xref: /aosp_15_r20/external/webrtc/rtc_base/physical_socket_server.cc (revision d9f758449e529ab9291ac668be2861e7a55c2422)
1 /*
2  *  Copyright 2004 The WebRTC Project Authors. All rights reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 #include "rtc_base/physical_socket_server.h"
11 
12 #include <cstdint>
13 
14 #if defined(_MSC_VER) && _MSC_VER < 1300
15 #pragma warning(disable : 4786)
16 #endif
17 
18 #ifdef MEMORY_SANITIZER
19 #include <sanitizer/msan_interface.h>
20 #endif
21 
22 #if defined(WEBRTC_POSIX)
23 #include <fcntl.h>
24 #include <string.h>
25 #if defined(WEBRTC_USE_EPOLL)
26 // "poll" will be used to wait for the signal dispatcher.
27 #include <poll.h>
28 #endif
29 #include <sys/ioctl.h>
30 #include <sys/select.h>
31 #include <sys/time.h>
32 #include <unistd.h>
33 #endif
34 
35 #if defined(WEBRTC_WIN)
36 #include <windows.h>
37 #include <winsock2.h>
38 #include <ws2tcpip.h>
39 #undef SetPort
40 #endif
41 
42 #include <errno.h>
43 
44 #include <algorithm>
45 #include <map>
46 
47 #include "rtc_base/arraysize.h"
48 #include "rtc_base/byte_order.h"
49 #include "rtc_base/checks.h"
50 #include "rtc_base/logging.h"
51 #include "rtc_base/network_monitor.h"
52 #include "rtc_base/null_socket_server.h"
53 #include "rtc_base/synchronization/mutex.h"
54 #include "rtc_base/time_utils.h"
55 #include "system_wrappers/include/field_trial.h"
56 
57 #if defined(WEBRTC_LINUX)
58 #include <linux/sockios.h>
59 #endif
60 
61 #if defined(WEBRTC_WIN)
62 #define LAST_SYSTEM_ERROR (::GetLastError())
63 #elif defined(__native_client__) && __native_client__
64 #define LAST_SYSTEM_ERROR (0)
65 #elif defined(WEBRTC_POSIX)
66 #define LAST_SYSTEM_ERROR (errno)
67 #endif  // WEBRTC_WIN
68 
69 #if defined(WEBRTC_POSIX)
70 #include <netinet/tcp.h>  // for TCP_NODELAY
71 #define IP_MTU 14  // Until this is integrated from linux/in.h to netinet/in.h
72 typedef void* SockOptArg;
73 
74 #endif  // WEBRTC_POSIX
75 
76 #if defined(WEBRTC_POSIX) && !defined(WEBRTC_MAC) && !defined(__native_client__)
77 
GetSocketRecvTimestamp(int socket)78 int64_t GetSocketRecvTimestamp(int socket) {
79   struct timeval tv_ioctl;
80   int ret = ioctl(socket, SIOCGSTAMP, &tv_ioctl);
81   if (ret != 0)
82     return -1;
83   int64_t timestamp =
84       rtc::kNumMicrosecsPerSec * static_cast<int64_t>(tv_ioctl.tv_sec) +
85       static_cast<int64_t>(tv_ioctl.tv_usec);
86   return timestamp;
87 }
88 
89 #else
90 
GetSocketRecvTimestamp(int socket)91 int64_t GetSocketRecvTimestamp(int socket) {
92   return -1;
93 }
94 #endif
95 
96 #if defined(WEBRTC_WIN)
97 typedef char* SockOptArg;
98 #endif
99 
100 #if defined(WEBRTC_USE_EPOLL)
101 // POLLRDHUP / EPOLLRDHUP are only defined starting with Linux 2.6.17.
102 #if !defined(POLLRDHUP)
103 #define POLLRDHUP 0x2000
104 #endif
105 #if !defined(EPOLLRDHUP)
106 #define EPOLLRDHUP 0x2000
107 #endif
108 #endif
109 
110 namespace {
111 class ScopedSetTrue {
112  public:
ScopedSetTrue(bool * value)113   ScopedSetTrue(bool* value) : value_(value) {
114     RTC_DCHECK(!*value_);
115     *value_ = true;
116   }
~ScopedSetTrue()117   ~ScopedSetTrue() { *value_ = false; }
118 
119  private:
120   bool* value_;
121 };
122 
123 // Returns true if the the client is in the experiment to get timestamps
124 // from the socket implementation.
IsScmTimeStampExperimentEnabled()125 bool IsScmTimeStampExperimentEnabled() {
126   return webrtc::field_trial::IsEnabled("WebRTC-SCM-Timestamp");
127 }
128 }  // namespace
129 
130 namespace rtc {
131 
PhysicalSocket(PhysicalSocketServer * ss,SOCKET s)132 PhysicalSocket::PhysicalSocket(PhysicalSocketServer* ss, SOCKET s)
133     : ss_(ss),
134       s_(s),
135       error_(0),
136       state_((s == INVALID_SOCKET) ? CS_CLOSED : CS_CONNECTED),
137       resolver_(nullptr),
138       read_scm_timestamp_experiment_(IsScmTimeStampExperimentEnabled()) {
139   if (s_ != INVALID_SOCKET) {
140     SetEnabledEvents(DE_READ | DE_WRITE);
141 
142     int type = SOCK_STREAM;
143     socklen_t len = sizeof(type);
144     const int res =
145         getsockopt(s_, SOL_SOCKET, SO_TYPE, (SockOptArg)&type, &len);
146     RTC_DCHECK_EQ(0, res);
147     udp_ = (SOCK_DGRAM == type);
148   }
149 }
150 
~PhysicalSocket()151 PhysicalSocket::~PhysicalSocket() {
152   Close();
153 }
154 
Create(int family,int type)155 bool PhysicalSocket::Create(int family, int type) {
156   Close();
157   s_ = ::socket(family, type, 0);
158   udp_ = (SOCK_DGRAM == type);
159   family_ = family;
160   UpdateLastError();
161   if (udp_) {
162     SetEnabledEvents(DE_READ | DE_WRITE);
163   }
164   return s_ != INVALID_SOCKET;
165 }
166 
GetLocalAddress() const167 SocketAddress PhysicalSocket::GetLocalAddress() const {
168   sockaddr_storage addr_storage = {};
169   socklen_t addrlen = sizeof(addr_storage);
170   sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
171   int result = ::getsockname(s_, addr, &addrlen);
172   SocketAddress address;
173   if (result >= 0) {
174     SocketAddressFromSockAddrStorage(addr_storage, &address);
175   } else {
176     RTC_LOG(LS_WARNING) << "GetLocalAddress: unable to get local addr, socket="
177                         << s_;
178   }
179   return address;
180 }
181 
GetRemoteAddress() const182 SocketAddress PhysicalSocket::GetRemoteAddress() const {
183   sockaddr_storage addr_storage = {};
184   socklen_t addrlen = sizeof(addr_storage);
185   sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
186   int result = ::getpeername(s_, addr, &addrlen);
187   SocketAddress address;
188   if (result >= 0) {
189     SocketAddressFromSockAddrStorage(addr_storage, &address);
190   } else {
191     RTC_LOG(LS_WARNING)
192         << "GetRemoteAddress: unable to get remote addr, socket=" << s_;
193   }
194   return address;
195 }
196 
Bind(const SocketAddress & bind_addr)197 int PhysicalSocket::Bind(const SocketAddress& bind_addr) {
198   SocketAddress copied_bind_addr = bind_addr;
199   // If a network binder is available, use it to bind a socket to an interface
200   // instead of bind(), since this is more reliable on an OS with a weak host
201   // model.
