1 /*
2 * Copyright (c) 2015 Google, Inc. All rights reserved
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining
5 * a copy of this software and associated documentation files
6 * (the "Software"), to deal in the Software without restriction,
7 * including without limitation the rights to use, copy, modify, merge,
8 * publish, distribute, sublicense, and/or sell copies of the Software,
9 * and to permit persons to whom the Software is furnished to do so,
10 * subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be
13 * included in all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
16 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
17 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
18 * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
19 * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
20 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
21 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
22 */
23 #include <debug.h>
24 #include <trace.h>
25 #include <assert.h>
26 #include <stdio.h>
27 #include <stdlib.h>
28 #include <string.h>
29 #include <kernel/thread.h>
30 #include <kernel/mutex.h>
31 #include <kernel/spinlock.h>
32 #include <lib/cmpctmalloc.h>
33 #include <lib/heap.h>
34 #include <lib/page_alloc.h>
35
36 // Malloc implementation tuned for space.
37 //
38 // Allocation strategy takes place with a global mutex. Freelist entries are
39 // kept in linked lists with 8 different sizes per binary order of magnitude
40 // and the header size is two words with eager coalescing on free.
41
42 #ifdef DEBUG
43 #define CMPCT_DEBUG
44 #endif
45
46 #define LOCAL_TRACE 0
47
48 #define ALLOC_FILL 0x99
49 #define FREE_FILL 0x77
50 #define PADDING_FILL 0x55
51
52 #if WITH_KERNEL_VM && !defined(HEAP_GROW_SIZE)
53 #define HEAP_GROW_SIZE (1 * 1024 * 1024) /* Grow aggressively */
54 #elif !defined(HEAP_GROW_SIZE)
55 #define HEAP_GROW_SIZE (4 * 1024) /* Grow less aggressively */
56 #endif
57
58 STATIC_ASSERT(IS_PAGE_ALIGNED(HEAP_GROW_SIZE));
59
60 // Individual allocations above 4Mbytes are just fetched directly from the
61 // block allocator.
62 #define HEAP_ALLOC_VIRTUAL_BITS 22
63
64 // When we grow the heap we have to have somewhere in the freelist to put the
65 // resulting freelist entry, so the freelist has to have a certain number of
66 // buckets.
67 STATIC_ASSERT(HEAP_GROW_SIZE <= (1u << HEAP_ALLOC_VIRTUAL_BITS));
68
69 // Buckets for allocations. The smallest 15 buckets are 8, 16, 24, etc. up to
70 // 120 bytes. After that we round up to the nearest size that can be written
71 // /^0*1...0*$/, giving 8 buckets per order of binary magnitude. The freelist
72 // entries in a given bucket have at least the given size, plus the header
73 // size. On 64 bit, the 8 byte bucket is useless, since the freelist header
74 // is 16 bytes larger than the header, but we have it for simplicity.
75 #define NUMBER_OF_BUCKETS (1 + 15 + (HEAP_ALLOC_VIRTUAL_BITS - 7) * 8)
76
77 // All individual memory areas on the heap start with this.
78 typedef struct header_struct {
79 struct header_struct *left; // Pointer to the previous area in memory order.
80 size_t size;
81 } header_t;
82
83 typedef struct free_struct {
84 header_t header;
85 struct free_struct *next;
86 struct free_struct *prev;
87 } free_t;
88
89 struct heap {
90 size_t size;
91 size_t remaining;
92 mutex_t lock;
93 free_t *free_lists[NUMBER_OF_BUCKETS];
94 // We have some 32 bit words that tell us whether there is an entry in the
95 // freelist.
96 #define BUCKET_WORDS (((NUMBER_OF_BUCKETS) + 31) >> 5)
97 uint32_t free_list_bits[BUCKET_WORDS];
98 };
99
100 // Heap static vars.
101 static struct heap theheap;
102
103 static ssize_t heap_grow(size_t len, free_t **bucket);
104
lock(void)105 static void lock(void)
106 {
107 mutex_acquire(&theheap.lock);
108 }
109
unlock(void)110 static void unlock(void)
111 {
112 mutex_release(&theheap.lock);
113 }
114
dump_free(header_t * header)115 static void dump_free(header_t *header)
116 {
117 dprintf(INFO, "\t\tbase %p, end 0x%lx, len 0x%zx\n", header, (vaddr_t)header + header->size, header->size);
118 }
119
cmpct_dump(void)120 void cmpct_dump(void)
121 {
122 lock();
123 dprintf(INFO, "Heap dump (using cmpctmalloc):\n");
124 dprintf(INFO, "\tsize %lu, remaining %lu\n",
125 (unsigned long)theheap.size,
126 (unsigned long)theheap.remaining);
127
128 dprintf(INFO, "\tfree list:\n");
129 for (int i = 0; i < NUMBER_OF_BUCKETS; i++) {
130 bool header_printed = false;
131 free_t *free_area = theheap.free_lists[i];
132 for (; free_area != NULL; free_area = free_area->next) {
133 ASSERT(free_area != free_area->next);
134 if (!header_printed) {
135 dprintf(INFO, "\tbucket %d\n", i);
136 header_printed = true;
137 }
138 dump_free(&free_area->header);
139 }
140 }
141 unlock();
142 }
143
144 // Operates in sizes that don't include the allocation header.
