1 /*
2  * Copyright (c) 2022-2024, Arm Limited. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <errno.h>
9 #include <inttypes.h>
10 #include <limits.h>
11 #include <stdint.h>
12 
13 #include <arch.h>
14 #include <arch_features.h>
15 #include <arch_helpers.h>
16 #include <common/debug.h>
17 #include "gpt_rme_private.h"
18 #include <lib/gpt_rme/gpt_rme.h>
19 #include <lib/smccc.h>
20 #include <lib/spinlock.h>
21 #include <lib/xlat_tables/xlat_tables_v2.h>
22 
23 #if !ENABLE_RME
24 #error "ENABLE_RME must be enabled to use the GPT library"
25 #endif
26 
27 /*
28  * Lookup T from PPS
29  *
30  *   PPS    Size    T
31  *   0b000  4GB     32
32  *   0b001  64GB    36
33  *   0b010  1TB     40
34  *   0b011  4TB     42
35  *   0b100  16TB    44
36  *   0b101  256TB   48
37  *   0b110  4PB     52
38  *
39  * See section 15.1.27 of the RME specification.
40  */
41 static const gpt_t_val_e gpt_t_lookup[] = {PPS_4GB_T, PPS_64GB_T,
42 					   PPS_1TB_T, PPS_4TB_T,
43 					   PPS_16TB_T, PPS_256TB_T,
44 					   PPS_4PB_T};
45 
46 /*
47  * Lookup P from PGS
48  *
49  *   PGS    Size    P
50  *   0b00   4KB     12
51  *   0b10   16KB    14
52  *   0b01   64KB    16
53  *
54  * Note that pgs=0b10 is 16KB and pgs=0b01 is 64KB, this is not a typo.
55  *
56  * See section 15.1.27 of the RME specification.
57  */
58 static const gpt_p_val_e gpt_p_lookup[] = {PGS_4KB_P, PGS_64KB_P, PGS_16KB_P};
59 
60 /*
61  * This structure contains GPT configuration data
62  */
63 typedef struct {
64 	uintptr_t plat_gpt_l0_base;
65 	gpccr_pps_e pps;
66 	gpt_t_val_e t;
67 	gpccr_pgs_e pgs;
68 	gpt_p_val_e p;
69 } gpt_config_t;
70 
71 static gpt_config_t gpt_config;
72 
73 /* These variables are used during initialization of the L1 tables */
74 static unsigned int gpt_next_l1_tbl_idx;
75 static uintptr_t gpt_l1_tbl;
76 
77 /*
78  * This function checks to see if a GPI value is valid.
79  *
80  * These are valid GPI values.
81  *   GPT_GPI_NO_ACCESS   U(0x0)
82  *   GPT_GPI_SECURE      U(0x8)
83  *   GPT_GPI_NS          U(0x9)
84  *   GPT_GPI_ROOT        U(0xA)
85  *   GPT_GPI_REALM       U(0xB)
86  *   GPT_GPI_ANY         U(0xF)
87  *
88  * Parameters
89  *   gpi		GPI to check for validity.
90  *
91  * Return
92  *   true for a valid GPI, false for an invalid one.
93  */
is_gpi_valid(unsigned int gpi)94 static bool is_gpi_valid(unsigned int gpi)
95 {
96 	if ((gpi == GPT_GPI_NO_ACCESS) || (gpi == GPT_GPI_ANY) ||
97 	    ((gpi >= GPT_GPI_SECURE) && (gpi <= GPT_GPI_REALM))) {
98 		return true;
99 	}
100 	return false;
101 }
102 
103 /*
104  * This function checks to see if two PAS regions overlap.
105  *
106  * Parameters
107  *   base_1: base address of first PAS
108  *   size_1: size of first PAS
109  *   base_2: base address of second PAS
110  *   size_2: size of second PAS
111  *
112  * Return
113  *   True if PAS regions overlap, false if they do not.
114  */
check_pas_overlap(uintptr_t base_1,size_t size_1,uintptr_t base_2,size_t size_2)115 static bool check_pas_overlap(uintptr_t base_1, size_t size_1,
116 			      uintptr_t base_2, size_t size_2)
117 {
118 	if (((base_1 + size_1) > base_2) && ((base_2 + size_2) > base_1)) {
119 		return true;
120 	}
121 	return false;
122 }
123 
124 /*
125  * This helper function checks to see if a PAS region from index 0 to
126  * (pas_idx - 1) occupies the L0 region at index l0_idx in the L0 table.
127  *
128  * Parameters
129  *   l0_idx:      Index of the L0 entry to check
130  *   pas_regions: PAS region array
131  *   pas_idx:     Upper bound of the PAS array index.
132  *
133  * Return
134  *   True if a PAS region occupies the L0 region in question, false if not.
135  */
does_previous_pas_exist_here(unsigned int l0_idx,pas_region_t * pas_regions,unsigned int pas_idx)136 static bool does_previous_pas_exist_here(unsigned int l0_idx,
137 					 pas_region_t *pas_regions,
138 					 unsigned int pas_idx)
139 {
140 	/* Iterate over PAS regions up to pas_idx */
141 	for (unsigned int i = 0U; i < pas_idx; i++) {
142 		if (check_pas_overlap((GPT_L0GPTSZ_ACTUAL_SIZE * l0_idx),
143 		    GPT_L0GPTSZ_ACTUAL_SIZE,
144 		    pas_regions[i].base_pa, pas_regions[i].size)) {
145 			return true;
146 		}
147 	}
148 	return false;
149 }
150 
151 /*
152  * This function iterates over all of the PAS regions and checks them to ensure
153  * proper alignment of base and size, that the GPI is valid, and that no regions
154  * overlap. As a part of the overlap checks, this function checks existing L0
155  * mappings against the new PAS regions in the event that gpt_init_pas_l1_tables
156  * is called multiple times to place L1 tables in different areas of memory. It
157  * also counts the number of L1 tables needed and returns it on success.
158  *
159  * Parameters
160  *   *pas_regions	Pointer to array of PAS region structures.
161  *   pas_region_cnt	Total number of PAS regions in the array.
162  *
163  * Return
164  *   Negative Linux error code in the event of a failure, number of L1 regions
165  *   required when successful.
166  */
validate_pas_mappings(pas_region_t * pas_regions,unsigned int pas_region_cnt)167 static int validate_pas_mappings(pas_region_t *pas_regions,
168 				 unsigned int pas_region_cnt)
169 {
170 	unsigned int idx;
171 	unsigned int l1_cnt = 0U;
172 	unsigned int pas_l1_cnt;
173 	uint64_t *l0_desc = (uint64_t *)gpt_config.plat_gpt_l0_base;
174 
175 	assert(pas_regions != NULL);
176 	assert(pas_region_cnt != 0U);
177 
178 	for (idx = 0U; idx < pas_region_cnt; idx++) {
179 		/* Check for arithmetic overflow in region */
180 		if ((ULONG_MAX - pas_regions[idx].base_pa) <
181 		    pas_regions[idx].size) {
182 			ERROR("GPT: Address overflow in PAS[%u]!\n", idx);
183 			return -EOVERFLOW;
184 		}
185 
186 		/* Initial checks for PAS validity */
187 		if (((pas_regions[idx].base_pa + pas_regions[idx].size) >
188 		    GPT_PPS_ACTUAL_SIZE(gpt_config.t)) ||
189 		    !is_gpi_valid(GPT_PAS_ATTR_GPI(pas_regions[idx].attrs))) {
190 			ERROR("GPT: PAS[%u] is invalid!\n", idx);
191 			return -EFAULT;
192 		}
193 
194 		/*
195 		 * Make sure this PAS does not overlap with another one. We
196 		 * start from idx + 1 instead of 0 since prior PAS mappings will
197 		 * have already checked themselves against this one.
