1 // Copyright 2012 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // Utilities for building and looking up Huffman trees.
11 //
12 // Author: Urvang Joshi ([email protected])
13
14 #include <assert.h>
15 #include <stdlib.h>
16 #include <string.h>
17 #include "src/utils/huffman_utils.h"
18 #include "src/utils/utils.h"
19 #include "src/webp/format_constants.h"
20
21 // Huffman data read via DecodeImageStream is represented in two (red and green)
22 // bytes.
23 #define MAX_HTREE_GROUPS 0x10000
24
VP8LHtreeGroupsNew(int num_htree_groups)25 HTreeGroup* VP8LHtreeGroupsNew(int num_htree_groups) {
26 HTreeGroup* const htree_groups =
27 (HTreeGroup*)WebPSafeMalloc(num_htree_groups, sizeof(*htree_groups));
28 if (htree_groups == NULL) {
29 return NULL;
30 }
31 assert(num_htree_groups <= MAX_HTREE_GROUPS);
32 return htree_groups;
33 }
34
VP8LHtreeGroupsFree(HTreeGroup * const htree_groups)35 void VP8LHtreeGroupsFree(HTreeGroup* const htree_groups) {
36 if (htree_groups != NULL) {
37 WebPSafeFree(htree_groups);
38 }
39 }
40
41 // Returns reverse(reverse(key, len) + 1, len), where reverse(key, len) is the
42 // bit-wise reversal of the len least significant bits of key.
GetNextKey(uint32_t key,int len)43 static WEBP_INLINE uint32_t GetNextKey(uint32_t key, int len) {
44 uint32_t step = 1 << (len - 1);
45 while (key & step) {
46 step >>= 1;
47 }
48 return step ? (key & (step - 1)) + step : key;
49 }
50
51 // Stores code in table[0], table[step], table[2*step], ..., table[end].
52 // Assumes that end is an integer multiple of step.
ReplicateValue(HuffmanCode * table,int step,int end,HuffmanCode code)53 static WEBP_INLINE void ReplicateValue(HuffmanCode* table,
54 int step, int end,
55 HuffmanCode code) {
56 assert(end % step == 0);
57 do {
58 end -= step;
59 table[end] = code;
60 } while (end > 0);
61 }
62
63 // Returns the table width of the next 2nd level table. count is the histogram
64 // of bit lengths for the remaining symbols, len is the code length of the next
65 // processed symbol
NextTableBitSize(const int * const count,int len,int root_bits)66 static WEBP_INLINE int NextTableBitSize(const int* const count,
67 int len, int root_bits) {
68 int left = 1 << (len - root_bits);
69 while (len < MAX_ALLOWED_CODE_LENGTH) {
70 left -= count[len];
71 if (left <= 0) break;
72 ++len;
73 left <<= 1;
74 }
75 return len - root_bits;
76 }
77
78 // sorted[code_lengths_size] is a pre-allocated array for sorting symbols
79 // by code length.
BuildHuffmanTable(HuffmanCode * const root_table,int root_bits,const int code_lengths[],int code_lengths_size,uint16_t sorted[])80 static int BuildHuffmanTable(HuffmanCode* const root_table, int root_bits,
81 const int code_lengths[], int code_lengths_size,
82 uint16_t sorted[]) {
83 HuffmanCode* table = root_table; // next available space in table
84 int total_size = 1 << root_bits; // total size root table + 2nd level table
85 int len; // current code length
86 int symbol; // symbol index in original or sorted table
87 // number of codes of each length:
88 int count[MAX_ALLOWED_CODE_LENGTH + 1] = { 0 };
89 // offsets in sorted table for each length:
90 int offset[MAX_ALLOWED_CODE_LENGTH + 1];
91
92 assert(code_lengths_size != 0);
93 assert(code_lengths != NULL);
94 assert((root_table != NULL && sorted != NULL) ||
95 (root_table == NULL && sorted == NULL));
96 assert(root_bits > 0);
97
98 // Build histogram of code lengths.
99 for (symbol = 0; symbol < code_lengths_size; ++symbol) {
100 if (code_lengths[symbol] > MAX_ALLOWED_CODE_LENGTH) {
101 return 0;
102 }
103 ++count[code_lengths[symbol]];
104 }
105
106 // Error, all code lengths are zeros.