size_to_index_helper(size_t size,size_t * rounded_up_out,int adjust,int increment)145 static int size_to_index_helper(
146 size_t size, size_t *rounded_up_out, int adjust, int increment)
147 {
148 // First buckets are simply 8-spaced up to 128.
149 if (size <= 128) {
150 if (sizeof(size_t) == 8u && size <= sizeof(free_t) - sizeof(header_t)) {
151 *rounded_up_out = sizeof(free_t) - sizeof(header_t);
152 } else {
153 *rounded_up_out = size;
154 }
155 // No allocation is smaller than 8 bytes, so the first bucket is for 8
156 // byte spaces (not including the header). For 64 bit, the free list
157 // struct is 16 bytes larger than the header, so no allocation can be
158 // smaller than that (otherwise how to free it), but we have empty 8
159 // and 16 byte buckets for simplicity.
160 return (size >> 3) - 1;
161 }
162
163 // We are going to go up to the next size to round up, but if we hit a
164 // bucket size exactly we don't want to go up. By subtracting 8 here, we
165 // will do the right thing (the carry propagates up for the round numbers
166 // we are interested in).
167 size += adjust;
168 // After 128 the buckets are logarithmically spaced, every 16 up to 256,
169 // every 32 up to 512 etc. This can be thought of as rows of 8 buckets.
170 // GCC intrinsic count-leading-zeros.
171 // Eg. 128-255 has 24 leading zeros and we want row to be 4.
172 unsigned row = sizeof(size_t) * 8 - 4 - __builtin_clzl(size);
173 // For row 4 we want to shift down 4 bits.
174 unsigned column = (size >> row) & 7;
175 int row_column = (row << 3) | column;
176 row_column += increment;
177 size = (8 + (row_column & 7)) << (row_column >> 3);
178 *rounded_up_out = size;
179 // We start with 15 buckets, 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96,
180 // 104, 112, 120. Then we have row 4, sizes 128 and up, with the
181 // row-column 8 and up.
182 int answer = row_column + 15 - 32;
183 DEBUG_ASSERT(answer < NUMBER_OF_BUCKETS);
184 return answer;
185 }
186
187 // Round up size to next bucket when allocating.
size_to_index_allocating(size_t size,size_t * rounded_up_out)188 static int size_to_index_allocating(size_t size, size_t *rounded_up_out)
189 {
190 size_t rounded = round_up(size, 8);
191 return size_to_index_helper(rounded, rounded_up_out, -8, 1);
192 }
193
194 // Round down size to next bucket when freeing.
size_to_index_freeing(size_t size)195 static int size_to_index_freeing(size_t size)
196 {
197 size_t unused;
198 return size_to_index_helper(size, &unused, 0, 0);
199 }
200
tag_as_free(void * left)201 inline header_t *tag_as_free(void *left)
202 {
203 return (header_t *)((uintptr_t)left | 1);
204 }
205
is_tagged_as_free(header_t * header)206 inline bool is_tagged_as_free(header_t *header)
207 {
208 return ((uintptr_t)(header->left) & 1) != 0;
209 }
210
untag(void * left)211 inline header_t *untag(void *left)
212 {
213 return (header_t *)((uintptr_t)left & ~1);
214 }
215
right_header(header_t * header)216 inline header_t *right_header(header_t *header)
217 {
218 return (header_t *)((char *)header + header->size);
219 }
220
set_free_list_bit(int index)221 inline static void set_free_list_bit(int index)
222 {
223 theheap.free_list_bits[index >> 5] |= (1u << (31 - (index & 0x1f)));
224 }
225
clear_free_list_bit(int index)226 inline static void clear_free_list_bit(int index)
227 {
228 theheap.free_list_bits[index >> 5] &= ~(1u << (31 - (index & 0x1f)));
229 }
230
find_nonempty_bucket(int index)231 static int find_nonempty_bucket(int index)
232 {
233 uint32_t mask = (1u << (31 - (index & 0x1f))) - 1;
234 mask = mask * 2 + 1;
235 mask &= theheap.free_list_bits[index >> 5];
236 if (mask != 0) return (index & ~0x1f) + __builtin_clz(mask);
237 for (index = round_up(index + 1, 32); index <= NUMBER_OF_BUCKETS; index += 32) {
238 mask = theheap.free_list_bits[index >> 5];
239 if (mask != 0u) return index + __builtin_clz(mask);
240 }
241 return -1;
242 }
