xref: /aosp_15_r20/external/webp/src/utils/huffman_utils.c (revision b2055c353e87c8814eb2b6b1b11112a1562253bd)
1 // Copyright 2012 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // Utilities for building and looking up Huffman trees.
11 //
12 // Author: Urvang Joshi ([email protected])
13 
14 #include <assert.h>
15 #include <stdlib.h>
16 #include <string.h>
17 #include "src/utils/huffman_utils.h"
18 #include "src/utils/utils.h"
19 #include "src/webp/format_constants.h"
20 
21 // Huffman data read via DecodeImageStream is represented in two (red and green)
22 // bytes.
23 #define MAX_HTREE_GROUPS    0x10000
24 
VP8LHtreeGroupsNew(int num_htree_groups)25 HTreeGroup* VP8LHtreeGroupsNew(int num_htree_groups) {
26   HTreeGroup* const htree_groups =
27       (HTreeGroup*)WebPSafeMalloc(num_htree_groups, sizeof(*htree_groups));
28   if (htree_groups == NULL) {
29     return NULL;
30   }
31   assert(num_htree_groups <= MAX_HTREE_GROUPS);
32   return htree_groups;
33 }
34 
VP8LHtreeGroupsFree(HTreeGroup * const htree_groups)35 void VP8LHtreeGroupsFree(HTreeGroup* const htree_groups) {
36   if (htree_groups != NULL) {
37     WebPSafeFree(htree_groups);
38   }
39 }
40 
41 // Returns reverse(reverse(key, len) + 1, len), where reverse(key, len) is the
42 // bit-wise reversal of the len least significant bits of key.
GetNextKey(uint32_t key,int len)43 static WEBP_INLINE uint32_t GetNextKey(uint32_t key, int len) {
44   uint32_t step = 1 << (len - 1);
45   while (key & step) {
46     step >>= 1;
47   }
48   return step ? (key & (step - 1)) + step : key;
49 }
50 
51 // Stores code in table[0], table[step], table[2*step], ..., table[end].
52 // Assumes that end is an integer multiple of step.
ReplicateValue(HuffmanCode * table,int step,int end,HuffmanCode code)53 static WEBP_INLINE void ReplicateValue(HuffmanCode* table,
54                                        int step, int end,
55                                        HuffmanCode code) {
56   assert(end % step == 0);
57   do {
58     end -= step;
59     table[end] = code;
60   } while (end > 0);
61 }
62 
63 // Returns the table width of the next 2nd level table. count is the histogram
64 // of bit lengths for the remaining symbols, len is the code length of the next
65 // processed symbol
NextTableBitSize(const int * const count,int len,int root_bits)66 static WEBP_INLINE int NextTableBitSize(const int* const count,
67                                         int len, int root_bits) {
68   int left = 1 << (len - root_bits);
69   while (len < MAX_ALLOWED_CODE_LENGTH) {
70     left -= count[len];
71     if (left <= 0) break;
72     ++len;
73     left <<= 1;
74   }
75   return len - root_bits;
76 }
77 
78 // sorted[code_lengths_size] is a pre-allocated array for sorting symbols
79 // by code length.
BuildHuffmanTable(HuffmanCode * const root_table,int root_bits,const int code_lengths[],int code_lengths_size,uint16_t sorted[])80 static int BuildHuffmanTable(HuffmanCode* const root_table, int root_bits,
81                              const int code_lengths[], int code_lengths_size,
82                              uint16_t sorted[]) {
83   HuffmanCode* table = root_table;  // next available space in table
84   int total_size = 1 << root_bits;  // total size root table + 2nd level table
85   int len;                          // current code length
86   int symbol;                       // symbol index in original or sorted table
87   // number of codes of each length:
88   int count[MAX_ALLOWED_CODE_LENGTH + 1] = { 0 };
89   // offsets in sorted table for each length:
90   int offset[MAX_ALLOWED_CODE_LENGTH + 1];
91 
92   assert(code_lengths_size != 0);
93   assert(code_lengths != NULL);
94   assert((root_table != NULL && sorted != NULL) ||
95          (root_table == NULL && sorted == NULL));
96   assert(root_bits > 0);
97 
98   // Build histogram of code lengths.