107 if (count[0] == code_lengths_size) {
108 return 0;
109 }
110
111 // Generate offsets into sorted symbol table by code length.
112 offset[1] = 0;
113 for (len = 1; len < MAX_ALLOWED_CODE_LENGTH; ++len) {
114 if (count[len] > (1 << len)) {
115 return 0;
116 }
117 offset[len + 1] = offset[len] + count[len];
118 }
119
120 // Sort symbols by length, by symbol order within each length.
121 for (symbol = 0; symbol < code_lengths_size; ++symbol) {
122 const int symbol_code_length = code_lengths[symbol];
123 if (code_lengths[symbol] > 0) {
124 if (sorted != NULL) {
125 if(offset[symbol_code_length] >= code_lengths_size) {
126 return 0;
127 }
128 sorted[offset[symbol_code_length]++] = symbol;
129 } else {
130 offset[symbol_code_length]++;
131 }
132 }
133 }
134
135 // Special case code with only one value.
136 if (offset[MAX_ALLOWED_CODE_LENGTH] == 1) {
137 if (sorted != NULL) {
138 HuffmanCode code;
139 code.bits = 0;
140 code.value = (uint16_t)sorted[0];
141 ReplicateValue(table, 1, total_size, code);
142 }
143 return total_size;
144 }
145
146 {
147 int step; // step size to replicate values in current table
148 uint32_t low = 0xffffffffu; // low bits for current root entry
149 uint32_t mask = total_size - 1; // mask for low bits
150 uint32_t key = 0; // reversed prefix code
151 int num_nodes = 1; // number of Huffman tree nodes
152 int num_open = 1; // number of open branches in current tree level
153 int table_bits = root_bits; // key length of current table
154 int table_size = 1 << table_bits; // size of current table
155 symbol = 0;
156 // Fill in root table.
157 for (len = 1, step = 2; len <= root_bits; ++len, step <<= 1) {
158 num_open <<= 1;
159 num_nodes += num_open;
160 num_open -= count[len];
161 if (num_open < 0) {
162 return 0;
163 }
164 if (root_table == NULL) continue;
165 for (; count[len] > 0; --count[len]) {
166 HuffmanCode code;
167 code.bits = (uint8_t)len;
168 code.value = (uint16_t)sorted[symbol++];
169 ReplicateValue(&table[key], step, table_size, code);
170 key = GetNextKey(key, len);
171 }
172 }
173
174 // Fill in 2nd level tables and add pointers to root table.
175 for (len = root_bits + 1, step = 2; len <= MAX_ALLOWED_CODE_LENGTH;
176 ++len, step <<= 1) {
177 num_open <<= 1;
178 num_nodes += num_open;
179 num_open -= count[len];
180 if (num_open < 0) {
181 return 0;
182 }
183 for (; count[len] > 0; --count[len]) {
184 HuffmanCode code;
185 if ((key & mask) != low) {
186 if (root_table != NULL) table += table_size;
187 table_bits = NextTableBitSize(count, len, root_bits);
188 table_size = 1 << table_bits;
189 total_size += table_size;
190 low = key & mask;
191 if (root_table != NULL) {
192 root_table[low].bits = (uint8_t)(table_bits + root_bits);
193 root_table[low].value = (uint16_t)((table - root_table) - low);
194 }
195 }
196 if (root_table != NULL) {
197 code.bits = (uint8_t)(len - root_bits);
198 code.value = (uint16_t)sorted[symbol++];
199 ReplicateValue(&table[key >> root_bits], step, table_size, code);
200 }
201 key = GetNextKey(key, len);
202 }
203 }
204
205 // Check if tree is full.
206 if (num_nodes != 2 * offset[MAX_ALLOWED_CODE_LENGTH] - 1) {
207 return 0;
208 }
209 }
210
211 return total_size;
212 }
213
214 // Maximum code_lengths_size is 2328 (reached for 11-bit color_cache_bits).
215 // More commonly, the value is around ~280.
