rights reserved.*
691