1 /*
2  * Copyright (c) 2015-2024, Arm Limited and Contributors. All rights reserved.
3  * Copyright (c) 2023, NVIDIA Corporation. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 
10 #include <arch.h>
11 #include <arch_helpers.h>
12 #include <common/debug.h>
13 #include <common/interrupt_props.h>
14 #include <drivers/arm/gic600_multichip.h>
15 #include <drivers/arm/gicv3.h>
16 #include <lib/spinlock.h>
17 #include <plat/common/platform.h>
18 
19 #include "gicv3_private.h"
20 
21 const gicv3_driver_data_t *gicv3_driver_data;
22 
23 /*
24  * Spinlock to guard registers needing read-modify-write. APIs protected by this
25  * spinlock are used either at boot time (when only a single CPU is active), or
26  * when the system is fully coherent.
27  */
28 static spinlock_t gic_lock;
29 
30 /*
31  * Redistributor power operations are weakly bound so that they can be
32  * overridden
33  */
34 #pragma weak gicv3_rdistif_off
35 #pragma weak gicv3_rdistif_on
36 
37 /* Check for valid SGI/PPI or SPI interrupt ID */
38 static bool is_valid_interrupt(unsigned int id);
39 
40 /*
41  * Helper macros to save and restore GICR and GICD registers
42  * corresponding to their numbers to and from the context
43  */
44 #define RESTORE_GICR_REG(base, ctx, name, i)	\
45 	gicr_write_##name((base), (i), (ctx)->gicr_##name[(i)])
46 
47 #define SAVE_GICR_REG(base, ctx, name, i)	\
48 	(ctx)->gicr_##name[(i)] = gicr_read_##name((base), (i))
49 
50 /* Helper macros to save and restore GICD registers to and from the context */
51 #define RESTORE_GICD_REGS(base, ctx, intr_num, reg, REG)		\
52 	do {								\
53 		for (unsigned int int_id = MIN_SPI_ID; int_id < (intr_num);\
54 				int_id += (1U << REG##R_SHIFT)) {	\
55 			gicd_write_##reg((base), int_id,		\
56 				(ctx)->gicd_##reg[(int_id - MIN_SPI_ID) >> \
57 							REG##R_SHIFT]);	\
58 		}							\
59 	} while (false)
60 
61 #define SAVE_GICD_REGS(base, ctx, intr_num, reg, REG)			\
62 	do {								\
63 		for (unsigned int int_id = MIN_SPI_ID; int_id < (intr_num);\
64 				int_id += (1U << REG##R_SHIFT)) {	\
65 			(ctx)->gicd_##reg[(int_id - MIN_SPI_ID) >>	\
66 			REG##R_SHIFT] = gicd_read_##reg((base), int_id); \
67 		}							\
68 	} while (false)
69 
70 #if GIC_EXT_INTID
71 #define RESTORE_GICD_EREGS(base, ctx, intr_num, reg, REG)		\
72 	do {								\
73 		for (unsigned int int_id = MIN_ESPI_ID; int_id < (intr_num);\
74 				int_id += (1U << REG##R_SHIFT)) {	\
75 			gicd_write_##reg((base), int_id,		\
76 			(ctx)->gicd_##reg[(int_id - (MIN_ESPI_ID -	\
77 			round_up(TOTAL_SPI_INTR_NUM, 1U << REG##R_SHIFT)))\
78 						>> REG##R_SHIFT]);	\
79 		}							\
80 	} while (false)
81 
82 #define SAVE_GICD_EREGS(base, ctx, intr_num, reg, REG)			\
83 	do {								\
84 		for (unsigned int int_id = MIN_ESPI_ID; int_id < (intr_num);\
85 				int_id += (1U << REG##R_SHIFT)) {	\
86 			(ctx)->gicd_##reg[(int_id - (MIN_ESPI_ID -	\
87 			round_up(TOTAL_SPI_INTR_NUM, 1U << REG##R_SHIFT)))\
88 			>> REG##R_SHIFT] = gicd_read_##reg((base), int_id);\
89 		}							\
90 	} while (false)
91 #else
92 #define SAVE_GICD_EREGS(base, ctx, intr_num, reg, REG)
93 #define RESTORE_GICD_EREGS(base, ctx, intr_num, reg, REG)
94 #endif /* GIC_EXT_INTID */
95 
96 /*******************************************************************************
97  * This function initialises the ARM GICv3 driver in EL3 with provided platform
98  * inputs.
99  ******************************************************************************/
gicv3_driver_init(const gicv3_driver_data_t * plat_driver_data)100 void __init gicv3_driver_init(const gicv3_driver_data_t *plat_driver_data)
101 {
102 	unsigned int gic_version;
103 	unsigned int gicv2_compat;
104 
105 	assert(plat_driver_data != NULL);
106 	assert(plat_driver_data->gicd_base != 0U);
107 	assert(plat_driver_data->rdistif_num != 0U);
108 	assert(plat_driver_data->rdistif_base_addrs != NULL);
109 
110 	assert(IS_IN_EL3());
111 
112 	assert((plat_driver_data->interrupt_props_num != 0U) ?
113 	       (plat_driver_data->interrupt_props != NULL) : 1);
114 
115 	/* Check for system register support */
116 #ifndef __aarch64__
117 	assert((read_id_pfr1() &
118 			(ID_PFR1_GIC_MASK << ID_PFR1_GIC_SHIFT)) != 0U);
119 #else
120 	assert((read_id_aa64pfr0_el1() &
121 			(ID_AA64PFR0_GIC_MASK << ID_AA64PFR0_GIC_SHIFT)) != 0U);
122 #endif /* !__aarch64__ */
123 
124 	gic_version = gicd_read_pidr2(plat_driver_data->gicd_base);
125 	gic_version >>= PIDR2_ARCH_REV_SHIFT;
126 	gic_version &= PIDR2_ARCH_REV_MASK;
127 
128 	/* Check GIC version */
129 #if !GIC_ENABLE_V4_EXTN
130 	assert(gic_version == ARCH_REV_GICV3);
131 #endif
132 	/*
133 	 * Find out whether the GIC supports the GICv2 compatibility mode.
134 	 * The ARE_S bit resets to 0 if supported
135 	 */
136 	gicv2_compat = gicd_read_ctlr(plat_driver_data->gicd_base);
137 	gicv2_compat >>= CTLR_ARE_S_SHIFT;
138 	gicv2_compat = gicv2_compat & CTLR_ARE_S_MASK;
139 
140 	if (plat_driver_data->gicr_base != 0U) {
141 		/*
142 		 * Find the base address of each implemented Redistributor interface.
143 		 * The number of interfaces should be equal to the number of CPUs in the
144 		 * system. The memory for saving these addresses has to be allocated by
145 		 * the platform port
146 		 */
147 		gicv3_rdistif_base_addrs_probe(plat_driver_data->rdistif_base_addrs,
148 						   plat_driver_data->rdistif_num,
149 						   plat_driver_data->gicr_base,
150 						   plat_driver_data->mpidr_to_core_pos);
151 #if !HW_ASSISTED_COHERENCY
152 		/*
153 		 * Flush the rdistif_base_addrs[] contents linked to the GICv3 driver.
154 		 */
155 		flush_dcache_range((uintptr_t)(plat_driver_data->rdistif_base_addrs),
156 			plat_driver_data->rdistif_num *
157 			sizeof(*(plat_driver_data->rdistif_base_addrs)));
158 #endif
159 	}
160 	gicv3_driver_data = plat_driver_data;
161 
162 	/*
163 	 * The GIC driver data is initialized by the primary CPU with caches
164 	 * enabled. When the secondary CPU boots up, it initializes the
165 	 * GICC/GICR interface with the caches disabled. Hence flush the
166 	 * driver data to ensure coherency. This is not required if the
167 	 * platform has HW_ASSISTED_COHERENCY enabled.