99   for (symbol = 0; symbol < code_lengths_size; ++symbol) {
100     if (code_lengths[symbol] > MAX_ALLOWED_CODE_LENGTH) {
101       return 0;
102     }
103     ++count[code_lengths[symbol]];
104   }
105 
106   // Error, all code lengths are zeros.
107   if (count[0] == code_lengths_size) {
108     return 0;
109   }
110 
111   // Generate offsets into sorted symbol table by code length.
112   offset[1] = 0;
113   for (len = 1; len < MAX_ALLOWED_CODE_LENGTH; ++len) {
114     if (count[len] > (1 << len)) {
115       return 0;
116     }
117     offset[len + 1] = offset[len] + count[len];
118   }
119 
120   // Sort symbols by length, by symbol order within each length.
121   for (symbol = 0; symbol < code_lengths_size; ++symbol) {
122     const int symbol_code_length = code_lengths[symbol];
123     if (code_lengths[symbol] > 0) {
124       if (sorted != NULL) {
125         if(offset[symbol_code_length] >= code_lengths_size) {
126             return 0;
127         }
128         sorted[offset[symbol_code_length]++] = symbol;
129       } else {
130         offset[symbol_code_length]++;
131       }
132     }
133   }
134 
135   // Special case code with only one value.
136   if (offset[MAX_ALLOWED_CODE_LENGTH] == 1) {
137     if (sorted != NULL) {
138       HuffmanCode code;
139       code.bits = 0;
140       code.value = (uint16_t)sorted[0];
141       ReplicateValue(table, 1, total_size, code);
142     }
143     return total_size;
144   }
145 
146   {
147     int step;              // step size to replicate values in current table
148     uint32_t low = 0xffffffffu;        // low bits for current root entry
149     uint32_t mask = total_size - 1;    // mask for low bits
150     uint32_t key = 0;      // reversed prefix code
151     int num_nodes = 1;     // number of Huffman tree nodes
152     int num_open = 1;      // number of open branches in current tree level
153     int table_bits = root_bits;        // key length of current table
154     int table_size = 1 << table_bits;  // size of current table
155     symbol = 0;
156     // Fill in root table.
157     for (len = 1, step = 2; len <= root_bits; ++len, step <<= 1) {
158       num_open <<= 1;
159       num_nodes += num_open;
160       num_open -= count[len];
161       if (num_open < 0) {
162         return 0;
163       }
164       if (root_table == NULL) continue;
165       for (; count[len] > 0; --count[len]) {
166         HuffmanCode code;
167         code.bits = (uint8_t)len;
168         code.value = (uint16_t)sorted[symbol++];
169         ReplicateValue(&table[key], step, table_size, code);
170         key = GetNextKey(key, len);
171       }
172     }
173 
174     // Fill in 2nd level tables and add pointers to root table.
175     for (len = root_bits + 1, step = 2; len <= MAX_ALLOWED_CODE_LENGTH;
176          ++len, step <<= 1) {
177       num_open <<= 1;
178       num_nodes += num_open;
179       num_open -= count[len];
180       if (num_open < 0) {
181         return 0;
182       }
183       for (; count[len] > 0; --count[len]) {
184         HuffmanCode code;
185         if ((key & mask) != low) {
186           if (root_table != NULL) table += table_size;
187           table_bits = NextTableBitSize(count, len, root_bits);
188           table_size = 1 << table_bits;
189           total_size += table_size;
190           low = key & mask;
191           if (root_table != NULL) {
192             root_table[low].bits = (uint8_t)(table_bits + root_bits);
193             root_table[low].value = (uint16_t)((table - root_table) - low);
194           }
195         }
196         if (root_table != NULL) {
197           code.bits = (uint8_t)(len - root_bits);
198           code.value = (uint16_t)sorted[symbol++];
199           ReplicateValue(&table[key >> root_bits], step, table_size, code);
200         }
201         key = GetNextKey(key, len);
202       }
203     }
204 
205     // Check if tree is full.
206     if (num_nodes != 2 * offset[MAX_ALLOWED_CODE_LENGTH] - 1) {
207       return 0;
208     }
209   }
210 
211   return total_size;
212 }
213 
214 // Maximum code_lengths_size is 2328 (reached for 11-bit color_cache_bits).
215 // More commonly, the value is around ~280.
