1 /*
2  * Copyright 2021-2022 NXP
3  * SPDX-License-Identifier: BSD-3-Clause
4  *
5  */
6 
7 #include <errno.h>
8 #include <stdint.h>
9 #include <stdio.h>
10 #include <stdlib.h>
11 #include <string.h>
12 
13 #include <common/debug.h>
14 #include "csr.h"
15 #include <ddr.h>
16 #include "ddr4fw.h"
17 #include <drivers/delay_timer.h>
18 #ifdef NXP_WARM_BOOT
19 #include <fspi_api.h>
20 #endif
21 #include "input.h"
22 #include <lib/mmio.h>
23 #include <lib/utils.h>
24 #include <lib/xlat_tables/xlat_tables_v2.h>
25 #ifdef DDR_PHY_DEBUG
26 #include "messages.h"
27 #endif
28 #ifdef NXP_WARM_BOOT
29 #include "phy.h"
30 #endif
31 #include "pie.h"
32 
33 #define TIMEOUTDEFAULT 500
34 #define MAP_PHY_ADDR(pstate, n, instance, offset, c) \
35 		((((pstate * n) + instance + c) << 12) + offset)
36 
map_phy_addr_space(uint32_t addr)37 static uint32_t map_phy_addr_space(uint32_t addr)
38 {
39 	/* 23 bit addressing */
40 	uint32_t pstate =     (addr & U(0x700000)) >> 20U; /* bit 22:20 */
41 	uint32_t block_type = (addr & U(0x0f0000)) >> 16U; /* bit 19:16 */
42 	uint32_t instance =   (addr & U(0x00f000)) >> 12U; /* bit 15:12 */
43 	uint32_t offset =     (addr & U(0x000fff));        /* bit 11:0 */
44 
45 	switch (block_type) {
46 	case 0x0: /* 0x0 : ANIB */
47 		return MAP_PHY_ADDR(pstate, 12, instance, offset, 0);
48 	case 0x1: /* 0x1 : DBYTE */
49 		return MAP_PHY_ADDR(pstate, 10, instance, offset, 0x30);
50 	case 0x2: /* 0x2 : MASTER */
51 		return MAP_PHY_ADDR(pstate, 1, 0, offset, 0x58);
52 	case 0x4: /* 0x4 : ACSM */
53 		return MAP_PHY_ADDR(pstate, 1, 0, offset, 0x5c);
54 	case 0x5: /* 0x5 : μCTL Memory */
55 		return MAP_PHY_ADDR(pstate, 0, instance, offset, 0x60);
56 	case 0x7: /* 0x7 : PPGC */
57 		return MAP_PHY_ADDR(pstate, 0, 0, offset, 0x68);
58 	case 0x9: /* 0x9 : INITENG */
59 		return MAP_PHY_ADDR(pstate, 1, 0, offset, 0x69);
60 	case 0xc: /* 0xC : DRTUB */
61 		return MAP_PHY_ADDR(pstate, 0, 0, offset, 0x6d);
62 	case 0xd: /* 0xD : APB Only */
63 		return MAP_PHY_ADDR(pstate, 0, 0, offset, 0x6e);
64 	default:
65 		printf("ERR: Invalid block_type = 0x%x\n", block_type);
66 		return 0;
67 	}
68 }
69 
phy_io_addr(void * phy,uint32_t addr)70 static inline uint16_t *phy_io_addr(void *phy, uint32_t addr)
71 {
72 	return phy + (map_phy_addr_space(addr) << 2);
73 }
74 
phy_io_write16(uint16_t * phy,uint32_t addr,uint16_t data)75 static inline void phy_io_write16(uint16_t *phy, uint32_t addr, uint16_t data)
76 {
77 	mmio_write_16((uintptr_t)phy_io_addr(phy, addr), data);
78 #ifdef DEBUG_PHY_IO
79 	printf("0x%06x,0x%x\n", addr, data);
80 #endif
81 }
82 
phy_io_read16(uint16_t * phy,uint32_t addr)83 static inline uint16_t phy_io_read16(uint16_t *phy, uint32_t addr)
84 {
85 	uint16_t reg = mmio_read_16((uintptr_t) phy_io_addr(phy, addr));
86 
87 #ifdef DEBUG_PHY_IO
88 	printf("R: 0x%06x,0x%x\n", addr, reg);
89 #endif
90 
91 	return reg;
92 }
93 
94 #ifdef NXP_APPLY_MAX_CDD
95 
96 #define CDD_VAL_READ_ADDR (0x054012)
97 #define CDD_DATA_LEN    (60)
98 
read_phy_reg(uint16_t * phy,uint32_t addr,uint16_t * buf,uint32_t len)99 static void read_phy_reg(uint16_t *phy, uint32_t addr,
100 		uint16_t *buf, uint32_t len)
101 {
102 	uint32_t i = 0U;
103 
104 	for (i = 0U; i < len/2; i++) {
105 		buf[i] = phy_io_read16(phy, (addr + i));
106 	}
107 }
108 
findrank(uint32_t cs_in_use)109 static uint32_t findrank(uint32_t cs_in_use)
110 {
111 	uint32_t val = 0U;
112 
113 	switch (cs_in_use) {
114 	case U(0xf):
115 		val = 4U;
116 		break;
117 	case U(0x3):
118 		val = 2U;
119 		break;
120 	case U(0x1):
121 		val = 1U;
122 		break;
123 	default:
124 		printf("Error - Invalid cs_in_use value\n");
125 	}
126 	return val;
127 }
128 
findmax(uint8_t * buf,uint32_t len)129 static uint8_t findmax(uint8_t *buf, uint32_t len)
130 {
131 	uint8_t max = 0U;
132 	uint32_t i = 0U;
133 
134 	for (i = 0U; i < len; i++) {
135 		if (buf[i] > max) {
136 			max = buf[i];
137 		}
138 	}
139 
140 	return max;
141 }
142 
get_cdd_val(uint16_t ** phy_ptr,uint32_t rank,uint32_t freq,uint32_t * tcfg0,uint32_t * tcfg4)143 static void get_cdd_val(uint16_t **phy_ptr, uint32_t rank, uint32_t freq,
144 		uint32_t *tcfg0, uint32_t *tcfg4)
145 {
146 	uint8_t cdd[CDD_DATA_LEN+4] = {0U};
147 	uint32_t i, val = 0U;
148 	uint16_t *phy;
149 	uint8_t buf[16] = {U(0x0)};
150 	uint8_t trr = 0U, tww = 0U, trw = 0U, twr = 0U;
151 	uint8_t rrmax = 0U, wwmax = 0U, rwmax = 0U, wrmax = 0U;
152 	uint8_t tmp = U(0x0);
153 	uint8_t *c =  NULL;
154 
155 	for (i = 0U; i < NUM_OF_DDRC; i++) {
156 
157 		phy = phy_ptr[i];
158 		if (phy == NULL) {
159 			continue;
160 		}
161 
162 		phy_io_write16(phy, t_apbonly |
163 				csr_micro_cont_mux_sel_addr, U(0x0));
164 
165 		read_phy_reg(phy, CDD_VAL_READ_ADDR,
166 				(uint16_t *)&cdd, CDD_DATA_LEN);
167 
168 		phy_io_write16(phy, t_apbonly |
169 				csr_micro_cont_mux_sel_addr, U(0x1));
170 
171 	/* CDD values and address
172 	 *
173 	 *   0x054012    0x24    cdd[0]  CDD[X][X]
174 	 *   0x054012    0x25    cdd[1]  RR[3][2]
175 	 *   0x054013    0x26    cdd[2]  RR[3][1]
176 	 *   0x054013    0x27    cdd[3]  RR[3][0]
177 	 *   0x054014    0x28    cdd[4]  RR[2][3]
178 	 *   0x054014    0x29    cdd[5]  RR[2][1]
179 	 *   0x054015    0x2a    cdd[6]  RR[2][0]
180 	 *   0x054015    0x2b    cdd[7]  RR[1][3]
181 	 *   0x054016    0x2c    cdd[8]  RR[1][2]
182 	 *   0x054016    0x2d    cdd[9]  RR[1][0]
183 	 *   0x054017    0x2e    cdd[10] RR[0][3]
184 	 *   0x054017    0x2f    cdd[11] RR[0][2]
185 	 *   0x054018    0x30    cdd[12] RR[0][1]
186 
187 	 *   0x054018    0x31    cdd[13] WW[3][2]
188 	 *   0x054019    0x32    cdd[14] WW[3][1]
189 	 *   0x054019    0x33    cdd[15] WW[3][0]
190 	 *   0x05401a    0x34    cdd[16] WW[2][3]
191 	 *   0x05401a    0x35    cdd[17] WW[2][1]
192 	 *   0x05401b    0x36    cdd[18] WW[2][0]
193 	 *   0x05401b    0x37    cdd[19] WW[1][3]
194 	 *   0x05401c    0x38    cdd[20] WW[1][2]
195 	 *   0x05401c    0x39    cdd[21] WW[1][0]
196 	 *   0x05401d    0x3a    cdd[22] WW[0][3]
197 	 *   0x05401d    0x3b    cdd[23] WW[0][2]
198 	 *   0x05401e    0x3c    cdd[24] WW[0][1]
199 
200 	 *   0x05401e    0x3d    cdd[25] RW[3][3]
201 	 *   0x05401f    0x3e    cdd[26] RW[3][2]
202 	 *   0x05401f    0x3f    cdd[27] RW[3][1]
203 	 *   0x054020    0x40    cdd[28] RW[3][0]
204 	 *   0x054020    0x41    cdd[29] RW[2][3]
205 	 *   0x054021    0x42    cdd[30] RW[2][2]
206 	 *   0x054021    0x43    cdd[31] RW[2][1]
207 	 *   0x054022    0x44    cdd[32] RW[2][0]
208 	 *   0x054022    0x45    cdd[33] RW[1][3]
209 	 *   0x054023    0x46    cdd[34] RW[1][2]
210 	 *   0x054023    0x47    cdd[35] RW[1][1]
211 	 *   0x054024    0x48    cdd[36] RW[1][0]
212 	 *   0x054024    0x49    cdd[37] RW[0][3]
213 	 *   0x054025    0x4a    cdd[38] RW[0][2]
214 	 *   0x054025    0x4b    cdd[39] RW[0][1]
215 	 *   0x054026    0x4c    cdd[40] RW[0][0]
216 
217 	 *   0x054026    0x4d    cdd[41] WR[3][3]
218 	 *   0x054027    0x4e    cdd[42] WR[3][2]
219 	 *   0x054027    0x4f    cdd[43] WR[3][1]
220 	 *   0x054028    0x50    cdd[44] WR[3][0]
221 	 *   0x054028    0x51    cdd[45] WR[2][3]
222 	 *   0x054029    0x52    cdd[46] WR[2][2]
223 	 *   0x054029    0x53    cdd[47] WR[2][1]
224 	 *   0x05402a    0x54    cdd[48] WR[2][0]
225 	 *   0x05402a    0x55    cdd[49] WR[1][3]
226 	 *   0x05402b    0x56    cdd[50] WR[1][2]
227 	 *   0x05402b    0x57    cdd[51] WR[1][1]
228 	 *   0x05402c    0x58    cdd[52] WR[1][0]
229 	 *   0x05402c    0x59    cdd[53] WR[0][3]
230 	 *   0x05402d    0x5a    cdd[54] WR[0][2]
231 	 *   0x05402d    0x5b    cdd[55] WR[0][1]
232 	 *   0x05402e    0x5c    cdd[56] WR[0][0]
233 	 *   0x05402e    0x5d    cdd[57] CDD[Y][Y]
234 	 */
235 
236 		switch (rank) {
237 		case 1U:
238 			tmp = rwmax;
239 			rwmax = cdd[40];
240 			if (tmp > rwmax) {
241 				rwmax = tmp;
242 			}
243 
244 			break;
245 
246 		case 2U:
247 			buf[0] = cdd[12];
248 			buf[1] = cdd[9];
249 			tmp = rrmax;
250 			rrmax = findmax(buf, 2U);
251 			if (tmp > rrmax) {
252 				rrmax = tmp;
253 			}
254 
255 			buf[0] = cdd[24];
256 			buf[1] = cdd[21];
257 			tmp = wwmax;
258 			wwmax = findmax(buf, 2U);
259 			if (tmp > wwmax) {
260 				wwmax = tmp;
261 			}
262 
263 			buf[0] = cdd[40];
264 			buf[1] = cdd[39];
265 			buf[2] = cdd[36];
266 			buf[3] = cdd[35];
267 			tmp = rwmax;
268 			rwmax = findmax(buf, 4U);
269 			if (tmp > rwmax) {
270 				rwmax = tmp;
271 			}
272 
273 			wrmax = wwmax;
274 
275 			break;
276 
277 		case 4U:
278 			tmp = rrmax;
279 			c = &cdd[1];
280 			rrmax = findmax(c, 12U);
281 			if (tmp > rrmax) {
282 				rrmax = tmp;
283 			}
284 
285 			tmp = wwmax;
286 			c = &cdd[13];
287 			wwmax = findmax(c, 12U);
288 			if (tmp > wwmax) {
289 				wwmax = tmp;
290 			}
291 
292 			tmp = rwmax;
293 			c = &cdd[25];
294 			rwmax = findmax(c, 16U);
295 			if (tmp > rwmax) {
296 				rwmax = tmp;
297 			}
298 
299 			wrmax = wwmax;
300 
301 			break;
302 
303 		}
304 	}
305 
306 	rrmax += 3U;
307 	wwmax += 4U;
308 
309 	if (wwmax > 7U) {
310 		wwmax = 7U;
311 	}
312 
313 	if (rrmax > 7U) {
314 		rrmax = 7U;
315 	}
316 
317 	if (wrmax > U(0xf)) {
318 		wrmax = 0U;
319 	}
320 
321 	if (rwmax > U(0x7)) {
322 		rwmax = U(0x7);
323 	}
324 
325 	val = *tcfg0;
326 	tww = (val >> 24U) & U(0x3);
327 	trr = (val >> 26U) & U(0x3);
328 	twr = (val >> 28U) & U(0x3);
329 	trw = (val >> 30U) & U(0x3);
330 
331 	val = *tcfg4;
332 	tww = tww | (((val >> 8U) & U(0x1)) << 2U);
333 	trr = trr | (((val >> 10U) & U(0x1)) << 2U);
334 	twr = twr | (((val >> 12U) & U(0x1)) << 2U);
335 	trw = trw | (((val >> 14U) & U(0x3)) << 2U);
336 
337 	if (trr > rrmax) {
338 		rrmax = trr;
339 	}
340 
341 	if (tww > wwmax) {
342 		wwmax = tww;
343 	}
344 
345 	if (trw > rwmax) {
346 		rwmax = trw;
347 	}
348 
349 	if (twr > wrmax) {
350 		wrmax = twr;
351 	}
352 
353 	debug("CDD rrmax %x wwmax %x rwmax %x wrmax %x\n",
354 			rrmax, wwmax, rwmax, wrmax);
355 
356 	val = ((wwmax & U(0x3)) << 24U)
357 		| ((rrmax & U(0x3)) << 26U)
358 		| ((wrmax & U(0x3)) << 28U)
359 		| ((rwmax & U(0x3)) << 30U);
360 
361 	*tcfg0 = (*tcfg0 & U(0x00FFFFFF)) | (val);
362 
363 	val = (((wwmax >> 2U) & U(0x1)) << 8U)
364 		| (((rrmax >> 2U) & U(0x1)) << 10U)
365 		| (((wrmax >> 2U) & U(0x1)) << 12U)
366 		| (((rwmax >> 2U) & U(0x3)) << 14U);
367 
368 	*tcfg4 = (*tcfg4 & U(0xffff00ff)) | val;
369 }
370 #endif
371 
372 #ifdef NXP_WARM_BOOT
save_phy_training_values(uint16_t ** phy_ptr,uint32_t address_to_store,uint32_t num_of_phy,int train2d,struct ddr_ctrl_reg_values * ddrctrl_regs)373 int save_phy_training_values(uint16_t **phy_ptr, uint32_t address_to_store,
374 		uint32_t num_of_phy, int train2d
375 #ifdef NXP_APPLY_MAX_CDD
376 			, struct ddr_ctrl_reg_values *ddrctrl_regs
377 #endif
378 		)
379 
380 {
381 	uint16_t *phy = NULL, value = 0x0;
382 	uint32_t size = 1U, num_of_regs = 1U, phy_store = 0U;
383 	int i = 0, j = 0, ret = -EINVAL;
384 
385 	ret = xspi_sector_erase(address_to_store, PHY_ERASE_SIZE);
386 	if (ret != 0) {
387 		return -EINVAL;
388 	}
389 
390 	for (j = 0; j < num_of_phy; j++) {
391 		/* Save training values of all PHYs */
392 		phy = phy_ptr[j];
393 		size = sizeof(training_1D_values);
394 		num_of_regs = ARRAY_SIZE(training_1D_values);
395 
396 		/* Enable access to the internal CSRs */
397 		phy_io_write16(phy, t_apbonly |
398 				csr_micro_cont_mux_sel_addr, 0x0);
399 		/* Enable clocks in case they were disabled. */
400 		phy_io_write16(phy, t_drtub |
401 				csr_ucclk_hclk_enables_addr, 0x3);
402 		if (train2d != 0) {
403 		/* Address to store training values is
404 		 * to be appended for next PHY
405 		 */
406 			phy_store = address_to_store + (j *
407 					(sizeof(training_1D_values) +