168 	 */
169 #if !HW_ASSISTED_COHERENCY
170 	flush_dcache_range((uintptr_t)&gicv3_driver_data,
171 		sizeof(gicv3_driver_data));
172 	flush_dcache_range((uintptr_t)gicv3_driver_data,
173 		sizeof(*gicv3_driver_data));
174 #endif
175 	gicv3_check_erratas_applies(plat_driver_data->gicd_base);
176 
177 	INFO("GICv%u with%s legacy support detected.\n", gic_version,
178 				(gicv2_compat == 0U) ? "" : "out");
179 	INFO("ARM GICv%u driver initialized in EL3\n", gic_version);
180 }
181 
182 /*******************************************************************************
183  * This function initialises the GIC distributor interface based upon the data
184  * provided by the platform while initialising the driver.
185  ******************************************************************************/
gicv3_distif_init(void)186 void __init gicv3_distif_init(void)
187 {
188 	unsigned int bitmap;
189 
190 	assert(gicv3_driver_data != NULL);
191 	assert(gicv3_driver_data->gicd_base != 0U);
192 
193 	assert(IS_IN_EL3());
194 
195 	/*
196 	 * Clear the "enable" bits for G0/G1S/G1NS interrupts before configuring
197 	 * the ARE_S bit. The Distributor might generate a system error
198 	 * otherwise.
199 	 */
200 	gicd_clr_ctlr(gicv3_driver_data->gicd_base,
201 		      CTLR_ENABLE_G0_BIT |
202 		      CTLR_ENABLE_G1S_BIT |
203 		      CTLR_ENABLE_G1NS_BIT,
204 		      RWP_TRUE);
205 
206 	/* Set the ARE_S and ARE_NS bit now that interrupts have been disabled */
207 	gicd_set_ctlr(gicv3_driver_data->gicd_base,
208 			CTLR_ARE_S_BIT | CTLR_ARE_NS_BIT, RWP_TRUE);
209 
210 	/* Set the default attribute of all (E)SPIs */
211 	gicv3_spis_config_defaults(gicv3_driver_data->gicd_base);
212 
213 	bitmap = gicv3_secure_spis_config_props(
214 			gicv3_driver_data->gicd_base,
215 			gicv3_driver_data->interrupt_props,
216 			gicv3_driver_data->interrupt_props_num);
217 
218 	/* Enable the secure (E)SPIs now that they have been configured */
219 	gicd_set_ctlr(gicv3_driver_data->gicd_base, bitmap, RWP_TRUE);
220 }
221 
222 /*******************************************************************************
223  * This function initialises the GIC Redistributor interface of the calling CPU
224  * (identified by the 'proc_num' parameter) based upon the data provided by the
225  * platform while initialising the driver.
226  ******************************************************************************/
gicv3_rdistif_init(unsigned int proc_num)227 void gicv3_rdistif_init(unsigned int proc_num)
228 {
229 	uintptr_t gicr_base;
230 	unsigned int bitmap;
231 	uint32_t ctlr;
232 
233 	assert(gicv3_driver_data != NULL);
234 	assert(proc_num < gicv3_driver_data->rdistif_num);
235 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
236 	assert(gicv3_driver_data->gicd_base != 0U);
237 
238 	ctlr = gicd_read_ctlr(gicv3_driver_data->gicd_base);
239 	assert((ctlr & CTLR_ARE_S_BIT) != 0U);
240 
241 	assert(IS_IN_EL3());
242 
243 	/* Power on redistributor */
244 	gicv3_rdistif_on(proc_num);
245 
246 	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
247 	assert(gicr_base != 0U);
248 
249 	/* Set the default attribute of all SGIs and (E)PPIs */
250 	gicv3_ppi_sgi_config_defaults(gicr_base);
251 
252 	bitmap = gicv3_secure_ppi_sgi_config_props(gicr_base,
253 			gicv3_driver_data->interrupt_props,
254 			gicv3_driver_data->interrupt_props_num);
255 
256 	/* Enable interrupt groups as required, if not already */
257 	if ((ctlr & bitmap) != bitmap) {
258 		gicd_set_ctlr(gicv3_driver_data->gicd_base, bitmap, RWP_TRUE);
259 	}
260 }
261 
262 /*******************************************************************************
263  * Functions to perform power operations on GIC Redistributor
264  ******************************************************************************/
gicv3_rdistif_off(unsigned int proc_num)265 void gicv3_rdistif_off(unsigned int proc_num)
266 {
267 }
268 
gicv3_rdistif_on(unsigned int proc_num)269 void gicv3_rdistif_on(unsigned int proc_num)
270 {
271 }
272 
273 /*******************************************************************************
274  * This function enables the GIC CPU interface of the calling CPU using only
275  * system register accesses.
276  ******************************************************************************/
gicv3_cpuif_enable(unsigned int proc_num)277 void gicv3_cpuif_enable(unsigned int proc_num)
278 {
279 	uintptr_t gicr_base;
280 	u_register_t scr_el3;
281 	unsigned int icc_sre_el3;
282 
283 	assert(gicv3_driver_data != NULL);
284 	assert(proc_num < gicv3_driver_data->rdistif_num);
285 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
286 	assert(IS_IN_EL3());
287 
288 	/* Mark the connected core as awake */
289 	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
290 	gicv3_rdistif_mark_core_awake(gicr_base);
291 
292 	/* Disable the legacy interrupt bypass */
293 	icc_sre_el3 = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT;
294 
295 	/*
296 	 * Enable system register access for EL3 and allow lower exception
297 	 * levels to configure the same for themselves. If the legacy mode is
298 	 * not supported, the SRE bit is RAO/WI
299 	 */
300 	icc_sre_el3 |= (ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT);
301 	write_icc_sre_el3(read_icc_sre_el3() | icc_sre_el3);
302 
303 	scr_el3 = read_scr_el3();
304 
305 	/*
306 	 * Switch to NS state to write Non secure ICC_SRE_EL1 and
307 	 * ICC_SRE_EL2 registers.
308 	 */
309 	write_scr_el3(scr_el3 | SCR_NS_BIT);
310 	isb();
311 
312 	write_icc_sre_el2(read_icc_sre_el2() | icc_sre_el3);
313 	write_icc_sre_el1(ICC_SRE_SRE_BIT);
314 	isb();
315 
316 	/* Switch to secure state. */
317 	write_scr_el3(scr_el3 & (~SCR_NS_BIT));
318 	isb();
319 
320 	/* Write the secure ICC_SRE_EL1 register */
321 	write_icc_sre_el1(ICC_SRE_SRE_BIT);
322 	isb();
323 
324 	/* Program the idle priority in the PMR */
325 	write_icc_pmr_el1(GIC_PRI_MASK);
326 
327 	/* Enable Group0 interrupts */
328 	write_icc_igrpen0_el1(IGRPEN1_EL1_ENABLE_G0_BIT);
329 
330 	/* Enable Group1 Secure interrupts */
331 	write_icc_igrpen1_el3(read_icc_igrpen1_el3() |
332 				IGRPEN1_EL3_ENABLE_G1S_BIT);
333 	/* and restore the original */
334 	write_scr_el3(scr_el3);
335 	isb();
336 	/* Add DSB to ensure visibility of System register writes */
337 	dsb();
338 }
339 
340 /*******************************************************************************
341  * This function disables the GIC CPU interface of the calling CPU using
342  * only system register accesses.
343  ******************************************************************************/
gicv3_cpuif_disable(unsigned int proc_num)344 void gicv3_cpuif_disable(unsigned int proc_num)
345 {
346 	uintptr_t gicr_base;
347 
348 	assert(gicv3_driver_data != NULL);
349 	assert(proc_num < gicv3_driver_data->rdistif_num);
350 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
351 
352 	assert(IS_IN_EL3());
353 
354 	/* Disable legacy interrupt bypass */
355 	write_icc_sre_el3(read_icc_sre_el3() |
356 			  (ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT));
357 
358 	/* Disable Group0 interrupts */
359 	write_icc_igrpen0_el1(read_icc_igrpen0_el1() &
360 			      ~IGRPEN1_EL1_ENABLE_G0_BIT);
361 
362 	/* Disable Group1 Secure and Non-Secure interrupts */
363 	write_icc_igrpen1_el3(read_icc_igrpen1_el3() &
364 			      ~(IGRPEN1_EL3_ENABLE_G1NS_BIT |
365 			      IGRPEN1_EL3_ENABLE_G1S_BIT));
366 
367 	/* Synchronise accesses to group enable registers */
368 	isb();
369 	/* Add DSB to ensure visibility of System register writes */
370 	dsb();
371 
372 	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
373 	assert(gicr_base != 0UL);
374 
375 	/*
376 	 * dsb() already issued previously after clearing the CPU group
377 	 * enabled, apply below workaround to toggle the "DPG*"
378 	 * bits of GICR_CTLR register for unblocking event.
