xref: /aosp_15_r20/external/webrtc/modules/audio_coding/neteq/merge.cc (revision d9f758449e529ab9291ac668be2861e7a55c2422)
1 /*
2  *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #include "modules/audio_coding/neteq/merge.h"
12 
13 #include <string.h>  // memmove, memcpy, memset, size_t
14 
15 #include <algorithm>  // min, max
16 #include <memory>
17 
18 #include "common_audio/signal_processing/include/signal_processing_library.h"
19 #include "modules/audio_coding/neteq/audio_multi_vector.h"
20 #include "modules/audio_coding/neteq/cross_correlation.h"
21 #include "modules/audio_coding/neteq/dsp_helper.h"
22 #include "modules/audio_coding/neteq/expand.h"
23 #include "modules/audio_coding/neteq/sync_buffer.h"
24 #include "rtc_base/numerics/safe_conversions.h"
25 #include "rtc_base/numerics/safe_minmax.h"
26 
27 namespace webrtc {
28 
Merge(int fs_hz,size_t num_channels,Expand * expand,SyncBuffer * sync_buffer)29 Merge::Merge(int fs_hz,
30              size_t num_channels,
31              Expand* expand,
32              SyncBuffer* sync_buffer)
33     : fs_hz_(fs_hz),
34       num_channels_(num_channels),
35       fs_mult_(fs_hz_ / 8000),
36       timestamps_per_call_(static_cast<size_t>(fs_hz_ / 100)),
37       expand_(expand),
38       sync_buffer_(sync_buffer),
39       expanded_(num_channels_) {
40   RTC_DCHECK_GT(num_channels_, 0);
41 }
42 
43 Merge::~Merge() = default;
44 
Process(int16_t * input,size_t input_length,AudioMultiVector * output)45 size_t Merge::Process(int16_t* input,
46                       size_t input_length,
47                       AudioMultiVector* output) {
48   // TODO(hlundin): Change to an enumerator and skip assert.
49   RTC_DCHECK(fs_hz_ == 8000 || fs_hz_ == 16000 || fs_hz_ == 32000 ||
50              fs_hz_ == 48000);
51   RTC_DCHECK_LE(fs_hz_, kMaxSampleRate);  // Should not be possible.
52   if (input_length == 0) {
53     return 0;
54   }
55 
56   size_t old_length;
57   size_t expand_period;
58   // Get expansion data to overlap and mix with.
59   size_t expanded_length = GetExpandedSignal(&old_length, &expand_period);
60 
61   // Transfer input signal to an AudioMultiVector.
62   AudioMultiVector input_vector(num_channels_);
63   input_vector.PushBackInterleaved(
64       rtc::ArrayView<const int16_t>(input, input_length));
65   size_t input_length_per_channel = input_vector.Size();
66   RTC_DCHECK_EQ(input_length_per_channel, input_length / num_channels_);
67 
68   size_t best_correlation_index = 0;
69   size_t output_length = 0;
70 
71   std::unique_ptr<int16_t[]> input_channel(
72       new int16_t[input_length_per_channel]);
73   std::unique_ptr<int16_t[]> expanded_channel(new int16_t[expanded_length]);
74   for (size_t channel = 0; channel < num_channels_; ++channel) {
75     input_vector[channel].CopyTo(input_length_per_channel, 0,
76                                  input_channel.get());
77     expanded_[channel].CopyTo(expanded_length, 0, expanded_channel.get());
78 
79     const int16_t new_mute_factor = std::min<int16_t>(
80         16384, SignalScaling(input_channel.get(), input_length_per_channel,
81                              expanded_channel.get()));
82 
83     if (channel == 0) {
84       // Downsample, correlate, and find strongest correlation period for the
85       // reference (i.e., first) channel only.
86       // Downsample to 4kHz sample rate.
87       Downsample(input_channel.get(), input_length_per_channel,
88                  expanded_channel.get(), expanded_length);
89 
90       // Calculate the lag of the strongest correlation period.