243
is_start_of_os_allocation(header_t * header)244 static bool is_start_of_os_allocation(header_t *header)
245 {
246 return header->left == untag(NULL);
247 }
248
create_free_area(void * address,void * left,size_t size,free_t ** bucket)249 static void create_free_area(void *address, void *left, size_t size, free_t **bucket)
250 {
251 free_t *free_area = (free_t *)address;
252 free_area->header.size = size;
253 free_area->header.left = tag_as_free(left);
254 if (bucket == NULL) {
255 int index = size_to_index_freeing(size - sizeof(header_t));
256 set_free_list_bit(index);
257 bucket = &theheap.free_lists[index];
258 }
259 free_t *old_head = *bucket;
260 if (old_head != NULL) old_head->prev = free_area;
261 free_area->next = old_head;
262 free_area->prev = NULL;
263 *bucket = free_area;
264 theheap.remaining += size;
265 #ifdef CMPCT_DEBUG
266 memset(free_area + 1, FREE_FILL, size - sizeof(free_t));
267 #endif
268 }
269
is_end_of_os_allocation(char * address)270 static bool is_end_of_os_allocation(char *address)
271 {
272 return ((header_t *)address)->size == 0;
273 }
274
free_to_os(header_t * header,size_t size)275 static void free_to_os(header_t *header, size_t size)
276 {
277 DEBUG_ASSERT(IS_PAGE_ALIGNED(size));
278 page_free(header, size >> PAGE_SIZE_SHIFT);
279 theheap.size -= size;
280 }
281
free_memory(void * address,void * left,size_t size)282 static void free_memory(void *address, void *left, size_t size)
283 {
284 left = untag(left);
285 if (IS_PAGE_ALIGNED(left) &&
286 is_start_of_os_allocation(left) &&
287 is_end_of_os_allocation((char *)address + size)) {
288 free_to_os(left, size + ((header_t *)left)->size + sizeof(header_t));
289 } else {
290 create_free_area(address, left, size, NULL);
291 }
292 }
293
unlink_free(free_t * free_area,int bucket)294 static void unlink_free(free_t *free_area, int bucket)
295 {
296 theheap.remaining -= free_area->header.size;
297 ASSERT(theheap.remaining < 4000000000u);
298 free_t *next = free_area->next;
299 free_t *prev = free_area->prev;
300 if (theheap.free_lists[bucket] == free_area) {
301 theheap.free_lists[bucket] = next;
302 if (next == NULL) clear_free_list_bit(bucket);
303 }
304 if (prev != NULL) prev->next = next;
305 if (next != NULL) next->prev = prev;
306 }
307
unlink_free_unknown_bucket(free_t * free_area)308 static void unlink_free_unknown_bucket(free_t *free_area)
309 {
310 unlink_free(free_area, size_to_index_freeing(free_area->header.size - sizeof(header_t)));
311 }
312
create_allocation_header(void * address,size_t offset,size_t size,void * left)313 static void *create_allocation_header(
314 void *address, size_t offset, size_t size, void *left)
315 {
316 header_t *standalone = (header_t *)((char *)address + offset);
317 standalone->left = untag(left);
318 standalone->size = size;
319 return standalone + 1;
320 }
321
FixLeftPointer(header_t * right,header_t * new_left)322 static void FixLeftPointer(header_t *right, header_t *new_left)
323 {
324 int tag = (uintptr_t)right->left & 1;
325 right->left = (header_t *)(((uintptr_t)new_left & ~1) | tag);
326 }
327
WasteFreeMemory(void)328 static void WasteFreeMemory(void)
329 {
330 while (theheap.remaining != 0) cmpct_alloc(1);
331 }
332
333 // If we just make a big allocation it gets rounded off. If we actually
334 // want to use a reasonably accurate amount of memory for test purposes, we
335 // have to do many small allocations.
TestTrimHelper(ssize_t target)336 static void *TestTrimHelper(ssize_t target)
337 {
338 char *answer = NULL;
339 size_t remaining = theheap.remaining;
340 while (theheap.remaining - target > 512) {
341 char *next_block = cmpct_alloc(8 + ((theheap.remaining - target) >> 2));
342 *(char **)next_block = answer;
343 answer = next_block;
344 if (theheap.remaining > remaining) return answer;
345 // Abandon attempt to hit particular freelist entry size if we accidentally got more memory
346 // from the OS.