379 	 */
380 	gicv3_apply_errata_wa_2384374(gicr_base);
381 
382 	/* Mark the connected core as asleep */
383 	gicv3_rdistif_mark_core_asleep(gicr_base);
384 }
385 
386 /*******************************************************************************
387  * This function returns the id of the highest priority pending interrupt at
388  * the GIC cpu interface.
389  ******************************************************************************/
gicv3_get_pending_interrupt_id(void)390 unsigned int gicv3_get_pending_interrupt_id(void)
391 {
392 	unsigned int id;
393 
394 	assert(IS_IN_EL3());
395 	id = (uint32_t)read_icc_hppir0_el1() & HPPIR0_EL1_INTID_MASK;
396 
397 	/*
398 	 * If the ID is special identifier corresponding to G1S or G1NS
399 	 * interrupt, then read the highest pending group 1 interrupt.
400 	 */
401 	if ((id == PENDING_G1S_INTID) || (id == PENDING_G1NS_INTID)) {
402 		return (uint32_t)read_icc_hppir1_el1() & HPPIR1_EL1_INTID_MASK;
403 	}
404 
405 	return id;
406 }
407 
408 /*******************************************************************************
409  * This function returns the type of the highest priority pending interrupt at
410  * the GIC cpu interface. The return values can be one of the following :
411  *   PENDING_G1S_INTID  : The interrupt type is secure Group 1.
412  *   PENDING_G1NS_INTID : The interrupt type is non secure Group 1.
413  *   0 - 1019           : The interrupt type is secure Group 0.
414  *   GIC_SPURIOUS_INTERRUPT : there is no pending interrupt with
415  *                            sufficient priority to be signaled
416  ******************************************************************************/
gicv3_get_pending_interrupt_type(void)417 unsigned int gicv3_get_pending_interrupt_type(void)
418 {
419 	assert(IS_IN_EL3());
420 	return (uint32_t)read_icc_hppir0_el1() & HPPIR0_EL1_INTID_MASK;
421 }
422 
423 /*******************************************************************************
424  * This function returns the group that has been configured under by the
425  * interrupt controller for the given interrupt id i.e. either group0 or group1
426  * Secure / Non Secure. The return value can be one of the following :
427  *    INTR_GROUP0  : The interrupt type is a Secure Group 0 interrupt
428  *    INTR_GROUP1S : The interrupt type is a Secure Group 1 secure interrupt
429  *    INTR_GROUP1NS: The interrupt type is a Secure Group 1 non secure
430  *                   interrupt.
431  ******************************************************************************/
gicv3_get_interrupt_group(unsigned int id,unsigned int proc_num)432 unsigned int gicv3_get_interrupt_group(unsigned int id, unsigned int proc_num)
433 {
434 	unsigned int igroup, grpmodr;
435 	uintptr_t gicr_base;
436 	uintptr_t gicd_base;
437 
438 	assert(IS_IN_EL3());
439 	assert(gicv3_driver_data != NULL);
440 
441 	/* Ensure the parameters are valid */
442 	assert((id < PENDING_G1S_INTID) || (id >= MIN_LPI_ID));
443 	assert(proc_num < gicv3_driver_data->rdistif_num);
444 
445 	/* All LPI interrupts are Group 1 non secure */
446 	if (id >= MIN_LPI_ID) {
447 		return INTR_GROUP1NS;
448 	}
449 
450 	if (!is_valid_interrupt(id)) {
451 		panic();
452 	}
453 
454 	/* Check interrupt ID */
455 	if (IS_SGI_PPI(id)) {
456 		/* SGIs: 0-15, PPIs: 16-31, EPPIs: 1056-1119 */
457 		assert(gicv3_driver_data->rdistif_base_addrs != NULL);
458 		gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
459 		igroup = gicr_get_igroupr(gicr_base, id);
460 		grpmodr = gicr_get_igrpmodr(gicr_base, id);
461 	} else {
462 		/* SPIs: 32-1019, ESPIs: 4096-5119 */
463 		assert(gicv3_driver_data->gicd_base != 0U);
464 		gicd_base = gicv3_get_multichip_base(id, gicv3_driver_data->gicd_base);
465 		igroup = gicd_get_igroupr(gicd_base, id);
466 		grpmodr = gicd_get_igrpmodr(gicd_base, id);
467 	}
468 
469 	/*
470 	 * If the IGROUP bit is set, then it is a Group 1 Non secure
471 	 * interrupt
472 	 */
473 	if (igroup != 0U) {
474 		return INTR_GROUP1NS;
475 	}
476 
477 	/* If the GRPMOD bit is set, then it is a Group 1 Secure interrupt */
478 	if (grpmodr != 0U) {
479 		return INTR_GROUP1S;
480 	}
481 
482 	/* Else it is a Group 0 Secure interrupt */
483 	return INTR_GROUP0;
484 }
485 
486 /*****************************************************************************
487  * Function to save and disable the GIC ITS register context. The power
488  * management of GIC ITS is implementation-defined and this function doesn't
489  * save any memory structures required to support ITS. As the sequence to save
490  * this state is implementation defined, it should be executed in platform
491  * specific code. Calling this function alone and then powering down the GIC and
492  * ITS without implementing the aforementioned platform specific code will
493  * corrupt the ITS state.
494  *
495  * This function must be invoked after the GIC CPU interface is disabled.
496  *****************************************************************************/
gicv3_its_save_disable(uintptr_t gits_base,gicv3_its_ctx_t * const its_ctx)497 void gicv3_its_save_disable(uintptr_t gits_base,
498 				gicv3_its_ctx_t * const its_ctx)
499 {
500 	unsigned int i;
501 
502 	assert(gicv3_driver_data != NULL);
503 	assert(IS_IN_EL3());
504 	assert(its_ctx != NULL);
505 	assert(gits_base != 0U);
506 
507 	its_ctx->gits_ctlr = gits_read_ctlr(gits_base);
508 
509 	/* Disable the ITS */
510 	gits_write_ctlr(gits_base, its_ctx->gits_ctlr & ~GITS_CTLR_ENABLED_BIT);
511 
512 	/* Wait for quiescent state */
513 	gits_wait_for_quiescent_bit(gits_base);
514 
515 	its_ctx->gits_cbaser = gits_read_cbaser(gits_base);
516 	its_ctx->gits_cwriter = gits_read_cwriter(gits_base);
517 
518 	for (i = 0U; i < ARRAY_SIZE(its_ctx->gits_baser); i++) {
519 		its_ctx->gits_baser[i] = gits_read_baser(gits_base, i);
520 	}
521 }
522 
523 /*****************************************************************************
524  * Function to restore the GIC ITS register context. The power
525  * management of GIC ITS is implementation defined and this function doesn't
526  * restore any memory structures required to support ITS. The assumption is
527  * that these structures are in memory and are retained during system suspend.
528  *
529  * This must be invoked before the GIC CPU interface is enabled.