91       best_correlation_index = CorrelateAndPeakSearch(
92           old_length, input_length_per_channel, expand_period);
93     }
94 
95     temp_data_.resize(input_length_per_channel + best_correlation_index);
96     int16_t* decoded_output = temp_data_.data() + best_correlation_index;
97 
98     // Mute the new decoded data if needed (and unmute it linearly).
99     // This is the overlapping part of expanded_signal.
100     size_t interpolation_length =
101         std::min(kMaxCorrelationLength * fs_mult_,
102                  expanded_length - best_correlation_index);
103     interpolation_length =
104         std::min(interpolation_length, input_length_per_channel);
105 
106     RTC_DCHECK_LE(new_mute_factor, 16384);
107     int16_t mute_factor =
108         std::max(expand_->MuteFactor(channel), new_mute_factor);
109     RTC_DCHECK_GE(mute_factor, 0);
110 
111     if (mute_factor < 16384) {
112       // Set a suitable muting slope (Q20). 0.004 for NB, 0.002 for WB,
113       // and so on, or as fast as it takes to come back to full gain within the
114       // frame length.
115       const int back_to_fullscale_inc = static_cast<int>(
116           ((16384 - mute_factor) << 6) / input_length_per_channel);
117       const int increment = std::max(4194 / fs_mult_, back_to_fullscale_inc);
118       mute_factor = static_cast<int16_t>(DspHelper::RampSignal(
119           input_channel.get(), interpolation_length, mute_factor, increment));
120       DspHelper::UnmuteSignal(&input_channel[interpolation_length],
121                               input_length_per_channel - interpolation_length,
122                               &mute_factor, increment,
123                               &decoded_output[interpolation_length]);
124     } else {
125       // No muting needed.
126       memmove(
127           &decoded_output[interpolation_length],
128           &input_channel[interpolation_length],
129           sizeof(int16_t) * (input_length_per_channel - interpolation_length));
130     }
131 
132     // Do overlap and mix linearly.
133     int16_t increment =
134         static_cast<int16_t>(16384 / (interpolation_length + 1));  // In Q14.
135     int16_t local_mute_factor = 16384 - increment;
136     memmove(temp_data_.data(), expanded_channel.get(),
137             sizeof(int16_t) * best_correlation_index);
138     DspHelper::CrossFade(&expanded_channel[best_correlation_index],
139                          input_channel.get(), interpolation_length,
140                          &local_mute_factor, increment, decoded_output);
141 
142     output_length = best_correlation_index + input_length_per_channel;
143     if (channel == 0) {
144       RTC_DCHECK(output->Empty());  // Output should be empty at this point.
145       output->AssertSize(output_length);
146     } else {
147       RTC_DCHECK_EQ(output->Size(), output_length);
148     }
149     (*output)[channel].OverwriteAt(temp_data_.data(), output_length, 0);
150   }
151 
152   // Copy back the first part of the data to `sync_buffer_` and remove it from
153   // `output`.
154   sync_buffer_->ReplaceAtIndex(*output, old_length, sync_buffer_->next_index());
155   output->PopFront(old_length);
156 
157   // Return new added length. `old_length` samples were borrowed from
158   // `sync_buffer_`.
159   RTC_DCHECK_GE(output_length, old_length);
160   return output_length - old_length;
161 }
162 
GetExpandedSignal(size_t * old_length,size_t * expand_period)163 size_t Merge::GetExpandedSignal(size_t* old_length, size_t* expand_period) {
164   // Check how much data that is left since earlier.
165   *old_length = sync_buffer_->FutureLength();
166   // Should never be less than overlap_length.
167   RTC_DCHECK_GE(*old_length, expand_->overlap_length());
168   // Generate data to merge the overlap with using expand.
169   expand_->SetParametersForMergeAfterExpand();
170 
171   if (*old_length >= 210 * kMaxSampleRate / 8000) {
172     // TODO(hlundin): Write test case for this.