347 remaining = theheap.remaining;
348 }
349 return answer;
350 }
351
TestTrimFreeHelper(char * block)352 static void TestTrimFreeHelper(char *block)
353 {
354 while (block) {
355 char *next_block = *(char **)block;
356 cmpct_free(block);
357 block = next_block;
358 }
359 }
360
cmpct_test_trim(void)361 static void cmpct_test_trim(void)
362 {
363 WasteFreeMemory();
364
365 size_t test_sizes[200];
366 int sizes = 0;
367
368 for (size_t s = 1; s < PAGE_SIZE * 4; s = (s + 1) * 1.1) {
369 test_sizes[sizes++] = s;
370 ASSERT(sizes < 200);
371 }
372 for (ssize_t s = -32; s <= 32; s += 8) {
373 test_sizes[sizes++] = PAGE_SIZE + s;
374 ASSERT(sizes < 200);
375 }
376
377 // Test allocations at the start of an OS allocation.
378 for (int with_second_alloc = 0; with_second_alloc < 2; with_second_alloc++) {
379 for (int i = 0; i < sizes; i++) {
380 size_t s = test_sizes[i];
381
382 char *a, *a2 = NULL;
383 a = cmpct_alloc(s);
384 if (with_second_alloc) {
385 a2 = cmpct_alloc(1);
386 if (s < PAGE_SIZE >> 1) {
387 // It is the intention of the test that a is at the start of an OS allocation
388 // and that a2 is "right after" it. Otherwise we are not testing what I
389 // thought. OS allocations are certainly not smaller than a page, so check in
390 // that case.
391 ASSERT((uintptr_t)(a2 - a) < s * 1.13 + 48);
392 }
393 }
394 cmpct_trim();
395 size_t remaining = theheap.remaining;
396 // We should have < 1 page on either side of the a allocation.
397 ASSERT(remaining < PAGE_SIZE * 2);
398 cmpct_free(a);
399 if (with_second_alloc) {
400 // Now only a2 is holding onto the OS allocation.
401 ASSERT(theheap.remaining > remaining);
402 } else {
403 ASSERT(theheap.remaining == 0);
404 }
405 remaining = theheap.remaining;
406 cmpct_trim();
407 ASSERT(theheap.remaining <= remaining);
408 // If a was at least one page then the trim should have freed up that page.
409 if (s >= PAGE_SIZE && with_second_alloc) ASSERT(theheap.remaining < remaining);
410 if (with_second_alloc) cmpct_free(a2);
411 }
412 ASSERT(theheap.remaining == 0);
413 }
414
415 ASSERT(theheap.remaining == 0);
416
417 // Now test allocations near the end of an OS allocation.
418 for (ssize_t wobble = -64; wobble <= 64; wobble += 8) {
419 for (int i = 0; i < sizes; i++) {
420 size_t s = test_sizes[i];
421
422 if ((ssize_t)s + wobble < 0) continue;
423
424 char *start_of_os_alloc = cmpct_alloc(1);
425
426 // If the OS allocations are very small this test does not make sense.
427 if (theheap.remaining <= s + wobble) {
428 cmpct_free(start_of_os_alloc);
429 continue;
430 }
431
432 char *big_bit_in_the_middle = TestTrimHelper(s + wobble);
433 size_t remaining = theheap.remaining;
434
435 // If the remaining is big we started a new OS allocation and the test
436 // makes no sense.
437 if (remaining > 128 + s * 1.13 + wobble) {
438 cmpct_free(start_of_os_alloc);
439 TestTrimFreeHelper(big_bit_in_the_middle);
440 continue;
441 }
442
443 cmpct_free(start_of_os_alloc);
444 remaining = theheap.remaining;
445
446 // This trim should sometimes trim a page off the end of the OS allocation.
447 cmpct_trim();
448 ASSERT(theheap.remaining <= remaining);
449 remaining = theheap.remaining;
450
451 // We should have < 1 page on either side of the big allocation.
452 ASSERT(remaining < PAGE_SIZE * 2);
453
454 TestTrimFreeHelper(big_bit_in_the_middle);
455 }
456 }
457 }
458
459
cmpct_test_buckets(void)460 static void cmpct_test_buckets(void)
461 {
462 size_t rounded;
463 unsigned bucket;
464 // Check for the 8-spaced buckets up to 128.
465 for (unsigned i = 1; i <= 128; i++) {
466 // Round up when allocating.
467 bucket = size_to_index_allocating(i, &rounded);
468 unsigned expected = (round_up(i, 8) >> 3) - 1;
469 ASSERT(bucket == expected);
470 ASSERT(IS_ALIGNED(rounded, 8));
471 ASSERT(rounded >= i);
472 if (i >= sizeof(free_t) - sizeof(header_t)) {
473 // Once we get above the size of the free area struct (4 words), we
474 // won't round up much for these small size.