530  *****************************************************************************/
gicv3_its_restore(uintptr_t gits_base,const gicv3_its_ctx_t * const its_ctx)531 void gicv3_its_restore(uintptr_t gits_base,
532 			const gicv3_its_ctx_t * const its_ctx)
533 {
534 	unsigned int i;
535 
536 	assert(gicv3_driver_data != NULL);
537 	assert(IS_IN_EL3());
538 	assert(its_ctx != NULL);
539 	assert(gits_base != 0U);
540 
541 	/* Assert that the GITS is disabled and quiescent */
542 	assert((gits_read_ctlr(gits_base) & GITS_CTLR_ENABLED_BIT) == 0U);
543 	assert((gits_read_ctlr(gits_base) & GITS_CTLR_QUIESCENT_BIT) != 0U);
544 
545 	gits_write_cbaser(gits_base, its_ctx->gits_cbaser);
546 	gits_write_cwriter(gits_base, its_ctx->gits_cwriter);
547 
548 	for (i = 0U; i < ARRAY_SIZE(its_ctx->gits_baser); i++) {
549 		gits_write_baser(gits_base, i, its_ctx->gits_baser[i]);
550 	}
551 
552 	/* Restore the ITS CTLR but leave the ITS disabled */
553 	gits_write_ctlr(gits_base, its_ctx->gits_ctlr & ~GITS_CTLR_ENABLED_BIT);
554 }
555 
556 /*****************************************************************************
557  * Function to save the GIC Redistributor register context. This function
558  * must be invoked after CPU interface disable and prior to Distributor save.
559  *****************************************************************************/
gicv3_rdistif_save(unsigned int proc_num,gicv3_redist_ctx_t * const rdist_ctx)560 void gicv3_rdistif_save(unsigned int proc_num,
561 			gicv3_redist_ctx_t * const rdist_ctx)
562 {
563 	uintptr_t gicr_base;
564 	unsigned int i, ppi_regs_num, regs_num;
565 
566 	assert(gicv3_driver_data != NULL);
567 	assert(proc_num < gicv3_driver_data->rdistif_num);
568 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
569 	assert(IS_IN_EL3());
570 	assert(rdist_ctx != NULL);
571 
572 	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
573 
574 #if GIC_EXT_INTID
575 	/* Calculate number of PPI registers */
576 	ppi_regs_num = (unsigned int)((gicr_read_typer(gicr_base) >>
577 			TYPER_PPI_NUM_SHIFT) & TYPER_PPI_NUM_MASK) + 1;
578 	/* All other values except PPInum [0-2] are reserved */
579 	if (ppi_regs_num > 3U) {
580 		ppi_regs_num = 1U;
581 	}
582 #else
583 	ppi_regs_num = 1U;
584 #endif
585 	/*
586 	 * Wait for any write to GICR_CTLR to complete before trying to save any
587 	 * state.
588 	 */
589 	gicr_wait_for_pending_write(gicr_base);
590 
591 	rdist_ctx->gicr_ctlr = gicr_read_ctlr(gicr_base);
592 
593 	rdist_ctx->gicr_propbaser = gicr_read_propbaser(gicr_base);
594 	rdist_ctx->gicr_pendbaser = gicr_read_pendbaser(gicr_base);
595 
596 	/* 32 interrupt IDs per register */
597 	for (i = 0U; i < ppi_regs_num; ++i) {
598 		SAVE_GICR_REG(gicr_base, rdist_ctx, igroupr, i);
599 		SAVE_GICR_REG(gicr_base, rdist_ctx, isenabler, i);
600 		SAVE_GICR_REG(gicr_base, rdist_ctx, ispendr, i);
601 		SAVE_GICR_REG(gicr_base, rdist_ctx, isactiver, i);
602 		SAVE_GICR_REG(gicr_base, rdist_ctx, igrpmodr, i);
603 	}
604 
605 	/* 16 interrupt IDs per GICR_ICFGR register */
606 	regs_num = ppi_regs_num << 1;
607 	for (i = 0U; i < regs_num; ++i) {
608 		SAVE_GICR_REG(gicr_base, rdist_ctx, icfgr, i);
609 	}
610 
611 	rdist_ctx->gicr_nsacr = gicr_read_nsacr(gicr_base);
612 
613 	/* 4 interrupt IDs per GICR_IPRIORITYR register */
614 	regs_num = ppi_regs_num << 3;
615 	for (i = 0U; i < regs_num; ++i) {
616 		rdist_ctx->gicr_ipriorityr[i] =
617 		gicr_ipriorityr_read(gicr_base, i);
618 	}
619 
620 	/*
621 	 * Call the pre-save hook that implements the IMP DEF sequence that may
622 	 * be required on some GIC implementations. As this may need to access
623 	 * the Redistributor registers, we pass it proc_num.
624 	 */
625 	gicv3_distif_pre_save(proc_num);
626 }
627 
628 /*****************************************************************************
629  * Function to restore the GIC Redistributor register context. We disable
630  * LPI and per-cpu interrupts before we start restore of the Redistributor.
631  * This function must be invoked after Distributor restore but prior to
632  * CPU interface enable. The pending and active interrupts are restored
633  * after the interrupts are fully configured and enabled.
634  *****************************************************************************/
gicv3_rdistif_init_restore(unsigned int proc_num,const gicv3_redist_ctx_t * const rdist_ctx)635 void gicv3_rdistif_init_restore(unsigned int proc_num,
636 				const gicv3_redist_ctx_t * const rdist_ctx)
637 {
638 	uintptr_t gicr_base;
639 	unsigned int i, ppi_regs_num, regs_num;
640 
641 	assert(gicv3_driver_data != NULL);
642 	assert(proc_num < gicv3_driver_data->rdistif_num);
643 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
644 	assert(IS_IN_EL3());
645 	assert(rdist_ctx != NULL);
646 
647 	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
648 
649 #if GIC_EXT_INTID
650 	/* Calculate number of PPI registers */
651 	ppi_regs_num = (unsigned int)((gicr_read_typer(gicr_base) >>
652 			TYPER_PPI_NUM_SHIFT) & TYPER_PPI_NUM_MASK) + 1;
653 	/* All other values except PPInum [0-2] are reserved */
654 	if (ppi_regs_num > 3U) {
655 		ppi_regs_num = 1U;
656 	}
657 #else
658 	ppi_regs_num = 1U;
659 #endif
660 	/* Power on redistributor */
661 	gicv3_rdistif_on(proc_num);
662 
663 	/*
664 	 * Call the post-restore hook that implements the IMP DEF sequence that
665 	 * may be required on some GIC implementations. As this may need to
666 	 * access the Redistributor registers, we pass it proc_num.
667 	 */
668 	gicv3_distif_post_restore(proc_num);
669 
670 	/*
671 	 * Disable all SGIs (imp. def.)/(E)PPIs before configuring them.
672 	 * This is a more scalable approach as it avoids clearing the enable
673 	 * bits in the GICD_CTLR.
674 	 */
675 	for (i = 0U; i < ppi_regs_num; ++i) {
676 		gicr_write_icenabler(gicr_base, i, ~0U);
677 	}
678 
679 	/* Wait for pending writes to GICR_ICENABLER */
680 	gicr_wait_for_pending_write(gicr_base);
681 
682 	/*
683 	 * Disable the LPIs to avoid unpredictable behavior when writing to
684 	 * GICR_PROPBASER and GICR_PENDBASER.
685 	 */
686 	gicr_write_ctlr(gicr_base,
687 			rdist_ctx->gicr_ctlr & ~(GICR_CTLR_EN_LPIS_BIT));
688 
689 	/* Restore registers' content */
690 	gicr_write_propbaser(gicr_base, rdist_ctx->gicr_propbaser);
691 	gicr_write_pendbaser(gicr_base, rdist_ctx->gicr_pendbaser);
692 
693 	/* 32 interrupt IDs per register */
694 	for (i = 0U; i < ppi_regs_num; ++i) {
695 		RESTORE_GICR_REG(gicr_base, rdist_ctx, igroupr, i);
696 		RESTORE_GICR_REG(gicr_base, rdist_ctx, igrpmodr, i);
697 	}
698 
699 	/* 4 interrupt IDs per GICR_IPRIORITYR register */
700 	regs_num = ppi_regs_num << 3;
701 	for (i = 0U; i < regs_num; ++i) {
702 		gicr_ipriorityr_write(gicr_base, i,
703 					rdist_ctx->gicr_ipriorityr[i]);
704 	}
705 
706 	/* 16 interrupt IDs per GICR_ICFGR register */
707 	regs_num = ppi_regs_num << 1;
708 	for (i = 0U; i < regs_num; ++i) {
709 		RESTORE_GICR_REG(gicr_base, rdist_ctx, icfgr, i);
710 	}
711 
712 	gicr_write_nsacr(gicr_base, rdist_ctx->gicr_nsacr);
713 
714 	/* Restore after group and priorities are set.