173     // The number of samples available in the sync buffer is more than what fits
174     // in expanded_signal. Keep the first 210 * kMaxSampleRate / 8000 samples,
175     // but shift them towards the end of the buffer. This is ok, since all of
176     // the buffer will be expand data anyway, so as long as the beginning is
177     // left untouched, we're fine.
178     size_t length_diff = *old_length - 210 * kMaxSampleRate / 8000;
179     sync_buffer_->InsertZerosAtIndex(length_diff, sync_buffer_->next_index());
180     *old_length = 210 * kMaxSampleRate / 8000;
181     // This is the truncated length.
182   }
183   // This assert should always be true thanks to the if statement above.
184   RTC_DCHECK_GE(210 * kMaxSampleRate / 8000, *old_length);
185 
186   AudioMultiVector expanded_temp(num_channels_);
187   expand_->Process(&expanded_temp);
188   *expand_period = expanded_temp.Size();  // Samples per channel.
189 
190   expanded_.Clear();
191   // Copy what is left since earlier into the expanded vector.
192   expanded_.PushBackFromIndex(*sync_buffer_, sync_buffer_->next_index());
193   RTC_DCHECK_EQ(expanded_.Size(), *old_length);
194   RTC_DCHECK_GT(expanded_temp.Size(), 0);
195   // Do "ugly" copy and paste from the expanded in order to generate more data
196   // to correlate (but not interpolate) with.
197   const size_t required_length = static_cast<size_t>((120 + 80 + 2) * fs_mult_);
198   if (expanded_.Size() < required_length) {
199     while (expanded_.Size() < required_length) {
200       // Append one more pitch period each time.
201       expanded_.PushBack(expanded_temp);
202     }
203     // Trim the length to exactly `required_length`.
204     expanded_.PopBack(expanded_.Size() - required_length);
205   }
206   RTC_DCHECK_GE(expanded_.Size(), required_length);
207   return required_length;
208 }
209 
SignalScaling(const int16_t * input,size_t input_length,const int16_t * expanded_signal) const210 int16_t Merge::SignalScaling(const int16_t* input,
211                              size_t input_length,
212                              const int16_t* expanded_signal) const {
213   // Adjust muting factor if new vector is more or less of the BGN energy.
214   const auto mod_input_length = rtc::SafeMin<size_t>(
215       64 * rtc::dchecked_cast<size_t>(fs_mult_), input_length);
216   const int16_t expanded_max =
217       WebRtcSpl_MaxAbsValueW16(expanded_signal, mod_input_length);
218   int32_t factor =
219       (expanded_max * expanded_max) / (std::numeric_limits<int32_t>::max() /
220                                        static_cast<int32_t>(mod_input_length));
221   const int expanded_shift = factor == 0 ? 0 : 31 - WebRtcSpl_NormW32(factor);
222   int32_t energy_expanded = WebRtcSpl_DotProductWithScale(
223       expanded_signal, expanded_signal, mod_input_length, expanded_shift);
224 
225   // Calculate energy of input signal.
226   const int16_t input_max = WebRtcSpl_MaxAbsValueW16(input, mod_input_length);
227   factor = (input_max * input_max) / (std::numeric_limits<int32_t>::max() /
228                                       static_cast<int32_t>(mod_input_length));
229   const int input_shift = factor == 0 ? 0 : 31 - WebRtcSpl_NormW32(factor);
230   int32_t energy_input = WebRtcSpl_DotProductWithScale(
231       input, input, mod_input_length, input_shift);
232 
233   // Align to the same Q-domain.
234   if (input_shift > expanded_shift) {
235     energy_expanded = energy_expanded >> (input_shift - expanded_shift);
236   } else {
237     energy_input = energy_input >> (expanded_shift - input_shift);
238   }
239 
240   // Calculate muting factor to use for new frame.