202   if (ss_->network_binder() && !bind_addr.IsAnyIP()) {
203     NetworkBindingResult result =
204         ss_->network_binder()->BindSocketToNetwork(s_, bind_addr.ipaddr());
205     if (result == NetworkBindingResult::SUCCESS) {
206       // Since the network binder handled binding the socket to the desired
207       // network interface, we don't need to (and shouldn't) include an IP in
208       // the bind() call; bind() just needs to assign a port.
209       copied_bind_addr.SetIP(GetAnyIP(copied_bind_addr.ipaddr().family()));
210     } else if (result == NetworkBindingResult::NOT_IMPLEMENTED) {
211       RTC_LOG(LS_INFO) << "Can't bind socket to network because "
212                           "network binding is not implemented for this OS.";
213     } else {
214       if (bind_addr.IsLoopbackIP()) {
215         // If we couldn't bind to a loopback IP (which should only happen in
216         // test scenarios), continue on. This may be expected behavior.
217         RTC_LOG(LS_VERBOSE) << "Binding socket to loopback address"
218                             << " failed; result: " << static_cast<int>(result);
219       } else {
220         RTC_LOG(LS_WARNING) << "Binding socket to network address"
221                             << " failed; result: " << static_cast<int>(result);
222         // If a network binding was attempted and failed, we should stop here
223         // and not try to use the socket. Otherwise, we may end up sending
224         // packets with an invalid source address.
225         // See: https://bugs.chromium.org/p/webrtc/issues/detail?id=7026
226         return -1;
227       }
228     }
229   }
230   sockaddr_storage addr_storage;
231   size_t len = copied_bind_addr.ToSockAddrStorage(&addr_storage);
232   sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
233   int err = ::bind(s_, addr, static_cast<int>(len));
234   UpdateLastError();
235 #if !defined(NDEBUG)
236   if (0 == err) {
237     dbg_addr_ = "Bound @ ";
238     dbg_addr_.append(GetLocalAddress().ToString());
239   }
240 #endif
241   return err;
242 }
243 
Connect(const SocketAddress & addr)244 int PhysicalSocket::Connect(const SocketAddress& addr) {
245   // TODO(pthatcher): Implicit creation is required to reconnect...
246   // ...but should we make it more explicit?
247   if (state_ != CS_CLOSED) {
248     SetError(EALREADY);
249     return SOCKET_ERROR;
250   }
251   if (addr.IsUnresolvedIP()) {
252     RTC_LOG(LS_VERBOSE) << "Resolving addr in PhysicalSocket::Connect";
253     resolver_ = new AsyncResolver();
254     resolver_->SignalDone.connect(this, &PhysicalSocket::OnResolveResult);
255     resolver_->Start(addr);
256     state_ = CS_CONNECTING;
257     return 0;
258   }
259 
260   return DoConnect(addr);
261 }
262 
DoConnect(const SocketAddress & connect_addr)263 int PhysicalSocket::DoConnect(const SocketAddress& connect_addr) {
264   if ((s_ == INVALID_SOCKET) && !Create(connect_addr.family(), SOCK_STREAM)) {
265     return SOCKET_ERROR;
266   }
267   sockaddr_storage addr_storage;
268   size_t len = connect_addr.ToSockAddrStorage(&addr_storage);
269   sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
270   int err = ::connect(s_, addr, static_cast<int>(len));
271   UpdateLastError();
272   uint8_t events = DE_READ | DE_WRITE;
273   if (err == 0) {
274     state_ = CS_CONNECTED;
275   } else if (IsBlockingError(GetError())) {
276     state_ = CS_CONNECTING;
277     events |= DE_CONNECT;
278   } else {
279     return SOCKET_ERROR;
280   }
281 
282   EnableEvents(events);
283   return 0;
284 }
285 
GetError() const286 int PhysicalSocket::GetError() const {
287   webrtc::MutexLock lock(&mutex_);
288   return error_;
289 }
290 
SetError(int error)291 void PhysicalSocket::SetError(int error) {
292   webrtc::MutexLock lock(&mutex_);
293   error_ = error;
294 }
295 
GetState() const296 Socket::ConnState PhysicalSocket::GetState() const {
297   return state_;
298 }
299 
GetOption(Option opt,int * value)300 int PhysicalSocket::GetOption(Option opt, int* value) {
301   int slevel;
302   int sopt;
303   if (TranslateOption(opt, &slevel, &sopt) == -1)
304     return -1;
305   socklen_t optlen = sizeof(*value);
306   int ret = ::getsockopt(s_, slevel, sopt, (SockOptArg)value, &optlen);
307   if (ret == -1) {
308     return -1;
309   }
310   if (opt == OPT_DONTFRAGMENT) {
311 #if defined(WEBRTC_LINUX) && !defined(WEBRTC_ANDROID)
312     *value = (*value != IP_PMTUDISC_DONT) ? 1 : 0;
313 #endif
314   } else if (opt == OPT_DSCP) {
315 #if defined(WEBRTC_POSIX)
316     // unshift DSCP value to get six most significant bits of IP DiffServ field
317     *value >>= 2;
318 #endif
319   }
320   return ret;
321 }
322 
SetOption(Option opt,int value)323 int PhysicalSocket::SetOption(Option opt, int value) {
324   int slevel;
325   int sopt;
326   if (TranslateOption(opt, &slevel, &sopt) == -1)
327     return -1;
328   if (opt == OPT_DONTFRAGMENT) {
329 #if defined(WEBRTC_LINUX) && !defined(WEBRTC_ANDROID)
330     value = (value) ? IP_PMTUDISC_DO : IP_PMTUDISC_DONT;
331 #endif
332   } else if (opt == OPT_DSCP) {
333 #if defined(WEBRTC_POSIX)
334     // shift DSCP value to fit six most significant bits of IP DiffServ field
335     value <<= 2;
336 #endif
337   }
338 #if defined(WEBRTC_POSIX)
339   if (sopt == IPV6_TCLASS) {
340     // Set the IPv4 option in all cases to support dual-stack sockets.
341     // Don't bother checking the return code, as this is expected to fail if
342     // it's not actually dual-stack.