198 		 */
199 		for (unsigned int i = idx + 1U; i < pas_region_cnt; i++) {
200 			if (check_pas_overlap(pas_regions[idx].base_pa,
201 			    pas_regions[idx].size,
202 			    pas_regions[i].base_pa,
203 			    pas_regions[i].size)) {
204 				ERROR("GPT: PAS[%u] overlaps with PAS[%u]\n",
205 					i, idx);
206 				return -EFAULT;
207 			}
208 		}
209 
210 		/*
211 		 * Since this function can be called multiple times with
212 		 * separate L1 tables we need to check the existing L0 mapping
213 		 * to see if this PAS would fall into one that has already been
214 		 * initialized.
215 		 */
216 		for (unsigned int i = GPT_L0_IDX(pas_regions[idx].base_pa);
217 		     i <= GPT_L0_IDX(pas_regions[idx].base_pa +
218 						pas_regions[idx].size - 1UL);
219 		     i++) {
220 			if ((GPT_L0_TYPE(l0_desc[i]) == GPT_L0_TYPE_BLK_DESC) &&
221 			    (GPT_L0_BLKD_GPI(l0_desc[i]) == GPT_GPI_ANY)) {
222 				/* This descriptor is unused so continue */
223 				continue;
224 			}
225 
226 			/*
227 			 * This descriptor has been initialized in a previous
228 			 * call to this function so cannot be initialized again.
229 			 */
230 			ERROR("GPT: PAS[%u] overlaps with previous L0[%d]!\n",
231 			      idx, i);
232 			return -EFAULT;
233 		}
234 
235 		/* Check for block mapping (L0) type */
236 		if (GPT_PAS_ATTR_MAP_TYPE(pas_regions[idx].attrs) ==
237 		    GPT_PAS_ATTR_MAP_TYPE_BLOCK) {
238 			/* Make sure base and size are block-aligned */
239 			if (!GPT_IS_L0_ALIGNED(pas_regions[idx].base_pa) ||
240 			    !GPT_IS_L0_ALIGNED(pas_regions[idx].size)) {
241 				ERROR("GPT: PAS[%u] is not block-aligned!\n",
242 				      idx);
243 				return -EFAULT;
244 			}
245 
246 			continue;
247 		}
248 
249 		/* Check for granule mapping (L1) type */
250 		if (GPT_PAS_ATTR_MAP_TYPE(pas_regions[idx].attrs) ==
251 		    GPT_PAS_ATTR_MAP_TYPE_GRANULE) {
252 			/* Make sure base and size are granule-aligned */
253 			if (!GPT_IS_L1_ALIGNED(gpt_config.p, pas_regions[idx].base_pa) ||
254 			    !GPT_IS_L1_ALIGNED(gpt_config.p, pas_regions[idx].size)) {
255 				ERROR("GPT: PAS[%u] is not granule-aligned!\n",
256 				      idx);
257 				return -EFAULT;
258 			}
259 
260 			/* Find how many L1 tables this PAS occupies */
261 			pas_l1_cnt = (GPT_L0_IDX(pas_regions[idx].base_pa +
262 				     pas_regions[idx].size - 1UL) -
263 				     GPT_L0_IDX(pas_regions[idx].base_pa) + 1U);
264 
265 			/*
266 			 * This creates a situation where, if multiple PAS
267 			 * regions occupy the same table descriptor, we can get
268 			 * an artificially high total L1 table count. The way we
269 			 * handle this is by checking each PAS against those
270 			 * before it in the array, and if they both occupy the
271 			 * same PAS we subtract from pas_l1_cnt and only the
272 			 * first PAS in the array gets to count it.
273 			 */
274 
275 			/*
276 			 * If L1 count is greater than 1 we know the start and
277 			 * end PAs are in different L0 regions so we must check
278 			 * both for overlap against other PAS.
279 			 */
280 			if (pas_l1_cnt > 1) {
281 				if (does_previous_pas_exist_here(
282 				    GPT_L0_IDX(pas_regions[idx].base_pa +
283 				    pas_regions[idx].size - 1UL),
284 				    pas_regions, idx)) {
285 					pas_l1_cnt--;
286 				}
287 			}
288 
289 			if (does_previous_pas_exist_here(
290 			    GPT_L0_IDX(pas_regions[idx].base_pa),
291 			    pas_regions, idx)) {
292 				pas_l1_cnt--;
293 			}
294 
295 			l1_cnt += pas_l1_cnt;
296 			continue;
297 		}
298 
299 		/* If execution reaches this point, mapping type is invalid */
300 		ERROR("GPT: PAS[%u] has invalid mapping type 0x%x.\n", idx,
301 		      GPT_PAS_ATTR_MAP_TYPE(pas_regions[idx].attrs));
302 		return -EINVAL;
303 	}
304 
305 	return l1_cnt;
306 }
307 
308 /*
309  * This function validates L0 initialization parameters.
310  *
311  * Parameters
312  *   l0_mem_base	Base address of memory used for L0 tables.
313  *   l1_mem_size	Size of memory available for L0 tables.
314  *
315  * Return
316  *   Negative Linux error code in the event of a failure, 0 for success.
317  */
validate_l0_params(gpccr_pps_e pps,uintptr_t l0_mem_base,size_t l0_mem_size)318 static int validate_l0_params(gpccr_pps_e pps, uintptr_t l0_mem_base,
319 				size_t l0_mem_size)
320 {
321 	size_t l0_alignment;
322 
323 	/*
324 	 * Make sure PPS is valid and then store it since macros need this value
325 	 * to work.
326 	 */
327 	if (pps > GPT_PPS_MAX) {
328 		ERROR("GPT: Invalid PPS: 0x%x\n", pps);
329 		return -EINVAL;
330 	}
331 	gpt_config.pps = pps;
332 	gpt_config.t = gpt_t_lookup[pps];
333 
334 	/* Alignment must be the greater of 4KB or l0 table size */
335 	l0_alignment = PAGE_SIZE_4KB;
336 	if (l0_alignment < GPT_L0_TABLE_SIZE(gpt_config.t)) {
337 		l0_alignment = GPT_L0_TABLE_SIZE(gpt_config.t);
338 	}
339 
340 	/* Check base address */
341 	if ((l0_mem_base == 0UL) ||
342 	   ((l0_mem_base & (l0_alignment - 1UL)) != 0UL)) {
343 		ERROR("GPT: Invalid L0 base address: 0x%lx\n", l0_mem_base);
344 		return -EFAULT;
345 	}
346 
347 	/* Check size */
348 	if (l0_mem_size < GPT_L0_TABLE_SIZE(gpt_config.t)) {
349 		ERROR("%sL0%s\n", "GPT: Inadequate ", " memory\n");
350 		ERROR("      Expected 0x%lx bytes, got 0x%lx bytes\n",
351 		      GPT_L0_TABLE_SIZE(gpt_config.t),
352 		      l0_mem_size);
353 		return -ENOMEM;
354 	}
355 
356 	return 0;
357 }
358 
359 /*
360  * In the event that L1 tables are needed, this function validates
361  * the L1 table generation parameters.