408 					 sizeof(training_2D_values)));
409 		} else {
410 			phy_store = address_to_store + (j *
411 					(sizeof(training_1D_values)));
412 		}
413 		debug("Saving 1D Training reg val at: %d\n", phy_store);
414 		for (i = 0; i < num_of_regs; i++) {
415 			value = phy_io_read16(phy, training_1D_values[i].addr);
416 #ifdef DEBUG_WARM_RESET
417 			debug("%d. Reg: %x, value: %x PHY: %p\n", i,
418 					training_1D_values[i].addr, value,
419 					phy_io_addr(phy,
420 						training_1D_values[i].addr));
421 #endif
422 			training_1D_values[i].data = value;
423 		}
424 		/* Storing 1D training values on flash */
425 		ret = xspi_write(phy_store, (void *)training_1D_values, size);
426 		if (train2d != 0) {
427 			phy_store = phy_store+size;
428 			size = sizeof(training_2D_values);
429 			num_of_regs = ARRAY_SIZE(training_2D_values);
430 			debug("Saving 2D Training reg val at:%d\n", phy_store);
431 			for (i = 0; i < num_of_regs; i++) {
432 				value = phy_io_read16(phy,
433 						training_2D_values[i].addr);
434 				training_2D_values[i].data = value;
435 #ifdef DEBUG_WARM_RESET
436 				debug("%d.2D addr:0x%x,val:0x%x,PHY:0x%p\n",
437 						i, training_2D_values[i].addr,
438 						value, phy_io_addr(phy,
439 						training_2D_values[i].addr));
440 #endif
441 			}
442 			/* Storing 2D training values on flash */
443 			ret = xspi_write(phy_store, training_2D_values,
444 					size);
445 		}
446 
447 #ifdef NXP_APPLY_MAX_CDD
448 		/* Save DDR control register Timing CFG 0 and 4 */
449 		phy_store  += size;
450 		size = sizeof(ddrctrl_regs);
451 		if (ret != 0) {
452 			ret = xspi_write(phy_store, ddrctrl_regs, size);
453 		}
454 #endif
455 		/* Disable clocks in case they were disabled. */
456 		phy_io_write16(phy, t_drtub |
457 				csr_ucclk_hclk_enables_addr, 0x0);
458 		/* Disable access to the internal CSRs */
459 		phy_io_write16(phy, t_apbonly |
460 				csr_micro_cont_mux_sel_addr, 0x1);
461 	}
462 	if (ret != 0) {
463 		return -EINVAL;
464 	}
465 
466 	return 0;
467 }
468 
restore_phy_training_values(uint16_t ** phy_ptr,uint32_t address_to_restore,uint32_t num_of_phy,int train2d,struct ddr_ctrl_reg_values * ddrctrl_regs)469 int restore_phy_training_values(uint16_t **phy_ptr, uint32_t address_to_restore,
470 		uint32_t num_of_phy, int train2d
471 #ifdef NXP_APPLY_MAX_CDD
472 		, struct ddr_ctrl_reg_values *ddrctrl_regs
473 #endif
474 		)
475 {
476 	uint16_t *phy = NULL;
477 	uint32_t size = 1U, num_of_regs = 1U, phy_store = 0U;
478 	int i = 0, j = 0, ret = -EINVAL;
479 
480 	debug("Restoring Training register values\n");
481 	for (j = 0; j < num_of_phy; j++) {
482 		phy = phy_ptr[j];
483 		size = sizeof(training_1D_values);
484 		num_of_regs = ARRAY_SIZE(training_1D_values);
485 		if (train2d != 0) {
486 		/* The address to restore training values is
487 		 * to be appended for next PHY
488 		 */
489 			phy_store = address_to_restore + (j *
490 					(sizeof(training_1D_values) +
491 					 sizeof(training_2D_values)));
492 		} else {
493 			phy_store = address_to_restore + (j *
494 					(sizeof(training_1D_values)));
495 		}
496 		/* Enable access to the internal CSRs */
497 		phy_io_write16(phy, t_apbonly |
498 				csr_micro_cont_mux_sel_addr, 0x0);
499 		/* Enable clocks in case they were disabled. */
500 		phy_io_write16(phy, t_drtub |
501 				csr_ucclk_hclk_enables_addr, 0x3);
502 
503 		/* Reading 1D training values from flash*/
504 		ret = xspi_read(phy_store, (uint32_t *)training_1D_values,
505 				size);
506 		if (ret != 0) {
507 #ifdef DEBUG_WARM_RESET
508 			debug("Unable to Read 1D training values %d\n",
509 					ret);
510 #endif
511 			return -EINVAL;
512 		}
513 
514 		debug("Restoring 1D Training reg val at:%08x\n", phy_store);
515 		for (i = 0; i < num_of_regs; i++) {
516 			phy_io_write16(phy, training_1D_values[i].addr,
517 					training_1D_values[i].data);
518 #ifdef DEBUG_WARM_RESET
519 			debug("%d. Reg: %x, value: %x PHY: %p\n", i,
520 					training_1D_values[i].addr,
521 					training_1D_values[i].data,
522 					phy_io_addr(phy,
523 						training_1D_values[i].addr));
524 #endif
525 		}
526 		if (train2d != 0) {
527 			phy_store = phy_store + size;
528 			size = sizeof(training_2D_values);
529 			num_of_regs = ARRAY_SIZE(training_2D_values);
530 			/* Reading 2D training values from flash */
531 			ret = xspi_read(phy_store,
532 					(uint32_t *)training_2D_values,	size);
533 
534 			if (ret != 0) {
535 #ifdef DEBUG_WARM_RESET
536 				debug("Unable to Read 2D training values %d\n",
537 						ret);
538 #endif
539 				return -EINVAL;
540 			}
541 
542 			debug("Restoring 2D Training reg val at:%08x\n",
543 					phy_store);
544 			for (i = 0; i < num_of_regs; i++) {
545 				phy_io_write16(phy, training_2D_values[i].addr,
546 						training_2D_values[i].data);
547 #ifdef DEBUG_WARM_RESET
548 				debug("%d. Reg: %x, value: %x PHY: %p\n", i,
549 						training_2D_values[i].addr,
550 						training_2D_values[i].data,
551 						phy_io_addr(phy,
552 						training_1D_values[i].addr));
553 #endif
554 			}
555 		}
556 #ifdef NXP_APPLY_MAX_CDD
557 		phy_store = phy_store + size;
558 		size = sizeof(ddrctrl_regs);
559 		ret = xspi_read(phy_store, (uint32_t *)ddrctrl_regs, size);
560 #endif
561 		/* Disable clocks in case they were disabled. */
562 		phy_io_write16(phy, t_drtub |
563 				csr_ucclk_hclk_enables_addr, 0x0);
564 		/* Disable access to the internal CSRs */
565 		phy_io_write16(phy, t_apbonly |
566 				csr_micro_cont_mux_sel_addr, 0x1);
567 	}
568 	if (ret != 0) {
569 		return -EINVAL;
570 	}
571 	return 0;
572 }
573 #endif
574 
load_pieimage(uint16_t * phy,enum dimm_types dimm_type)575 static void load_pieimage(uint16_t *phy,
576 			  enum dimm_types dimm_type)
577 {
578 	int i;
579 	int size;
580 	const struct pie *image = NULL;
581 
582 	switch (dimm_type) {
583 	case UDIMM:
584 	case SODIMM:
585 	case NODIMM:
586 		image = pie_udimm;
587 		size = ARRAY_SIZE(pie_udimm);
588 		break;
589 	case RDIMM:
590 		image = pie_rdimm;
591 		size = ARRAY_SIZE(pie_rdimm);
592 		break;
593 	case LRDIMM:
594 		image = pie_lrdimm;
595 		size = ARRAY_SIZE(pie_lrdimm);
596 		break;
597 	default:
598 		printf("Unsupported DIMM type\n");
599 		break;
600 	}
601 
602 	if (image != NULL) {
603 		for (i = 0; i < size; i++)
604 			phy_io_write16(phy, image[i].addr, image[i].data);
605 	}
606 }
607 
prog_acsm_playback(uint16_t * phy,const struct input * input,const void * msg)608 static void prog_acsm_playback(uint16_t *phy,
609 			       const struct input *input, const void *msg)
610 {
611 	int vec;
612 	const struct ddr4r1d *msg_blk;
613 	uint16_t acsmplayback[2][3];
614 	uint32_t f0rc0a;
615 	uint32_t f0rc3x;
616 	uint32_t f0rc5x;
617 
618 	if (input->basic.dimm_type != RDIMM) {
619 		return;
620 	}
621 
622 	msg_blk = msg;
623 	f0rc0a = (msg_blk->f0rc0a_d0 & U(0xf)) | U(0xa0);
624 	f0rc3x = (msg_blk->f0rc3x_d0 & U(0xff)) | U(0x300);
625 	f0rc5x = (input->adv.phy_gen2_umctl_f0rc5x & U(0xff)) | U(0x500);
626 
627 	acsmplayback[0][0] = U(0x3ff) & f0rc0a;
628 	acsmplayback[1][0] = (U(0x1c00) & f0rc0a) >> 10U;
629 	acsmplayback[0][1] = U(0x3ff) & f0rc3x;
630 	acsmplayback[1][1] = (U(0x1c00) & f0rc3x) >> 10U;
631 	acsmplayback[0][2] = U(0x3ff) & f0rc5x;
632 	acsmplayback[1][2] = (U(0x1c00) & f0rc5x) >> 10U;
633 	for (vec = 0; vec < 3; vec++) {
634 		phy_io_write16(phy, t_acsm | (csr_acsm_playback0x0_addr +
635 			       (vec << 1)), acsmplayback[0][vec]);
636 		phy_io_write16(phy, t_acsm | (csr_acsm_playback1x0_addr +
637 			       (vec << 1)), acsmplayback[1][vec]);
638 	}
639 }
640 
prog_acsm_ctr(uint16_t * phy,const struct input * input)641 static void prog_acsm_ctr(uint16_t *phy,
642 			  const struct input *input)
643 {
644 	if (input->basic.dimm_type != RDIMM) {
645 		return;
646 	}
647 
648 	phy_io_write16(phy, t_acsm | csr_acsm_ctrl13_addr,
649 		       0xf << csr_acsm_cke_enb_lsb);
650 
651 	phy_io_write16(phy, t_acsm | csr_acsm_ctrl0_addr,
652 		       csr_acsm_par_mode_mask | csr_acsm_2t_mode_mask);
653 }
654 
prog_cal_rate_run(uint16_t * phy,const struct input * input)655 static void prog_cal_rate_run(uint16_t *phy,
656 			  const struct input *input)
657 {
658 	int cal_rate;
659 	int cal_interval;
660 	int cal_once;
661 	uint32_t addr;
662 
663 	cal_interval = input->adv.cal_interval;
664 	cal_once = input->adv.cal_once;
665 	cal_rate = 0x1 << csr_cal_run_lsb		|
666 			cal_once << csr_cal_once_lsb	|
667 			cal_interval << csr_cal_interval_lsb;
668 	addr = t_master | csr_cal_rate_addr;
669 	phy_io_write16(phy, addr, cal_rate);
670 }
671 
prog_seq0bdly0(uint16_t * phy,const struct input * input)672 static void prog_seq0bdly0(uint16_t *phy,
673 		    const struct input *input)
674 {
675 	int ps_count[4];
676 	int frq;
677 	uint32_t addr;
678 	int lower_freq_opt = 0;
679 
680 	__unused const soc_info_t *soc_info;
681 
682 	frq = input->basic.frequency >> 1;
683 	ps_count[0] = frq >> 3; /* 0.5 * frq / 4*/
684 	if (input->basic.frequency < 400) {
685 		lower_freq_opt = (input->basic.dimm_type == RDIMM) ? 7 : 3;
686 	} else if (input->basic.frequency < 533) {
687 		lower_freq_opt = (input->basic.dimm_type == RDIMM) ? 14 : 11;
688 	}
689 
690 	/* 1.0 * frq / 4 - lower_freq */
691 	ps_count[1] = (frq >> 2) - lower_freq_opt;
692 	ps_count[2] = (frq << 1) +  (frq >> 1); /* 10.0 * frq / 4 */
693 
694 #ifdef DDR_PLL_FIX
695 	soc_info = get_soc_info();
696 	if (soc_info->svr_reg.bf.maj_ver == 1) {
697 		ps_count[0] = 0x520; /* seq0bdly0 */
698 		ps_count[1] = 0xa41; /* seq0bdly1 */
699 		ps_count[2] = 0x668a; /* seq0bdly2 */
700 	}
701 #endif
702 	if (frq > 266) {
703 		ps_count[3] = 44;
704 	} else if (frq > 200) {
705 		ps_count[3] = 33;
706 	} else {
707 		ps_count[3] = 16;
708 	}
709 
710 	addr = t_master | csr_seq0bdly0_addr;
711 	phy_io_write16(phy, addr, ps_count[0]);
712 
713 	debug("seq0bdly0 = 0x%x\n", phy_io_read16(phy, addr));
714 
715 	addr = t_master | csr_seq0bdly1_addr;
716 	phy_io_write16(phy, addr, ps_count[1]);
717 
718 	debug("seq0bdly1 = 0x%x\n", phy_io_read16(phy, addr));
719 
720 	addr = t_master | csr_seq0bdly2_addr;
721 	phy_io_write16(phy, addr, ps_count[2]);
722 
723 	debug("seq0bdly2 = 0x%x\n", phy_io_read16(phy, addr));
724 
725 	addr = t_master | csr_seq0bdly3_addr;
726 	phy_io_write16(phy, addr, ps_count[3]);
727 
728 	debug("seq0bdly3 = 0x%x\n", phy_io_read16(phy, addr));
729 }
730 
731 /* Only RDIMM requires msg_blk */
i_load_pie(uint16_t ** phy_ptr,const struct input * input,const void * msg)732 static void i_load_pie(uint16_t **phy_ptr,
733 		       const struct input *input,
734 		       const void *msg)
735 {
736 	int i;
737 	uint16_t *phy;
738 
739 	for (i = 0; i < NUM_OF_DDRC; i++) {
740 		phy = phy_ptr[i];
741 		if (phy == NULL) {
742 			continue;
743 		}
744 
745 		phy_io_write16(phy,
746 			       t_apbonly | csr_micro_cont_mux_sel_addr,
747 			       0U);
748 
749 		load_pieimage(phy, input->basic.dimm_type);
750 
751 		prog_seq0bdly0(phy, input);
752 		phy_io_write16(phy, t_initeng | csr_seq0bdisable_flag0_addr,
753 			       U(0x0000));
754 		phy_io_write16(phy, t_initeng | csr_seq0bdisable_flag1_addr,
755 			       U(0x0173));
756 		phy_io_write16(phy, t_initeng | csr_seq0bdisable_flag2_addr,
757 			       U(0x0060));
758 		phy_io_write16(phy, t_initeng | csr_seq0bdisable_flag3_addr,
759 			       U(0x6110));
760 		phy_io_write16(phy, t_initeng | csr_seq0bdisable_flag4_addr,
761 			       U(0x2152));
762 		phy_io_write16(phy, t_initeng | csr_seq0bdisable_flag5_addr,
763 			       U(0xdfbd));
764 		phy_io_write16(phy, t_initeng | csr_seq0bdisable_flag6_addr,
765 			       input->basic.dimm_type == RDIMM &&
766 			       input->adv.phy_gen2_umctl_opt == 1U ?