343     ::setsockopt(s_, IPPROTO_IP, IP_TOS, (SockOptArg)&value, sizeof(value));
344   }
345 #endif
346   int result =
347       ::setsockopt(s_, slevel, sopt, (SockOptArg)&value, sizeof(value));
348   if (result != 0) {
349     UpdateLastError();
350   }
351   return result;
352 }
353 
Send(const void * pv,size_t cb)354 int PhysicalSocket::Send(const void* pv, size_t cb) {
355   int sent = DoSend(
356       s_, reinterpret_cast<const char*>(pv), static_cast<int>(cb),
357 #if defined(WEBRTC_LINUX) && !defined(WEBRTC_ANDROID)
358       // Suppress SIGPIPE. Without this, attempting to send on a socket whose
359       // other end is closed will result in a SIGPIPE signal being raised to
360       // our process, which by default will terminate the process, which we
361       // don't want. By specifying this flag, we'll just get the error EPIPE
362       // instead and can handle the error gracefully.
363       MSG_NOSIGNAL
364 #else
365       0
366 #endif
367   );
368   UpdateLastError();
369   MaybeRemapSendError();
370   // We have seen minidumps where this may be false.
371   RTC_DCHECK(sent <= static_cast<int>(cb));
372   if ((sent > 0 && sent < static_cast<int>(cb)) ||
373       (sent < 0 && IsBlockingError(GetError()))) {
374     EnableEvents(DE_WRITE);
375   }
376   return sent;
377 }
378 
SendTo(const void * buffer,size_t length,const SocketAddress & addr)379 int PhysicalSocket::SendTo(const void* buffer,
380                            size_t length,
381                            const SocketAddress& addr) {
382   sockaddr_storage saddr;
383   size_t len = addr.ToSockAddrStorage(&saddr);
384   int sent =
385       DoSendTo(s_, static_cast<const char*>(buffer), static_cast<int>(length),
386 #if defined(WEBRTC_LINUX) && !defined(WEBRTC_ANDROID)
387                // Suppress SIGPIPE. See above for explanation.
388                MSG_NOSIGNAL,
389 #else
390                0,
391 #endif
392                reinterpret_cast<sockaddr*>(&saddr), static_cast<int>(len));
393   UpdateLastError();
394   MaybeRemapSendError();
395   // We have seen minidumps where this may be false.
396   RTC_DCHECK(sent <= static_cast<int>(length));
397   if ((sent > 0 && sent < static_cast<int>(length)) ||
398       (sent < 0 && IsBlockingError(GetError()))) {
399     EnableEvents(DE_WRITE);
400   }
401   return sent;
402 }
403 
Recv(void * buffer,size_t length,int64_t * timestamp)404 int PhysicalSocket::Recv(void* buffer, size_t length, int64_t* timestamp) {
405   int received =
406       DoReadFromSocket(buffer, length, /*out_addr*/ nullptr, timestamp);
407   if ((received == 0) && (length != 0)) {
408     // Note: on graceful shutdown, recv can return 0.  In this case, we
409     // pretend it is blocking, and then signal close, so that simplifying
410     // assumptions can be made about Recv.
411     RTC_LOG(LS_WARNING) << "EOF from socket; deferring close event";
412     // Must turn this back on so that the select() loop will notice the close
413     // event.
414     EnableEvents(DE_READ);
415     SetError(EWOULDBLOCK);
416     return SOCKET_ERROR;
417   }
418 
419   UpdateLastError();
420   int error = GetError();
421   bool success = (received >= 0) || IsBlockingError(error);
422   if (udp_ || success) {
423     EnableEvents(DE_READ);
424   }
425   if (!success) {
426     RTC_LOG_F(LS_VERBOSE) << "Error = " << error;
427   }
428   return received;
429 }
430 
RecvFrom(void * buffer,size_t length,SocketAddress * out_addr,int64_t * timestamp)431 int PhysicalSocket::RecvFrom(void* buffer,
432                              size_t length,
433                              SocketAddress* out_addr,
434                              int64_t* timestamp) {
435   int received = DoReadFromSocket(buffer, length, out_addr, timestamp);
436   UpdateLastError();
437   int error = GetError();
438   bool success = (received >= 0) || IsBlockingError(error);
439   if (udp_ || success) {
440     EnableEvents(DE_READ);
441   }
442   if (!success) {
443     RTC_LOG_F(LS_VERBOSE) << "Error = " << error;
444   }
445   return received;
446 }
447 
DoReadFromSocket(void * buffer,size_t length,SocketAddress * out_addr,int64_t * timestamp)448 int PhysicalSocket::DoReadFromSocket(void* buffer,
449                                      size_t length,
450                                      SocketAddress* out_addr,
451                                      int64_t* timestamp) {
452   sockaddr_storage addr_storage;
453   socklen_t addr_len = sizeof(addr_storage);
454   sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
455 
456 #if defined(WEBRTC_POSIX)
457   int received = 0;
458   if (read_scm_timestamp_experiment_) {
459     iovec iov = {.iov_base = buffer, .iov_len = length};
460     msghdr msg = {.msg_iov = &iov, .msg_iovlen = 1};
461     if (out_addr) {
462       out_addr->Clear();
463       msg.msg_name = addr;
464       msg.msg_namelen = addr_len;
465     }
466     char control[CMSG_SPACE(sizeof(struct timeval))] = {};
467     if (timestamp) {
468       *timestamp = -1;
469       msg.msg_control = &control;
470       msg.msg_controllen = sizeof(control);
471     }
472     received = ::recvmsg(s_, &msg, 0);
473     if (received <= 0) {
474       // An error occured or shut down.
475       return received;
476     }
477     if (timestamp) {
478       struct cmsghdr* cmsg;
479       for (cmsg = CMSG_FIRSTHDR(&msg); cmsg; cmsg = CMSG_NXTHDR(&msg, cmsg)) {
480         if (cmsg->cmsg_level != SOL_SOCKET)
481           continue;
482         if (cmsg->cmsg_type == SCM_TIMESTAMP) {
483           timeval* ts = reinterpret_cast<timeval*>(CMSG_DATA(cmsg));
484           *timestamp =
485               rtc::kNumMicrosecsPerSec * static_cast<int64_t>(ts->tv_sec) +
486               static_cast<int64_t>(ts->tv_usec);
487           break;
488         }
489       }
490     }
491     if (out_addr) {
492       SocketAddressFromSockAddrStorage(addr_storage, out_addr);
493     }
494   } else {  // !read_scm_timestamp_experiment_
495     if (out_addr) {
496       received = ::recvfrom(s_, static_cast<char*>(buffer),
497                             static_cast<int>(length), 0, addr, &addr_len);
498       SocketAddressFromSockAddrStorage(addr_storage, out_addr);
499     } else {
500       received =
501           ::recv(s_, static_cast<char*>(buffer), static_cast<int>(length), 0);
502     }
503     if (timestamp) {
504       *timestamp = GetSocketRecvTimestamp(s_);
505     }
506   }
507   return received;
508 
509 #else
510   int received = 0;
511   if (out_addr) {
512     received = ::recvfrom(s_, static_cast<char*>(buffer),
513                           static_cast<int>(length), 0, addr, &addr_len);
514     SocketAddressFromSockAddrStorage(addr_storage, out_addr);
515   } else {
516     received =
517         ::recv(s_, static_cast<char*>(buffer), static_cast<int>(length), 0);
518   }
519   if (timestamp) {
520     *timestamp = -1;
521   }
522   return received;
523 #endif
524 }
525 
Listen(int backlog)526 int PhysicalSocket::Listen(int backlog) {
527   int err = ::listen(s_, backlog);
528   UpdateLastError();
529   if (err == 0) {
530     state_ = CS_CONNECTING;
531     EnableEvents(DE_ACCEPT);
532 #if !defined(NDEBUG)
533     dbg_addr_ = "Listening @ ";
534     dbg_addr_.append(GetLocalAddress().ToString());
535 #endif
536   }
537   return err;
538 }
539 
Accept(SocketAddress * out_addr)540 Socket* PhysicalSocket::Accept(SocketAddress* out_addr) {
541   // Always re-subscribe DE_ACCEPT to make sure new incoming connections will
542   // trigger an event even if DoAccept returns an error here.