362  *
363  * Parameters
364  *   l1_mem_base	Base address of memory used for L1 table allocation.
365  *   l1_mem_size	Total size of memory available for L1 tables.
366  *   l1_gpt_cnt		Number of L1 tables needed.
367  *
368  * Return
369  *   Negative Linux error code in the event of a failure, 0 for success.
370  */
validate_l1_params(uintptr_t l1_mem_base,size_t l1_mem_size,unsigned int l1_gpt_cnt)371 static int validate_l1_params(uintptr_t l1_mem_base, size_t l1_mem_size,
372 				unsigned int l1_gpt_cnt)
373 {
374 	size_t l1_gpt_mem_sz;
375 
376 	/* Check if the granularity is supported */
377 	if (!xlat_arch_is_granule_size_supported(
378 	    GPT_PGS_ACTUAL_SIZE(gpt_config.p))) {
379 		return -EPERM;
380 	}
381 
382 	/* Make sure L1 tables are aligned to their size */
383 	if ((l1_mem_base & (GPT_L1_TABLE_SIZE(gpt_config.p) - 1UL)) != 0UL) {
384 		ERROR("GPT: Unaligned L1 GPT base address: 0x%"PRIxPTR"\n",
385 		      l1_mem_base);
386 		return -EFAULT;
387 	}
388 
389 	/* Get total memory needed for L1 tables */
390 	l1_gpt_mem_sz = l1_gpt_cnt * GPT_L1_TABLE_SIZE(gpt_config.p);
391 
392 	/* Check for overflow */
393 	if ((l1_gpt_mem_sz / GPT_L1_TABLE_SIZE(gpt_config.p)) != l1_gpt_cnt) {
394 		ERROR("GPT: Overflow calculating L1 memory size\n");
395 		return -ENOMEM;
396 	}
397 
398 	/* Make sure enough space was supplied */
399 	if (l1_mem_size < l1_gpt_mem_sz) {
400 		ERROR("%sL1 GPTs%s", "GPT: Inadequate ", " memory\n");
401 		ERROR("      Expected 0x%lx bytes, got 0x%lx bytes\n",
402 		      l1_gpt_mem_sz, l1_mem_size);
403 		return -ENOMEM;
404 	}
405 
406 	VERBOSE("GPT: Requested 0x%lx bytes for L1 GPTs\n", l1_gpt_mem_sz);
407 	return 0;
408 }
409 
410 /*
411  * This function initializes L0 block descriptors (regions that cannot be
412  * transitioned at the granule level) according to the provided PAS.
413  *
414  * Parameters
415  *   *pas		Pointer to the structure defining the PAS region to
416  *			initialize.
417  */
generate_l0_blk_desc(pas_region_t * pas)418 static void generate_l0_blk_desc(pas_region_t *pas)
419 {
420 	uint64_t gpt_desc;
421 	unsigned int end_idx;
422 	unsigned int idx;
423 	uint64_t *l0_gpt_arr;
424 
425 	assert(gpt_config.plat_gpt_l0_base != 0U);
426 	assert(pas != NULL);
427 
428 	/*
429 	 * Checking of PAS parameters has already been done in
430 	 * validate_pas_mappings so no need to check the same things again.
431 	 */
432 
433 	l0_gpt_arr = (uint64_t *)gpt_config.plat_gpt_l0_base;
434 
435 	/* Create the GPT Block descriptor for this PAS region */
436 	gpt_desc = GPT_L0_BLK_DESC(GPT_PAS_ATTR_GPI(pas->attrs));
437 
438 	/* Start index of this region in L0 GPTs */
439 	idx = GPT_L0_IDX(pas->base_pa);
440 
441 	/*
442 	 * Determine number of L0 GPT descriptors covered by
443 	 * this PAS region and use the count to populate these
444 	 * descriptors.
445 	 */
446 	end_idx = GPT_L0_IDX(pas->base_pa + pas->size);
447 
448 	/* Generate the needed block descriptors */
449 	for (; idx < end_idx; idx++) {
450 		l0_gpt_arr[idx] = gpt_desc;
451 		VERBOSE("GPT: L0 entry (BLOCK) index %u [%p]: GPI = 0x%"PRIx64" (0x%"PRIx64")\n",
452 			idx, &l0_gpt_arr[idx],
453 			(gpt_desc >> GPT_L0_BLK_DESC_GPI_SHIFT) &
454 			GPT_L0_BLK_DESC_GPI_MASK, l0_gpt_arr[idx]);
455 	}
456 }
457 
458 /*
459  * Helper function to determine if the end physical address lies in the same L0
460  * region as the current physical address. If true, the end physical address is
461  * returned else, the start address of the next region is returned.
462  *
463  * Parameters
464  *   cur_pa		Physical address of the current PA in the loop through
465  *			the range.
466  *   end_pa		Physical address of the end PA in a PAS range.
467  *
468  * Return
469  *   The PA of the end of the current range.
470  */
get_l1_end_pa(uintptr_t cur_pa,uintptr_t end_pa)471 static uintptr_t get_l1_end_pa(uintptr_t cur_pa, uintptr_t end_pa)
472 {
473 	uintptr_t cur_idx;
474 	uintptr_t end_idx;
475 
476 	cur_idx = GPT_L0_IDX(cur_pa);
477 	end_idx = GPT_L0_IDX(end_pa);
478 
479 	assert(cur_idx <= end_idx);
480 
481 	if (cur_idx == end_idx) {
482 		return end_pa;
483 	}
484 
485 	return (cur_idx + 1U) << GPT_L0_IDX_SHIFT;
486 }
487 
488 /*
489  * Helper function to fill out GPI entries in a single L1 table. This function
490  * fills out entire L1 descriptors at a time to save memory writes.
491  *
492  * Parameters
493  *   gpi		GPI to set this range to
494  *   l1			Pointer to L1 table to fill out
495  *   first		Address of first granule in range.
496  *   last		Address of last granule in range (inclusive).