241   int16_t mute_factor;
242   if (energy_input > energy_expanded) {
243     // Normalize `energy_input` to 14 bits.
244     int16_t temp_shift = WebRtcSpl_NormW32(energy_input) - 17;
245     energy_input = WEBRTC_SPL_SHIFT_W32(energy_input, temp_shift);
246     // Put `energy_expanded` in a domain 14 higher, so that
247     // energy_expanded / energy_input is in Q14.
248     energy_expanded = WEBRTC_SPL_SHIFT_W32(energy_expanded, temp_shift + 14);
249     // Calculate sqrt(energy_expanded / energy_input) in Q14.
250     mute_factor = static_cast<int16_t>(
251         WebRtcSpl_SqrtFloor((energy_expanded / energy_input) << 14));
252   } else {
253     // Set to 1 (in Q14) when `expanded` has higher energy than `input`.
254     mute_factor = 16384;
255   }
256 
257   return mute_factor;
258 }
259 
260 // TODO(hlundin): There are some parameter values in this method that seem
261 // strange. Compare with Expand::Correlation.
Downsample(const int16_t * input,size_t input_length,const int16_t * expanded_signal,size_t expanded_length)262 void Merge::Downsample(const int16_t* input,
263                        size_t input_length,
264                        const int16_t* expanded_signal,
265                        size_t expanded_length) {
266   const int16_t* filter_coefficients;
267   size_t num_coefficients;
268   int decimation_factor = fs_hz_ / 4000;
269   static const size_t kCompensateDelay = 0;
270   size_t length_limit = static_cast<size_t>(fs_hz_ / 100);  // 10 ms in samples.
271   if (fs_hz_ == 8000) {
272     filter_coefficients = DspHelper::kDownsample8kHzTbl;
273     num_coefficients = 3;
274   } else if (fs_hz_ == 16000) {
275     filter_coefficients = DspHelper::kDownsample16kHzTbl;
276     num_coefficients = 5;
277   } else if (fs_hz_ == 32000) {
278     filter_coefficients = DspHelper::kDownsample32kHzTbl;
279     num_coefficients = 7;
280   } else {  // fs_hz_ == 48000
281     filter_coefficients = DspHelper::kDownsample48kHzTbl;
282     num_coefficients = 7;
283   }
284   size_t signal_offset = num_coefficients - 1;
285   WebRtcSpl_DownsampleFast(
286       &expanded_signal[signal_offset], expanded_length - signal_offset,
287       expanded_downsampled_, kExpandDownsampLength, filter_coefficients,
288       num_coefficients, decimation_factor, kCompensateDelay);
289   if (input_length <= length_limit) {
290     // Not quite long enough, so we have to cheat a bit.
291     // If the input is shorter than the offset, we consider the input to be 0
292     // length. This will cause us to skip the downsampling since it makes no
293     // sense anyway, and input_downsampled_ will be filled with zeros. This is
294     // clearly a pathological case, and the signal quality will suffer, but
295     // there is not much we can do.
296     const size_t temp_len =
297         input_length > signal_offset ? input_length - signal_offset : 0;
298     // TODO(hlundin): Should `downsamp_temp_len` be corrected for round-off
299     // errors? I.e., (temp_len + decimation_factor - 1) / decimation_factor?
300     size_t downsamp_temp_len = temp_len / decimation_factor;
301     if (downsamp_temp_len > 0) {
302       WebRtcSpl_DownsampleFast(&input[signal_offset], temp_len,
303                                input_downsampled_, downsamp_temp_len,
304                                filter_coefficients, num_coefficients,
305                                decimation_factor, kCompensateDelay);
306     }
307     memset(&input_downsampled_[downsamp_temp_len], 0,
308            sizeof(int16_t) * (kInputDownsampLength - downsamp_temp_len));
309   } else {
310     WebRtcSpl_DownsampleFast(
311         &input[signal_offset], input_length - signal_offset, input_downsampled_,
312         kInputDownsampLength, filter_coefficients, num_coefficients,
313         decimation_factor, kCompensateDelay);
314   }
315 }
316 
CorrelateAndPeakSearch(size_t start_position,size_t input_length,size_t expand_period) const317 size_t Merge::CorrelateAndPeakSearch(size_t start_position,
318                                      size_t input_length,
319                                      size_t expand_period) const {
320   // Calculate correlation without any normalization.