216 #define MAX_CODE_LENGTHS_SIZE \
217 ((1 << MAX_CACHE_BITS) + NUM_LITERAL_CODES + NUM_LENGTH_CODES)
218 // Cut-off value for switching between heap and stack allocation.
219 #define SORTED_SIZE_CUTOFF 512
VP8LBuildHuffmanTable(HuffmanTables * const root_table,int root_bits,const int code_lengths[],int code_lengths_size)220 int VP8LBuildHuffmanTable(HuffmanTables* const root_table, int root_bits,
221 const int code_lengths[], int code_lengths_size) {
222 const int total_size =
223 BuildHuffmanTable(NULL, root_bits, code_lengths, code_lengths_size, NULL);
224 assert(code_lengths_size <= MAX_CODE_LENGTHS_SIZE);
225 if (total_size == 0 || root_table == NULL) return total_size;
226
227 if (root_table->curr_segment->curr_table + total_size >=
228 root_table->curr_segment->start + root_table->curr_segment->size) {
229 // If 'root_table' does not have enough memory, allocate a new segment.
230 // The available part of root_table->curr_segment is left unused because we
231 // need a contiguous buffer.
232 const int segment_size = root_table->curr_segment->size;
233 struct HuffmanTablesSegment* next =
234 (HuffmanTablesSegment*)WebPSafeMalloc(1, sizeof(*next));
235 if (next == NULL) return 0;
236 // Fill the new segment.
237 // We need at least 'total_size' but if that value is small, it is better to
238 // allocate a big chunk to prevent more allocations later. 'segment_size' is
239 // therefore chosen (any other arbitrary value could be chosen).
240 next->size = total_size > segment_size ? total_size : segment_size;
241 next->start =
242 (HuffmanCode*)WebPSafeMalloc(next->size, sizeof(*next->start));
243 if (next->start == NULL) {
244 WebPSafeFree(next);
245 return 0;
246 }
247 next->curr_table = next->start;
248 next->next = NULL;
249 // Point to the new segment.
250 root_table->curr_segment->next = next;
251 root_table->curr_segment = next;
252 }
253 if (code_lengths_size <= SORTED_SIZE_CUTOFF) {
254 // use local stack-allocated array.
255 uint16_t sorted[SORTED_SIZE_CUTOFF];
256 BuildHuffmanTable(root_table->curr_segment->curr_table, root_bits,
257 code_lengths, code_lengths_size, sorted);
258 } else { // rare case. Use heap allocation.
259 uint16_t* const sorted =
260 (uint16_t*)WebPSafeMalloc(code_lengths_size, sizeof(*sorted));
261 if (sorted == NULL) return 0;
262 BuildHuffmanTable(root_table->curr_segment->curr_table, root_bits,
263 code_lengths, code_lengths_size, sorted);
264 WebPSafeFree(sorted);
265 }
266 return total_size;
267 }
268
VP8LHuffmanTablesAllocate(int size,HuffmanTables * huffman_tables)269 int VP8LHuffmanTablesAllocate(int size, HuffmanTables* huffman_tables) {
270 // Have 'segment' point to the first segment for now, 'root'.
271 HuffmanTablesSegment* const root = &huffman_tables->root;
272 huffman_tables->curr_segment = root;
273 root->next = NULL;
274 // Allocate root.
275 root->start = (HuffmanCode*)WebPSafeMalloc(size, sizeof(*root->start));
276 if (root->start == NULL) return 0;
277 root->curr_table = root->start;
278 root->size = size;
279 return 1;
280 }
281
VP8LHuffmanTablesDeallocate(HuffmanTables * const huffman_tables)282 void VP8LHuffmanTablesDeallocate(HuffmanTables* const huffman_tables) {
283 HuffmanTablesSegment *current, *next;
284 if (huffman_tables == NULL) return;
285 // Free the root node.
286 current = &huffman_tables->root;
287 next = current->next;
288 WebPSafeFree(current->start);
289 current->start = NULL;
290 current->next = NULL;
291 current = next;
292 // Free the following nodes.
293 while (current != NULL) {
294 next = current->next;
295 WebPSafeFree(current->start);
296 WebPSafeFree(current);
297 current = next;
298 }
299 }
300