497  */
fill_l1_tbl(uint64_t gpi,uint64_t * l1,uintptr_t first,uintptr_t last)498 static void fill_l1_tbl(uint64_t gpi, uint64_t *l1, uintptr_t first,
499 			    uintptr_t last)
500 {
501 	uint64_t gpi_field = GPT_BUILD_L1_DESC(gpi);
502 	uint64_t gpi_mask = ULONG_MAX;
503 
504 	assert(first <= last);
505 	assert((first & (GPT_PGS_ACTUAL_SIZE(gpt_config.p) - 1)) == 0U);
506 	assert((last & (GPT_PGS_ACTUAL_SIZE(gpt_config.p) - 1)) == 0U);
507 	assert(GPT_L0_IDX(first) == GPT_L0_IDX(last));
508 	assert(l1 != NULL);
509 
510 	/* Shift the mask if we're starting in the middle of an L1 entry */
511 	gpi_mask = gpi_mask << (GPT_L1_GPI_IDX(gpt_config.p, first) << 2);
512 
513 	/* Fill out each L1 entry for this region */
514 	for (unsigned int i = GPT_L1_IDX(gpt_config.p, first);
515 	     i <= GPT_L1_IDX(gpt_config.p, last); i++) {
516 		/* Account for stopping in the middle of an L1 entry */
517 		if (i == GPT_L1_IDX(gpt_config.p, last)) {
518 			gpi_mask &= (gpi_mask >> ((15U -
519 				    GPT_L1_GPI_IDX(gpt_config.p, last)) << 2));
520 		}
521 
522 		/* Write GPI values */
523 		assert((l1[i] & gpi_mask) ==
524 		       (GPT_BUILD_L1_DESC(GPT_GPI_ANY) & gpi_mask));
525 		l1[i] = (l1[i] & ~gpi_mask) | (gpi_mask & gpi_field);
526 
527 		/* Reset mask */
528 		gpi_mask = ULONG_MAX;
529 	}
530 }
531 
532 /*
533  * This function finds the next available unused L1 table and initializes all
534  * granules descriptor entries to GPI_ANY. This ensures that there are no chunks
535  * of GPI_NO_ACCESS (0b0000) memory floating around in the system in the
536  * event that a PAS region stops midway through an L1 table, thus guaranteeing
537  * that all memory not explicitly assigned is GPI_ANY. This function does not
538  * check for overflow conditions, that should be done by the caller.
539  *
540  * Return
541  *   Pointer to the next available L1 table.
542  */
get_new_l1_tbl(void)543 static uint64_t *get_new_l1_tbl(void)
544 {
545 	/* Retrieve the next L1 table */
546 	uint64_t *l1 = (uint64_t *)((uint64_t)(gpt_l1_tbl) +
547 		       (GPT_L1_TABLE_SIZE(gpt_config.p) *
548 		       gpt_next_l1_tbl_idx));
549 
550 	/* Increment L1 counter */
551 	gpt_next_l1_tbl_idx++;
552 
553 	/* Initialize all GPIs to GPT_GPI_ANY */
554 	for (unsigned int i = 0U; i < GPT_L1_ENTRY_COUNT(gpt_config.p); i++) {
555 		l1[i] = GPT_BUILD_L1_DESC(GPT_GPI_ANY);
556 	}
557 
558 	return l1;
559 }
560 
561 /*
562  * When L1 tables are needed, this function creates the necessary L0 table
563  * descriptors and fills out the L1 table entries according to the supplied
564  * PAS range.
565  *
566  * Parameters
567  *   *pas		Pointer to the structure defining the PAS region.
568  */
generate_l0_tbl_desc(pas_region_t * pas)569 static void generate_l0_tbl_desc(pas_region_t *pas)
570 {
571 	uintptr_t end_pa;
572 	uintptr_t cur_pa;
573 	uintptr_t last_gran_pa;
574 	uint64_t *l0_gpt_base;
575 	uint64_t *l1_gpt_arr;
576 	unsigned int l0_idx;
577 
578 	assert(gpt_config.plat_gpt_l0_base != 0U);
579 	assert(pas != NULL);
580 
581 	/*
582 	 * Checking of PAS parameters has already been done in
583 	 * validate_pas_mappings so no need to check the same things again.
584 	 */
585 
586 	end_pa = pas->base_pa + pas->size;
587 	l0_gpt_base = (uint64_t *)gpt_config.plat_gpt_l0_base;
588 
589 	/* We start working from the granule at base PA */
590 	cur_pa = pas->base_pa;
591 
592 	/* Iterate over each L0 region in this memory range */
593 	for (l0_idx = GPT_L0_IDX(pas->base_pa);
594 	     l0_idx <= GPT_L0_IDX(end_pa - 1U);
595 	     l0_idx++) {
596 
597 		/*
598 		 * See if the L0 entry is already a table descriptor or if we
599 		 * need to create one.
600 		 */
601 		if (GPT_L0_TYPE(l0_gpt_base[l0_idx]) == GPT_L0_TYPE_TBL_DESC) {
602 			/* Get the L1 array from the L0 entry */
603 			l1_gpt_arr = GPT_L0_TBLD_ADDR(l0_gpt_base[l0_idx]);
604 		} else {
605 			/* Get a new L1 table from the L1 memory space */
606 			l1_gpt_arr = get_new_l1_tbl();
607 
608 			/* Fill out the L0 descriptor and flush it */
609 			l0_gpt_base[l0_idx] = GPT_L0_TBL_DESC(l1_gpt_arr);
610 		}
611 
612 		VERBOSE("GPT: L0 entry (TABLE) index %u [%p] ==> L1 Addr %p (0x%"PRIx64")\n",
613 			l0_idx, &l0_gpt_base[l0_idx], l1_gpt_arr, l0_gpt_base[l0_idx]);
614 
615 		/*
616 		 * Determine the PA of the last granule in this L0 descriptor.
617 		 */
618 		last_gran_pa = get_l1_end_pa(cur_pa, end_pa) -
619 			       GPT_PGS_ACTUAL_SIZE(gpt_config.p);
620 
621 		/*
622 		 * Fill up L1 GPT entries between these two addresses. This
623 		 * function needs the addresses of the first granule and last
624 		 * granule in the range.
625 		 */
626 		fill_l1_tbl(GPT_PAS_ATTR_GPI(pas->attrs), l1_gpt_arr,
627 				cur_pa, last_gran_pa);
628 
629 		/* Advance cur_pa to first granule in next L0 region */
630 		cur_pa = get_l1_end_pa(cur_pa, end_pa);
631 	}
632 }
633 
634 /*
635  * This function flushes a range of L0 descriptors used by a given PAS region
636  * array. There is a chance that some unmodified L0 descriptors would be flushed
637  * in the case that there are "holes" in an array of PAS regions but overall
638  * this should be faster than individually flushing each modified L0 descriptor
639  * as they are created.
640  *
641  * Parameters
642  *   *pas		Pointer to an array of PAS regions.
643  *   pas_count		Number of entries in the PAS array.
644  */
flush_l0_for_pas_array(pas_region_t * pas,unsigned int pas_count)645 static void flush_l0_for_pas_array(pas_region_t *pas, unsigned int pas_count)
646 {
647 	unsigned int idx;
648 	unsigned int start_idx;
649 	unsigned int end_idx;
650 	uint64_t *l0 = (uint64_t *)gpt_config.plat_gpt_l0_base;
651 
652 	assert(pas != NULL);
653 	assert(pas_count != 0U);
654 
655 	/* Initial start and end values */
656 	start_idx = GPT_L0_IDX(pas[0].base_pa);
657 	end_idx = GPT_L0_IDX(pas[0].base_pa + pas[0].size - 1UL);
658 
659 	/* Find lowest and highest L0 indices used in this PAS array */
660 	for (idx = 1U; idx < pas_count; idx++) {
661 		if (GPT_L0_IDX(pas[idx].base_pa) < start_idx) {
662 			start_idx = GPT_L0_IDX(pas[idx].base_pa);
663 		}
664 		if (GPT_L0_IDX(pas[idx].base_pa + pas[idx].size - 1UL) > end_idx) {
665 			end_idx = GPT_L0_IDX(pas[idx].base_pa + pas[idx].size - 1UL);
666 		}
667 	}
668 
669 	/*
670 	 * Flush all covered L0 descriptors, add 1 because we need to include
671 	 * the end index value.