321   const size_t max_corr_length = kMaxCorrelationLength;
322   size_t stop_position_downsamp =
323       std::min(max_corr_length, expand_->max_lag() / (fs_mult_ * 2) + 1);
324 
325   int32_t correlation[kMaxCorrelationLength];
326   CrossCorrelationWithAutoShift(input_downsampled_, expanded_downsampled_,
327                                 kInputDownsampLength, stop_position_downsamp, 1,
328                                 correlation);
329 
330   // Normalize correlation to 14 bits and copy to a 16-bit array.
331   const size_t pad_length = expand_->overlap_length() - 1;
332   const size_t correlation_buffer_size = 2 * pad_length + kMaxCorrelationLength;
333   std::unique_ptr<int16_t[]> correlation16(
334       new int16_t[correlation_buffer_size]);
335   memset(correlation16.get(), 0, correlation_buffer_size * sizeof(int16_t));
336   int16_t* correlation_ptr = &correlation16[pad_length];
337   int32_t max_correlation =
338       WebRtcSpl_MaxAbsValueW32(correlation, stop_position_downsamp);
339   int norm_shift = std::max(0, 17 - WebRtcSpl_NormW32(max_correlation));
340   WebRtcSpl_VectorBitShiftW32ToW16(correlation_ptr, stop_position_downsamp,
341                                    correlation, norm_shift);
342 
343   // Calculate allowed starting point for peak finding.
344   // The peak location bestIndex must fulfill two criteria:
345   // (1) w16_bestIndex + input_length <
346   //     timestamps_per_call_ + expand_->overlap_length();
347   // (2) w16_bestIndex + input_length < start_position.
348   size_t start_index = timestamps_per_call_ + expand_->overlap_length();
349   start_index = std::max(start_position, start_index);
350   start_index = (input_length > start_index) ? 0 : (start_index - input_length);
351   // Downscale starting index to 4kHz domain. (fs_mult_ * 2 = fs_hz_ / 4000.)
352   size_t start_index_downsamp = start_index / (fs_mult_ * 2);
353 
354   // Calculate a modified `stop_position_downsamp` to account for the increased
355   // start index `start_index_downsamp` and the effective array length.
356   size_t modified_stop_pos =
357       std::min(stop_position_downsamp,
358                kMaxCorrelationLength + pad_length - start_index_downsamp);
359   size_t best_correlation_index;
360   int16_t best_correlation;
361   static const size_t kNumCorrelationCandidates = 1;
362   DspHelper::PeakDetection(&correlation_ptr[start_index_downsamp],
363                            modified_stop_pos, kNumCorrelationCandidates,
364                            fs_mult_, &best_correlation_index,
365                            &best_correlation);
366   // Compensate for modified start index.
367   best_correlation_index += start_index;
368 
369   // Ensure that underrun does not occur for 10ms case => we have to get at
370   // least 10ms + overlap . (This should never happen thanks to the above
371   // modification of peak-finding starting point.)
372   while (((best_correlation_index + input_length) <
373           (timestamps_per_call_ + expand_->overlap_length())) ||
374          ((best_correlation_index + input_length) < start_position)) {
375     RTC_DCHECK_NOTREACHED();                  // Should never happen.
376     best_correlation_index += expand_period;  // Jump one lag ahead.
377   }
378   return best_correlation_index;
379 }
380 
RequiredFutureSamples()381 size_t Merge::RequiredFutureSamples() {
382   return fs_hz_ / 100 * num_channels_;  // 10 ms.
383 }
384 
385 }  // namespace webrtc
386