475 ASSERT(rounded - i < 8);
476 }
477 // Only rounded sizes are freed.
478 if ((i & 7) == 0) {
479 // Up to size 128 we have exact buckets for each multiple of 8.
480 ASSERT(bucket == (unsigned)size_to_index_freeing(i));
481 }
482 }
483 int bucket_base = 7;
484 for (unsigned j = 16; j < 1024; j *= 2, bucket_base += 8) {
485 // Note the "<=", which ensures that we test the powers of 2 twice to ensure
486 // that both ways of calculating the bucket number match.
487 for (unsigned i = j * 8; i <= j * 16; i++) {
488 // Round up to j multiple in this range when allocating.
489 bucket = size_to_index_allocating(i, &rounded);
490 unsigned expected = bucket_base + round_up(i, j) / j;
491 ASSERT(bucket == expected);
492 ASSERT(IS_ALIGNED(rounded, j));
493 ASSERT(rounded >= i);
494 ASSERT(rounded - i < j);
495 // Only 8-rounded sizes are freed or chopped off the end of a free area
496 // when allocating.
497 if ((i & 7) == 0) {
498 // When freeing, if we don't hit the size of the bucket precisely,
499 // we have to put the free space into a smaller bucket, because
500 // the buckets have entries that will always be big enough for
501 // the corresponding allocation size (so we don't have to
502 // traverse the free chains to find a big enough one).
503 if ((i % j) == 0) {
504 ASSERT((int)bucket == size_to_index_freeing(i));
505 } else {
506 ASSERT((int)bucket - 1 == size_to_index_freeing(i));
507 }
508 }
509 }
510 }
511 }
512
cmpct_test_get_back_newly_freed_helper(size_t size)513 static void cmpct_test_get_back_newly_freed_helper(size_t size)
514 {
515 void *allocated = cmpct_alloc(size);
516 if (allocated == NULL) return;
517 char *allocated2 = cmpct_alloc(8);
518 char *expected_position = (char *)allocated + size;
519 if (allocated2 < expected_position || allocated2 > expected_position + 128) {
520 // If the allocated2 allocation is not in the same OS allocation as the
521 // first allocation then the test may not work as expected (the memory
522 // may be returned to the OS when we free the first allocation, and we
523 // might not get it back).
524 cmpct_free(allocated);
525 cmpct_free(allocated2);
526 return;
527 }
528
529 cmpct_free(allocated);
530 void *allocated3 = cmpct_alloc(size);
531 // To avoid churn and fragmentation we would want to get the newly freed
532 // memory back again when we allocate the same size shortly after.
533 ASSERT(allocated3 == allocated);
534 cmpct_free(allocated2);
535 cmpct_free(allocated3);
536 }
537
cmpct_test_get_back_newly_freed(void)538 static void cmpct_test_get_back_newly_freed(void)
539 {
540 size_t increment = 16;
541 for (size_t i = 128; i <= 0x8000000; i *= 2, increment *= 2) {
542 for (size_t j = i; j < i * 2; j += increment) {
543 cmpct_test_get_back_newly_freed_helper(i - 8);
544 cmpct_test_get_back_newly_freed_helper(i);
545 cmpct_test_get_back_newly_freed_helper(i + 1);
546 }
547 }
548 for (size_t i = 1024; i <= 2048; i++) {
549 cmpct_test_get_back_newly_freed_helper(i);
550 }
551 }
552
cmpct_test_return_to_os(void)553 static void cmpct_test_return_to_os(void)
554 {
555 cmpct_trim();
556 size_t remaining = theheap.remaining;
557 // This goes in a new OS allocation since the trim above removed any free
558 // area big enough to contain it.
559 void *a = cmpct_alloc(5000);
560 void *b = cmpct_alloc(2500);
561 cmpct_free(a);
562 cmpct_free(b);
563 // If things work as expected the new allocation is at the start of an OS
564 // allocation. There's just one sentinel and one header to the left of it.
565 // It that's not the case then the allocation was met from some space in
566 // the middle of an OS allocation, and our test won't work as expected, so
567 // bail out.
568 if (((uintptr_t)a & (PAGE_SIZE - 1)) != sizeof(header_t) * 2) return;
569 // No trim needed when the entire OS allocation is free.