672 	 */
673 	flush_dcache_range((uintptr_t)&l0[start_idx],
674 			   ((end_idx + 1U) - start_idx) * sizeof(uint64_t));
675 }
676 
677 /*
678  * Public API to enable granule protection checks once the tables have all been
679  * initialized. This function is called at first initialization and then again
680  * later during warm boots of CPU cores.
681  *
682  * Return
683  *   Negative Linux error code in the event of a failure, 0 for success.
684  */
gpt_enable(void)685 int gpt_enable(void)
686 {
687 	u_register_t gpccr_el3;
688 
689 	/*
690 	 * Granule tables must be initialised before enabling
691 	 * granule protection.
692 	 */
693 	if (gpt_config.plat_gpt_l0_base == 0UL) {
694 		ERROR("GPT: Tables have not been initialized!\n");
695 		return -EPERM;
696 	}
697 
698 	/* Write the base address of the L0 tables into GPTBR */
699 	write_gptbr_el3(((gpt_config.plat_gpt_l0_base >> GPTBR_BADDR_VAL_SHIFT)
700 			>> GPTBR_BADDR_SHIFT) & GPTBR_BADDR_MASK);
701 
702 	/* GPCCR_EL3.PPS */
703 	gpccr_el3 = SET_GPCCR_PPS(gpt_config.pps);
704 
705 	/* GPCCR_EL3.PGS */
706 	gpccr_el3 |= SET_GPCCR_PGS(gpt_config.pgs);
707 
708 	/*
709 	 * Since EL3 maps the L1 region as Inner shareable, use the same
710 	 * shareability attribute for GPC as well so that
711 	 * GPC fetches are visible to PEs
712 	 */
713 	gpccr_el3 |= SET_GPCCR_SH(GPCCR_SH_IS);
714 
715 	/* Outer and Inner cacheability set to Normal memory, WB, RA, WA */
716 	gpccr_el3 |= SET_GPCCR_ORGN(GPCCR_ORGN_WB_RA_WA);
717 	gpccr_el3 |= SET_GPCCR_IRGN(GPCCR_IRGN_WB_RA_WA);
718 
719 	/* Prepopulate GPCCR_EL3 but don't enable GPC yet */
720 	write_gpccr_el3(gpccr_el3);
721 	isb();
722 
723 	/* Invalidate any stale TLB entries and any cached register fields */
724 	tlbipaallos();
725 	dsb();
726 	isb();
727 
728 	/* Enable GPT */
729 	gpccr_el3 |= GPCCR_GPC_BIT;
730 
731 	/* TODO: Configure GPCCR_EL3_GPCP for Fault control */
732 	write_gpccr_el3(gpccr_el3);
733 	isb();
734 	tlbipaallos();
735 	dsb();
736 	isb();
737 
738 	return 0;
739 }
740 
741 /*
742  * Public API to disable granule protection checks.
743  */
gpt_disable(void)744 void gpt_disable(void)
745 {
746 	u_register_t gpccr_el3 = read_gpccr_el3();
747 
748 	write_gpccr_el3(gpccr_el3 & ~GPCCR_GPC_BIT);
749 	dsbsy();
750 	isb();
751 }
752 
753 /*
754  * Public API that initializes the entire protected space to GPT_GPI_ANY using
755  * the L0 tables (block descriptors). Ideally, this function is invoked prior
756  * to DDR discovery and initialization. The MMU must be initialized before
757  * calling this function.
758  *
759  * Parameters
760  *   pps		PPS value to use for table generation
761  *   l0_mem_base	Base address of L0 tables in memory.
762  *   l0_mem_size	Total size of memory available for L0 tables.
763  *
764  * Return
765  *   Negative Linux error code in the event of a failure, 0 for success.
766  */
gpt_init_l0_tables(gpccr_pps_e pps,uintptr_t l0_mem_base,size_t l0_mem_size)767 int gpt_init_l0_tables(gpccr_pps_e pps, uintptr_t l0_mem_base,
768 		       size_t l0_mem_size)
769 {
770 	int ret;
771 	uint64_t gpt_desc;
772 
773 	/* Ensure that MMU and Data caches are enabled */
774 	assert((read_sctlr_el3() & SCTLR_C_BIT) != 0U);
775 
776 	/* Validate other parameters */
777 	ret = validate_l0_params(pps, l0_mem_base, l0_mem_size);
778 	if (ret != 0) {
779 		return ret;
780 	}
781 
782 	/* Create the descriptor to initialize L0 entries with */
783 	gpt_desc = GPT_L0_BLK_DESC(GPT_GPI_ANY);
784 
785 	/* Iterate through all L0 entries */
786 	for (unsigned int i = 0U; i < GPT_L0_REGION_COUNT(gpt_config.t); i++) {
787 		((uint64_t *)l0_mem_base)[i] = gpt_desc;
788 	}
789 
790 	/* Flush updated L0 tables to memory */
791 	flush_dcache_range((uintptr_t)l0_mem_base,
792 			   (size_t)GPT_L0_TABLE_SIZE(gpt_config.t));
793 
794 	/* Stash the L0 base address once initial setup is complete */
795 	gpt_config.plat_gpt_l0_base = l0_mem_base;
796 
797 	return 0;
798 }
799 
800 /*
801  * Public API that carves out PAS regions from the L0 tables and builds any L1
802  * tables that are needed. This function ideally is run after DDR discovery and
803  * initialization. The L0 tables must have already been initialized to GPI_ANY
804  * when this function is called.
805  *
806  * This function can be called multiple times with different L1 memory ranges
807  * and PAS regions if it is desirable to place L1 tables in different locations
808  * in memory. (ex: you have multiple DDR banks and want to place the L1 tables
809  * in the DDR bank that they control)
810  *
811  * Parameters
812  *   pgs		PGS value to use for table generation.
813  *   l1_mem_base	Base address of memory used for L1 tables.
814  *   l1_mem_size	Total size of memory available for L1 tables.
815  *   *pas_regions	Pointer to PAS regions structure array.
816  *   pas_count		Total number of PAS regions.
817  *
818  * Return
819  *   Negative Linux error code in the event of a failure, 0 for success.