715 	 * 32 interrupt IDs per register
716 	 */
717 	for (i = 0U; i < ppi_regs_num; ++i) {
718 		RESTORE_GICR_REG(gicr_base, rdist_ctx, ispendr, i);
719 		RESTORE_GICR_REG(gicr_base, rdist_ctx, isactiver, i);
720 	}
721 
722 	/*
723 	 * Wait for all writes to the Distributor to complete before enabling
724 	 * the SGI and (E)PPIs.
725 	 */
726 	gicr_wait_for_upstream_pending_write(gicr_base);
727 
728 	/* 32 interrupt IDs per GICR_ISENABLER register */
729 	for (i = 0U; i < ppi_regs_num; ++i) {
730 		RESTORE_GICR_REG(gicr_base, rdist_ctx, isenabler, i);
731 	}
732 
733 	/*
734 	 * Restore GICR_CTLR.Enable_LPIs bit and wait for pending writes in case
735 	 * the first write to GICR_CTLR was still in flight (this write only
736 	 * restores GICR_CTLR.Enable_LPIs and no waiting is required for this
737 	 * bit).
738 	 */
739 	gicr_write_ctlr(gicr_base, rdist_ctx->gicr_ctlr);
740 	gicr_wait_for_pending_write(gicr_base);
741 }
742 
743 /*****************************************************************************
744  * Function to save the GIC Distributor register context. This function
745  * must be invoked after CPU interface disable and Redistributor save.
746  *****************************************************************************/
gicv3_distif_save(gicv3_dist_ctx_t * const dist_ctx)747 void gicv3_distif_save(gicv3_dist_ctx_t * const dist_ctx)
748 {
749 	assert(gicv3_driver_data != NULL);
750 	assert(gicv3_driver_data->gicd_base != 0U);
751 	assert(IS_IN_EL3());
752 	assert(dist_ctx != NULL);
753 
754 	uintptr_t gicd_base = gicv3_driver_data->gicd_base;
755 	unsigned int num_ints = gicv3_get_spi_limit(gicd_base);
756 #if GIC_EXT_INTID
757 	unsigned int num_eints = gicv3_get_espi_limit(gicd_base);
758 #endif
759 
760 	/* Wait for pending write to complete */
761 	gicd_wait_for_pending_write(gicd_base);
762 
763 	/* Save the GICD_CTLR */
764 	dist_ctx->gicd_ctlr = gicd_read_ctlr(gicd_base);
765 
766 	/* Save GICD_IGROUPR for INTIDs 32 - 1019 */
767 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, igroupr, IGROUP);
768 
769 	/* Save GICD_IGROUPRE for INTIDs 4096 - 5119 */
770 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, igroupr, IGROUP);
771 
772 	/* Save GICD_ISENABLER for INT_IDs 32 - 1019 */
773 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, isenabler, ISENABLE);
774 
775 	/* Save GICD_ISENABLERE for INT_IDs 4096 - 5119 */
776 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, isenabler, ISENABLE);
777 
778 	/* Save GICD_ISPENDR for INTIDs 32 - 1019 */
779 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, ispendr, ISPEND);
780 
781 	/* Save GICD_ISPENDRE for INTIDs 4096 - 5119 */
782 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints,	ispendr, ISPEND);
783 
784 	/* Save GICD_ISACTIVER for INTIDs 32 - 1019 */
785 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, isactiver, ISACTIVE);
786 
787 	/* Save GICD_ISACTIVERE for INTIDs 4096 - 5119 */
788 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, isactiver, ISACTIVE);
789 
790 	/* Save GICD_IPRIORITYR for INTIDs 32 - 1019 */
791 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, ipriorityr, IPRIORITY);
792 
793 	/* Save GICD_IPRIORITYRE for INTIDs 4096 - 5119 */
794 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, ipriorityr, IPRIORITY);
795 
796 	/* Save GICD_ICFGR for INTIDs 32 - 1019 */
797 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, icfgr, ICFG);
798 
799 	/* Save GICD_ICFGRE for INTIDs 4096 - 5119 */
800 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, icfgr, ICFG);
801 
802 	/* Save GICD_IGRPMODR for INTIDs 32 - 1019 */
803 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, igrpmodr, IGRPMOD);
804 
805 	/* Save GICD_IGRPMODRE for INTIDs 4096 - 5119 */
806 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, igrpmodr, IGRPMOD);
807 
808 	/* Save GICD_NSACR for INTIDs 32 - 1019 */
809 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, nsacr, NSAC);
810 
811 	/* Save GICD_NSACRE for INTIDs 4096 - 5119 */
812 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, nsacr, NSAC);
813 
814 	/* Save GICD_IROUTER for INTIDs 32 - 1019 */
815 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, irouter, IROUTE);
816 
817 	/* Save GICD_IROUTERE for INTIDs 4096 - 5119 */
818 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, irouter, IROUTE);
819 
820 	/*
821 	 * GICD_ITARGETSR<n> and GICD_SPENDSGIR<n> are RAZ/WI when
822 	 * GICD_CTLR.ARE_(S|NS) bits are set which is the case for our GICv3
823 	 * driver.
824 	 */
825 }
826 
827 /*****************************************************************************
828  * Function to restore the GIC Distributor register context. We disable G0, G1S
829  * and G1NS interrupt groups before we start restore of the Distributor. This
830  * function must be invoked prior to Redistributor restore and CPU interface
831  * enable. The pending and active interrupts are restored after the interrupts
832  * are fully configured and enabled.
833  *****************************************************************************/
gicv3_distif_init_restore(const gicv3_dist_ctx_t * const dist_ctx)834 void gicv3_distif_init_restore(const gicv3_dist_ctx_t * const dist_ctx)
835 {
836 	assert(gicv3_driver_data != NULL);
837 	assert(gicv3_driver_data->gicd_base != 0U);
838 	assert(IS_IN_EL3());
839 	assert(dist_ctx != NULL);
840 
841 	uintptr_t gicd_base = gicv3_driver_data->gicd_base;
842 
843 	/*
844 	 * Clear the "enable" bits for G0/G1S/G1NS interrupts before configuring
845 	 * the ARE_S bit. The Distributor might generate a system error
846 	 * otherwise.
847 	 */
848 	gicd_clr_ctlr(gicd_base,
849 		      CTLR_ENABLE_G0_BIT |
850 		      CTLR_ENABLE_G1S_BIT |
851 		      CTLR_ENABLE_G1NS_BIT,
852 		      RWP_TRUE);
853 
854 	/* Set the ARE_S and ARE_NS bit now that interrupts have been disabled */
855 	gicd_set_ctlr(gicd_base, CTLR_ARE_S_BIT | CTLR_ARE_NS_BIT, RWP_TRUE);
856 
857 	unsigned int num_ints = gicv3_get_spi_limit(gicd_base);
858 #if GIC_EXT_INTID
859 	unsigned int num_eints = gicv3_get_espi_limit(gicd_base);
860 #endif
861 	/* Restore GICD_IGROUPR for INTIDs 32 - 1019 */
862 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, igroupr, IGROUP);
863 
864 	/* Restore GICD_IGROUPRE for INTIDs 4096 - 5119 */
865 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, igroupr, IGROUP);
866 
867 	/* Restore GICD_IPRIORITYR for INTIDs 32 - 1019 */
868 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, ipriorityr, IPRIORITY);
869 
870 	/* Restore GICD_IPRIORITYRE for INTIDs 4096 - 5119 */
871 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, ipriorityr, IPRIORITY);
872 
873 	/* Restore GICD_ICFGR for INTIDs 32 - 1019 */
874 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, icfgr, ICFG);
875 
876 	/* Restore GICD_ICFGRE for INTIDs 4096 - 5119 */
877 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, icfgr, ICFG);
878 
879 	/* Restore GICD_IGRPMODR for INTIDs 32 - 1019 */
880 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, igrpmodr, IGRPMOD);
881 
882 	/* Restore GICD_IGRPMODRE for INTIDs 4096 - 5119 */
883 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, igrpmodr, IGRPMOD);
884 
885 	/* Restore GICD_NSACR for INTIDs 32 - 1019 */
886 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, nsacr, NSAC);
887 
888 	/* Restore GICD_NSACRE for INTIDs 4096 - 5119 */
889 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, nsacr, NSAC);
890 
891 	/* Restore GICD_IROUTER for INTIDs 32 - 1019 */
892 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, irouter, IROUTE);
893 
894 	/* Restore GICD_IROUTERE for INTIDs 4096 - 5119 */
895 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, irouter, IROUTE);
896 
897 	/*
898 	 * Restore ISENABLER(E), ISPENDR(E) and ISACTIVER(E) after
899 	 * the interrupts are configured.