767 			       U(0x6000) : U(0xffff));
768 		phy_io_write16(phy, t_initeng | csr_seq0bdisable_flag7_addr,
769 			       U(0x6152));
770 		prog_acsm_playback(phy, input, msg);		/* rdimm */
771 		prog_acsm_ctr(phy, input);			/* rdimm */
772 
773 		phy_io_write16(phy, t_master | csr_cal_zap_addr, U(0x1));
774 		prog_cal_rate_run(phy, input);
775 
776 		phy_io_write16(phy, t_drtub | csr_ucclk_hclk_enables_addr,
777 			       input->basic.dimm_type == RDIMM ? U(0x2) : 0U);
778 
779 		phy_io_write16(phy, t_apbonly | csr_micro_cont_mux_sel_addr, 1U);
780 	}
781 }
782 
phy_gen2_init_input(struct input * input)783 static void phy_gen2_init_input(struct input *input)
784 {
785 	int i;
786 
787 	input->adv.dram_byte_swap		= 0;
788 	input->adv.ext_cal_res_val		= 0;
789 	input->adv.tx_slew_rise_dq		= 0xf;
790 	input->adv.tx_slew_fall_dq		= 0xf;
791 	input->adv.tx_slew_rise_ac		= 0xf;
792 	input->adv.tx_slew_fall_ac		= 0xf;
793 	input->adv.mem_alert_en			= 0;
794 	input->adv.mem_alert_puimp		= 5;
795 	input->adv.mem_alert_vref_level		= 0x29;
796 	input->adv.mem_alert_sync_bypass	= 0;
797 	input->adv.cal_interval			= 0x9;
798 	input->adv.cal_once			= 0;
799 	input->adv.dis_dyn_adr_tri		= 0;
800 	input->adv.is2ttiming			= 0;
801 	input->adv.d4rx_preamble_length		= 0;
802 	input->adv.d4tx_preamble_length		= 0;
803 
804 	for (i = 0; i < 7; i++) {
805 		debug("mr[%d] = 0x%x\n", i, input->mr[i]);
806 	}
807 
808 	debug("input->cs_d0 = 0x%x\n", input->cs_d0);
809 	debug("input->cs_d1 = 0x%x\n", input->cs_d1);
810 	debug("input->mirror = 0x%x\n", input->mirror);
811 	debug("PHY ODT impedance = %d ohm\n", input->adv.odtimpedance);
812 	debug("PHY DQ driver impedance = %d ohm\n", input->adv.tx_impedance);
813 	debug("PHY Addr driver impedance = %d ohm\n", input->adv.atx_impedance);
814 
815 	for (i = 0; i < 4; i++) {
816 		debug("odt[%d] = 0x%x\n", i, input->odt[i]);
817 	}
818 
819 	if (input->basic.dimm_type == RDIMM) {
820 		for (i = 0; i < 16; i++) {
821 			debug("input->rcw[%d] = 0x%x\n", i, input->rcw[i]);
822 		}
823 		debug("input->rcw3x = 0x%x\n", input->rcw3x);
824 	}
825 }
826 
827 /*
828  * All protocols share the same base structure of message block.
829  * RDIMM and LRDIMM have more entries defined than UDIMM.
830  * Create message blocks for 1D and 2D training.
831  * Update len with message block size.
832  */
phy_gen2_msg_init(void * msg_1d,void * msg_2d,const struct input * input)833 static int phy_gen2_msg_init(void *msg_1d,
834 			     void *msg_2d,
835 			     const struct input *input)
836 {
837 	struct ddr4u1d *msg_blk = msg_1d;
838 	struct ddr4u2d *msg_blk_2d = msg_2d;
839 	struct ddr4r1d *msg_blk_r;
840 	struct ddr4lr1d *msg_blk_lr;
841 
842 	switch (input->basic.dimm_type) {
843 	case UDIMM:
844 	case SODIMM:
845 	case NODIMM:
846 		msg_blk->dram_type	= U(0x2);
847 		break;
848 	case RDIMM:
849 		msg_blk->dram_type	= U(0x4);
850 		break;
851 	case LRDIMM:
852 		msg_blk->dram_type	= U(0x5);
853 		break;
854 	default:
855 		ERROR("Unsupported DIMM type\n");
856 		return -EINVAL;
857 	}
858 	msg_blk->pstate			= 0U;
859 
860 	/*Enable quickRd2D, a substage of read deskew, to 1D training.*/
861 	msg_blk->reserved00             = U(0x20);
862 
863 	/*Enable High-Effort WrDQ1D.*/
864 	msg_blk->reserved00             |= U(0x40);
865 
866 	/* Enable 1D extra effort training.*/
867 	msg_blk->reserved1c[3]		= U(0x3);
868 
869 	if (input->basic.dimm_type == LRDIMM) {
870 		msg_blk->sequence_ctrl	= U(0x3f1f);
871 	} else {
872 		msg_blk->sequence_ctrl	= U(0x031f);
873 	}
874 	msg_blk->phy_config_override	= 0U;
875 #ifdef DDR_PHY_DEBUG
876 	msg_blk->hdt_ctrl		= U(0x5);
877 #else
878 	msg_blk->hdt_ctrl		= U(0xc9);
879 #endif
880 	msg_blk->msg_misc		= U(0x0);
881 	msg_blk->dfimrlmargin		= U(0x1);
882 	msg_blk->phy_vref		= input->vref ? input->vref : U(0x61);
883 	msg_blk->cs_present		= input->cs_d0 | input->cs_d1;
884 	msg_blk->cs_present_d0		= input->cs_d0;
885 	msg_blk->cs_present_d1		= input->cs_d1;
886 	if (input->mirror != 0) {
887 		msg_blk->addr_mirror	= U(0x0a);	/* odd CS are mirrored */
888 	}
889 	msg_blk->share2dvref_result	= 1U;
890 
891 	msg_blk->acsm_odt_ctrl0		= input->odt[0];
892 	msg_blk->acsm_odt_ctrl1		= input->odt[1];
893 	msg_blk->acsm_odt_ctrl2		= input->odt[2];
894 	msg_blk->acsm_odt_ctrl3		= input->odt[3];
895 	msg_blk->enabled_dqs = (input->basic.num_active_dbyte_dfi0 +
896 				input->basic.num_active_dbyte_dfi1) * 8;
897 	msg_blk->x16present		= input->basic.dram_data_width == 0x10 ?
898 					  msg_blk->cs_present : 0;
899 	msg_blk->d4misc			= U(0x1);
900 	msg_blk->cs_setup_gddec		= U(0x1);
901 	msg_blk->rtt_nom_wr_park0	= 0U;
902 	msg_blk->rtt_nom_wr_park1	= 0U;
903 	msg_blk->rtt_nom_wr_park2	= 0U;
904 	msg_blk->rtt_nom_wr_park3	= 0U;
905 	msg_blk->rtt_nom_wr_park4	= 0U;
906 	msg_blk->rtt_nom_wr_park5	= 0U;
907 	msg_blk->rtt_nom_wr_park6	= 0U;
908 	msg_blk->rtt_nom_wr_park7	= 0U;
909 	msg_blk->mr0			= input->mr[0];
910 	msg_blk->mr1			= input->mr[1];
911 	msg_blk->mr2			= input->mr[2];
912 	msg_blk->mr3			= input->mr[3];
913 	msg_blk->mr4			= input->mr[4];
914 	msg_blk->mr5			= input->mr[5];
915 	msg_blk->mr6			= input->mr[6];
916 	if ((msg_blk->mr4 & U(0x1c0)) != 0U) {
917 		ERROR("Setting DRAM CAL mode is not supported\n");
918 	}
919 
920 	msg_blk->alt_cas_l		= 0U;
921 	msg_blk->alt_wcas_l		= 0U;
922 
923 	msg_blk->dramfreq		= input->basic.frequency * 2U;
924 	msg_blk->pll_bypass_en		= input->basic.pll_bypass;
925 	msg_blk->dfi_freq_ratio		= input->basic.dfi_freq_ratio == 0U ? 1U :
926 					  input->basic.dfi_freq_ratio == 1U ? 2U :
927 					  4U;
928 	msg_blk->bpznres_val		= input->adv.ext_cal_res_val;
929 	msg_blk->disabled_dbyte		= 0U;
930 
931 	debug("msg_blk->dram_type = 0x%x\n", msg_blk->dram_type);
932 	debug("msg_blk->sequence_ctrl = 0x%x\n", msg_blk->sequence_ctrl);
933 	debug("msg_blk->phy_cfg = 0x%x\n", msg_blk->phy_cfg);
934 	debug("msg_blk->x16present = 0x%x\n", msg_blk->x16present);
935 	debug("msg_blk->dramfreq = 0x%x\n", msg_blk->dramfreq);
936 	debug("msg_blk->pll_bypass_en = 0x%x\n", msg_blk->pll_bypass_en);
937 	debug("msg_blk->dfi_freq_ratio = 0x%x\n", msg_blk->dfi_freq_ratio);
938 	debug("msg_blk->phy_odt_impedance = 0x%x\n",
939 						msg_blk->phy_odt_impedance);
940 	debug("msg_blk->phy_drv_impedance = 0x%x\n",
941 						msg_blk->phy_drv_impedance);
942 	debug("msg_blk->bpznres_val = 0x%x\n", msg_blk->bpznres_val);
943 	debug("msg_blk->enabled_dqs = 0x%x\n", msg_blk->enabled_dqs);
944 	debug("msg_blk->acsm_odt_ctrl0 = 0x%x\n", msg_blk->acsm_odt_ctrl0);
945 	debug("msg_blk->acsm_odt_ctrl1 = 0x%x\n", msg_blk->acsm_odt_ctrl1);
946 	debug("msg_blk->acsm_odt_ctrl2 = 0x%x\n", msg_blk->acsm_odt_ctrl2);
947 	debug("msg_blk->acsm_odt_ctrl3 = 0x%x\n", msg_blk->acsm_odt_ctrl3);
948 
949 	/* RDIMM only */
950 	if (input->basic.dimm_type == RDIMM ||
951 	    input->basic.dimm_type == LRDIMM) {
952 		msg_blk_r = (struct ddr4r1d *)msg_blk;
953 		if (msg_blk_r->cs_present_d0 != 0U) {
954 			msg_blk_r->f0rc00_d0 = input->rcw[0];
955 			msg_blk_r->f0rc01_d0 = input->rcw[1];
956 			msg_blk_r->f0rc02_d0 = input->rcw[2];
957 			msg_blk_r->f0rc03_d0 = input->rcw[3];
958 			msg_blk_r->f0rc04_d0 = input->rcw[4];
959 			msg_blk_r->f0rc05_d0 = input->rcw[5];
960 			msg_blk_r->f0rc06_d0 = input->rcw[6];
961 			msg_blk_r->f0rc07_d0 = input->rcw[7];
962 			msg_blk_r->f0rc08_d0 = input->rcw[8];
963 			msg_blk_r->f0rc09_d0 = input->rcw[9];
964 			msg_blk_r->f0rc0a_d0 = input->rcw[10];
965 			msg_blk_r->f0rc0b_d0 = input->rcw[11];
966 			msg_blk_r->f0rc0c_d0 = input->rcw[12];
967 			msg_blk_r->f0rc0d_d0 = input->rcw[13];
968 			msg_blk_r->f0rc0e_d0 = input->rcw[14];
969 			msg_blk_r->f0rc0f_d0 = input->rcw[15];
970 			msg_blk_r->f0rc3x_d0 = input->rcw3x;
971 		}
972 		if (msg_blk_r->cs_present_d1 != 0) {
973 			msg_blk_r->f0rc00_d1 = input->rcw[0];
974 			msg_blk_r->f0rc01_d1 = input->rcw[1];
975 			msg_blk_r->f0rc02_d1 = input->rcw[2];
976 			msg_blk_r->f0rc03_d1 = input->rcw[3];
977 			msg_blk_r->f0rc04_d1 = input->rcw[4];
978 			msg_blk_r->f0rc05_d1 = input->rcw[5];
979 			msg_blk_r->f0rc06_d1 = input->rcw[6];
980 			msg_blk_r->f0rc07_d1 = input->rcw[7];
981 			msg_blk_r->f0rc08_d1 = input->rcw[8];
982 			msg_blk_r->f0rc09_d1 = input->rcw[9];
983 			msg_blk_r->f0rc0a_d1 = input->rcw[10];
984 			msg_blk_r->f0rc0b_d1 = input->rcw[11];
985 			msg_blk_r->f0rc0c_d1 = input->rcw[12];
986 			msg_blk_r->f0rc0d_d1 = input->rcw[13];
987 			msg_blk_r->f0rc0e_d1 = input->rcw[14];
988 			msg_blk_r->f0rc0f_d1 = input->rcw[15];
989 			msg_blk_r->f0rc3x_d1 = input->rcw3x;
990 		}
991 		if (input->basic.dimm_type == LRDIMM) {
992 			msg_blk_lr = (struct ddr4lr1d *)msg_blk;
993 			msg_blk_lr->bc0a_d0 = msg_blk_lr->f0rc0a_d0;
994 			msg_blk_lr->bc0a_d1 = msg_blk_lr->f0rc0a_d1;
995 			msg_blk_lr->f0bc6x_d0 = msg_blk_lr->f0rc3x_d0;
996 			msg_blk_lr->f0bc6x_d1 = msg_blk_lr->f0rc3x_d1;
997 		}
998 	}
999 
1000 	/* below is different for 1D and 2D message block */
1001 	if (input->basic.train2d != 0) {
1002 		memcpy(msg_blk_2d, msg_blk, sizeof(struct ddr4u1d));
1003 		/*High-Effort WrDQ1D is applicable to 2D traning also*/
1004 		msg_blk_2d->reserved00          |= U(0x40);
1005 		msg_blk_2d->sequence_ctrl	= U(0x0061);
1006 		msg_blk_2d->rx2d_train_opt	= 0U;
1007 		msg_blk_2d->tx2d_train_opt	= 0U;
1008 		msg_blk_2d->share2dvref_result	= 1U;
1009 		msg_blk_2d->delay_weight2d	= U(0x20);
1010 		msg_blk_2d->voltage_weight2d	= U(0x80);
1011 		debug("rx2d_train_opt %d, tx2d_train_opt %d\n",
1012 				msg_blk_2d->rx2d_train_opt,
1013 				msg_blk_2d->tx2d_train_opt);
1014 	}
1015 
1016 	msg_blk->phy_cfg = (((msg_blk->mr3 & U(0x8)) != 0U) ||
1017 				((msg_blk_2d->mr3 & 0x8) != 0U)) ? 0U
1018 				: input->adv.is2ttiming;
1019 
1020 	return 0;
1021 }
1022 
prog_tx_pre_drv_mode(uint16_t * phy,const struct input * input)1023 static void prog_tx_pre_drv_mode(uint16_t *phy,
1024 				 const struct input *input)
1025 {
1026 	int lane, byte, b_addr, c_addr, p_addr;
1027 	int tx_slew_rate, tx_pre_p, tx_pre_n;
1028 	int tx_pre_drv_mode = 0x2;
1029 	uint32_t addr;
1030 
1031 	/* Program TxPreDrvMode with 0x2 */
1032 	/* FIXME: TxPreDrvMode depends on DramType? */
1033 	tx_pre_p = input->adv.tx_slew_rise_dq;
1034 	tx_pre_n = input->adv.tx_slew_fall_dq;
1035 	tx_slew_rate = tx_pre_drv_mode << csr_tx_pre_drv_mode_lsb	|
1036 		     tx_pre_p << csr_tx_pre_p_lsb			|
1037 		     tx_pre_n << csr_tx_pre_n_lsb;
1038 	p_addr = 0;
1039 	for (byte = 0; byte < input->basic.num_dbyte; byte++) {
1040 		c_addr = byte << 12;
1041 		for (lane = 0; lane <= 1; lane++) {
1042 			b_addr = lane << 8;
1043 			addr = p_addr | t_dbyte | c_addr | b_addr |
1044 					csr_tx_slew_rate_addr;
1045 			phy_io_write16(phy, addr, tx_slew_rate);
1046 		}
1047 	}
1048 }
1049 
prog_atx_pre_drv_mode(uint16_t * phy,const struct input * input)1050 static void prog_atx_pre_drv_mode(uint16_t *phy,
1051 				  const struct input *input)
1052 {
1053 	int anib, c_addr;
1054 	int atx_slew_rate, atx_pre_p, atx_pre_n, atx_pre_drv_mode,
1055 		ck_anib_inst[2];
1056 	uint32_t addr;
1057 
1058 	atx_pre_n = input->adv.tx_slew_fall_ac;
1059 	atx_pre_p = input->adv.tx_slew_rise_ac;
1060 
1061 	if (input->basic.num_anib == 8) {
1062 		ck_anib_inst[0] = 1;
1063 		ck_anib_inst[1] = 1;
1064 	} else if (input->basic.num_anib == 10 || input->basic.num_anib == 12 ||
1065 	    input->basic.num_anib == 13) {
1066 		ck_anib_inst[0] = 4;
1067 		ck_anib_inst[1] = 5;