820  */
gpt_init_pas_l1_tables(gpccr_pgs_e pgs,uintptr_t l1_mem_base,size_t l1_mem_size,pas_region_t * pas_regions,unsigned int pas_count)821 int gpt_init_pas_l1_tables(gpccr_pgs_e pgs, uintptr_t l1_mem_base,
822 			   size_t l1_mem_size, pas_region_t *pas_regions,
823 			   unsigned int pas_count)
824 {
825 	int ret;
826 	int l1_gpt_cnt;
827 
828 	/* Ensure that MMU and Data caches are enabled */
829 	assert((read_sctlr_el3() & SCTLR_C_BIT) != 0U);
830 
831 	/* PGS is needed for validate_pas_mappings so check it now */
832 	if (pgs > GPT_PGS_MAX) {
833 		ERROR("GPT: Invalid PGS: 0x%x\n", pgs);
834 		return -EINVAL;
835 	}
836 	gpt_config.pgs = pgs;
837 	gpt_config.p = gpt_p_lookup[pgs];
838 
839 	/* Make sure L0 tables have been initialized */
840 	if (gpt_config.plat_gpt_l0_base == 0U) {
841 		ERROR("GPT: L0 tables must be initialized first!\n");
842 		return -EPERM;
843 	}
844 
845 	/* Check if L1 GPTs are required and how many */
846 	l1_gpt_cnt = validate_pas_mappings(pas_regions, pas_count);
847 	if (l1_gpt_cnt < 0) {
848 		return l1_gpt_cnt;
849 	}
850 
851 	VERBOSE("GPT: %i L1 GPTs requested\n", l1_gpt_cnt);
852 
853 	/* If L1 tables are needed then validate the L1 parameters */
854 	if (l1_gpt_cnt > 0) {
855 		ret = validate_l1_params(l1_mem_base, l1_mem_size,
856 					(unsigned int)l1_gpt_cnt);
857 		if (ret != 0) {
858 			return ret;
859 		}
860 
861 		/* Set up parameters for L1 table generation */
862 		gpt_l1_tbl = l1_mem_base;
863 		gpt_next_l1_tbl_idx = 0U;
864 	}
865 
866 	INFO("GPT: Boot Configuration\n");
867 	INFO("  PPS/T:     0x%x/%u\n", gpt_config.pps, gpt_config.t);
868 	INFO("  PGS/P:     0x%x/%u\n", gpt_config.pgs, gpt_config.p);
869 	INFO("  L0GPTSZ/S: 0x%x/%u\n", GPT_L0GPTSZ, GPT_S_VAL);
870 	INFO("  PAS count: %u\n", pas_count);
871 	INFO("  L0 base:   0x%"PRIxPTR"\n", gpt_config.plat_gpt_l0_base);
872 
873 	/* Generate the tables in memory */
874 	for (unsigned int idx = 0U; idx < pas_count; idx++) {
875 		VERBOSE("GPT: PAS[%u]: base 0x%"PRIxPTR"\tsize 0x%lx\tGPI 0x%x\ttype 0x%x\n",
876 			idx, pas_regions[idx].base_pa, pas_regions[idx].size,
877 			GPT_PAS_ATTR_GPI(pas_regions[idx].attrs),
878 			GPT_PAS_ATTR_MAP_TYPE(pas_regions[idx].attrs));
879 
880 		/* Check if a block or table descriptor is required */
881 		if (GPT_PAS_ATTR_MAP_TYPE(pas_regions[idx].attrs) ==
882 		    GPT_PAS_ATTR_MAP_TYPE_BLOCK) {
883 			generate_l0_blk_desc(&pas_regions[idx]);
884 
885 		} else {
886 			generate_l0_tbl_desc(&pas_regions[idx]);
887 		}
888 	}
889 
890 	/* Flush modified L0 tables */
891 	flush_l0_for_pas_array(pas_regions, pas_count);
892 
893 	/* Flush L1 tables if needed */
894 	if (l1_gpt_cnt > 0) {
895 		flush_dcache_range(l1_mem_base,
896 				   GPT_L1_TABLE_SIZE(gpt_config.p) *
897 				   l1_gpt_cnt);
898 	}
899 
900 	/* Make sure that all the entries are written to the memory */
901 	dsbishst();
902 	tlbipaallos();
903 	dsb();
904 	isb();
905 
906 	return 0;
907 }
908 
909 /*
910  * Public API to initialize the runtime gpt_config structure based on the values
911  * present in the GPTBR_EL3 and GPCCR_EL3 registers. GPT initialization
912  * typically happens in a bootloader stage prior to setting up the EL3 runtime
913  * environment for the granule transition service so this function detects the
914  * initialization from a previous stage. Granule protection checks must be
915  * enabled already or this function will return an error.
916  *
917  * Return
918  *   Negative Linux error code in the event of a failure, 0 for success.
919  */
gpt_runtime_init(void)920 int gpt_runtime_init(void)
921 {
922 	u_register_t reg;
923 
924 	/* Ensure that MMU and Data caches are enabled */
925 	assert((read_sctlr_el3() & SCTLR_C_BIT) != 0U);
926 
927 	/* Ensure GPC are already enabled */
928 	if ((read_gpccr_el3() & GPCCR_GPC_BIT) == 0U) {
929 		ERROR("GPT: Granule protection checks are not enabled!\n");
930 		return -EPERM;
931 	}
932 
933 	/*
934 	 * Read the L0 table address from GPTBR, we don't need the L1 base
935 	 * address since those are included in the L0 tables as needed.
936 	 */
937 	reg = read_gptbr_el3();
938 	gpt_config.plat_gpt_l0_base = ((reg >> GPTBR_BADDR_SHIFT) &
939 				      GPTBR_BADDR_MASK) <<
940 				      GPTBR_BADDR_VAL_SHIFT;
941 
942 	/* Read GPCCR to get PGS and PPS values */
943 	reg = read_gpccr_el3();
944 	gpt_config.pps = (reg >> GPCCR_PPS_SHIFT) & GPCCR_PPS_MASK;
945 	gpt_config.t = gpt_t_lookup[gpt_config.pps];
946 	gpt_config.pgs = (reg >> GPCCR_PGS_SHIFT) & GPCCR_PGS_MASK;
947 	gpt_config.p = gpt_p_lookup[gpt_config.pgs];
948 
949 	VERBOSE("GPT: Runtime Configuration\n");
950 	VERBOSE("  PPS/T:     0x%x/%u\n", gpt_config.pps, gpt_config.t);
951 	VERBOSE("  PGS/P:     0x%x/%u\n", gpt_config.pgs, gpt_config.p);
952 	VERBOSE("  L0GPTSZ/S: 0x%x/%u\n", GPT_L0GPTSZ, GPT_S_VAL);
953 	VERBOSE("  L0 base:   0x%"PRIxPTR"\n", gpt_config.plat_gpt_l0_base);
954 
955 	return 0;
956 }
957 
958 /*
959  * The L1 descriptors are protected by a spinlock to ensure that multiple
960  * CPUs do not attempt to change the descriptors at once. In the future it
961  * would be better to have separate spinlocks for each L1 descriptor.
962  */
963 static spinlock_t gpt_lock;
964 
965 /*
966  * A helper to write the value (target_pas << gpi_shift) to the index of
967  * the gpt_l1_addr.
968  */
write_gpt(uint64_t * gpt_l1_desc,uint64_t * gpt_l1_addr,unsigned int gpi_shift,unsigned int idx,unsigned int target_pas)969 static inline void write_gpt(uint64_t *gpt_l1_desc, uint64_t *gpt_l1_addr,
970 			     unsigned int gpi_shift, unsigned int idx,
971 			     unsigned int target_pas)
972 {
973 	*gpt_l1_desc &= ~(GPT_L1_GRAN_DESC_GPI_MASK << gpi_shift);
974 	*gpt_l1_desc |= ((uint64_t)target_pas << gpi_shift);
975 	gpt_l1_addr[idx] = *gpt_l1_desc;
976 }
977 
978 /*
979  * Helper to retrieve the gpt_l1_* information from the base address
980  * returned in gpi_info.