570 ASSERT(remaining == theheap.remaining);
571 }
572
cmpct_test(void)573 void cmpct_test(void)
574 {
575 cmpct_test_buckets();
576 cmpct_test_get_back_newly_freed();
577 cmpct_test_return_to_os();
578 cmpct_test_trim();
579 cmpct_dump();
580 void *ptr[16];
581
582 ptr[0] = cmpct_alloc(8);
583 ptr[1] = cmpct_alloc(32);
584 ptr[2] = cmpct_alloc(7);
585 cmpct_trim();
586 ptr[3] = cmpct_alloc(0);
587 ptr[4] = cmpct_alloc(98713);
588 ptr[5] = cmpct_alloc(16);
589
590 cmpct_free(ptr[5]);
591 cmpct_free(ptr[1]);
592 cmpct_free(ptr[3]);
593 cmpct_free(ptr[0]);
594 cmpct_free(ptr[4]);
595 cmpct_free(ptr[2]);
596
597 cmpct_dump();
598 cmpct_trim();
599 cmpct_dump();
600
601 int i;
602 for (i=0; i < 16; i++)
603 ptr[i] = 0;
604
605 for (i=0; i < 32768; i++) {
606 unsigned int index = (unsigned int)rand() % 16;
607
608 if ((i % (16*1024)) == 0)
609 printf("pass %d\n", i);
610
611 // printf("index 0x%x\n", index);
612 if (ptr[index]) {
613 // printf("freeing ptr[0x%x] = %p\n", index, ptr[index]);
614 cmpct_free(ptr[index]);
615 ptr[index] = 0;
616 }
617 unsigned int align = 1 << ((unsigned int)rand() % 8);
618 ptr[index] = cmpct_memalign((unsigned int)rand() % 32768, align);
619 // printf("ptr[0x%x] = %p, align 0x%x\n", index, ptr[index], align);
620
621 DEBUG_ASSERT(((addr_t)ptr[index] % align) == 0);
622 // cmpct_dump();
623 }
624
625 for (i=0; i < 16; i++) {
626 if (ptr[i])
627 cmpct_free(ptr[i]);
628 }
629
630 cmpct_dump();
631 }
632
large_alloc(size_t size)633 static void *large_alloc(size_t size)
634 {
635 #ifdef CMPCT_DEBUG
636 size_t requested_size = size;
637 #endif
638 size = round_up(size, 8);
639 free_t *free_area = NULL;
640 lock();
641 if (heap_grow(size, &free_area) < 0) {
642 return 0;
643 }
644 void *result =
645 create_allocation_header(free_area, 0, free_area->header.size, free_area->header.left);
646 // Normally the 'remaining free space' counter would be decremented when we
647 // unlink the free area from its bucket. However in this case the free
648 // area was too big to go in any bucket and we had it in our own
649 // "free_area" variable so there is no unlinking and we have to adjust the
650 // counter here.
651 theheap.remaining -= free_area->header.size;
652 unlock();
653 #ifdef CMPCT_DEBUG
654 memset(result, ALLOC_FILL, requested_size);
655 memset((char *)result + requested_size, PADDING_FILL,
656 free_area->header.size - (requested_size + sizeof(header_t)));
657 #endif
658 return result;
659 }
660
cmpct_trim(void)661 void cmpct_trim(void)
662 {
663 // Look at free list entries that are at least as large as one page plus a
664 // header. They might be at the start or the end of a block, so we can trim
665 // them and free the page(s).
666 lock();
667 for (int bucket = size_to_index_freeing(PAGE_SIZE);
668 bucket < NUMBER_OF_BUCKETS;
669 bucket++) {
670 free_t *next;
671 for (free_t *free_area = theheap.free_lists[bucket];
672 free_area != NULL;
673 free_area = next) {
674 DEBUG_ASSERT(free_area->header.size >= PAGE_SIZE + sizeof(header_t));
675 next = free_area->next;
676 header_t *right = right_header(&free_area->header);
677 if (is_end_of_os_allocation((char *)right)) {
678 char *old_os_allocation_end = (char *)round_up((uintptr_t)right, PAGE_SIZE);
679 // The page will end with a smaller free list entry and a header-sized sentinel.
680 char *new_os_allocation_end = (char *)
681 round_up((uintptr_t)free_area + sizeof(header_t) + sizeof(free_t), PAGE_SIZE);
682 size_t freed_up = old_os_allocation_end - new_os_allocation_end;
683 DEBUG_ASSERT(IS_PAGE_ALIGNED(freed_up));
684 // Rare, because we only look at large freelist entries, but unlucky rounding
685 // could mean we can't actually free anything here.
686 if (freed_up == 0) continue;
687 unlink_free(free_area, bucket);
688 size_t new_free_size = free_area->header.size - freed_up;
689 DEBUG_ASSERT(new_free_size >= sizeof(free_t));
690 // Right sentinel, not free, stops attempts to coalesce right.
691 create_allocation_header(free_area, new_free_size, 0, free_area);
692 // Also puts it in the correct bucket.