900 	 */
901 
902 	/* Restore GICD_ISENABLER for INT_IDs 32 - 1019 */
903 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, isenabler, ISENABLE);
904 
905 	/* Restore GICD_ISENABLERE for INT_IDs 4096 - 5119 */
906 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, isenabler, ISENABLE);
907 
908 	/* Restore GICD_ISPENDR for INTIDs 32 - 1019 */
909 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, ispendr, ISPEND);
910 
911 	/* Restore GICD_ISPENDRE for INTIDs 4096 - 5119 */
912 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, ispendr, ISPEND);
913 
914 	/* Restore GICD_ISACTIVER for INTIDs 32 - 1019 */
915 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, isactiver, ISACTIVE);
916 
917 	/* Restore GICD_ISACTIVERE for INTIDs 4096 - 5119 */
918 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, isactiver, ISACTIVE);
919 
920 	/* Restore the GICD_CTLR */
921 	gicd_write_ctlr(gicd_base, dist_ctx->gicd_ctlr);
922 	gicd_wait_for_pending_write(gicd_base);
923 }
924 
925 /*******************************************************************************
926  * This function gets the priority of the interrupt the processor is currently
927  * servicing.
928  ******************************************************************************/
gicv3_get_running_priority(void)929 unsigned int gicv3_get_running_priority(void)
930 {
931 	return (unsigned int)read_icc_rpr_el1();
932 }
933 
934 /*******************************************************************************
935  * This function checks if the interrupt identified by id is active (whether the
936  * state is either active, or active and pending). The proc_num is used if the
937  * interrupt is SGI or (E)PPI and programs the corresponding Redistributor
938  * interface.
939  ******************************************************************************/
gicv3_get_interrupt_active(unsigned int id,unsigned int proc_num)940 unsigned int gicv3_get_interrupt_active(unsigned int id, unsigned int proc_num)
941 {
942 	uintptr_t gicd_base;
943 
944 	assert(gicv3_driver_data != NULL);
945 	assert(gicv3_driver_data->gicd_base != 0U);
946 	assert(proc_num < gicv3_driver_data->rdistif_num);
947 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
948 
949 	if (!is_valid_interrupt(id)) {
950 		panic();
951 	}
952 	/* Check interrupt ID */
953 	if (IS_SGI_PPI(id)) {
954 		/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
955 		return gicr_get_isactiver(
956 			gicv3_driver_data->rdistif_base_addrs[proc_num], id);
957 	}
958 
959 	/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
960 	gicd_base = gicv3_get_multichip_base(id, gicv3_driver_data->gicd_base);
961 	return gicd_get_isactiver(gicd_base, id);
962 }
963 
964 /*******************************************************************************
965  * This function enables the interrupt identified by id. The proc_num
966  * is used if the interrupt is SGI or PPI, and programs the corresponding
967  * Redistributor interface.
968  ******************************************************************************/
gicv3_enable_interrupt(unsigned int id,unsigned int proc_num)969 void gicv3_enable_interrupt(unsigned int id, unsigned int proc_num)
970 {
971 	uintptr_t gicd_base;
972 
973 	assert(gicv3_driver_data != NULL);
974 	assert(gicv3_driver_data->gicd_base != 0U);
975 	assert(proc_num < gicv3_driver_data->rdistif_num);
976 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
977 
978 	/*
979 	 * Ensure that any shared variable updates depending on out of band
980 	 * interrupt trigger are observed before enabling interrupt.
981 	 */
982 	dsbishst();
983 	if (!is_valid_interrupt(id)) {
984 		panic();
985 	}
986 	/* Check interrupt ID */
987 	if (IS_SGI_PPI(id)) {
988 		/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
989 		gicr_set_isenabler(
990 			gicv3_driver_data->rdistif_base_addrs[proc_num], id);
991 	} else {
992 		/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
993 		gicd_base = gicv3_get_multichip_base(id, gicv3_driver_data->gicd_base);
994 		gicd_set_isenabler(gicd_base, id);
995 	}
996 }
997 
998 /*******************************************************************************
999  * This function disables the interrupt identified by id. The proc_num
1000  * is used if the interrupt is SGI or PPI, and programs the corresponding
1001  * Redistributor interface.
1002  ******************************************************************************/
gicv3_disable_interrupt(unsigned int id,unsigned int proc_num)1003 void gicv3_disable_interrupt(unsigned int id, unsigned int proc_num)
1004 {
1005 	uintptr_t gicd_base;
1006 
1007 	assert(gicv3_driver_data != NULL);
1008 	assert(gicv3_driver_data->gicd_base != 0U);
1009 	assert(proc_num < gicv3_driver_data->rdistif_num);
1010 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
1011 
1012 	/*
1013 	 * Disable interrupt, and ensure that any shared variable updates
1014 	 * depending on out of band interrupt trigger are observed afterwards.
1015 	 */
1016 	if (!is_valid_interrupt(id)) {
1017 		panic();
1018 	}
1019 	/* Check interrupt ID */
1020 	if (IS_SGI_PPI(id)) {
1021 		/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
1022 		gicr_set_icenabler(
1023 			gicv3_driver_data->rdistif_base_addrs[proc_num], id);
1024 
1025 		/* Write to clear enable requires waiting for pending writes */
1026 		gicr_wait_for_pending_write(
1027 			gicv3_driver_data->rdistif_base_addrs[proc_num]);
1028 	} else {
1029 		/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
1030 		gicd_base = gicv3_get_multichip_base(id, gicv3_driver_data->gicd_base);
1031 		gicd_set_icenabler(gicd_base, id);
1032 
1033 		/* Write to clear enable requires waiting for pending writes */
1034 		gicd_wait_for_pending_write(gicd_base);
1035 	}
1036 
1037 	dsbishst();
1038 }
1039 
1040 /*******************************************************************************
1041  * This function sets the interrupt priority as supplied for the given interrupt
1042  * id.