981  */
get_gpi_params(uint64_t base,gpi_info_t * gpi_info)982 static int get_gpi_params(uint64_t base, gpi_info_t *gpi_info)
983 {
984 	uint64_t gpt_l0_desc, *gpt_l0_base;
985 
986 	gpt_l0_base = (uint64_t *)gpt_config.plat_gpt_l0_base;
987 	gpt_l0_desc = gpt_l0_base[GPT_L0_IDX(base)];
988 	if (GPT_L0_TYPE(gpt_l0_desc) != GPT_L0_TYPE_TBL_DESC) {
989 		VERBOSE("GPT: Granule is not covered by a table descriptor!\n");
990 		VERBOSE("      Base=0x%"PRIx64"\n", base);
991 		return -EINVAL;
992 	}
993 
994 	/* Get the table index and GPI shift from PA */
995 	gpi_info->gpt_l1_addr = GPT_L0_TBLD_ADDR(gpt_l0_desc);
996 	gpi_info->idx = GPT_L1_IDX(gpt_config.p, base);
997 	gpi_info->gpi_shift = GPT_L1_GPI_IDX(gpt_config.p, base) << 2;
998 
999 	gpi_info->gpt_l1_desc = (gpi_info->gpt_l1_addr)[gpi_info->idx];
1000 	gpi_info->gpi = (gpi_info->gpt_l1_desc >> gpi_info->gpi_shift) &
1001 		GPT_L1_GRAN_DESC_GPI_MASK;
1002 	return 0;
1003 }
1004 
1005 /*
1006  * This function is the granule transition delegate service. When a granule
1007  * transition request occurs it is routed to this function to have the request,
1008  * if valid, fulfilled following A1.1.1 Delegate of RME supplement
1009  *
1010  * TODO: implement support for transitioning multiple granules at once.
1011  *
1012  * Parameters
1013  *   base		Base address of the region to transition, must be
1014  *			aligned to granule size.
1015  *   size		Size of region to transition, must be aligned to granule
1016  *			size.
1017  *   src_sec_state	Security state of the caller.
1018  *
1019  * Return
1020  *   Negative Linux error code in the event of a failure, 0 for success.
1021  */
gpt_delegate_pas(uint64_t base,size_t size,unsigned int src_sec_state)1022 int gpt_delegate_pas(uint64_t base, size_t size, unsigned int src_sec_state)
1023 {
1024 	gpi_info_t gpi_info;
1025 	uint64_t nse;
1026 	int res;
1027 	unsigned int target_pas;
1028 
1029 	/* Ensure that the tables have been set up before taking requests */
1030 	assert(gpt_config.plat_gpt_l0_base != 0UL);
1031 
1032 	/* Ensure that caches are enabled */
1033 	assert((read_sctlr_el3() & SCTLR_C_BIT) != 0UL);
1034 
1035 	/* Delegate request can only come from REALM or SECURE */
1036 	assert(src_sec_state == SMC_FROM_REALM ||
1037 	       src_sec_state == SMC_FROM_SECURE);
1038 
1039 	/* See if this is a single or a range of granule transition */
1040 	if (size != GPT_PGS_ACTUAL_SIZE(gpt_config.p)) {
1041 		return -EINVAL;
1042 	}
1043 
1044 	/* Check that base and size are valid */
1045 	if ((ULONG_MAX - base) < size) {
1046 		VERBOSE("GPT: Transition request address overflow!\n");
1047 		VERBOSE("      Base=0x%"PRIx64"\n", base);
1048 		VERBOSE("      Size=0x%lx\n", size);
1049 		return -EINVAL;
1050 	}
1051 
1052 	/* Make sure base and size are valid */
1053 	if (((base & (GPT_PGS_ACTUAL_SIZE(gpt_config.p) - 1UL)) != 0UL) ||
1054 	    ((size & (GPT_PGS_ACTUAL_SIZE(gpt_config.p) - 1UL)) != 0UL) ||
1055 	    (size == 0UL) ||
1056 	    ((base + size) >= GPT_PPS_ACTUAL_SIZE(gpt_config.t))) {
1057 		VERBOSE("GPT: Invalid granule transition address range!\n");
1058 		VERBOSE("      Base=0x%"PRIx64"\n", base);
1059 		VERBOSE("      Size=0x%lx\n", size);
1060 		return -EINVAL;
1061 	}
1062 
1063 	target_pas = GPT_GPI_REALM;
1064 	if (src_sec_state == SMC_FROM_SECURE) {
1065 		target_pas = GPT_GPI_SECURE;
1066 	}
1067 
1068 	/*
1069 	 * Access to L1 tables is controlled by a global lock to ensure
1070 	 * that no more than one CPU is allowed to make changes at any
1071 	 * given time.
1072 	 */
1073 	spin_lock(&gpt_lock);
1074 	res = get_gpi_params(base, &gpi_info);
1075 	if (res != 0) {
1076 		spin_unlock(&gpt_lock);
1077 		return res;
1078 	}
1079 
1080 	/* Check that the current address is in NS state */
1081 	if (gpi_info.gpi != GPT_GPI_NS) {
1082 		VERBOSE("GPT: Only Granule in NS state can be delegated.\n");
1083 		VERBOSE("      Caller: %u, Current GPI: %u\n", src_sec_state,
1084 			gpi_info.gpi);
1085 		spin_unlock(&gpt_lock);
1086 		return -EPERM;
1087 	}
1088 
1089 	if (src_sec_state == SMC_FROM_SECURE) {
1090 		nse = (uint64_t)GPT_NSE_SECURE << GPT_NSE_SHIFT;
1091 	} else {
1092 		nse = (uint64_t)GPT_NSE_REALM << GPT_NSE_SHIFT;
1093 	}
1094 
1095 	/*
1096 	 * In order to maintain mutual distrust between Realm and Secure
1097 	 * states, remove any data speculatively fetched into the target
1098 	 * physical address space. Issue DC CIPAPA over address range.
1099 	 */
1100 	if (is_feat_mte2_supported()) {
1101 		flush_dcache_to_popa_range_mte2(nse | base,
1102 					GPT_PGS_ACTUAL_SIZE(gpt_config.p));
1103 	} else {
1104 		flush_dcache_to_popa_range(nse | base,
1105 					   GPT_PGS_ACTUAL_SIZE(gpt_config.p));
1106 	}
1107 
1108 	write_gpt(&gpi_info.gpt_l1_desc, gpi_info.gpt_l1_addr,
1109 		  gpi_info.gpi_shift, gpi_info.idx, target_pas);
1110 	dsboshst();
1111 
1112 	gpt_tlbi_by_pa_ll(base, GPT_PGS_ACTUAL_SIZE(gpt_config.p));
1113 	dsbosh();
1114 
1115 	nse = (uint64_t)GPT_NSE_NS << GPT_NSE_SHIFT;
1116 
1117 	if (is_feat_mte2_supported()) {
1118 		flush_dcache_to_popa_range_mte2(nse | base,
1119 					   GPT_PGS_ACTUAL_SIZE(gpt_config.p));
1120 	} else {
1121 		flush_dcache_to_popa_range(nse | base,
1122 					   GPT_PGS_ACTUAL_SIZE(gpt_config.p));
1123 	}
1124 
1125 	/* Unlock access to the L1 tables */
1126 	spin_unlock(&gpt_lock);
1127 
1128 	/*
1129 	 * The isb() will be done as part of context
1130 	 * synchronization when returning to lower EL.