693 create_free_area(free_area, untag(free_area->header.left), new_free_size, NULL);
694 page_free(new_os_allocation_end, freed_up >> PAGE_SIZE_SHIFT);
695 theheap.size -= freed_up;
696 } else if (is_start_of_os_allocation(untag(free_area->header.left))) {
697 char *old_os_allocation_start =
698 (char *)round_down((uintptr_t)free_area, PAGE_SIZE);
699 // For the sentinel, we need at least one header-size of space between the page
700 // edge and the first allocation to the right of the free area.
701 char *new_os_allocation_start =
702 (char *)round_down((uintptr_t)(right - 1), PAGE_SIZE);
703 size_t freed_up = new_os_allocation_start - old_os_allocation_start;
704 DEBUG_ASSERT(IS_PAGE_ALIGNED(freed_up));
705 // This should not happen because we only look at the large free list buckets.
706 if (freed_up == 0) continue;
707 unlink_free(free_area, bucket);
708 size_t sentinel_size = sizeof(header_t);
709 size_t new_free_size = free_area->header.size - freed_up;
710 if (new_free_size < sizeof(free_t)) {
711 sentinel_size += new_free_size;
712 new_free_size = 0;
713 }
714 // Left sentinel, not free, stops attempts to coalesce left.
715 create_allocation_header(new_os_allocation_start, 0, sentinel_size, NULL);
716 if (new_free_size == 0) {
717 FixLeftPointer(right, (header_t *)new_os_allocation_start);
718 } else {
719 DEBUG_ASSERT(new_free_size >= sizeof(free_t));
720 char *new_free = new_os_allocation_start + sentinel_size;
721 // Also puts it in the correct bucket.
722 create_free_area(new_free, new_os_allocation_start, new_free_size, NULL);
723 FixLeftPointer(right, (header_t *)new_free);
724 }
725 page_free(old_os_allocation_start, freed_up >> PAGE_SIZE_SHIFT);
726 theheap.size -= freed_up;
727 }
728 }
729 }
730 unlock();
731 }
732
cmpct_alloc(size_t size)733 void *cmpct_alloc(size_t size)
734 {
735 if (size == 0u) return NULL;
736
737 if (size + sizeof(header_t) > (1u << HEAP_ALLOC_VIRTUAL_BITS)) return large_alloc(size);
738
739 size_t rounded_up;
740 int start_bucket = size_to_index_allocating(size, &rounded_up);
741
742 rounded_up += sizeof(header_t);
743
744 lock();
745 int bucket = find_nonempty_bucket(start_bucket);
746 if (bucket == -1) {
747 // Grow heap by at least 12% if we can.
748 size_t growby = MIN(1u << HEAP_ALLOC_VIRTUAL_BITS,
749 MAX(theheap.size >> 3,
750 MAX(HEAP_GROW_SIZE, rounded_up)));
751 while (heap_grow(growby, NULL) < 0) {
752 if (growby <= rounded_up) {
753 unlock();
754 return NULL;
755 }
756 growby = MAX(growby >> 1, rounded_up);
757 }
758 bucket = find_nonempty_bucket(start_bucket);
759 }
760 free_t *head = theheap.free_lists[bucket];
761 size_t left_over = head->header.size - rounded_up;
762 // We can't carve off the rest for a new free space if it's smaller than the
763 // free-list linked structure. We also don't carve it off if it's less than
764 // 1.6% the size of the allocation. This is to avoid small long-lived
765 // allocations being placed right next to large allocations, hindering
766 // coalescing and returning pages to the OS.
767 if (left_over >= sizeof(free_t) && left_over > (size >> 6)) {
768 header_t *right = right_header(&head->header);
769 unlink_free(head, bucket);
770 void *free = (char *)head + rounded_up;
771 create_free_area(free, head, left_over, NULL);
772 FixLeftPointer(right, (header_t *)free);
773 head->header.size -= left_over;
774 } else {
775 unlink_free(head, bucket);
776 }
777 void *result =
778 create_allocation_header(head, 0, head->header.size, head->header.left);
779 #ifdef CMPCT_DEBUG
780 memset(result, ALLOC_FILL, size);
781 memset(((char *)result) + size, PADDING_FILL, rounded_up - size - sizeof(header_t));
782 #endif
783 unlock();
784 return result;
785 }
786
cmpct_memalign(size_t size,size_t alignment)787 void *cmpct_memalign(size_t size, size_t alignment)
788 {
789 if (alignment < 8) return cmpct_alloc(size);
790 size_t padded_size =
791 size + alignment + sizeof(free_t) + sizeof(header_t);
792 char *unaligned = (char *)cmpct_alloc(padded_size);
793 lock();
794 size_t mask = alignment - 1;
795 uintptr_t payload_int = (uintptr_t)unaligned + sizeof(free_t) +
796 sizeof(header_t) + mask;
797 char *payload = (char *)(payload_int & ~mask);
798 if (unaligned != payload) {
799 header_t *unaligned_header = (header_t *)unaligned - 1;
800 header_t *header = (header_t *)payload - 1;
801 size_t left_over = payload - unaligned;
802 create_allocation_header(
803 header, 0, unaligned_header->size - left_over, unaligned_header);
804 header_t *right = right_header(unaligned_header);
805 unaligned_header->size = left_over;
806 FixLeftPointer(right, header);
807 unlock();
808 cmpct_free(unaligned);
809 } else {
810 unlock();
811 }
812 // TODO: Free the part after the aligned allocation.