1068 	} else {
1069 		ERROR("Invalid number of aNIBs: %d\n", input->basic.num_anib);
1070 		return;
1071 	}
1072 
1073 	for (anib = 0; anib < input->basic.num_anib; anib++) {
1074 		c_addr = anib << 12;
1075 		if (anib == ck_anib_inst[0] || anib == ck_anib_inst[1]) {
1076 			atx_pre_drv_mode = 0;
1077 		} else {
1078 			atx_pre_drv_mode = 3;
1079 		}
1080 		atx_slew_rate = atx_pre_drv_mode << csr_atx_pre_drv_mode_lsb |
1081 				atx_pre_n << csr_atx_pre_n_lsb		     |
1082 				atx_pre_p << csr_atx_pre_p_lsb;
1083 		addr = t_anib | c_addr | csr_atx_slew_rate_addr;
1084 		phy_io_write16(phy, addr, atx_slew_rate);
1085 	}
1086 }
1087 
prog_enable_cs_multicast(uint16_t * phy,const struct input * input)1088 static void prog_enable_cs_multicast(uint16_t *phy,
1089 				     const struct input *input)
1090 {
1091 	uint32_t addr = t_master | csr_enable_cs_multicast_addr;
1092 
1093 	if (input->basic.dimm_type != RDIMM &&
1094 	    input->basic.dimm_type != LRDIMM) {
1095 		return;
1096 	}
1097 
1098 	phy_io_write16(phy, addr, input->adv.cast_cs_to_cid);
1099 }
1100 
prog_dfi_rd_data_cs_dest_map(uint16_t * phy,unsigned int ip_rev,const struct input * input,const struct ddr4lr1d * msg)1101 static void prog_dfi_rd_data_cs_dest_map(uint16_t *phy,
1102 					 unsigned int ip_rev,
1103 					 const struct input *input,
1104 					 const struct ddr4lr1d *msg)
1105 {
1106 	const struct ddr4lr1d *msg_blk;
1107 	uint16_t dfi_xxdestm0 = 0U;
1108 	uint16_t dfi_xxdestm1 = 0U;
1109 	uint16_t dfi_xxdestm2 = 0U;
1110 	uint16_t dfi_xxdestm3 = 0U;
1111 	uint16_t dfi_rd_data_cs_dest_map;
1112 	uint16_t dfi_wr_data_cs_dest_map;
1113 	__unused const soc_info_t *soc_info;
1114 
1115 #ifdef ERRATA_DDR_A011396
1116 	/* Only apply to DDRC 5.05.00 */
1117 	soc_info = get_soc_info();
1118 	if ((soc_info->svr_reg.bf.maj_ver == 1U) && (ip_rev == U(0x50500))) {
1119 		phy_io_write16(phy,
1120 				t_master | csr_dfi_rd_data_cs_dest_map_addr,
1121 				0U);
1122 		return;
1123 	}
1124 #endif
1125 
1126 	msg_blk = msg;
1127 
1128 	switch (input->basic.dimm_type) {
1129 	case UDIMM:
1130 	case SODIMM:
1131 	case NODIMM:
1132 		if ((msg_blk->msg_misc & U(0x40)) != 0U) {
1133 			dfi_rd_data_cs_dest_map = U(0xa0);
1134 			dfi_wr_data_cs_dest_map = U(0xa0);
1135 
1136 			phy_io_write16(phy,
1137 				t_master | csr_dfi_rd_data_cs_dest_map_addr,
1138 				dfi_rd_data_cs_dest_map);
1139 			phy_io_write16(phy,
1140 				t_master | csr_dfi_wr_data_cs_dest_map_addr,
1141 				dfi_wr_data_cs_dest_map);
1142 		}
1143 		break;
1144 	case LRDIMM:
1145 		if (msg->cs_present_d1 != 0U) {
1146 			dfi_xxdestm2 = 1U;
1147 			dfi_xxdestm3 = 1U;
1148 		}
1149 
1150 		dfi_rd_data_cs_dest_map =
1151 			dfi_xxdestm0 << csr_dfi_rd_destm0_lsb	|
1152 			dfi_xxdestm1 << csr_dfi_rd_destm1_lsb	|
1153 			dfi_xxdestm2 << csr_dfi_rd_destm2_lsb	|
1154 			dfi_xxdestm3 << csr_dfi_rd_destm3_lsb;
1155 		dfi_wr_data_cs_dest_map =
1156 			dfi_xxdestm0 << csr_dfi_wr_destm0_lsb	|
1157 			dfi_xxdestm1 << csr_dfi_wr_destm1_lsb	|
1158 			dfi_xxdestm2 << csr_dfi_wr_destm2_lsb	|
1159 			dfi_xxdestm3 << csr_dfi_wr_destm3_lsb;
1160 		phy_io_write16(phy, t_master | csr_dfi_rd_data_cs_dest_map_addr,
1161 				dfi_rd_data_cs_dest_map);
1162 		phy_io_write16(phy, t_master | csr_dfi_wr_data_cs_dest_map_addr,
1163 				dfi_wr_data_cs_dest_map);
1164 
1165 		break;
1166 	default:
1167 		break;
1168 	}
1169 }
1170 
prog_pll_ctrl(uint16_t * phy,const struct input * input)1171 static void prog_pll_ctrl(uint16_t *phy,
1172 			   const struct input *input)
1173 {
1174 	uint32_t addr;
1175 	int pll_ctrl1 = 0x21; /* 000100001b */
1176 	int pll_ctrl4 = 0x17f; /* 101111111b */
1177 	int pll_test_mode = 0x24; /* 00100100b */
1178 
1179 	addr = t_master | csr_pll_ctrl1_addr;
1180 	phy_io_write16(phy, addr, pll_ctrl1);
1181 
1182 	debug("pll_ctrl1 = 0x%x\n", phy_io_read16(phy, addr));
1183 
1184 	addr = t_master | csr_pll_test_mode_addr;
1185 	phy_io_write16(phy, addr, pll_test_mode);
1186 
1187 	debug("pll_test_mode = 0x%x\n", phy_io_read16(phy, addr));
1188 
1189 	addr = t_master | csr_pll_ctrl4_addr;
1190 	phy_io_write16(phy, addr, pll_ctrl4);
1191 
1192 	debug("pll_ctrl4 = 0x%x\n", phy_io_read16(phy, addr));
1193 }
1194 
prog_pll_ctrl2(uint16_t * phy,const struct input * input)1195 static void prog_pll_ctrl2(uint16_t *phy,
1196 			   const struct input *input)
1197 {
1198 	int pll_ctrl2;
1199 	uint32_t addr = t_master | csr_pll_ctrl2_addr;
1200 
1201 	if (input->basic.frequency / 2 < 235) {
1202 		pll_ctrl2 = 0x7;
1203 	} else if (input->basic.frequency / 2 < 313) {
1204 		pll_ctrl2 = 0x6;
1205 	} else if (input->basic.frequency / 2 < 469) {
1206 		pll_ctrl2 = 0xb;
1207 	} else if (input->basic.frequency / 2 < 625) {
1208 		pll_ctrl2 = 0xa;
1209 	} else if (input->basic.frequency / 2 < 938) {
1210 		pll_ctrl2 = 0x19;
1211 	} else if (input->basic.frequency / 2 < 1067) {
1212 		pll_ctrl2 = 0x18;
1213 	} else {
1214 		pll_ctrl2 = 0x19;
1215 	}
1216 
1217 	phy_io_write16(phy, addr, pll_ctrl2);
1218 
1219 	debug("pll_ctrl2 = 0x%x\n", phy_io_read16(phy, addr));
1220 }
1221 
prog_dll_lck_param(uint16_t * phy,const struct input * input)1222 static void prog_dll_lck_param(uint16_t *phy, const struct input *input)
1223 {
1224 	uint32_t addr = t_master | csr_dll_lockparam_addr;
1225 
1226 	phy_io_write16(phy, addr, U(0x212));
1227 	debug("dll_lck_param = 0x%x\n", phy_io_read16(phy, addr));
1228 }
1229 
prog_dll_gain_ctl(uint16_t * phy,const struct input * input)1230 static void prog_dll_gain_ctl(uint16_t *phy, const struct input *input)
1231 {
1232 	uint32_t addr = t_master | csr_dll_gain_ctl_addr;
1233 
1234 	phy_io_write16(phy, addr, U(0x61));
1235 	debug("dll_gain_ctl = 0x%x\n", phy_io_read16(phy, addr));
1236 }
1237 
prog_pll_pwr_dn(uint16_t * phy,const struct input * input)1238 static void prog_pll_pwr_dn(uint16_t *phy,
1239 			   const struct input *input)
1240 {
1241 	uint32_t addr;
1242 
1243 	addr = t_master | csr_pll_pwr_dn_addr;
1244 	phy_io_write16(phy, addr, 0U);
1245 
1246 	debug("pll_pwrdn = 0x%x\n", phy_io_read16(phy, addr));
1247 }
1248 
prog_ard_ptr_init_val(uint16_t * phy,const struct input * input)1249 static void prog_ard_ptr_init_val(uint16_t *phy,
1250 				  const struct input *input)
1251 {
1252 	int ard_ptr_init_val;
1253 	uint32_t addr = t_master | csr_ard_ptr_init_val_addr;
1254 
1255 	if (input->basic.frequency >= 933) {
1256 		ard_ptr_init_val = 0x2;
1257 	} else {
1258 		ard_ptr_init_val = 0x1;
1259 	}
1260 
1261 	phy_io_write16(phy, addr, ard_ptr_init_val);
1262 }
1263 
prog_dqs_preamble_control(uint16_t * phy,const struct input * input)1264 static void prog_dqs_preamble_control(uint16_t *phy,
1265 				      const struct input *input)
1266 {
1267 	int data;
1268 	uint32_t addr = t_master | csr_dqs_preamble_control_addr;
1269 	const int wdqsextension = 0;
1270 	const int lp4sttc_pre_bridge_rx_en = 0;
1271 	const int lp4postamble_ext = 0;
1272 	const int lp4tgl_two_tck_tx_dqs_pre = 0;
1273 	const int position_dfe_init = 2;
1274 	const int dll_rx_preamble_mode = 1;
1275 	int two_tck_tx_dqs_pre = input->adv.d4tx_preamble_length;
1276 	int two_tck_rx_dqs_pre = input->adv.d4rx_preamble_length;
1277 
1278 	data = wdqsextension << csr_wdqsextension_lsb			|
1279 	       lp4sttc_pre_bridge_rx_en << csr_lp4sttc_pre_bridge_rx_en_lsb |
1280 	       lp4postamble_ext << csr_lp4postamble_ext_lsb		|
1281 	       lp4tgl_two_tck_tx_dqs_pre << csr_lp4tgl_two_tck_tx_dqs_pre_lsb |
1282 	       position_dfe_init << csr_position_dfe_init_lsb		|
1283 	       two_tck_tx_dqs_pre << csr_two_tck_tx_dqs_pre_lsb		|
1284 	       two_tck_rx_dqs_pre << csr_two_tck_rx_dqs_pre_lsb;
1285 	phy_io_write16(phy, addr, data);
1286 
1287 	data = dll_rx_preamble_mode << csr_dll_rx_preamble_mode_lsb;
1288 	addr = t_master | csr_dbyte_dll_mode_cntrl_addr;
1289 	phy_io_write16(phy, addr, data);
1290 }
1291 
prog_proc_odt_time_ctl(uint16_t * phy,const struct input * input)1292 static void prog_proc_odt_time_ctl(uint16_t *phy,
1293 				   const struct input *input)
1294 {
1295 	int proc_odt_time_ctl;
1296 	uint32_t addr = t_master | csr_proc_odt_time_ctl_addr;
1297 
1298 	if (input->adv.wdqsext != 0) {
1299 		proc_odt_time_ctl = 0x3;
1300 	} else if (input->basic.frequency <= 933) {
1301 		proc_odt_time_ctl = 0xa;
1302 	} else if (input->basic.frequency <= 1200) {
1303 		if (input->adv.d4rx_preamble_length == 1) {
1304 			proc_odt_time_ctl = 0x2;
1305 		} else {
1306 			proc_odt_time_ctl = 0x6;
1307 		}
1308 	} else {
1309 		if (input->adv.d4rx_preamble_length == 1) {
1310 			proc_odt_time_ctl = 0x3;
1311 		} else {
1312 			proc_odt_time_ctl = 0x7;
1313 		}
1314 	}
1315 	phy_io_write16(phy, addr, proc_odt_time_ctl);
1316 }
1317 
1318 static const struct impedance_mapping map[] = {
1319 	{	29,	0x3f	},
1320 	{	31,	0x3e	},
1321 	{	33,	0x3b	},
1322 	{	36,	0x3a	},
1323 	{	39,	0x39	},
1324 	{	42,	0x38	},
1325 	{	46,	0x1b	},
1326 	{	51,	0x1a	},
1327 	{	57,	0x19	},
1328 	{	64,	0x18	},
1329 	{	74,	0x0b	},
1330 	{	88,	0x0a	},
1331 	{	108,	0x09	},
1332 	{	140,	0x08	},
1333 	{	200,	0x03	},
1334 	{	360,	0x02	},
1335 	{	481,	0x01	},
1336 	{}
1337 };
1338 
map_impedance(int strength)1339 static int map_impedance(int strength)
1340 {
1341 	const struct impedance_mapping *tbl = map;
1342 	int val = 0;
1343 
1344 	if (strength == 0) {
1345 		return 0;
1346 	}
1347 
1348 	while (tbl->ohm != 0U) {
1349 		if (strength < tbl->ohm) {
1350 			val = tbl->code;
1351 			break;
1352 		}
1353 		tbl++;
1354 	}
1355 
1356 	return val;
1357 }
1358 
map_odtstren_p(int strength,int hard_macro_ver)1359 static int map_odtstren_p(int strength, int hard_macro_ver)
1360 {
1361 	int val = -1;
1362 
1363 	if (hard_macro_ver == 4) {
1364 		if (strength == 0) {
1365 			val = 0;
1366 		} else if (strength == 120) {
1367 			val = 0x8;
1368 		} else if (strength == 60) {
1369 			val = 0x18;
1370 		} else if (strength == 40) {
1371 			val = 0x38;
1372 		} else {
1373 			printf("error: unsupported ODTStrenP %d\n", strength);
1374 		}
1375 	} else {
1376 		val = map_impedance(strength);
1377 	}
1378 
1379 	return val;
1380 }
1381 
prog_tx_odt_drv_stren(uint16_t * phy,const struct input * input)1382 static void prog_tx_odt_drv_stren(uint16_t *phy,
1383 				  const struct input *input)
1384 {
1385 	int lane, byte, b_addr, c_addr;
1386 	int tx_odt_drv_stren;
1387 	int odtstren_p, odtstren_n;
1388 	uint32_t addr;
1389 
1390 	odtstren_p = map_odtstren_p(input->adv.odtimpedance,
1391 				input->basic.hard_macro_ver);
1392 	if (odtstren_p < 0) {
1393 		return;
1394 	}
1395 
1396 	odtstren_n = 0;	/* always high-z */
1397 	tx_odt_drv_stren = odtstren_n << csr_odtstren_n_lsb | odtstren_p;
1398 	for (byte = 0; byte < input->basic.num_dbyte; byte++) {
1399 		c_addr = byte << 12;
1400 		for (lane = 0; lane <= 1; lane++) {
1401 			b_addr = lane << 8;
1402 			addr = t_dbyte | c_addr | b_addr |
1403 				csr_tx_odt_drv_stren_addr;
1404 			phy_io_write16(phy, addr, tx_odt_drv_stren);
1405 		}
1406 	}
1407 }
1408 
map_drvstren_fsdq_p(int strength,int hard_macro_ver)1409 static int map_drvstren_fsdq_p(int strength, int hard_macro_ver)
1410 {
1411 	int val = -1;
1412 
1413 	if (hard_macro_ver == 4) {
1414 		if (strength == 0) {
1415 			val = 0x07;
1416 		} else if (strength == 120) {
1417 			val = 0x0F;
1418 		} else if (strength == 60) {
1419 			val = 0x1F;
1420 		} else if (strength == 40) {
1421 			val = 0x3F;
1422 		} else {
1423 			printf("error: unsupported drv_stren_fSDq_p %d\n",