1043  ******************************************************************************/
gicv3_set_interrupt_priority(unsigned int id,unsigned int proc_num,unsigned int priority)1044 void gicv3_set_interrupt_priority(unsigned int id, unsigned int proc_num,
1045 		unsigned int priority)
1046 {
1047 	uintptr_t gicr_base;
1048 	uintptr_t gicd_base;
1049 
1050 	assert(gicv3_driver_data != NULL);
1051 	assert(gicv3_driver_data->gicd_base != 0U);
1052 	assert(proc_num < gicv3_driver_data->rdistif_num);
1053 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
1054 
1055 	if (!is_valid_interrupt(id)) {
1056 		panic();
1057 	}
1058 	/* Check interrupt ID */
1059 	if (IS_SGI_PPI(id)) {
1060 		/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
1061 		gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
1062 		gicr_set_ipriorityr(gicr_base, id, priority);
1063 	} else {
1064 		/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
1065 		gicd_base = gicv3_get_multichip_base(id, gicv3_driver_data->gicd_base);
1066 		gicd_set_ipriorityr(gicd_base, id, priority);
1067 	}
1068 }
1069 
1070 /*******************************************************************************
1071  * This function assigns group for the interrupt identified by id. The proc_num
1072  * is used if the interrupt is SGI or (E)PPI, and programs the corresponding
1073  * Redistributor interface. The group can be any of GICV3_INTR_GROUP*
1074  ******************************************************************************/
gicv3_set_interrupt_group(unsigned int id,unsigned int proc_num,unsigned int group)1075 void gicv3_set_interrupt_group(unsigned int id, unsigned int proc_num,
1076 		unsigned int group)
1077 {
1078 	bool igroup = false, grpmod = false;
1079 	uintptr_t gicr_base;
1080 	uintptr_t gicd_base;
1081 
1082 	assert(gicv3_driver_data != NULL);
1083 	assert(gicv3_driver_data->gicd_base != 0U);
1084 	assert(proc_num < gicv3_driver_data->rdistif_num);
1085 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
1086 
1087 	switch (group) {
1088 	case INTR_GROUP1S:
1089 		igroup = false;
1090 		grpmod = true;
1091 		break;
1092 	case INTR_GROUP0:
1093 		igroup = false;
1094 		grpmod = false;
1095 		break;
1096 	case INTR_GROUP1NS:
1097 		igroup = true;
1098 		grpmod = false;
1099 		break;
1100 	default:
1101 		assert(false);
1102 		break;
1103 	}
1104 
1105 	if (!is_valid_interrupt(id)) {
1106 		panic();
1107 	}
1108 	/* Check interrupt ID */
1109 	if (IS_SGI_PPI(id)) {
1110 		/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
1111 		gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
1112 
1113 		igroup ? gicr_set_igroupr(gicr_base, id) :
1114 			 gicr_clr_igroupr(gicr_base, id);
1115 		grpmod ? gicr_set_igrpmodr(gicr_base, id) :
1116 			 gicr_clr_igrpmodr(gicr_base, id);
1117 	} else {
1118 		/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
1119 
1120 		/* Serialize read-modify-write to Distributor registers */
1121 		spin_lock(&gic_lock);
1122 
1123 		gicd_base = gicv3_get_multichip_base(id, gicv3_driver_data->gicd_base);
1124 
1125 		igroup ? gicd_set_igroupr(gicd_base, id) :
1126 			 gicd_clr_igroupr(gicd_base, id);
1127 		grpmod ? gicd_set_igrpmodr(gicd_base, id) :
1128 			 gicd_clr_igrpmodr(gicd_base, id);
1129 
1130 		spin_unlock(&gic_lock);
1131 	}
1132 }
1133 
1134 /*******************************************************************************
1135  * This function raises the specified SGI of the specified group.
1136  *
1137  * The target parameter must be a valid MPIDR in the system.
1138  ******************************************************************************/
gicv3_raise_sgi(unsigned int sgi_num,gicv3_irq_group_t group,u_register_t target)1139 void gicv3_raise_sgi(unsigned int sgi_num, gicv3_irq_group_t group,
1140 		u_register_t target)
1141 {
1142 	unsigned int tgt, aff3, aff2, aff1, aff0;
1143 	uint64_t sgi_val;
1144 
1145 	/* Verify interrupt number is in the SGI range */
1146 	assert((sgi_num >= MIN_SGI_ID) && (sgi_num < MIN_PPI_ID));
1147 
1148 	/* Extract affinity fields from target */
1149 	aff0 = MPIDR_AFFLVL0_VAL(target);
1150 	aff1 = MPIDR_AFFLVL1_VAL(target);
1151 	aff2 = MPIDR_AFFLVL2_VAL(target);
1152 	aff3 = MPIDR_AFFLVL3_VAL(target);
1153 
1154 	/*
1155 	 * Make target list from affinity 0, and ensure GICv3 SGI can target
1156 	 * this PE.
1157 	 */
1158 	assert(aff0 < GICV3_MAX_SGI_TARGETS);
1159 	tgt = BIT_32(aff0);
1160 
1161 	/* Raise SGI to PE specified by its affinity */
1162 	sgi_val = GICV3_SGIR_VALUE(aff3, aff2, aff1, sgi_num, SGIR_IRM_TO_AFF,
1163 			tgt);
1164 
1165 	/*
1166 	 * Ensure that any shared variable updates depending on out of band
1167 	 * interrupt trigger are observed before raising SGI.
1168 	 */
1169 	dsbishst();
1170 
1171 	switch (group) {
1172 	case GICV3_G0:
1173 		write_icc_sgi0r_el1(sgi_val);
1174 		break;
1175 	case GICV3_G1NS:
1176 		write_icc_asgi1r(sgi_val);
1177 		break;
1178 	case GICV3_G1S:
1179 		write_icc_sgi1r(sgi_val);
1180 		break;
1181 	default:
1182 		assert(false);
1183 		break;
1184 	}
1185 
1186 	isb();
1187 }
1188 
1189 /*******************************************************************************
1190  * This function sets the interrupt routing for the given (E)SPI interrupt id.
1191  * The interrupt routing is specified in routing mode and mpidr.
1192  *
1193  * The routing mode can be either of:
1194  *  - GICV3_IRM_ANY
1195  *  - GICV3_IRM_PE
1196  *
1197  * The mpidr is the affinity of the PE to which the interrupt will be routed,
1198  * and is ignored for routing mode GICV3_IRM_ANY.
1199  ******************************************************************************/
gicv3_set_spi_routing(unsigned int id,unsigned int irm,u_register_t mpidr)1200 void gicv3_set_spi_routing(unsigned int id, unsigned int irm, u_register_t mpidr)
1201 {
1202 	unsigned long long aff;
1203 	uint64_t router;
1204 	uintptr_t gicd_base;
1205 
1206 	assert(gicv3_driver_data != NULL);
1207 	assert(gicv3_driver_data->gicd_base != 0U);
1208 
1209 	assert((irm == GICV3_IRM_ANY) || (irm == GICV3_IRM_PE));
1210 
1211 	assert(IS_SPI(id));
1212 
1213 	aff = gicd_irouter_val_from_mpidr(mpidr, irm);
1214 	gicd_base = gicv3_get_multichip_base(id, gicv3_driver_data->gicd_base);
1215 	gicd_write_irouter(gicd_base, id, aff);
1216 
1217 	/*
1218 	 * In implementations that do not require 1 of N distribution of SPIs,
1219 	 * IRM might be RAZ/WI. Read back and verify IRM bit.
1220 	 */
1221 	if (irm == GICV3_IRM_ANY) {
1222 		router = gicd_read_irouter(gicd_base, id);
1223 		if (((router >> IROUTER_IRM_SHIFT) & IROUTER_IRM_MASK) == 0U) {
1224 			ERROR("GICv3 implementation doesn't support routing ANY\n");
1225 			panic();
1226 		}
1227 	}
1228 }
1229 
1230 /*******************************************************************************
1231  * This function clears the pending status of an interrupt identified by id.
1232  * The proc_num is used if the interrupt is SGI or (E)PPI, and programs the
1233  * corresponding Redistributor interface.
1234  ******************************************************************************/
gicv3_clear_interrupt_pending(unsigned int id,unsigned int proc_num)1235 void gicv3_clear_interrupt_pending(unsigned int id, unsigned int proc_num)
1236 {
1237 	uintptr_t gicd_base;
1238 
1239 	assert(gicv3_driver_data != NULL);
1240 	assert(gicv3_driver_data->gicd_base != 0U);
1241 	assert(proc_num < gicv3_driver_data->rdistif_num);
1242 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
1243 
1244 	/*
1245 	 * Clear pending interrupt, and ensure that any shared variable updates
1246 	 * depending on out of band interrupt trigger are observed afterwards.