216 #define MAX_CODE_LENGTHS_SIZE \
217   ((1 << MAX_CACHE_BITS) + NUM_LITERAL_CODES + NUM_LENGTH_CODES)
218 // Cut-off value for switching between heap and stack allocation.
219 #define SORTED_SIZE_CUTOFF 512
VP8LBuildHuffmanTable(HuffmanTables * const root_table,int root_bits,const int code_lengths[],int code_lengths_size)220 int VP8LBuildHuffmanTable(HuffmanTables* const root_table, int root_bits,
221                           const int code_lengths[], int code_lengths_size) {
222   const int total_size =
223       BuildHuffmanTable(NULL, root_bits, code_lengths, code_lengths_size, NULL);
224   assert(code_lengths_size <= MAX_CODE_LENGTHS_SIZE);
225   if (total_size == 0 || root_table == NULL) return total_size;
226 
227   if (root_table->curr_segment->curr_table + total_size >=
228       root_table->curr_segment->start + root_table->curr_segment->size) {
229     // If 'root_table' does not have enough memory, allocate a new segment.
230     // The available part of root_table->curr_segment is left unused because we
231     // need a contiguous buffer.
232     const int segment_size = root_table->curr_segment->size;
233     struct HuffmanTablesSegment* next =
234         (HuffmanTablesSegment*)WebPSafeMalloc(1, sizeof(*next));
235     if (next == NULL) return 0;
236     // Fill the new segment.
237     // We need at least 'total_size' but if that value is small, it is better to
238     // allocate a big chunk to prevent more allocations later. 'segment_size' is
239     // therefore chosen (any other arbitrary value could be chosen).
240     next->size = total_size > segment_size ? total_size : segment_size;
241     next->start =
242         (HuffmanCode*)WebPSafeMalloc(next->size, sizeof(*next->start));
243     if (next->start == NULL) {
244       WebPSafeFree(next);
245       return 0;
246     }
247     next->curr_table = next->start;
248     next->next = NULL;
249     // Point to the new segment.
250     root_table->curr_segment->next = next;
251     root_table->curr_segment = next;
252   }
253   if (code_lengths_size <= SORTED_SIZE_CUTOFF) {
254     // use local stack-allocated array.
255     uint16_t sorted[SORTED_SIZE_CUTOFF];
256     BuildHuffmanTable(root_table->curr_segment->curr_table, root_bits,
257                       code_lengths, code_lengths_size, sorted);
258   } else {  // rare case. Use heap allocation.
259     uint16_t* const sorted =
260         (uint16_t*)WebPSafeMalloc(code_lengths_size, sizeof(*sorted));
261     if (sorted == NULL) return 0;
262     BuildHuffmanTable(root_table->curr_segment->curr_table, root_bits,
263                       code_lengths, code_lengths_size, sorted);
264     WebPSafeFree(sorted);
265   }
266   return total_size;
267 }
268 
VP8LHuffmanTablesAllocate(int size,HuffmanTables * huffman_tables)269 int VP8LHuffmanTablesAllocate(int size, HuffmanTables* huffman_tables) {
270   // Have 'segment' point to the first segment for now, 'root'.
271   HuffmanTablesSegment* const root = &huffman_tables->root;
272   huffman_tables->curr_segment = root;
273   root->next = NULL;
274   // Allocate root.
275   root->start = (HuffmanCode*)WebPSafeMalloc(size, sizeof(*root->start));
276   if (root->start == NULL) return 0;
277   root->curr_table = root->start;
278   root->size = size;
279   return 1;
280 }
281 
VP8LHuffmanTablesDeallocate(HuffmanTables * const huffman_tables)282 void VP8LHuffmanTablesDeallocate(HuffmanTables* const huffman_tables) {
283   HuffmanTablesSegment *current, *next;
284   if (huffman_tables == NULL) return;
285   // Free the root node.
286   current = &huffman_tables->root;
287   next = current->next;
288   WebPSafeFree(current->start);
289   current->start = NULL;
290   current->next = NULL;
291   current = next;
292   // Free the following nodes.
293   while (current != NULL) {
294     next = current->next;
295     WebPSafeFree(current->start);
296     WebPSafeFree(current);
297     current = next;
298   }
299 }
300