1424 			       strength);
1425 		}
1426 	} else {
1427 		val = map_impedance(strength);
1428 	}
1429 
1430 	return val;
1431 }
1432 
map_drvstren_fsdq_n(int strength,int hard_macro_ver)1433 static int map_drvstren_fsdq_n(int strength, int hard_macro_ver)
1434 {
1435 	int val = -1;
1436 
1437 	if (hard_macro_ver == 4) {
1438 		if (strength == 0) {
1439 			val = 0x00;
1440 		} else if (strength == 120) {
1441 			val = 0x08;
1442 		} else if (strength == 60) {
1443 			val = 0x18;
1444 		} else if (strength == 40) {
1445 			val = 0x38;
1446 		} else {
1447 			printf("error: unsupported drvStrenFSDqN %d\n",
1448 			       strength);
1449 		}
1450 	} else {
1451 		val = map_impedance(strength);
1452 	}
1453 
1454 	return val;
1455 }
1456 
prog_tx_impedance_ctrl1(uint16_t * phy,const struct input * input)1457 static void prog_tx_impedance_ctrl1(uint16_t *phy,
1458 				    const struct input *input)
1459 {
1460 	int lane, byte, b_addr, c_addr;
1461 	int tx_impedance_ctrl1;
1462 	int drv_stren_fsdq_p, drv_stren_fsdq_n;
1463 	uint32_t addr;
1464 
1465 	drv_stren_fsdq_p = map_drvstren_fsdq_p(input->adv.tx_impedance,
1466 					input->basic.hard_macro_ver);
1467 	drv_stren_fsdq_n = map_drvstren_fsdq_n(input->adv.tx_impedance,
1468 					input->basic.hard_macro_ver);
1469 	tx_impedance_ctrl1 = drv_stren_fsdq_n << csr_drv_stren_fsdq_n_lsb |
1470 			   drv_stren_fsdq_p << csr_drv_stren_fsdq_p_lsb;
1471 
1472 	for (byte = 0; byte < input->basic.num_dbyte; byte++) {
1473 		c_addr = byte << 12;
1474 		for (lane = 0; lane <= 1; lane++) {
1475 			b_addr = lane << 8;
1476 			addr = t_dbyte | c_addr | b_addr |
1477 				csr_tx_impedance_ctrl1_addr;
1478 			phy_io_write16(phy, addr, tx_impedance_ctrl1);
1479 		}
1480 	}
1481 }
1482 
map_adrv_stren_p(int strength,int hard_macro_ver)1483 static int map_adrv_stren_p(int strength, int hard_macro_ver)
1484 {
1485 	int val = -1;
1486 
1487 	if (hard_macro_ver == 4) {
1488 		if (strength == 120) {
1489 			val = 0x1c;
1490 		} else if (strength == 60) {
1491 			val = 0x1d;
1492 		} else if (strength == 40) {
1493 			val = 0x1f;
1494 		} else {
1495 			printf("error: unsupported aDrv_stren_p %d\n",
1496 			       strength);
1497 		}
1498 	} else {
1499 		if (strength == 120) {
1500 			val = 0x00;
1501 		} else if (strength == 60) {
1502 			val = 0x01;
1503 		} else if (strength == 40) {
1504 			val = 0x03;
1505 		} else if (strength == 30) {
1506 			val = 0x07;
1507 		} else if (strength == 24) {
1508 			val = 0x0f;
1509 		} else if (strength == 20) {
1510 			val = 0x1f;
1511 		} else {
1512 			printf("error: unsupported aDrv_stren_p %d\n",
1513 			       strength);
1514 		}
1515 	}
1516 
1517 	return val;
1518 }
1519 
map_adrv_stren_n(int strength,int hard_macro_ver)1520 static int map_adrv_stren_n(int strength, int hard_macro_ver)
1521 {
1522 	int val = -1;
1523 
1524 	if (hard_macro_ver == 4) {
1525 		if (strength == 120) {
1526 			val = 0x00;
1527 		} else if (strength == 60) {
1528 			val = 0x01;
1529 		} else if (strength == 40) {
1530 			val = 0x03;
1531 		} else {
1532 			printf("Error: unsupported ADrvStrenP %d\n", strength);
1533 		}
1534 	} else {
1535 		if (strength == 120) {
1536 			val = 0x00;
1537 		} else if (strength == 60) {
1538 			val = 0x01;
1539 		} else if (strength == 40) {
1540 			val = 0x03;
1541 		} else if (strength == 30) {
1542 			val = 0x07;
1543 		} else if (strength == 24) {
1544 			val = 0x0f;
1545 		} else if (strength == 20) {
1546 			val = 0x1f;
1547 		} else {
1548 			printf("Error: unsupported ADrvStrenP %d\n", strength);
1549 		}
1550 	}
1551 
1552 	return val;
1553 }
1554 
prog_atx_impedance(uint16_t * phy,const struct input * input)1555 static void prog_atx_impedance(uint16_t *phy,
1556 			       const struct input *input)
1557 {
1558 	int anib, c_addr;
1559 	int atx_impedance;
1560 	int adrv_stren_p;
1561 	int adrv_stren_n;
1562 	uint32_t addr;
1563 
1564 	if (input->basic.hard_macro_ver == 4 &&
1565 	    input->adv.atx_impedance == 20) {
1566 		printf("Error:ATxImpedance has to be 40 for HardMacroVer 4\n");
1567 		return;
1568 	}
1569 
1570 	adrv_stren_p = map_adrv_stren_p(input->adv.atx_impedance,
1571 					input->basic.hard_macro_ver);
1572 	adrv_stren_n = map_adrv_stren_n(input->adv.atx_impedance,
1573 					input->basic.hard_macro_ver);
1574 	atx_impedance = adrv_stren_n << csr_adrv_stren_n_lsb		|
1575 		       adrv_stren_p << csr_adrv_stren_p_lsb;
1576 	for (anib = 0; anib < input->basic.num_anib; anib++) {
1577 		c_addr = anib << 12;
1578 		addr = t_anib | c_addr | csr_atx_impedance_addr;
1579 		phy_io_write16(phy, addr, atx_impedance);
1580 	}
1581 }
1582 
prog_dfi_mode(uint16_t * phy,const struct input * input)1583 static void prog_dfi_mode(uint16_t *phy,
1584 			  const struct input *input)
1585 {
1586 	int dfi_mode;
1587 	uint32_t addr;
1588 
1589 	if (input->basic.dfi1exists == 1) {
1590 		dfi_mode = 0x5;	/* DFI1 exists but disabled */
1591 	} else {
1592 		dfi_mode = 0x1;	/* DFI1 does not physically exists */
1593 	}
1594 	addr = t_master | csr_dfi_mode_addr;
1595 	phy_io_write16(phy, addr, dfi_mode);
1596 }
1597 
prog_acx4_anib_dis(uint16_t * phy,const struct input * input)1598 static void prog_acx4_anib_dis(uint16_t *phy, const struct input *input)
1599 {
1600 	uint32_t addr;
1601 
1602 	addr = t_master | csr_acx4_anib_dis_addr;
1603 	phy_io_write16(phy, addr, 0x0);
1604 	debug("%s 0x%x\n", __func__, phy_io_read16(phy, addr));
1605 }
1606 
prog_dfi_camode(uint16_t * phy,const struct input * input)1607 static void prog_dfi_camode(uint16_t *phy,
1608 			    const struct input *input)
1609 {
1610 	int dfi_camode = 2;
1611 	uint32_t addr = t_master | csr_dfi_camode_addr;
1612 
1613 	phy_io_write16(phy, addr, dfi_camode);
1614 }
1615 
prog_cal_drv_str0(uint16_t * phy,const struct input * input)1616 static void prog_cal_drv_str0(uint16_t *phy,
1617 			      const struct input *input)
1618 {
1619 	int cal_drv_str0;
1620 	int cal_drv_str_pd50;
1621 	int cal_drv_str_pu50;
1622 	uint32_t addr;
1623 
1624 	cal_drv_str_pu50 = input->adv.ext_cal_res_val;
1625 	cal_drv_str_pd50 = cal_drv_str_pu50;
1626 	cal_drv_str0 = cal_drv_str_pu50 << csr_cal_drv_str_pu50_lsb |
1627 			cal_drv_str_pd50;
1628 	addr = t_master | csr_cal_drv_str0_addr;
1629 	phy_io_write16(phy, addr, cal_drv_str0);
1630 }
1631 
prog_cal_uclk_info(uint16_t * phy,const struct input * input)1632 static void prog_cal_uclk_info(uint16_t *phy,
1633 			       const struct input *input)
1634 {
1635 	int cal_uclk_ticks_per1u_s;
1636 	uint32_t addr;
1637 
1638 	cal_uclk_ticks_per1u_s = input->basic.frequency >> 1;
1639 	if (cal_uclk_ticks_per1u_s < 24) {
1640 		cal_uclk_ticks_per1u_s = 24;
1641 	}
1642 
1643 	addr = t_master | csr_cal_uclk_info_addr;
1644 	phy_io_write16(phy, addr, cal_uclk_ticks_per1u_s);
1645 }
1646 
prog_cal_rate(uint16_t * phy,const struct input * input)1647 static void prog_cal_rate(uint16_t *phy,
1648 			  const struct input *input)
1649 {
1650 	int cal_rate;
1651 	int cal_interval;
1652 	int cal_once;
1653 	uint32_t addr;
1654 
1655 	cal_interval = input->adv.cal_interval;
1656 	cal_once = input->adv.cal_once;
1657 	cal_rate = cal_once << csr_cal_once_lsb		|
1658 		  cal_interval << csr_cal_interval_lsb;
1659 	addr = t_master | csr_cal_rate_addr;
1660 	phy_io_write16(phy, addr, cal_rate);
1661 }
1662 
prog_vref_in_global(uint16_t * phy,const struct input * input,const struct ddr4u1d * msg)1663 static void prog_vref_in_global(uint16_t *phy,
1664 				const struct input *input,
1665 				const struct ddr4u1d *msg)
1666 {
1667 	int vref_in_global;
1668 	int global_vref_in_dac = 0;
1669 	int global_vref_in_sel = 0;
1670 	uint32_t addr;
1671 
1672 	/*
1673 	 * phy_vref_prcnt = msg->phy_vref / 128.0
1674 	 *  global_vref_in_dac = (phy_vref_prcnt - 0.345) / 0.005;
1675 	 */
1676 	global_vref_in_dac = (msg->phy_vref * 1000 - 345 * 128 + 320) /
1677 			     (5 * 128);
1678 
1679 	vref_in_global = global_vref_in_dac << csr_global_vref_in_dac_lsb |
1680 		       global_vref_in_sel;
1681 	addr = t_master | csr_vref_in_global_addr;
1682 	phy_io_write16(phy, addr, vref_in_global);
1683 }
1684 
prog_dq_dqs_rcv_cntrl(uint16_t * phy,const struct input * input)1685 static void prog_dq_dqs_rcv_cntrl(uint16_t *phy,
1686 				  const struct input *input)
1687 {
1688 	int lane, byte, b_addr, c_addr;
1689 	int dq_dqs_rcv_cntrl;
1690 	int gain_curr_adj_defval = 0xb;
1691 	int major_mode_dbyte = 3;
1692 	int dfe_ctrl_defval = 0;
1693 	int ext_vref_range_defval = 0;
1694 	int sel_analog_vref = 1;
1695 	uint32_t addr;
1696 
1697 #ifdef ERRATA_DDR_A050958
1698 	gain_curr_adj_defval = 0x1f;
1699 #endif
1700 
1701 	dq_dqs_rcv_cntrl = gain_curr_adj_defval << csr_gain_curr_adj_lsb |
1702 			major_mode_dbyte << csr_major_mode_dbyte_lsb	|
1703 			dfe_ctrl_defval << csr_dfe_ctrl_lsb		|
1704 			ext_vref_range_defval << csr_ext_vref_range_lsb	|
1705 			sel_analog_vref << csr_sel_analog_vref_lsb;
1706 	for (byte = 0; byte < input->basic.num_dbyte; byte++) {
1707 		c_addr = byte << 12;
1708 		for (lane = 0; lane <= 1; lane++) {
1709 			b_addr = lane << 8;
1710 			addr = t_dbyte | c_addr | b_addr |
1711 					csr_dq_dqs_rcv_cntrl_addr;
1712 			phy_io_write16(phy, addr, dq_dqs_rcv_cntrl);
1713 		}
1714 	}
1715 }
1716 
prog_mem_alert_control(uint16_t * phy,const struct input * input)1717 static void prog_mem_alert_control(uint16_t *phy,
1718 				   const struct input *input)
1719 {
1720 	int mem_alert_control;
1721 	int mem_alert_control2;
1722 	int malertpu_en;
1723 	int malertrx_en;
1724 	int malertvref_level;
1725 	int malertpu_stren;
1726 	int malertsync_bypass;
1727 	int malertdisable_val_defval = 1;
1728 	uint32_t addr;
1729 
1730 	if (input->basic.dram_type == DDR4 && input->adv.mem_alert_en == 1) {
1731 		malertpu_en = 1;
1732 		malertrx_en = 1;
1733 		malertpu_stren = input->adv.mem_alert_puimp;
1734 		malertvref_level = input->adv.mem_alert_vref_level;
1735 		malertsync_bypass = input->adv.mem_alert_sync_bypass;
1736 		mem_alert_control = malertdisable_val_defval << 14	|
1737 				  malertrx_en << 13		|
1738 				  malertpu_en << 12		|
1739 				  malertpu_stren << 8		|
1740 				  malertvref_level;
1741 		mem_alert_control2 = malertsync_bypass <<
1742 					csr_malertsync_bypass_lsb;
1743 		addr = t_master | csr_mem_alert_control_addr;
1744 		phy_io_write16(phy, addr, mem_alert_control);
1745 		addr = t_master | csr_mem_alert_control2_addr;
1746 		phy_io_write16(phy, addr, mem_alert_control2);
1747 	}
1748 }
1749 
prog_dfi_freq_ratio(uint16_t * phy,const struct input * input)1750 static void prog_dfi_freq_ratio(uint16_t *phy,
1751 				const struct input *input)
1752 {
1753 	int dfi_freq_ratio;
1754 	uint32_t addr = t_master | csr_dfi_freq_ratio_addr;
1755 
1756 	dfi_freq_ratio = input->basic.dfi_freq_ratio;
1757 	phy_io_write16(phy, addr, dfi_freq_ratio);
1758 }
1759 
prog_tristate_mode_ca(uint16_t * phy,const struct input * input)1760 static void prog_tristate_mode_ca(uint16_t *phy,
1761 				  const struct input *input)
1762 {
1763 	int tristate_mode_ca;
1764 	int dis_dyn_adr_tri;
1765 	int ddr2tmode;
1766 	int ck_dis_val_def = 1;
1767 	uint32_t addr = t_master | csr_tristate_mode_ca_addr;
1768 
1769 	dis_dyn_adr_tri = input->adv.dis_dyn_adr_tri;
1770 	ddr2tmode = input->adv.is2ttiming;
1771 	tristate_mode_ca = ck_dis_val_def << csr_ck_dis_val_lsb	|
1772 			 ddr2tmode << csr_ddr2tmode_lsb		|
1773 			 dis_dyn_adr_tri << csr_dis_dyn_adr_tri_lsb;