543   EnableEvents(DE_ACCEPT);
544   sockaddr_storage addr_storage;
545   socklen_t addr_len = sizeof(addr_storage);
546   sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
547   SOCKET s = DoAccept(s_, addr, &addr_len);
548   UpdateLastError();
549   if (s == INVALID_SOCKET)
550     return nullptr;
551   if (out_addr != nullptr)
552     SocketAddressFromSockAddrStorage(addr_storage, out_addr);
553   return ss_->WrapSocket(s);
554 }
555 
Close()556 int PhysicalSocket::Close() {
557   if (s_ == INVALID_SOCKET)
558     return 0;
559   int err = ::closesocket(s_);
560   UpdateLastError();
561   s_ = INVALID_SOCKET;
562   state_ = CS_CLOSED;
563   SetEnabledEvents(0);
564   if (resolver_) {
565     resolver_->Destroy(false);
566     resolver_ = nullptr;
567   }
568   return err;
569 }
570 
DoAccept(SOCKET socket,sockaddr * addr,socklen_t * addrlen)571 SOCKET PhysicalSocket::DoAccept(SOCKET socket,
572                                 sockaddr* addr,
573                                 socklen_t* addrlen) {
574   return ::accept(socket, addr, addrlen);
575 }
576 
DoSend(SOCKET socket,const char * buf,int len,int flags)577 int PhysicalSocket::DoSend(SOCKET socket, const char* buf, int len, int flags) {
578   return ::send(socket, buf, len, flags);
579 }
580 
DoSendTo(SOCKET socket,const char * buf,int len,int flags,const struct sockaddr * dest_addr,socklen_t addrlen)581 int PhysicalSocket::DoSendTo(SOCKET socket,
582                              const char* buf,
583                              int len,
584                              int flags,
585                              const struct sockaddr* dest_addr,
586                              socklen_t addrlen) {
587   return ::sendto(socket, buf, len, flags, dest_addr, addrlen);
588 }
589 
OnResolveResult(AsyncResolverInterface * resolver)590 void PhysicalSocket::OnResolveResult(AsyncResolverInterface* resolver) {
591   if (resolver != resolver_) {
592     return;
593   }
594 
595   int error = resolver_->GetError();
596   if (error == 0) {
597     error = DoConnect(resolver_->address());
598   } else {
599     Close();
600   }
601 
602   if (error) {
603     SetError(error);
604     SignalCloseEvent(this, error);
605   }
606 }
607 
UpdateLastError()608 void PhysicalSocket::UpdateLastError() {
609   SetError(LAST_SYSTEM_ERROR);
610 }
611 
MaybeRemapSendError()612 void PhysicalSocket::MaybeRemapSendError() {
613 #if defined(WEBRTC_MAC)
614   // https://developer.apple.com/library/mac/documentation/Darwin/
615   // Reference/ManPages/man2/sendto.2.html
616   // ENOBUFS - The output queue for a network interface is full.
617   // This generally indicates that the interface has stopped sending,
618   // but may be caused by transient congestion.
619   if (GetError() == ENOBUFS) {
620     SetError(EWOULDBLOCK);
621   }
622 #endif
623 }
624 
SetEnabledEvents(uint8_t events)625 void PhysicalSocket::SetEnabledEvents(uint8_t events) {
626   enabled_events_ = events;
627 }
628 
EnableEvents(uint8_t events)629 void PhysicalSocket::EnableEvents(uint8_t events) {
630   enabled_events_ |= events;
631 }
632 
DisableEvents(uint8_t events)633 void PhysicalSocket::DisableEvents(uint8_t events) {
634   enabled_events_ &= ~events;
635 }
636 
TranslateOption(Option opt,int * slevel,int * sopt)637 int PhysicalSocket::TranslateOption(Option opt, int* slevel, int* sopt) {
638   switch (opt) {
639     case OPT_DONTFRAGMENT:
640 #if defined(WEBRTC_WIN)
641       *slevel = IPPROTO_IP;
642       *sopt = IP_DONTFRAGMENT;
643       break;
644 #elif defined(WEBRTC_MAC) || defined(BSD) || defined(__native_client__)
645       RTC_LOG(LS_WARNING) << "Socket::OPT_DONTFRAGMENT not supported.";
646       return -1;
647 #elif defined(WEBRTC_POSIX)
648       *slevel = IPPROTO_IP;
649       *sopt = IP_MTU_DISCOVER;
650       break;
651 #endif
652     case OPT_RCVBUF:
653       *slevel = SOL_SOCKET;
654       *sopt = SO_RCVBUF;
655       break;
656     case OPT_SNDBUF:
657       *slevel = SOL_SOCKET;
658       *sopt = SO_SNDBUF;
659       break;
660     case OPT_NODELAY:
661       *slevel = IPPROTO_TCP;
662       *sopt = TCP_NODELAY;
663       break;
664     case OPT_DSCP:
665 #if defined(WEBRTC_POSIX)
666       if (family_ == AF_INET6) {
667         *slevel = IPPROTO_IPV6;
668         *sopt = IPV6_TCLASS;
669       } else {
670         *slevel = IPPROTO_IP;
671         *sopt = IP_TOS;
672       }
673       break;
674 #else
675       RTC_LOG(LS_WARNING) << "Socket::OPT_DSCP not supported.";
676       return -1;
677 #endif
678     case OPT_RTP_SENDTIME_EXTN_ID:
679       return -1;  // No logging is necessary as this not a OS socket option.
680     default:
681       RTC_DCHECK_NOTREACHED();
682       return -1;
683   }
684   return 0;
685 }
686 
SocketDispatcher(PhysicalSocketServer * ss)687 SocketDispatcher::SocketDispatcher(PhysicalSocketServer* ss)
688 #if defined(WEBRTC_WIN)
689     : PhysicalSocket(ss),
690       id_(0),
691       signal_close_(false)
692 #else
693     : PhysicalSocket(ss)
694 #endif
695 {
696 }
697 
SocketDispatcher(SOCKET s,PhysicalSocketServer * ss)698 SocketDispatcher::SocketDispatcher(SOCKET s, PhysicalSocketServer* ss)
699 #if defined(WEBRTC_WIN)
700     : PhysicalSocket(ss, s),
701       id_(0),
702       signal_close_(false)
703 #else
704     : PhysicalSocket(ss, s)
705 #endif
706 {
707 }
708 
~SocketDispatcher()709 SocketDispatcher::~SocketDispatcher() {
710   Close();
711 }
712 
Initialize()713 bool SocketDispatcher::Initialize() {
714   RTC_DCHECK(s_ != INVALID_SOCKET);
715 // Must be a non-blocking
716 #if defined(WEBRTC_WIN)
717   u_long argp = 1;
718   ioctlsocket(s_, FIONBIO, &argp);
719 #elif defined(WEBRTC_POSIX)
720   fcntl(s_, F_SETFL, fcntl(s_, F_GETFL, 0) | O_NONBLOCK);
721   if (IsScmTimeStampExperimentEnabled()) {
722     int value = 1;
723     // Attempt to get receive packet timestamp from the socket.