1131 	 */
1132 	VERBOSE("GPT: Granule 0x%"PRIx64" GPI 0x%x->0x%x\n",
1133 		base, gpi_info.gpi, target_pas);
1134 
1135 	return 0;
1136 }
1137 
1138 /*
1139  * This function is the granule transition undelegate service. When a granule
1140  * transition request occurs it is routed to this function where the request is
1141  * validated then fulfilled if possible.
1142  *
1143  * TODO: implement support for transitioning multiple granules at once.
1144  *
1145  * Parameters
1146  *   base		Base address of the region to transition, must be
1147  *			aligned to granule size.
1148  *   size		Size of region to transition, must be aligned to granule
1149  *			size.
1150  *   src_sec_state	Security state of the caller.
1151  *
1152  * Return
1153  *    Negative Linux error code in the event of a failure, 0 for success.
1154  */
gpt_undelegate_pas(uint64_t base,size_t size,unsigned int src_sec_state)1155 int gpt_undelegate_pas(uint64_t base, size_t size, unsigned int src_sec_state)
1156 {
1157 	gpi_info_t gpi_info;
1158 	uint64_t nse;
1159 	int res;
1160 
1161 	/* Ensure that the tables have been set up before taking requests */
1162 	assert(gpt_config.plat_gpt_l0_base != 0UL);
1163 
1164 	/* Ensure that MMU and caches are enabled */
1165 	assert((read_sctlr_el3() & SCTLR_C_BIT) != 0UL);
1166 
1167 	/* Delegate request can only come from REALM or SECURE */
1168 	assert(src_sec_state == SMC_FROM_REALM ||
1169 	       src_sec_state == SMC_FROM_SECURE);
1170 
1171 	/* See if this is a single or a range of granule transition */
1172 	if (size != GPT_PGS_ACTUAL_SIZE(gpt_config.p)) {
1173 		return -EINVAL;
1174 	}
1175 
1176 	/* Check that base and size are valid */
1177 	if ((ULONG_MAX - base) < size) {
1178 		VERBOSE("GPT: Transition request address overflow!\n");
1179 		VERBOSE("      Base=0x%"PRIx64"\n", base);
1180 		VERBOSE("      Size=0x%lx\n", size);
1181 		return -EINVAL;
1182 	}
1183 
1184 	/* Make sure base and size are valid */
1185 	if (((base & (GPT_PGS_ACTUAL_SIZE(gpt_config.p) - 1UL)) != 0UL) ||
1186 	    ((size & (GPT_PGS_ACTUAL_SIZE(gpt_config.p) - 1UL)) != 0UL) ||
1187 	    (size == 0UL) ||
1188 	    ((base + size) >= GPT_PPS_ACTUAL_SIZE(gpt_config.t))) {
1189 		VERBOSE("GPT: Invalid granule transition address range!\n");
1190 		VERBOSE("      Base=0x%"PRIx64"\n", base);
1191 		VERBOSE("      Size=0x%lx\n", size);
1192 		return -EINVAL;
1193 	}
1194 
1195 	/*
1196 	 * Access to L1 tables is controlled by a global lock to ensure
1197 	 * that no more than one CPU is allowed to make changes at any
1198 	 * given time.
1199 	 */
1200 	spin_lock(&gpt_lock);
1201 
1202 	res = get_gpi_params(base, &gpi_info);
1203 	if (res != 0) {
1204 		spin_unlock(&gpt_lock);
1205 		return res;
1206 	}
1207 
1208 	/* Check that the current address is in the delegated state */
1209 	if ((src_sec_state == SMC_FROM_REALM  &&
1210 	     gpi_info.gpi != GPT_GPI_REALM) ||
1211 	    (src_sec_state == SMC_FROM_SECURE &&
1212 	     gpi_info.gpi != GPT_GPI_SECURE)) {
1213 		VERBOSE("GPT: Only Granule in REALM or SECURE state can be undelegated.\n");
1214 		VERBOSE("      Caller: %u Current GPI: %u\n", src_sec_state,
1215 			gpi_info.gpi);
1216 		spin_unlock(&gpt_lock);
1217 		return -EPERM;
1218 	}
1219 
1220 
1221 	/* In order to maintain mutual distrust between Realm and Secure
1222 	 * states, remove access now, in order to guarantee that writes
1223 	 * to the currently-accessible physical address space will not
1224 	 * later become observable.
1225 	 */
1226 	write_gpt(&gpi_info.gpt_l1_desc, gpi_info.gpt_l1_addr,
1227 		  gpi_info.gpi_shift, gpi_info.idx, GPT_GPI_NO_ACCESS);
1228 	dsboshst();
1229 
1230 	gpt_tlbi_by_pa_ll(base, GPT_PGS_ACTUAL_SIZE(gpt_config.p));
1231 	dsbosh();
1232 
1233 	if (src_sec_state == SMC_FROM_SECURE) {
1234 		nse = (uint64_t)GPT_NSE_SECURE << GPT_NSE_SHIFT;
1235 	} else {
1236 		nse = (uint64_t)GPT_NSE_REALM << GPT_NSE_SHIFT;
1237 	}
1238 
1239 	/* Ensure that the scrubbed data has made it past the PoPA */
1240 	if (is_feat_mte2_supported()) {
1241 		flush_dcache_to_popa_range_mte2(nse | base,
1242 					   GPT_PGS_ACTUAL_SIZE(gpt_config.p));
1243 	} else {
1244 		flush_dcache_to_popa_range(nse | base,
1245 					   GPT_PGS_ACTUAL_SIZE(gpt_config.p));
1246 	}
1247 
1248 	/*
1249 	 * Remove any data loaded speculatively
1250 	 * in NS space from before the scrubbing
1251 	 */
1252 	nse = (uint64_t)GPT_NSE_NS << GPT_NSE_SHIFT;
1253 
1254 	if (is_feat_mte2_supported()) {
1255 		flush_dcache_to_popa_range_mte2(nse | base,
1256 					   GPT_PGS_ACTUAL_SIZE(gpt_config.p));
1257 	} else {
1258 		flush_dcache_to_popa_range(nse | base,
1259 					   GPT_PGS_ACTUAL_SIZE(gpt_config.p));
1260 	}
1261 
1262 	/* Clear existing GPI encoding and transition granule. */
1263 	write_gpt(&gpi_info.gpt_l1_desc, gpi_info.gpt_l1_addr,
1264 		  gpi_info.gpi_shift, gpi_info.idx, GPT_GPI_NS);
1265 	dsboshst();
1266 
1267 	/* Ensure that all agents observe the new NS configuration */
1268 	gpt_tlbi_by_pa_ll(base, GPT_PGS_ACTUAL_SIZE(gpt_config.p));
1269 	dsbosh();
1270 
1271 	/* Unlock access to the L1 tables. */
1272 	spin_unlock(&gpt_lock);
1273 
1274 	/*
1275 	 * The isb() will be done as part of context
1276 	 * synchronization when returning to lower EL.
1277 	 */
1278 	VERBOSE("GPT: Granule 0x%"PRIx64" GPI 0x%x->0x%x\n",
1279 		base, gpi_info.gpi, GPT_GPI_NS);
1280 
1281 	return 0;
1282 }
1283