1774 	phy_io_write16(phy, addr, tristate_mode_ca);
1775 }
1776 
prog_dfi_xlat(uint16_t * phy,const struct input * input)1777 static void prog_dfi_xlat(uint16_t *phy,
1778 			  const struct input *input)
1779 {
1780 	uint16_t loop_vector;
1781 	int dfifreqxlat_dat;
1782 	int pllbypass_dat;
1783 	uint32_t addr;
1784 
1785 	/* fIXME: Shall unused P1, P2, P3 be bypassed? */
1786 	pllbypass_dat = input->basic.pll_bypass; /* only [0] is used */
1787 	for (loop_vector = 0; loop_vector < 8; loop_vector++) {
1788 		if (loop_vector == 0) {
1789 			dfifreqxlat_dat = pllbypass_dat + 0x5555;
1790 		} else if (loop_vector == 7) {
1791 			dfifreqxlat_dat = 0xf000;
1792 		} else {
1793 			dfifreqxlat_dat = 0x5555;
1794 		}
1795 		addr = t_master | (csr_dfi_freq_xlat0_addr + loop_vector);
1796 		phy_io_write16(phy, addr, dfifreqxlat_dat);
1797 	}
1798 }
1799 
prog_dbyte_misc_mode(uint16_t * phy,const struct input * input,const struct ddr4u1d * msg)1800 static void prog_dbyte_misc_mode(uint16_t *phy,
1801 				 const struct input *input,
1802 				 const struct ddr4u1d *msg)
1803 {
1804 	int dbyte_misc_mode;
1805 	int dq_dqs_rcv_cntrl1;
1806 	int dq_dqs_rcv_cntrl1_1;
1807 	int byte, c_addr;
1808 	uint32_t addr;
1809 
1810 	dbyte_misc_mode = 0x1 << csr_dbyte_disable_lsb;
1811 	dq_dqs_rcv_cntrl1 = 0x1ff << csr_power_down_rcvr_lsb		|
1812 			 0x1 << csr_power_down_rcvr_dqs_lsb	|
1813 			 0x1 << csr_rx_pad_standby_en_lsb;
1814 	dq_dqs_rcv_cntrl1_1 = (0x100 << csr_power_down_rcvr_lsb |
1815 			csr_rx_pad_standby_en_mask);
1816 	for (byte = 0; byte < input->basic.num_dbyte; byte++) {
1817 		c_addr = byte << 12;
1818 		if (byte <= input->basic.num_active_dbyte_dfi0 - 1) {
1819 			/* disable RDBI lane if not used. */
1820 			if ((input->basic.dram_data_width != 4) &&
1821 				(((msg->mr5 >> 12) & 0x1) == 0)) {
1822 				addr = t_dbyte
1823 					| c_addr
1824 					| csr_dq_dqs_rcv_cntrl1_addr;
1825 				phy_io_write16(phy, addr, dq_dqs_rcv_cntrl1_1);
1826 			}
1827 		} else {
1828 			addr = t_dbyte | c_addr | csr_dbyte_misc_mode_addr;
1829 			phy_io_write16(phy, addr, dbyte_misc_mode);
1830 			addr = t_dbyte | c_addr | csr_dq_dqs_rcv_cntrl1_addr;
1831 			phy_io_write16(phy, addr, dq_dqs_rcv_cntrl1);
1832 		}
1833 	}
1834 }
1835 
prog_master_x4config(uint16_t * phy,const struct input * input)1836 static void prog_master_x4config(uint16_t *phy,
1837 				 const struct input *input)
1838 {
1839 	int master_x4config;
1840 	int x4tg;
1841 	uint32_t addr = t_master | csr_master_x4config_addr;
1842 
1843 	x4tg = input->basic.dram_data_width == 4 ? 0xf : 0;
1844 	master_x4config = x4tg << csr_x4tg_lsb;
1845 	phy_io_write16(phy, addr, master_x4config);
1846 }
1847 
prog_dmipin_present(uint16_t * phy,const struct input * input,const struct ddr4u1d * msg)1848 static void prog_dmipin_present(uint16_t *phy,
1849 				const struct input *input,
1850 				const struct ddr4u1d *msg)
1851 {
1852 	int dmipin_present;
1853 	uint32_t addr = t_master | csr_dmipin_present_addr;
1854 
1855 	dmipin_present = (msg->mr5 >> 12) & 0x1;
1856 	phy_io_write16(phy, addr, dmipin_present);
1857 }
1858 
prog_dfi_phyupd(uint16_t * phy,const struct input * input)1859 static void prog_dfi_phyupd(uint16_t *phy,
1860 			  const struct input *input)
1861 {
1862 	int dfiphyupd_dat;
1863 	uint32_t addr;
1864 
1865 	addr = t_master | (csr_dfiphyupd_addr);
1866 	dfiphyupd_dat = phy_io_read16(phy, addr) &
1867 				~csr_dfiphyupd_threshold_mask;
1868 
1869 	phy_io_write16(phy, addr, dfiphyupd_dat);
1870 }
1871 
prog_cal_misc2(uint16_t * phy,const struct input * input)1872 static void prog_cal_misc2(uint16_t *phy,
1873 			  const struct input *input)
1874 {
1875 	int cal_misc2_dat, cal_drv_pdth_data, cal_offsets_dat;
1876 	uint32_t addr;
1877 
1878 	addr = t_master | (csr_cal_misc2_addr);
1879 	cal_misc2_dat = phy_io_read16(phy, addr) |
1880 			(1 << csr_cal_misc2_err_dis);
1881 
1882 	phy_io_write16(phy, addr, cal_misc2_dat);
1883 
1884 	addr = t_master | (csr_cal_offsets_addr);
1885 
1886 	cal_drv_pdth_data = 0x9 << 6;
1887 	cal_offsets_dat = (phy_io_read16(phy, addr) & ~csr_cal_drv_pdth_mask)
1888 			| cal_drv_pdth_data;
1889 
1890 	phy_io_write16(phy, addr, cal_offsets_dat);
1891 }
1892 
c_init_phy_config(uint16_t ** phy_ptr,unsigned int ip_rev,const struct input * input,const void * msg)1893 static int c_init_phy_config(uint16_t **phy_ptr,
1894 			     unsigned int ip_rev,
1895 			     const struct input *input,
1896 			     const void *msg)
1897 {
1898 	int i;
1899 	uint16_t *phy;
1900 	__unused const soc_info_t *soc_info;
1901 
1902 	for (i = 0; i < NUM_OF_DDRC; i++) {
1903 		phy = phy_ptr[i];
1904 		if (phy == NULL) {
1905 			continue;
1906 		}
1907 
1908 		debug("Initialize PHY %d config\n", i);
1909 		prog_dfi_phyupd(phy, input);
1910 		prog_cal_misc2(phy, input);
1911 		prog_tx_pre_drv_mode(phy, input);
1912 		prog_atx_pre_drv_mode(phy, input);
1913 		prog_enable_cs_multicast(phy, input);	/* rdimm and lrdimm */
1914 		prog_dfi_rd_data_cs_dest_map(phy, ip_rev, input, msg);
1915 		prog_pll_ctrl2(phy, input);
1916 #ifdef DDR_PLL_FIX
1917 		soc_info = get_soc_info();
1918 		debug("SOC_SI_REV = %x\n", soc_info->svr_reg.bf.maj_ver);
1919 		if (soc_info->svr_reg.bf.maj_ver == 1) {
1920 			prog_pll_pwr_dn(phy, input);
1921 
1922 			/*Enable FFE aka TxEqualizationMode for rev1 SI*/
1923 			phy_io_write16(phy, 0x010048, 0x1);
1924 		}
1925 #endif
1926 		prog_ard_ptr_init_val(phy, input);
1927 		prog_dqs_preamble_control(phy, input);
1928 		prog_dll_lck_param(phy, input);
1929 		prog_dll_gain_ctl(phy, input);
1930 		prog_proc_odt_time_ctl(phy, input);
1931 		prog_tx_odt_drv_stren(phy, input);
1932 		prog_tx_impedance_ctrl1(phy, input);
1933 		prog_atx_impedance(phy, input);
1934 		prog_dfi_mode(phy, input);
1935 		prog_dfi_camode(phy, input);
1936 		prog_cal_drv_str0(phy, input);
1937 		prog_cal_uclk_info(phy, input);
1938 		prog_cal_rate(phy, input);
1939 		prog_vref_in_global(phy, input, msg);
1940 		prog_dq_dqs_rcv_cntrl(phy, input);
1941 		prog_mem_alert_control(phy, input);
1942 		prog_dfi_freq_ratio(phy, input);
1943 		prog_tristate_mode_ca(phy, input);
1944 		prog_dfi_xlat(phy, input);
1945 		prog_dbyte_misc_mode(phy, input, msg);
1946 		prog_master_x4config(phy, input);
1947 		prog_dmipin_present(phy, input, msg);
1948 		prog_acx4_anib_dis(phy, input);
1949 	}
1950 
1951 	return 0;
1952 }
1953 
get_mail(uint16_t * phy,int stream)1954 static uint32_t get_mail(uint16_t *phy, int stream)
1955 {
1956 	int timeout;
1957 	uint32_t mail = 0U;
1958 
1959 	timeout = TIMEOUTDEFAULT;
1960 	while (((--timeout) != 0) &&
1961 	       ((phy_io_read16(phy, t_apbonly | csr_uct_shadow_regs)
1962 		& uct_write_prot_shadow_mask) != 0)) {
1963 		mdelay(10);
1964 	}
1965 	if (timeout == 0) {
1966 		ERROR("Timeout getting mail from PHY\n");
1967 		return 0xFFFF;
1968 	}
1969 
1970 	mail = phy_io_read16(phy, t_apbonly |
1971 			     csr_uct_write_only_shadow);
1972 	if (stream != 0) {
1973 		mail |= phy_io_read16(phy, t_apbonly |
1974 				      csr_uct_dat_write_only_shadow) << 16;
1975 	}
1976 
1977 	/* Ack */
1978 	phy_io_write16(phy, t_apbonly | csr_dct_write_prot, 0);
1979 
1980 	timeout = TIMEOUTDEFAULT;
1981 	while (((--timeout) != 0) &&
1982 	       ((phy_io_read16(phy, t_apbonly | csr_uct_shadow_regs)
1983 		 & uct_write_prot_shadow_mask) == 0)) {
1984 		mdelay(1);
1985 	}
1986 	if (timeout == 0) {
1987 		ERROR("Timeout ack PHY mail\n");
1988 	}
1989 
1990 	/* completed */
1991 	phy_io_write16(phy, t_apbonly | csr_dct_write_prot, 1U);
1992 
1993 	return mail;
1994 }
1995 
1996 #ifdef DDR_PHY_DEBUG
lookup_msg(uint32_t index,int train2d)1997 static const char *lookup_msg(uint32_t index, int train2d)
1998 {
1999 	int i;
2000 	int size;
2001 	const struct phy_msg *messages;
2002 	const char *ptr = NULL;
2003 
2004 	if (train2d != 0) {
2005 		messages = messages_2d;
2006 		size = ARRAY_SIZE(messages_2d);
2007 	} else {
2008 		messages = messages_1d;
2009 		size = ARRAY_SIZE(messages_1d);
2010 	}
2011 	for (i = 0; i < size; i++) {
2012 		if (messages[i].index == index) {
2013 			ptr = messages[i].msg;
2014 			break;
2015 		}
2016 	}
2017 
2018 	return ptr;
2019 }
2020 #endif
2021 
2022 #define MAX_ARGS 32
decode_stream_message(uint16_t * phy,int train2d)2023 static void decode_stream_message(uint16_t *phy, int train2d)
2024 {
2025 	uint32_t index __unused;
2026 
2027 	__unused const char *format;
2028 	__unused uint32_t args[MAX_ARGS];
2029 	__unused int i;
2030 
2031 #ifdef DDR_PHY_DEBUG
2032 	index = get_mail(phy, 1);
2033 	if ((index & 0xffff) > MAX_ARGS) {	/* up to MAX_ARGS args so far */
2034 		printf("Program error in %s\n", __func__);
2035 	}
2036 	for (i = 0; i < (index & 0xffff) && i < MAX_ARGS; i++) {
2037 		args[i] = get_mail(phy, 1);
2038 	}
2039 
2040 	format = lookup_msg(index, train2d);
2041 	if (format != NULL) {
2042 		printf("0x%08x: ", index);
2043 		printf(format, args[0], args[1], args[2], args[3], args[4],
2044 		       args[5], args[6], args[7], args[8], args[9], args[10],
2045 		       args[11], args[12], args[13], args[14], args[15],
2046 		       args[16], args[17], args[18], args[19], args[20],
2047 		       args[21], args[22], args[23], args[24], args[25],
2048 		       args[26], args[27], args[28], args[29], args[30],
2049 		       args[31]);
2050 	}
2051 #endif
2052 }
2053 
wait_fw_done(uint16_t * phy,int train2d)2054 static int wait_fw_done(uint16_t *phy, int train2d)
2055 {
2056 	uint32_t mail = 0U;
2057 
2058 	while (mail == U(0x0)) {
2059 		mail = get_mail(phy, 0);
2060 		switch (mail) {
2061 		case U(0x7):
2062 			debug("%s Training completed\n", train2d ? "2D" : "1D");
2063 			break;
2064 		case U(0xff):
2065 			debug("%s Training failure\n", train2d ? "2D" : "1D");
2066 			break;
2067 		case U(0x0):
2068 			debug("End of initialization\n");
2069 			mail = 0U;
2070 			break;
2071 		case U(0x1):
2072 			debug("End of fine write leveling\n");
2073 			mail = 0U;
2074 			break;
2075 		case U(0x2):
2076 			debug("End of read enable training\n");
2077 			mail = 0U;
2078 			break;
2079 		case U(0x3):
2080 			debug("End of read delay center optimization\n");
2081 			mail = 0U;
2082 			break;
2083 		case U(0x4):
2084 			debug("End of write delay center optimization\n");
2085 			mail = 0U;
2086 			break;
2087 		case U(0x5):
2088 			debug("End of 2D read delay/voltage center optimztn\n");
2089 			mail = 0U;
2090 			break;
2091 		case U(0x6):
2092 			debug("End of 2D write delay/voltage center optmztn\n");
2093 			mail = 0U;
2094 			break;
2095 		case U(0x8):
2096 			decode_stream_message(phy, train2d);
2097 			mail = 0U;
2098 			break;
2099 		case U(0x9):
2100 			debug("End of max read latency training\n");
2101 			mail = 0U;
2102 			break;
2103 		case U(0xa):
2104 			debug("End of read dq deskew training\n");
2105 			mail = 0U;
2106 			break;
2107 		case U(0xc):
2108 			debug("End of LRDIMM Specific training, including:\n");
2109 			debug("/tDWL, MREP, MRD and MWD\n");
2110 			mail = 0U;
2111 			break;
2112 		case U(0xd):
2113 			debug("End of CA training\n");
2114 			mail = 0U;
2115 			break;
2116 		case U(0xfd):
2117 			debug("End of MPR read delay center optimization\n");
2118 			mail = 0U;
2119 			break;
2120 		case U(0xfe):
2121 			debug("End of Write leveling coarse delay\n");
2122 			mail = 0U;
2123 			break;
2124 		case U(0xffff):
2125 			debug("Timed out\n");
2126 			break;
2127 		default:
2128 			mail = 0U;
2129 			break;
2130 		}