724     if (::setsockopt(s_, SOL_SOCKET, SO_TIMESTAMP, &value, sizeof(value)) !=
725         0) {
726       RTC_DLOG(LS_ERROR) << "::setsockopt failed. errno: " << LAST_SYSTEM_ERROR;
727     }
728   }
729 #endif
730 
731 #if defined(WEBRTC_IOS)
732   // iOS may kill sockets when the app is moved to the background
733   // (specifically, if the app doesn't use the "voip" UIBackgroundMode). When
734   // we attempt to write to such a socket, SIGPIPE will be raised, which by
735   // default will terminate the process, which we don't want. By specifying
736   // this socket option, SIGPIPE will be disabled for the socket.
737   int value = 1;
738   if (::setsockopt(s_, SOL_SOCKET, SO_NOSIGPIPE, &value, sizeof(value)) != 0) {
739     RTC_DLOG(LS_ERROR) << "::setsockopt failed. errno: " << LAST_SYSTEM_ERROR;
740   }
741 #endif
742   ss_->Add(this);
743   return true;
744 }
745 
Create(int type)746 bool SocketDispatcher::Create(int type) {
747   return Create(AF_INET, type);
748 }
749 
Create(int family,int type)750 bool SocketDispatcher::Create(int family, int type) {
751   // Change the socket to be non-blocking.
752   if (!PhysicalSocket::Create(family, type))
753     return false;
754 
755   if (!Initialize())
756     return false;
757 
758 #if defined(WEBRTC_WIN)
759   do {
760     id_ = ++next_id_;
761   } while (id_ == 0);
762 #endif
763   return true;
764 }
765 
766 #if defined(WEBRTC_WIN)
767 
GetWSAEvent()768 WSAEVENT SocketDispatcher::GetWSAEvent() {
769   return WSA_INVALID_EVENT;
770 }
771 
GetSocket()772 SOCKET SocketDispatcher::GetSocket() {
773   return s_;
774 }
775 
CheckSignalClose()776 bool SocketDispatcher::CheckSignalClose() {
777   if (!signal_close_)
778     return false;
779 
780   char ch;
781   if (recv(s_, &ch, 1, MSG_PEEK) > 0)
782     return false;
783 
784   state_ = CS_CLOSED;
785   signal_close_ = false;
786   SignalCloseEvent(this, signal_err_);
787   return true;
788 }
789 
790 int SocketDispatcher::next_id_ = 0;
791 
792 #elif defined(WEBRTC_POSIX)
793 
GetDescriptor()794 int SocketDispatcher::GetDescriptor() {
795   return s_;
796 }
797 
IsDescriptorClosed()798 bool SocketDispatcher::IsDescriptorClosed() {
799   if (udp_) {
800     // The MSG_PEEK trick doesn't work for UDP, since (at least in some
801     // circumstances) it requires reading an entire UDP packet, which would be
802     // bad for performance here. So, just check whether `s_` has been closed,
803     // which should be sufficient.
804     return s_ == INVALID_SOCKET;
805   }
806   // We don't have a reliable way of distinguishing end-of-stream
807   // from readability.  So test on each readable call.  Is this
808   // inefficient?  Probably.
809   char ch;
810   ssize_t res;
811   // Retry if the system call was interrupted.
812   do {
813     res = ::recv(s_, &ch, 1, MSG_PEEK);
814   } while (res < 0 && errno == EINTR);
815   if (res > 0) {
816     // Data available, so not closed.
817     return false;
818   } else if (res == 0) {
819     // EOF, so closed.
820     return true;
821   } else {  // error
822     switch (errno) {
823       // Returned if we've already closed s_.
824       case EBADF:
825         // This is dangerous: if we keep attempting to access a FD after close,
826         // it could be reopened by something else making us think it's still
827         // open. Note that this is only a DCHECK.
828         RTC_DCHECK_NOTREACHED();
829         return true;
830       // Returned during ungraceful peer shutdown.
831       case ECONNRESET:
832         return true;
833       case ECONNABORTED:
834         return true;
835       case EPIPE:
836         return true;
837       // The normal blocking error; don't log anything.
838       case EWOULDBLOCK:
839         return false;
840       default:
841         // Assume that all other errors are just blocking errors, meaning the
842         // connection is still good but we just can't read from it right now.
843         // This should only happen when connecting (and at most once), because
844         // in all other cases this function is only called if the file
845         // descriptor is already known to be in the readable state. However,
846         // it's not necessary a problem if we spuriously interpret a
847         // "connection lost"-type error as a blocking error, because typically
848         // the next recv() will get EOF, so we'll still eventually notice that
849         // the socket is closed.
850         RTC_LOG_ERR(LS_WARNING) << "Assuming benign blocking error";
851         return false;
852     }
853   }
854 }
855 
856 #endif  // WEBRTC_POSIX
857 
GetRequestedEvents()858 uint32_t SocketDispatcher::GetRequestedEvents() {
859   return enabled_events();
860 }
861 
862 #if defined(WEBRTC_WIN)
863 
OnEvent(uint32_t ff,int err)864 void SocketDispatcher::OnEvent(uint32_t ff, int err) {
865   if ((ff & DE_CONNECT) != 0)
866     state_ = CS_CONNECTED;
867 
868   // We set CS_CLOSED from CheckSignalClose.
869 
870   int cache_id = id_;
871   // Make sure we deliver connect/accept first. Otherwise, consumers may see
872   // something like a READ followed by a CONNECT, which would be odd.