1247 	 */
1248 	if (!is_valid_interrupt(id)) {
1249 		panic();
1250 	}
1251 	/* Check interrupt ID */
1252 	if (IS_SGI_PPI(id)) {
1253 		/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
1254 		gicr_set_icpendr(
1255 		gicv3_driver_data->rdistif_base_addrs[proc_num], id);
1256 	} else {
1257 		/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
1258 		gicd_base = gicv3_get_multichip_base(id, gicv3_driver_data->gicd_base);
1259 		gicd_set_icpendr(gicd_base, id);
1260 	}
1261 
1262 	dsbishst();
1263 }
1264 
1265 /*******************************************************************************
1266  * This function sets the pending status of an interrupt identified by id.
1267  * The proc_num is used if the interrupt is SGI or PPI and programs the
1268  * corresponding Redistributor interface.
1269  ******************************************************************************/
gicv3_set_interrupt_pending(unsigned int id,unsigned int proc_num)1270 void gicv3_set_interrupt_pending(unsigned int id, unsigned int proc_num)
1271 {
1272 	uintptr_t gicd_base;
1273 
1274 	assert(gicv3_driver_data != NULL);
1275 	assert(gicv3_driver_data->gicd_base != 0U);
1276 	assert(proc_num < gicv3_driver_data->rdistif_num);
1277 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
1278 
1279 	/*
1280 	 * Ensure that any shared variable updates depending on out of band
1281 	 * interrupt trigger are observed before setting interrupt pending.
1282 	 */
1283 	dsbishst();
1284 
1285 	if (!is_valid_interrupt(id)) {
1286 		panic();
1287 	}
1288 
1289 	/* Check interrupt ID */
1290 	if (IS_SGI_PPI(id)) {
1291 		/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
1292 		gicr_set_ispendr(
1293 			gicv3_driver_data->rdistif_base_addrs[proc_num], id);
1294 	} else {
1295 		/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
1296 		gicd_base = gicv3_get_multichip_base(id, gicv3_driver_data->gicd_base);
1297 		gicd_set_ispendr(gicd_base, id);
1298 	}
1299 }
1300 
1301 /*******************************************************************************
1302  * This function sets the PMR register with the supplied value. Returns the
1303  * original PMR.
1304  ******************************************************************************/
gicv3_set_pmr(unsigned int mask)1305 unsigned int gicv3_set_pmr(unsigned int mask)
1306 {
1307 	unsigned int old_mask;
1308 
1309 	old_mask = (unsigned int)read_icc_pmr_el1();
1310 
1311 	/*
1312 	 * Order memory updates w.r.t. PMR write, and ensure they're visible
1313 	 * before potential out of band interrupt trigger because of PMR update.
1314 	 * PMR system register writes are self-synchronizing, so no ISB required
1315 	 * thereafter.
1316 	 */
1317 	dsbishst();
1318 	write_icc_pmr_el1(mask);
1319 
1320 	return old_mask;
1321 }
1322 
1323 /*******************************************************************************
1324  * This function restores the PMR register to old value and also triggers
1325  * gicv3_apply_errata_wa_2384374() that flushes the GIC buffer allowing any
1326  * pending interrupts to processed. Returns the original PMR.
1327  ******************************************************************************/
gicv3_deactivate_priority(unsigned int mask)1328 unsigned int gicv3_deactivate_priority(unsigned int mask)
1329 {
1330 
1331 	unsigned int old_mask, proc_num;
1332 	uintptr_t gicr_base;
1333 
1334 	old_mask = gicv3_set_pmr(mask);
1335 
1336 	proc_num = plat_my_core_pos();
1337 	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
1338 	assert(gicr_base != 0UL);
1339 
1340 	/* Add DSB to ensure visibility of System register writes */
1341 	dsb();
1342 
1343 	gicv3_apply_errata_wa_2384374(gicr_base);
1344 
1345 	return old_mask;
1346 }
1347 
1348 /*******************************************************************************
1349  * This function delegates the responsibility of discovering the corresponding
1350  * Redistributor frames to each CPU itself. It is a modified version of
1351  * gicv3_rdistif_base_addrs_probe() and is executed by each CPU in the platform
1352  * unlike the previous way in which only the Primary CPU did the discovery of
1353  * all the Redistributor frames for every CPU. It also handles the scenario in
1354  * which the frames of various CPUs are not contiguous in physical memory.
1355  ******************************************************************************/
gicv3_rdistif_probe(const uintptr_t gicr_frame)1356 int gicv3_rdistif_probe(const uintptr_t gicr_frame)
1357 {
1358 	u_register_t mpidr, mpidr_self;
1359 	unsigned int proc_num;
1360 	uint64_t typer_val;
1361 	uintptr_t rdistif_base;
1362 	bool gicr_frame_found = false;
1363 
1364 	assert(gicv3_driver_data->gicr_base == 0U);
1365 
1366 	if (plat_can_cmo()) {
1367 	/* Ensure this function is called with Data Cache enabled */
1368 #ifndef __aarch64__
1369 		assert((read_sctlr() & SCTLR_C_BIT) != 0U);
1370 #else
1371 		assert((read_sctlr_el3() & SCTLR_C_BIT) != 0U);
1372 #endif /* !__aarch64__ */
1373 	}
1374 
1375 	mpidr_self = read_mpidr_el1() & MPIDR_AFFINITY_MASK;
1376 	rdistif_base = gicr_frame;
1377 	do {
1378 		typer_val = gicr_read_typer(rdistif_base);
1379 		mpidr = mpidr_from_gicr_typer(typer_val);
1380 		if (gicv3_driver_data->mpidr_to_core_pos != NULL) {
1381 			proc_num = gicv3_driver_data->mpidr_to_core_pos(mpidr);
1382 		} else {
1383 			proc_num = (unsigned int)(typer_val >>
1384 				TYPER_PROC_NUM_SHIFT) & TYPER_PROC_NUM_MASK;
1385 		}
1386 		if (mpidr == mpidr_self) {
1387 			/* The base address doesn't need to be initialized on
1388 			 * every warm boot.
1389 			 */
1390 			if (gicv3_driver_data->rdistif_base_addrs[proc_num]
1391 								!= 0U) {
1392 				return 0;
1393 			}
1394 			gicv3_driver_data->rdistif_base_addrs[proc_num] =
1395 			rdistif_base;
1396 			gicr_frame_found = true;
1397 			break;
1398 		}
1399 		rdistif_base += gicv3_redist_size(typer_val);
1400 	} while ((typer_val & TYPER_LAST_BIT) == 0U);
1401 
1402 	if (!gicr_frame_found) {
1403 		return -1;
1404 	}
1405 
1406 	/*
1407 	 * Flush the driver data to ensure coherency. This is
1408 	 * not required if platform has HW_ASSISTED_COHERENCY
1409 	 * enabled.
1410 	 */
1411 #if !HW_ASSISTED_COHERENCY
1412 	/*
1413 	 * Flush the rdistif_base_addrs[] contents linked to the GICv3 driver.
1414 	 */
1415 	flush_dcache_range((uintptr_t)&(gicv3_driver_data->rdistif_base_addrs[proc_num]),
1416 		sizeof(*(gicv3_driver_data->rdistif_base_addrs)));
1417 #endif
1418 	return 0; /* Found matching GICR frame */
1419 }
1420 
1421 /******************************************************************************
1422  * This function checks the interrupt ID and returns true for SGIs, (E)PPIs
1423  * and (E)SPIs IDs. Any interrupt ID outside the range is invalid and returns
1424  * false.
1425  *****************************************************************************/
is_valid_interrupt(unsigned int id)1426 static bool is_valid_interrupt(unsigned int id)
1427 {
1428 	/* Valid interrupts:
1429 	 * SGIs: 0-15, PPIs: 16-31, EPPIs: 1056-1119
1430 	 * SPIs: 32-1019, ESPIs: 4096-5119
1431 	 */
1432 	if ((IS_SGI_PPI(id)) || (IS_SPI(id))) {
1433 		return true;
1434 	}
1435 
1436 	return false;
1437 }
1438