2131 	}
2132 
2133 	if (mail == U(0x7)) {
2134 		return 0;
2135 	} else if (mail == U(0xff)) {
2136 		return -EIO;
2137 	} else if (mail == U(0xffff)) {
2138 		return -ETIMEDOUT;
2139 	}
2140 
2141 	debug("PHY_GEN2 FW: Unxpected mail = 0x%x\n", mail);
2142 
2143 	return -EINVAL;
2144 }
2145 
g_exec_fw(uint16_t ** phy_ptr,int train2d,struct input * input)2146 static int g_exec_fw(uint16_t **phy_ptr, int train2d, struct input *input)
2147 {
2148 	int ret = -EINVAL;
2149 	int i;
2150 	uint16_t *phy;
2151 
2152 	for (i = 0; i < NUM_OF_DDRC; i++) {
2153 		phy = phy_ptr[i];
2154 		if (phy == NULL) {
2155 			continue;
2156 		}
2157 		debug("Applying PLL optimal settings\n");
2158 		prog_pll_ctrl2(phy, input);
2159 		prog_pll_ctrl(phy, input);
2160 		phy_io_write16(phy,
2161 			       t_apbonly | csr_micro_cont_mux_sel_addr,
2162 			       0x1);
2163 		phy_io_write16(phy,
2164 			       t_apbonly | csr_micro_reset_addr,
2165 			       csr_reset_to_micro_mask |
2166 			       csr_stall_to_micro_mask);
2167 		phy_io_write16(phy,
2168 			       t_apbonly | csr_micro_reset_addr,
2169 			       csr_stall_to_micro_mask);
2170 		phy_io_write16(phy,
2171 			       t_apbonly | csr_micro_reset_addr,
2172 			       0);
2173 
2174 		ret = wait_fw_done(phy, train2d);
2175 		if (ret == -ETIMEDOUT) {
2176 			ERROR("Wait timed out: Firmware execution on PHY %d\n",
2177 			      i);
2178 		}
2179 	}
2180 	return ret;
2181 }
2182 
send_fw(uint16_t * phy,uint32_t dst,uint16_t * img,uint32_t size)2183 static inline int send_fw(uint16_t *phy,
2184 			   uint32_t dst,
2185 			   uint16_t *img,
2186 			   uint32_t size)
2187 {
2188 	uint32_t i;
2189 
2190 	if ((size % 2U) != 0U) {
2191 		ERROR("Wrong image size 0x%x\n", size);
2192 		return -EINVAL;
2193 	}
2194 
2195 	for (i = 0U; i < size / 2; i++) {
2196 		phy_io_write16(phy, dst + i, *(img + i));
2197 	}
2198 
2199 	return 0;
2200 }
2201 
load_fw(uint16_t ** phy_ptr,struct input * input,int train2d,void * msg,size_t len,uintptr_t phy_gen2_fw_img_buf,int (* img_loadr)(unsigned int,uintptr_t *,uint32_t *),uint32_t warm_boot_flag)2202 static int load_fw(uint16_t **phy_ptr,
2203 		   struct input *input,
2204 		   int train2d,
2205 		   void *msg,
2206 		   size_t len,
2207 		   uintptr_t phy_gen2_fw_img_buf,
2208 		   int (*img_loadr)(unsigned int, uintptr_t *, uint32_t *),
2209 		   uint32_t warm_boot_flag)
2210 {
2211 	uint32_t imem_id, dmem_id;
2212 	uintptr_t image_buf;
2213 	uint32_t size;
2214 	int ret;
2215 	int i;
2216 	uint16_t *phy;
2217 
2218 	switch (input->basic.dimm_type) {
2219 	case UDIMM:
2220 	case SODIMM:
2221 	case NODIMM:
2222 		imem_id = train2d ? DDR_IMEM_UDIMM_2D_IMAGE_ID :
2223 			  DDR_IMEM_UDIMM_1D_IMAGE_ID;
2224 		dmem_id = train2d ? DDR_DMEM_UDIMM_2D_IMAGE_ID :
2225 			  DDR_DMEM_UDIMM_1D_IMAGE_ID;
2226 		break;
2227 	case RDIMM:
2228 		imem_id = train2d ? DDR_IMEM_RDIMM_2D_IMAGE_ID :
2229 			  DDR_IMEM_RDIMM_1D_IMAGE_ID;
2230 		dmem_id = train2d ? DDR_DMEM_RDIMM_2D_IMAGE_ID :
2231 			  DDR_DMEM_RDIMM_1D_IMAGE_ID;
2232 		break;
2233 	default:
2234 		ERROR("Unsupported DIMM type\n");
2235 		return -EINVAL;
2236 	}
2237 
2238 	size = PHY_GEN2_MAX_IMAGE_SIZE;
2239 	image_buf = (uintptr_t)phy_gen2_fw_img_buf;
2240 	ret = img_loadr(imem_id, &image_buf, &size);
2241 	if (ret != 0) {
2242 		ERROR("Failed to load %d firmware.\n", imem_id);
2243 		return ret;
2244 	}
2245 	debug("Loaded Imaged id %d of size %x at address %lx\n",
2246 						imem_id, size, image_buf);
2247 
2248 	for (i = 0; i < NUM_OF_DDRC; i++) {
2249 		phy = phy_ptr[i];
2250 		if (phy == NULL) {
2251 			continue;
2252 		}
2253 
2254 		if (warm_boot_flag != DDR_WARM_BOOT) {
2255 			if (train2d == 0) {
2256 				phy_io_write16(phy, t_master |
2257 						csr_mem_reset_l_addr,
2258 						csr_protect_mem_reset_mask);
2259 			}
2260 		}
2261 		/* Enable access to the internal CSRs */
2262 		phy_io_write16(phy, t_apbonly | csr_micro_cont_mux_sel_addr, 0);
2263 
2264 		ret = send_fw(phy, PHY_GEN2_IMEM_ADDR,
2265 			      (uint16_t *)image_buf, size);
2266 		if (ret != 0) {
2267 			return ret;
2268 		}
2269 	}
2270 
2271 	size = PHY_GEN2_MAX_IMAGE_SIZE;
2272 	image_buf = (uintptr_t)phy_gen2_fw_img_buf;
2273 	ret = img_loadr(dmem_id, &image_buf, &size);
2274 	if (ret != 0) {
2275 		ERROR("Failed to load %d firmware.\n", dmem_id);
2276 		return ret;
2277 	}
2278 	debug("Loaded Imaged id %d of size %x at address %lx\n",
2279 						dmem_id, size, image_buf);
2280 	image_buf += len;
2281 	size -= len;
2282 
2283 	for (i = 0; i < NUM_OF_DDRC; i++) {
2284 		phy = phy_ptr[i];
2285 		if (phy == NULL) {
2286 			continue;
2287 		}
2288 
2289 		ret = send_fw(phy, PHY_GEN2_DMEM_ADDR, msg, len);
2290 		if (ret != 0) {
2291 			return ret;
2292 		}
2293 
2294 		ret = send_fw(phy, PHY_GEN2_DMEM_ADDR + len / 2,
2295 			      (uint16_t *)image_buf, size);
2296 		if (ret != 0) {
2297 			return ret;
2298 		}
2299 	}
2300 
2301 	return ret;
2302 }
2303 
parse_odt(const unsigned int val,const int read,const int i,const unsigned int cs_d0,const unsigned int cs_d1,unsigned int * odt)2304 static void parse_odt(const unsigned int val,
2305 		       const int read,
2306 		       const int i,
2307 		       const unsigned int cs_d0,
2308 		       const unsigned int cs_d1,
2309 		       unsigned int *odt)
2310 {
2311 	int shift = read ? 4 : 0;
2312 	int j;
2313 
2314 	if (i < 0 || i > 3) {
2315 		printf("Error: invalid chip-select value\n");
2316 		return;
2317 	}
2318 	switch (val) {
2319 	case DDR_ODT_CS:
2320 		odt[i] |= (1 << i) << shift;
2321 		break;
2322 	case DDR_ODT_ALL_OTHER_CS:
2323 		for (j = 0; j < DDRC_NUM_CS; j++) {
2324 			if (i == j) {
2325 				continue;
2326 			}
2327 			if (((cs_d0 | cs_d1) & (1 << j)) == 0) {
2328 				continue;
2329 			}
2330 			odt[j] |= (1 << i) << shift;
2331 		}
2332 		break;
2333 	case DDR_ODT_CS_AND_OTHER_DIMM:
2334 		odt[i] |= (1 << i) << 4;
2335 		/* fallthrough */
2336 	case DDR_ODT_OTHER_DIMM:
2337 		for (j = 0; j < DDRC_NUM_CS; j++) {
2338 			if ((((cs_d0 & (1 << i)) != 0) &&
2339 						((cs_d1 & (1 << j)) != 0)) ||
2340 			    (((cs_d1 & (1 << i)) != 0) &&
2341 						((cs_d0 & (1 << j)) != 0))) {
2342 				odt[j] |= (1 << i) << shift;
2343 			}
2344 		}
2345 		break;
2346 	case DDR_ODT_ALL:
2347 		for (j = 0; j < DDRC_NUM_CS; j++) {
2348 			if (((cs_d0 | cs_d1) & (1 << j)) == 0) {
2349 				continue;
2350 			}
2351 			odt[j] |= (1 << i) << shift;
2352 		}
2353 		break;
2354 	case DDR_ODT_SAME_DIMM:
2355 		for (j = 0; j < DDRC_NUM_CS; j++) {
2356 			if ((((cs_d0 & (1 << i)) != 0) &&
2357 						((cs_d0 & (1 << j)) != 0)) ||
2358 			    (((cs_d1 & (1 << i)) != 0) &&
2359 						((cs_d1 & (1 << j)) != 0))) {
2360 				odt[j] |= (1 << i) << shift;
2361 			}
2362 		}
2363 		break;
2364 	case DDR_ODT_OTHER_CS_ONSAMEDIMM:
2365 		for (j = 0; j < DDRC_NUM_CS; j++) {
2366 			if (i == j) {
2367 				continue;
2368 			}
2369 			if ((((cs_d0 & (1 << i)) != 0) &&
2370 						((cs_d0 & (1 << j)) != 0)) ||
2371 			    (((cs_d1 & (1 << i)) != 0) &&
2372 						((cs_d1 & (1 << j)) != 0))) {
2373 				odt[j] |= (1 << i) << shift;
2374 			}
2375 		}
2376 		break;
2377 	case DDR_ODT_NEVER:
2378 		break;
2379 	default:
2380 		break;
2381 	}
2382 }
2383 
2384 #ifdef DEBUG_DDR_INPUT_CONFIG
2385 char *dram_types_str[] = {
2386 		"DDR4",
2387 		"DDR3",
2388 		"LDDDR4",
2389 		"LPDDR3",
2390 		"LPDDR2",
2391 		"DDR5"
2392 };
2393 
2394 char *dimm_types_str[] = {
2395 		"UDIMM",
2396 		"SODIMM",
2397 		"RDIMM",
2398 		"LRDIMM",
2399 		"NODIMM",
2400 };
2401 
2402 
print_jason_format(struct input * input,struct ddr4u1d * msg_1d,struct ddr4u2d * msg_2d)2403 static void print_jason_format(struct input *input,
2404 			       struct ddr4u1d *msg_1d,
2405 			       struct ddr4u2d *msg_2d)
2406 {
2407 
2408 	printf("\n{");
2409 	printf("\n    \"dram_type\": \"%s\",", dram_types_str[input->basic.dram_type]);
2410 	printf("\n    \"dimm_type\": \"%s\",", dimm_types_str[input->basic.dimm_type]);
2411 	printf("\n    \"hard_macro_ver\": \"%d\",", input->basic.hard_macro_ver);
2412 	printf("\n    \"num_dbyte\": \"0x%04x\",", (unsigned int)input->basic.num_dbyte);
2413 	printf("\n    \"num_active_dbyte_dfi0\": \"0x%04x\",", (unsigned int)input->basic.num_active_dbyte_dfi0);
2414 	printf("\n    \"num_anib\": \"0x%04x\",", (unsigned int)input->basic.num_anib);
2415 	printf("\n    \"num_rank_dfi0\": \"0x%04x\",", (unsigned int)input->basic.num_rank_dfi0);
2416 	printf("\n    \"num_pstates\": \"0x%04x\",", (unsigned int)input->basic.num_pstates);
2417 	printf("\n    \"frequency\": \"%d\",", input->basic.frequency);
2418 	printf("\n    \"pll_bypass\": \"0x%04x\",", (unsigned int)input->basic.dfi_freq_ratio);
2419 	printf("\n    \"dfi_freq_ratio\": \"0x%04x\",", (unsigned int)input->basic.dfi_freq_ratio);
2420 	printf("\n    \"dfi1_exists\":  \"0x%04x\",", (unsigned int)input->basic.dfi1exists);
2421 	printf("\n    \"dram_data_width\": \"0x%04x\",", (unsigned int)input->basic.dram_data_width);
2422 	printf("\n    \"dram_byte_swap\": \"0x%04x\",", (unsigned int)input->adv.dram_byte_swap);
2423 	printf("\n    \"ext_cal_res_val\": \"0x%04x\",", (unsigned int)input->adv.ext_cal_res_val);
2424 	printf("\n    \"tx_slew_rise_dq\": \"0x%04x\",", (unsigned int)input->adv.tx_slew_rise_dq);
2425 	printf("\n    \"tx_slew_fall_dq\": \"0x%04x\",", (unsigned int)input->adv.tx_slew_fall_dq);
2426 	printf("\n    \"tx_slew_rise_ac\": \"0x%04x\",", (unsigned int)input->adv.tx_slew_rise_ac);
2427 	printf("\n    \"tx_slew_fall_ac\": \"0x%04x\",", (unsigned int)input->adv.tx_slew_fall_ac);
2428 	printf("\n    \"odt_impedance\": \"%d\",", input->adv.odtimpedance);
2429 	printf("\n    \"tx_impedance\": \"%d\",", input->adv.tx_impedance);
2430 	printf("\n    \"atx_impedance\": \"%d\",", input->adv.atx_impedance);
2431 	printf("\n    \"mem_alert_en\": \"0x%04x\",", (unsigned int)input->adv.mem_alert_en);
2432 	printf("\n    \"mem_alert_pu_imp\": \"0x%04x\",", (unsigned int)input->adv.mem_alert_puimp);
2433 	printf("\n    \"mem_alert_vref_level\": \"0x%04x\",", (unsigned int)input->adv.mem_alert_vref_level);
2434 	printf("\n    \"mem_alert_sync_bypass\": \"0x%04x\",", (unsigned int)input->adv.mem_alert_sync_bypass);
2435 	printf("\n    \"cal_interval\": \"0x%04x\",", (unsigned int)input->adv.cal_interval);
2436 	printf("\n    \"cal_once\": \"0x%04x\",", (unsigned int)input->adv.cal_once);
2437 	printf("\n    \"dis_dyn_adr_tri\": \"0x%04x\",", (unsigned int)input->adv.dis_dyn_adr_tri);
2438 	printf("\n    \"is2t_timing\": \"0x%04x\",", (unsigned int)input->adv.is2ttiming);
2439 	printf("\n    \"d4rx_preabmle_length\": \"0x%04x\",", (unsigned int)input->adv.d4rx_preamble_length);
2440 	printf("\n    \"d4tx_preamble_length\": \"0x%04x\",", (unsigned int)input->adv.d4tx_preamble_length);
2441 	printf("\n    \"msg_misc\": \"0x%02x\",", (unsigned int)msg_1d->msg_misc);
2442 	printf("\n    \"reserved00\": \"0x%01x\",", (unsigned int)msg_1d->reserved00);
2443 	printf("\n    \"hdt_ctrl\": \"0x%02x\",", (unsigned int)msg_1d->hdt_ctrl);
2444 	printf("\n    \"cs_present\": \"0x%02x\",", (unsigned int)msg_1d->cs_present);
2445 	printf("\n    \"phy_vref\": \"0x%02x\",", (unsigned int)msg_1d->phy_vref);
2446 	printf("\n    \"dfi_mrl_margin\": \"0x%02x\",", (unsigned int)msg_1d->dfimrlmargin);
2447 	printf("\n    \"addr_mirror\": \"0x%02x\",", (unsigned int)msg_1d->addr_mirror);
2448 	printf("\n    \"wr_odt_pat_rank0\": \"0x%02x\",", (unsigned int)(msg_1d->acsm_odt_ctrl0 & 0x0f));