873   if (((ff & DE_CONNECT) != 0) && (id_ == cache_id)) {
874     if (ff != DE_CONNECT)
875       RTC_LOG(LS_VERBOSE) << "Signalled with DE_CONNECT: " << ff;
876     DisableEvents(DE_CONNECT);
877 #if !defined(NDEBUG)
878     dbg_addr_ = "Connected @ ";
879     dbg_addr_.append(GetRemoteAddress().ToString());
880 #endif
881     SignalConnectEvent(this);
882   }
883   if (((ff & DE_ACCEPT) != 0) && (id_ == cache_id)) {
884     DisableEvents(DE_ACCEPT);
885     SignalReadEvent(this);
886   }
887   if ((ff & DE_READ) != 0) {
888     DisableEvents(DE_READ);
889     SignalReadEvent(this);
890   }
891   if (((ff & DE_WRITE) != 0) && (id_ == cache_id)) {
892     DisableEvents(DE_WRITE);
893     SignalWriteEvent(this);
894   }
895   if (((ff & DE_CLOSE) != 0) && (id_ == cache_id)) {
896     signal_close_ = true;
897     signal_err_ = err;
898   }
899 }
900 
901 #elif defined(WEBRTC_POSIX)
902 
OnEvent(uint32_t ff,int err)903 void SocketDispatcher::OnEvent(uint32_t ff, int err) {
904   if ((ff & DE_CONNECT) != 0)
905     state_ = CS_CONNECTED;
906 
907   if ((ff & DE_CLOSE) != 0)
908     state_ = CS_CLOSED;
909 
910 #if defined(WEBRTC_USE_EPOLL)
911   // Remember currently enabled events so we can combine multiple changes
912   // into one update call later.
913   // The signal handlers might re-enable events disabled here, so we can't
914   // keep a list of events to disable at the end of the method. This list
915   // would not be updated with the events enabled by the signal handlers.
916   StartBatchedEventUpdates();
917 #endif
918   // Make sure we deliver connect/accept first. Otherwise, consumers may see
919   // something like a READ followed by a CONNECT, which would be odd.
920   if ((ff & DE_CONNECT) != 0) {
921     DisableEvents(DE_CONNECT);
922     SignalConnectEvent(this);
923   }
924   if ((ff & DE_ACCEPT) != 0) {
925     DisableEvents(DE_ACCEPT);
926     SignalReadEvent(this);
927   }
928   if ((ff & DE_READ) != 0) {
929     DisableEvents(DE_READ);
930     SignalReadEvent(this);
931   }
932   if ((ff & DE_WRITE) != 0) {
933     DisableEvents(DE_WRITE);
934     SignalWriteEvent(this);
935   }
936   if ((ff & DE_CLOSE) != 0) {
937     // The socket is now dead to us, so stop checking it.
938     SetEnabledEvents(0);
939     SignalCloseEvent(this, err);
940   }
941 #if defined(WEBRTC_USE_EPOLL)
942   FinishBatchedEventUpdates();
943 #endif
944 }
945 
946 #endif  // WEBRTC_POSIX
947 
948 #if defined(WEBRTC_USE_EPOLL)
949 
GetEpollEvents(uint32_t ff)950 inline static int GetEpollEvents(uint32_t ff) {
951   int events = 0;
952   if (ff & (DE_READ | DE_ACCEPT)) {
953     events |= EPOLLIN;
954   }
955   if (ff & (DE_WRITE | DE_CONNECT)) {
956     events |= EPOLLOUT;
957   }
958   return events;
959 }
960 
StartBatchedEventUpdates()961 void SocketDispatcher::StartBatchedEventUpdates() {
962   RTC_DCHECK_EQ(saved_enabled_events_, -1);
963   saved_enabled_events_ = enabled_events();
964 }
965 
FinishBatchedEventUpdates()966 void SocketDispatcher::FinishBatchedEventUpdates() {
967   RTC_DCHECK_NE(saved_enabled_events_, -1);
968   uint8_t old_events = static_cast<uint8_t>(saved_enabled_events_);
969   saved_enabled_events_ = -1;
970   MaybeUpdateDispatcher(old_events);
971 }
972 
MaybeUpdateDispatcher(uint8_t old_events)973 void SocketDispatcher::MaybeUpdateDispatcher(uint8_t old_events) {
974   if (GetEpollEvents(enabled_events()) != GetEpollEvents(old_events) &&
975       saved_enabled_events_ == -1) {
976     ss_->Update(this);
977   }
978 }
979 
SetEnabledEvents(uint8_t events)980 void SocketDispatcher::SetEnabledEvents(uint8_t events) {
981   uint8_t old_events = enabled_events();
982   PhysicalSocket::SetEnabledEvents(events);
983   MaybeUpdateDispatcher(old_events);
984 }
985 
EnableEvents(uint8_t events)986 void SocketDispatcher::EnableEvents(uint8_t events) {
987   uint8_t old_events = enabled_events();
988   PhysicalSocket::EnableEvents(events);
989   MaybeUpdateDispatcher(old_events);
990 }
991 
DisableEvents(uint8_t events)992 void SocketDispatcher::DisableEvents(uint8_t events) {
993   uint8_t old_events = enabled_events();
994   PhysicalSocket::DisableEvents(events);
995   MaybeUpdateDispatcher(old_events);
996 }
997 
998 #endif  // WEBRTC_USE_EPOLL
999 
Close()1000 int SocketDispatcher::Close() {
1001   if (s_ == INVALID_SOCKET)
1002     return 0;
1003 
1004 #if defined(WEBRTC_WIN)
1005   id_ = 0;
1006   signal_close_ = false;
1007 #endif
1008 #if defined(WEBRTC_USE_EPOLL)
1009   // If we're batching events, the socket can be closed and reopened
1010   // during the batch. Set saved_enabled_events_ to 0 here so the new
1011   // socket, if any, has the correct old events bitfield
1012   if (saved_enabled_events_ != -1) {
1013     saved_enabled_events_ = 0;
1014   }
1015 #endif
1016   ss_->Remove(this);
1017   return PhysicalSocket::Close();
1018 }
1019 
1020 #if defined(WEBRTC_POSIX)
1021 // Sets the value of a boolean value to false when signaled.
1022 class Signaler : public Dispatcher {
1023  public:
Signaler(PhysicalSocketServer * ss,bool & flag_to_clear)1024   Signaler(PhysicalSocketServer* ss, bool& flag_to_clear)
1025       : ss_(ss),
1026         afd_([] {
1027           std::array<int, 2> afd = {-1, -1};
1028 
1029           if (pipe(afd.data()) < 0) {
1030             RTC_LOG(LS_ERROR) << "pipe failed";
1031           }
1032           return afd;
1033         }()),
1034         fSignaled_(false),
1035         flag_to_clear_(flag_to_clear) {
1036     ss_->Add(this);
1037   }
1038 
~Signaler()1039   ~Signaler() override {
1040     ss_->Remove(this);
1041     close(afd_[0]);
1042     close(afd_[1]);
1043   }
1044 
Signal()1045   virtual void Signal() {
1046     webrtc::MutexLock lock(&mutex_);
1047     if (!fSignaled_) {
1048       const uint8_t b[1] = {0};
1049       const ssize_t res = write(afd_[1], b, sizeof(b));
1050       RTC_DCHECK_EQ(1, res);
1051       fSignaled_ = true;
1052     }
1053   }
1054 
GetRequestedEvents()1055   uint32_t GetRequestedEvents() override { return DE_READ; }
1056 
OnEvent(uint32_t ff,int err)1057   void OnEvent(uint32_t ff, int err) override {
1058     // It is not possible to perfectly emulate an auto-resetting event with
1059     // pipes.  This simulates it by resetting before the event is handled.
1060 
1061     webrtc::MutexLock lock(&mutex_);
1062     if (fSignaled_) {
1063       uint8_t b[4];  // Allow for reading more than 1 byte, but expect 1.