813 return payload;
814 }
815
cmpct_free(void * payload)816 void cmpct_free(void *payload)
817 {
818 if (payload == NULL) return;
819 header_t *header = (header_t *)payload - 1;
820 DEBUG_ASSERT(!is_tagged_as_free(header)); // Double free!
821 size_t size = header->size;
822 lock();
823 header_t *left = header->left;
824 if (left != NULL && is_tagged_as_free(left)) {
825 // Coalesce with left free object.
826 unlink_free_unknown_bucket((free_t *)left);
827 header_t *right = right_header(header);
828 if (is_tagged_as_free(right)) {
829 // Coalesce both sides.
830 unlink_free_unknown_bucket((free_t *)right);
831 header_t *right_right = right_header(right);
832 FixLeftPointer(right_right, left);
833 free_memory(left, left->left, left->size + size + right->size);
834 } else {
835 // Coalesce only left.
836 FixLeftPointer(right, left);
837 free_memory(left, left->left, left->size + size);
838 }
839 } else {
840 header_t *right = right_header(header);
841 if (is_tagged_as_free(right)) {
842 // Coalesce only right.
843 header_t *right_right = right_header(right);
844 unlink_free_unknown_bucket((free_t *)right);
845 FixLeftPointer(right_right, header);
846 free_memory(header, left, size + right->size);
847 } else {
848 free_memory(header, left, size);
849 }
850 }
851 unlock();
852 }
853
cmpct_realloc(void * payload,size_t size)854 void *cmpct_realloc(void *payload, size_t size)
855 {
856 if (payload == NULL) return cmpct_alloc(size);
857 header_t *header = (header_t *)payload - 1;
858 size_t old_size = header->size - sizeof(header_t);
859 void *new_payload = cmpct_alloc(size);
860 memcpy(new_payload, payload, MIN(size, old_size));
861 cmpct_free(payload);
862 return new_payload;
863 }
864
add_to_heap(void * new_area,size_t size,free_t ** bucket)865 static void add_to_heap(void *new_area, size_t size, free_t **bucket)
866 {
867 void *top = (char *)new_area + size;
868 header_t *left_sentinel = (header_t *)new_area;
869 // Not free, stops attempts to coalesce left.
870 create_allocation_header(left_sentinel, 0, sizeof(header_t), NULL);
871 header_t *new_header = left_sentinel + 1;
872 size_t free_size = size - 2 * sizeof(header_t);
873 create_free_area(new_header, left_sentinel, free_size, bucket);
874 header_t *right_sentinel = (header_t *)(top - sizeof(header_t));
875 // Not free, stops attempts to coalesce right.
876 create_allocation_header(right_sentinel, 0, 0, new_header);
877 }
878
879 // Create a new free-list entry of at least size bytes (including the
880 // allocation header). Called with the lock, apart from during init.
heap_grow(size_t size,free_t ** bucket)881 static ssize_t heap_grow(size_t size, free_t **bucket)
882 {
883 // The new free list entry will have a header on each side (the
884 // sentinels) so we need to grow the gross heap size by this much more.
885 size += 2 * sizeof(header_t);
886 size = round_up(size, PAGE_SIZE);
887 void *ptr = page_alloc(size >> PAGE_SIZE_SHIFT, PAGE_ALLOC_ANY_ARENA);
888 if (ptr == NULL) return -1;
889 theheap.size += size;
890 LTRACEF("growing heap by 0x%zx bytes, new ptr %p\n", size, ptr);
891 add_to_heap(ptr, size, bucket);
892 return size;
893 }
894
cmpct_init(void)895 void cmpct_init(void)
896 {
897 LTRACE_ENTRY;
898
899 // Create a mutex.
900 mutex_init(&theheap.lock);
901
902 // Initialize the free list.
903 for (int i = 0; i < NUMBER_OF_BUCKETS; i++) {
904 theheap.free_lists[i] = NULL;
905 }
906 for (int i = 0; i < BUCKET_WORDS; i++) {
907 theheap.free_list_bits[i] = 0;
908 }
909
910 size_t initial_alloc = HEAP_GROW_SIZE - 2 * sizeof(header_t);
911
912 theheap.remaining = 0;
913
914 heap_grow(initial_alloc, NULL);
915 }
916