2449 	printf("\n    \"wr_odt_pat_rank1\": \"0x%02x\",", (unsigned int)(msg_1d->acsm_odt_ctrl1 & 0x0f));
2450 	printf("\n    \"wr_odt_pat_rank2\": \"0x%02x\",", (unsigned int)(msg_1d->acsm_odt_ctrl2 & 0x0f));
2451 	printf("\n    \"wr_odt_pat_rank3\": \"0x%02x\",", (unsigned int)(msg_1d->acsm_odt_ctrl3 & 0x0f));
2452 	printf("\n    \"rd_odt_pat_rank0\": \"0x%02x\",", (unsigned int)(msg_1d->acsm_odt_ctrl0 & 0xf0));
2453 	printf("\n    \"rd_odt_pat_rank1\": \"0x%02x\",", (unsigned int)(msg_1d->acsm_odt_ctrl1 & 0xf0));
2454 	printf("\n    \"rd_odt_pat_rank2\": \"0x%02x\",", (unsigned int)(msg_1d->acsm_odt_ctrl2 & 0xf0));
2455 	printf("\n    \"rd_odt_pat_rank3\": \"0x%02x\",", (unsigned int)(msg_1d->acsm_odt_ctrl3 & 0xf0));
2456 	printf("\n    \"d4_misc\": \"0x%01x\",", (unsigned int)msg_1d->d4misc);
2457 	printf("\n    \"share_2d_vref_results\": \"0x%01x\",", (unsigned int)msg_1d->share2dvref_result);
2458 	printf("\n    \"sequence_ctrl\": \"0x%04x\",", (unsigned int)msg_1d->sequence_ctrl);
2459 	printf("\n    \"mr0\": \"0x%04x\",", (unsigned int)msg_1d->mr0);
2460 	printf("\n    \"mr1\": \"0x%04x\",", (unsigned int)msg_1d->mr1);
2461 	printf("\n    \"mr2\": \"0x%04x\",", (unsigned int)msg_1d->mr2);
2462 	printf("\n    \"mr3\": \"0x%04x\",", (unsigned int)msg_1d->mr3);
2463 	printf("\n    \"mr4\": \"0x%04x\",", (unsigned int)msg_1d->mr4);
2464 	printf("\n    \"mr5\": \"0x%04x\",", (unsigned int)msg_1d->mr5);
2465 	printf("\n    \"mr6\": \"0x%04x\",", (unsigned int)msg_1d->mr6);
2466 	printf("\n    \"alt_cal_l\": \"0x%04x\",", (unsigned int)msg_1d->alt_cas_l);
2467 	printf("\n    \"alt_wcal_l\": \"0x%04x\",", (unsigned int)msg_1d->alt_wcas_l);
2468 	printf("\n    \"sequence_ctrl_2d\": \"0x%04x\",", (unsigned int)msg_2d->sequence_ctrl);
2469 	printf("\n    \"rtt_nom_wr_park0\": \"0x%01x\",", (unsigned int)msg_1d->rtt_nom_wr_park0);
2470 	printf("\n    \"rtt_nom_wr_park1\": \"0x%01x\",", (unsigned int)msg_1d->rtt_nom_wr_park1);
2471 	printf("\n    \"rtt_nom_wr_park2\": \"0x%01x\",", (unsigned int)msg_1d->rtt_nom_wr_park2);
2472 	printf("\n    \"rtt_nom_wr_park3\": \"0x%01x\",", (unsigned int)msg_1d->rtt_nom_wr_park3);
2473 	printf("\n    \"rtt_nom_wr_park4\": \"0x%01x\",", (unsigned int)msg_1d->rtt_nom_wr_park4);
2474 	printf("\n    \"rtt_nom_wr_park5\": \"0x%01x\",", (unsigned int)msg_1d->rtt_nom_wr_park5);
2475 	printf("\n    \"rtt_nom_wr_park6\": \"0x%01x\",", (unsigned int)msg_1d->rtt_nom_wr_park6);
2476 	printf("\n    \"rtt_nom_wr_park7\": \"0x%01x\"", (unsigned int)msg_1d->rtt_nom_wr_park7);
2477 	printf("\n}");
2478 	printf("\n");
2479 }
2480 #endif
2481 
compute_ddr_phy(struct ddr_info * priv)2482 int compute_ddr_phy(struct ddr_info *priv)
2483 {
2484 	const unsigned long clk = priv->clk;
2485 	const struct memctl_opt *popts = &priv->opt;
2486 	const struct ddr_conf *conf = &priv->conf;
2487 	const struct dimm_params *dimm_param = &priv->dimm;
2488 	struct ddr_cfg_regs *regs = &priv->ddr_reg;
2489 	int ret;
2490 	static struct input input;
2491 	static struct ddr4u1d msg_1d;
2492 	static struct ddr4u2d msg_2d;
2493 	unsigned int i;
2494 	unsigned int odt_rd, odt_wr;
2495 	__unused const soc_info_t *soc_info;
2496 #ifdef NXP_APPLY_MAX_CDD
2497 	unsigned int tcfg0, tcfg4, rank;
2498 #ifdef NXP_WARM_BOOT
2499 	struct ddr_ctrl_reg_values ddrctrl_regs;
2500 #endif
2501 #endif
2502 
2503 	if (dimm_param == NULL) {
2504 		ERROR("Empty DIMM parameters.\n");
2505 		return -EINVAL;
2506 	}
2507 
2508 	zeromem(&input, sizeof(input));
2509 	zeromem(&msg_1d, sizeof(msg_1d));
2510 	zeromem(&msg_2d, sizeof(msg_2d));
2511 
2512 	input.basic.dram_type = DDR4;
2513 	/* FIXME: Add condition for LRDIMM */
2514 	input.basic.dimm_type = (dimm_param->rdimm != 0) ? RDIMM : UDIMM;
2515 	input.basic.num_dbyte = dimm_param->primary_sdram_width / 8 +
2516 				 dimm_param->ec_sdram_width / 8;
2517 	input.basic.num_active_dbyte_dfi0 = input.basic.num_dbyte;
2518 	input.basic.num_rank_dfi0 = dimm_param->n_ranks;
2519 	input.basic.dram_data_width = dimm_param->device_width;
2520 	input.basic.hard_macro_ver	= 0xa;
2521 	input.basic.num_pstates	= 1;
2522 	input.basic.dfi_freq_ratio	= 1;
2523 	input.basic.num_anib		= 0xc;
2524 	input.basic.train2d		= popts->skip2d ? 0 : 1;
2525 	input.basic.frequency = (int) (clk / 2000000ul);
2526 	debug("frequency = %dMHz\n", input.basic.frequency);
2527 	input.cs_d0 = conf->cs_on_dimm[0];
2528 #if DDRC_NUM_DIMM > 1
2529 	input.cs_d1 = conf->cs_on_dimm[1];
2530 #endif
2531 	input.mirror = dimm_param->mirrored_dimm;
2532 	input.mr[0] = regs->sdram_mode[0] & U(0xffff);
2533 	input.mr[1] = regs->sdram_mode[0] >> 16U;
2534 	input.mr[2] = regs->sdram_mode[1] >> 16U;
2535 	input.mr[3] = regs->sdram_mode[1] & U(0xffff);
2536 	input.mr[4] = regs->sdram_mode[8] >> 16U;
2537 	input.mr[5] = regs->sdram_mode[8] & U(0xffff);
2538 	input.mr[6] = regs->sdram_mode[9] >> 16U;
2539 	input.vref = popts->vref_phy;
2540 	debug("Vref_phy = %d percent\n", (input.vref * 100U) >> 7U);
2541 	for (i = 0U; i < DDRC_NUM_CS; i++) {
2542 		if ((regs->cs[i].config & SDRAM_CS_CONFIG_EN) == 0U) {
2543 			continue;
2544 		}
2545 		odt_rd = (regs->cs[i].config >> 20U) & U(0x7);
2546 		odt_wr = (regs->cs[i].config >> 16U) & U(0x7);
2547 		parse_odt(odt_rd, true, i, input.cs_d0, input.cs_d1,
2548 			   input.odt);
2549 		parse_odt(odt_wr, false, i, input.cs_d0, input.cs_d1,
2550 			   input.odt);
2551 	}
2552 
2553 	/* Do not set sdram_cfg[RD_EN] or sdram_cfg2[RCW_EN] for RDIMM */
2554 	if (dimm_param->rdimm != 0U) {
2555 		regs->sdram_cfg[0] &= ~(1 << 28U);
2556 		regs->sdram_cfg[1] &= ~(1 << 2U);
2557 		input.rcw[0] = (regs->sdram_rcw[0] >> 28U) & U(0xf);
2558 		input.rcw[1] = (regs->sdram_rcw[0] >> 24U) & U(0xf);
2559 		input.rcw[2] = (regs->sdram_rcw[0] >> 20U) & U(0xf);
2560 		input.rcw[3] = (regs->sdram_rcw[0] >> 16U) & U(0xf);
2561 		input.rcw[4] = (regs->sdram_rcw[0] >> 12U) & U(0xf);
2562 		input.rcw[5] = (regs->sdram_rcw[0] >> 8U) & U(0xf);
2563 		input.rcw[6] = (regs->sdram_rcw[0] >> 4U) & U(0xf);
2564 		input.rcw[7] = (regs->sdram_rcw[0] >> 0U) & U(0xf);
2565 		input.rcw[8] = (regs->sdram_rcw[1] >> 28U) & U(0xf);
2566 		input.rcw[9] = (regs->sdram_rcw[1] >> 24U) & U(0xf);
2567 		input.rcw[10] = (regs->sdram_rcw[1] >> 20U) & U(0xf);
2568 		input.rcw[11] = (regs->sdram_rcw[1] >> 16U) & U(0xf);
2569 		input.rcw[12] = (regs->sdram_rcw[1] >> 12U) & U(0xf);
2570 		input.rcw[13] = (regs->sdram_rcw[1] >> 8U) & U(0xf);
2571 		input.rcw[14] = (regs->sdram_rcw[1] >> 4U) & U(0xf);
2572 		input.rcw[15] = (regs->sdram_rcw[1] >> 0U) & U(0xf);
2573 		input.rcw3x = (regs->sdram_rcw[2] >> 8U) & U(0xff);
2574 	}
2575 
2576 	input.adv.odtimpedance = popts->odt ? popts->odt : 60;
2577 	input.adv.tx_impedance = popts->phy_tx_impedance ?
2578 					popts->phy_tx_impedance : 28;
2579 	input.adv.atx_impedance = popts->phy_atx_impedance ?
2580 					popts->phy_atx_impedance : 30;
2581 
2582 	debug("Initializing input adv data structure\n");
2583 	phy_gen2_init_input(&input);
2584 
2585 	debug("Initializing message block\n");
2586 	ret = phy_gen2_msg_init(&msg_1d, &msg_2d, &input);
2587 	if (ret != 0) {
2588 		ERROR("Init msg failed (error code %d)\n", ret);
2589 		return ret;
2590 	}
2591 
2592 	ret = c_init_phy_config(priv->phy, priv->ip_rev, &input, &msg_1d);
2593 	if (ret != 0) {
2594 		ERROR("Init PHY failed (error code %d)\n", ret);
2595 		return ret;
2596 	}
2597 #ifdef NXP_WARM_BOOT
2598 	debug("Warm boot flag value %0x\n", priv->warm_boot_flag);
2599 	if (priv->warm_boot_flag == DDR_WARM_BOOT) {
2600 		debug("Restoring the Phy training data\n");
2601 		// Restore the training data
2602 		ret = restore_phy_training_values(priv->phy,
2603 						  PHY_TRAINING_REGS_ON_FLASH,
2604 						  priv->num_ctlrs,
2605 						  input.basic.train2d
2606 #ifdef NXP_APPLY_MAX_CDD
2607 						, &ddrctrl_regs
2608 #endif
2609 						);
2610 		if (ret != 0) {
2611 			ERROR("Restoring of training data failed %d\n", ret);
2612 			return ret;
2613 		}
2614 #ifdef NXP_APPLY_MAX_CDD
2615 		regs->timing_cfg[0] = ddrctrl_regs.timing_cfg0;
2616 		regs->timing_cfg[4] = ddrctrl_regs.timing_cfg4;
2617 #endif
2618 	} else {
2619 #endif
2620 		/* Mapping IMG buffer firstly */
2621 		ret = mmap_add_dynamic_region(priv->phy_gen2_fw_img_buf,
2622 			priv->phy_gen2_fw_img_buf,
2623 			PHY_GEN2_MAX_IMAGE_SIZE,
2624 			MT_MEMORY | MT_RW | MT_SECURE);
2625 		if (ret != 0) {
2626 			ERROR("Failed to add dynamic memory region.\n");
2627 			return ret;
2628 		}
2629 
2630 		debug("Load 1D firmware\n");
2631 		ret = load_fw(priv->phy, &input, 0, &msg_1d,
2632 			      sizeof(struct ddr4u1d), priv->phy_gen2_fw_img_buf,
2633 					priv->img_loadr, priv->warm_boot_flag);
2634 		if (ret != 0) {
2635 			ERROR("Loading firmware failed (error code %d)\n", ret);
2636 			return ret;
2637 		}
2638 
2639 		debug("Execute firmware\n");
2640 		ret = g_exec_fw(priv->phy, 0, &input);
2641 		if (ret != 0) {
2642 			ERROR("Execution FW failed (error code %d)\n", ret);
2643 		}
2644 
2645 #ifdef NXP_APPLY_MAX_CDD
2646 		soc_info = get_soc_info();
2647 		if (soc_info->svr_reg.bf.maj_ver == 2) {
2648 			tcfg0 = regs->timing_cfg[0];
2649 			tcfg4 = regs->timing_cfg[4];
2650 			rank = findrank(conf->cs_in_use);
2651 			get_cdd_val(priv->phy, rank, input.basic.frequency,
2652 					&tcfg0, &tcfg4);
2653 			regs->timing_cfg[0] = tcfg0;
2654 			regs->timing_cfg[4] = tcfg4;
2655 		}
2656 #endif
2657 
2658 		if ((ret == 0) && (input.basic.train2d != 0)) {
2659 			/* 2D training starts here */
2660 			debug("Load 2D firmware\n");
2661 			ret = load_fw(priv->phy, &input, 1, &msg_2d,
2662 				      sizeof(struct ddr4u2d),
2663 				      priv->phy_gen2_fw_img_buf,
2664 				      priv->img_loadr,
2665 				      priv->warm_boot_flag);
2666 			if (ret != 0) {
2667 				ERROR("Loading fw failed (err code %d)\n", ret);
2668 			} else {
2669 				debug("Execute 2D firmware\n");
2670 				ret = g_exec_fw(priv->phy, 1, &input);
2671 				if (ret != 0) {
2672 					ERROR("Execution FW failed (err %d)\n",
2673 					       ret);
2674 				}
2675 			}
2676 		}
2677 #ifdef NXP_WARM_BOOT
2678 		if (priv->warm_boot_flag != DDR_WRM_BOOT_NT_SUPPORTED &&
2679 		    ret == 0) {
2680 #ifdef NXP_APPLY_MAX_CDD
2681 			ddrctrl_regs.timing_cfg0 = regs->timing_cfg[0];
2682 			ddrctrl_regs.timing_cfg4 = regs->timing_cfg[4];
2683 #endif
2684 			debug("save the phy training data\n");
2685 			//Save training data TBD
2686 			ret = save_phy_training_values(priv->phy,
2687 						PHY_TRAINING_REGS_ON_FLASH,
2688 						priv->num_ctlrs,
2689 						input.basic.train2d
2690 #ifdef NXP_APPLY_MAX_CDD
2691 						, &ddrctrl_regs
2692 #endif
2693 						);
2694 			if (ret != 0) {
2695 				ERROR("Saving training data failed.");
2696 				ERROR("Warm boot will fail. Error=%d.\n", ret);
2697 			}
2698 		}
2699 	} /* else */
2700 #endif
2701 
2702 	if (ret == 0) {
2703 		debug("Load PIE\n");
2704 		i_load_pie(priv->phy, &input, &msg_1d);
2705 
2706 		NOTICE("DDR4 %s with %d-rank %d-bit bus (x%d)\n",
2707 		       input.basic.dimm_type == RDIMM ? "RDIMM" :
2708 		       input.basic.dimm_type == LRDIMM ? "LRDIMM" :
2709 		       "UDIMM",
2710 		       dimm_param->n_ranks,
2711 		       dimm_param->primary_sdram_width,
2712 		       dimm_param->device_width);
2713 	}
2714 #ifdef DEBUG_DDR_INPUT_CONFIG
2715 	print_jason_format(&input, &msg_1d, &msg_2d);
2716 #endif
2717 
2718 	return ret;
2719 }
2720