1064       const ssize_t res = read(afd_[0], b, sizeof(b));
1065       RTC_DCHECK_EQ(1, res);
1066       fSignaled_ = false;
1067     }
1068     flag_to_clear_ = false;
1069   }
1070 
GetDescriptor()1071   int GetDescriptor() override { return afd_[0]; }
1072 
IsDescriptorClosed()1073   bool IsDescriptorClosed() override { return false; }
1074 
1075  private:
1076   PhysicalSocketServer* const ss_;
1077   const std::array<int, 2> afd_;
1078   bool fSignaled_ RTC_GUARDED_BY(mutex_);
1079   webrtc::Mutex mutex_;
1080   bool& flag_to_clear_;
1081 };
1082 
1083 #endif  // WEBRTC_POSIX
1084 
1085 #if defined(WEBRTC_WIN)
FlagsToEvents(uint32_t events)1086 static uint32_t FlagsToEvents(uint32_t events) {
1087   uint32_t ffFD = FD_CLOSE;
1088   if (events & DE_READ)
1089     ffFD |= FD_READ;
1090   if (events & DE_WRITE)
1091     ffFD |= FD_WRITE;
1092   if (events & DE_CONNECT)
1093     ffFD |= FD_CONNECT;
1094   if (events & DE_ACCEPT)
1095     ffFD |= FD_ACCEPT;
1096   return ffFD;
1097 }
1098 
1099 // Sets the value of a boolean value to false when signaled.
1100 class Signaler : public Dispatcher {
1101  public:
Signaler(PhysicalSocketServer * ss,bool & flag_to_clear)1102   Signaler(PhysicalSocketServer* ss, bool& flag_to_clear)
1103       : ss_(ss), flag_to_clear_(flag_to_clear) {
1104     hev_ = WSACreateEvent();
1105     if (hev_) {
1106       ss_->Add(this);
1107     }
1108   }
1109 
~Signaler()1110   ~Signaler() override {
1111     if (hev_ != nullptr) {
1112       ss_->Remove(this);
1113       WSACloseEvent(hev_);
1114       hev_ = nullptr;
1115     }
1116   }
1117 
Signal()1118   virtual void Signal() {
1119     if (hev_ != nullptr)
1120       WSASetEvent(hev_);
1121   }
1122 
GetRequestedEvents()1123   uint32_t GetRequestedEvents() override { return 0; }
1124 
OnEvent(uint32_t ff,int err)1125   void OnEvent(uint32_t ff, int err) override {
1126     WSAResetEvent(hev_);
1127     flag_to_clear_ = false;
1128   }
1129 
GetWSAEvent()1130   WSAEVENT GetWSAEvent() override { return hev_; }
1131 
GetSocket()1132   SOCKET GetSocket() override { return INVALID_SOCKET; }
1133 
CheckSignalClose()1134   bool CheckSignalClose() override { return false; }
1135 
1136  private:
1137   PhysicalSocketServer* ss_;
1138   WSAEVENT hev_;
1139   bool& flag_to_clear_;
1140 };
1141 #endif  // WEBRTC_WIN
1142 
PhysicalSocketServer()1143 PhysicalSocketServer::PhysicalSocketServer()
1144     :
1145 #if defined(WEBRTC_USE_EPOLL)
1146       // Since Linux 2.6.8, the size argument is ignored, but must be greater
1147       // than zero. Before that the size served as hint to the kernel for the
1148       // amount of space to initially allocate in internal data structures.
1149       epoll_fd_(epoll_create(FD_SETSIZE)),
1150 #endif
1151 #if defined(WEBRTC_WIN)
1152       socket_ev_(WSACreateEvent()),
1153 #endif
1154       fWait_(false) {
1155 #if defined(WEBRTC_USE_EPOLL)
1156   if (epoll_fd_ == -1) {
1157     // Not an error, will fall back to "select" below.
1158     RTC_LOG_E(LS_WARNING, EN, errno) << "epoll_create";
1159     // Note that -1 == INVALID_SOCKET, the alias used by later checks.
1160   }
1161 #endif
1162   // The `fWait_` flag to be cleared by the Signaler.
1163   signal_wakeup_ = new Signaler(this, fWait_);
1164 }
1165 
~PhysicalSocketServer()1166 PhysicalSocketServer::~PhysicalSocketServer() {
1167 #if defined(WEBRTC_WIN)
1168   WSACloseEvent(socket_ev_);
1169 #endif
1170   delete signal_wakeup_;
1171 #if defined(WEBRTC_USE_EPOLL)
1172   if (epoll_fd_ != INVALID_SOCKET) {
1173     close(epoll_fd_);
1174   }
1175 #endif
1176   RTC_DCHECK(dispatcher_by_key_.empty());
1177   RTC_DCHECK(key_by_dispatcher_.empty());
1178 }
1179 
WakeUp()1180 void PhysicalSocketServer::WakeUp() {
1181   signal_wakeup_->Signal();
1182 }
1183 
CreateSocket(int family,int type)1184 Socket* PhysicalSocketServer::CreateSocket(int family, int type) {
1185   SocketDispatcher* dispatcher = new SocketDispatcher(this);
1186   if (dispatcher->Create(family, type)) {
1187     return dispatcher;
1188   } else {
1189     delete dispatcher;
1190     return nullptr;
1191   }
1192 }
1193 
WrapSocket(SOCKET s)1194 Socket* PhysicalSocketServer::WrapSocket(SOCKET s) {
1195   SocketDispatcher* dispatcher = new SocketDispatcher(s, this);
1196   if (dispatcher->Initialize()) {
1197     return dispatcher;
1198   } else {
1199     delete dispatcher;
1200     return nullptr;
1201   }
1202 }
1203 
Add(Dispatcher * pdispatcher)1204 void PhysicalSocketServer::Add(Dispatcher* pdispatcher) {
1205   CritScope cs(&crit_);
1206   if (key_by_dispatcher_.count(pdispatcher)) {
1207     RTC_LOG(LS_WARNING)
1208         << "PhysicalSocketServer asked to add a duplicate dispatcher.";
1209     return;
1210   }
1211   uint64_t key = next_dispatcher_key_++;
1212   dispatcher_by_key_.emplace(key, pdispatcher);
1213   key_by_dispatcher_.emplace(pdispatcher, key);
1214 #if defined(WEBRTC_USE_EPOLL)
1215   if (epoll_fd_ != INVALID_SOCKET) {
1216     AddEpoll(pdispatcher, key);
1217   }
1218 #endif  // WEBRTC_USE_EPOLL
1219 }
1220 
Remove(Dispatcher * pdispatcher)1221 void PhysicalSocketServer::Remove(Dispatcher* pdispatcher) {
1222   CritScope cs(&crit_);
1223   if (!key_by_dispatcher_.count(pdispatcher)) {
1224     RTC_LOG(LS_WARNING)
1225         << "PhysicalSocketServer asked to remove a unknown "
1226            "dispatcher, potentially from a duplicate call to Add.";
1227     return;
1228   }
1229   uint64_t key = key_by_dispatcher_.at(pdispatcher);
1230   key_by_dispatcher_.erase(pdispatcher);
1231   dispatcher_by_key_.erase(key);
1232 #if defined(WEBRTC_USE_EPOLL)
1233   if (epoll_fd_ != INVALID_SOCKET) {
1234     RemoveEpoll(pdispatcher);
1235   }
1236 #endif  // WEBRTC_USE_EPOLL
1237 }
1238 
Update(Dispatcher * pdispatcher)1239 void PhysicalSocketServer::Update(Dispatcher* pdispatcher) {
1240 #if defined(WEBRTC_USE_EPOLL)
1241   if (epoll_fd_ == INVALID_SOCKET) {
1242     return;
1243   }
1244 
1245   // Don't update dispatchers that haven't yet been added.
1246   CritScope cs(&crit_);
1247   if (!key_by_dispatcher_.count(pdispatcher)) {
1248     return;
1249   }
1250 
1251   UpdateEpoll(pdispatcher, key_by_dispatcher_.at(pdispatcher));
1252 #endif
1253 }
1254 
ToCmsWait(webrtc::TimeDelta max_wait_duration)1255 int PhysicalSocketServer::ToCmsWait(webrtc::TimeDelta max_wait_duration) {
1256   return max_wait_duration == Event::kForever
1257              ? kForeverMs
1258              : max_wait_duration.RoundUpTo(webrtc::TimeDelta::Millis(1)).ms();
1259 }
1260 
1261 #if defined(WEBRTC_POSIX)
1262 
Wait(webrtc::TimeDelta max_wait_duration,bool process_io)1263 bool PhysicalSocketServer::Wait(webrtc::TimeDelta max_wait_duration,
1264                                 bool process_io) {
1265   // We don't support reentrant waiting.
1266   RTC_DCHECK(!waiting_);
1267   ScopedSetTrue s(&waiting_);
1268   const int cmsWait = ToCmsWait(max_wait_duration);
1269 #if defined(WEBRTC_USE_EPOLL)
1270   // We don't keep a dedicated "epoll" descriptor containing only the non-IO
1271   // (i.e. signaling) dispatcher, so "poll" will be used instead of the default
1272   // "select" to support sockets larger than FD_SETSIZE.
1273   if (!process_io) {
1274     return WaitPoll(cmsWait, signal_wakeup_);
1275   } else if (epoll_fd_ != INVALID_SOCKET) {
1276     return WaitEpoll(cmsWait);
1277   }
1278 #endif
1279   return WaitSelect(cmsWait, process_io);
1280 }
1281 
1282 // `error_event` is true if we are responding to an event where we know an
1283 // error has occurred, which is possible with the poll/epoll implementations
1284 // but not the select implementation.
1285 //
1286 // `check_error` is true if there is the possibility of an error.
ProcessEvents(Dispatcher * dispatcher,bool readable,bool writable,bool error_event,bool check_error)1287 static void ProcessEvents(Dispatcher* dispatcher,
1288                           bool readable,
1289                           bool writable,
1290                           bool error_event,
1291                           bool check_error) {
1292   RTC_DCHECK(!(error_event && !check_error));
1293   int errcode = 0;
1294   if (check_error) {
1295     socklen_t len = sizeof(errcode);
1296     int res = ::getsockopt(dispatcher->GetDescriptor(), SOL_SOCKET, SO_ERROR,
1297                            &errcode, &len);
1298     if (res < 0) {
1299       // If we are sure an error has occurred, or if getsockopt failed for a
1300       // socket descriptor, make sure we set the error code to a nonzero value.
1301       if (error_event || errno != ENOTSOCK) {
1302         errcode = EBADF;
1303       }
1304     }
1305   }
1306 
1307   // Most often the socket is writable or readable or both, so make a single
1308   // virtual call to get requested events
1309   const uint32_t requested_events = dispatcher->GetRequestedEvents();
1310   uint32_t ff = 0;
1311 
1312   // Check readable descriptors. If we're waiting on an accept, signal
1313   // that. Otherwise we're waiting for data, check to see if we're
1314   // readable or really closed.
1315   // TODO(pthatcher): Only peek at TCP descriptors.
1316   if (readable) {
1317     if (errcode || dispatcher->IsDescriptorClosed()) {
1318       ff |= DE_CLOSE;
1319     } else if (requested_events & DE_ACCEPT) {
1320       ff |= DE_ACCEPT;
1321     } else {
1322       ff |= DE_READ;
1323     }
1324   }
1325 
1326   // Check writable descriptors. If we're waiting on a connect, detect
1327   // success versus failure by the reaped error code.
1328   if (writable) {
1329     if (requested_events & DE_CONNECT) {
1330       if (!errcode) {
1331         ff |= DE_CONNECT;
1332       }
1333     } else {
1334       ff |= DE_WRITE;
1335     }
1336   }
1337 
1338   // Make sure we report any errors regardless of whether readable or writable.
1339   if (errcode) {
1340     ff |= DE_CLOSE;
1341   }
1342 
1343   // Tell the descriptor about the event.
1344   if (ff != 0) {
1345     dispatcher->OnEvent(ff, errcode);
1346   }
1347 }
1348 
WaitSelect(int cmsWait,bool process_io)1349 bool PhysicalSocketServer::WaitSelect(int cmsWait, bool process_io) {
1350   // Calculate timing information
1351 
1352   struct timeval* ptvWait = nullptr;
1353   struct timeval tvWait;
1354   int64_t stop_us;
1355   if (cmsWait != kForeverMs) {
1356     // Calculate wait timeval
1357     tvWait.tv_sec = cmsWait / 1000;
1358     tvWait.tv_usec = (cmsWait % 1000) * 1000;
1359     ptvWait = &tvWait;
1360 
1361     // Calculate when to return
1362     stop_us = rtc::TimeMicros() + cmsWait * 1000;
1363   }
1364 
1365   fd_set fdsRead;
1366   fd_set fdsWrite;
1367 // Explicitly unpoison these FDs on MemorySanitizer which doesn't handle the
1368 // inline assembly in FD_ZERO.
1369 // http://crbug.com/344505
1370 #ifdef MEMORY_SANITIZER
1371   __msan_unpoison(&fdsRead, sizeof(fdsRead));
1372   __msan_unpoison(&fdsWrite, sizeof(fdsWrite));
1373 #endif
1374 
1375   fWait_ = true;
1376 
1377   while (fWait_) {
1378     // Zero all fd_sets. Although select() zeros the descriptors not signaled,
1379     // we may need to do this for dispatchers that were deleted while
1380     // iterating.
1381     FD_ZERO(&fdsRead);
1382     FD_ZERO(&fdsWrite);
1383     int fdmax = -1;
1384     {
1385       CritScope cr(&crit_);
1386       current_dispatcher_keys_.clear();
1387       for (auto const& kv : dispatcher_by_key_) {
1388         uint64_t key = kv.first;
1389         Dispatcher* pdispatcher = kv.second;
1390         // Query dispatchers for read and write wait state
1391         if (!process_io && (pdispatcher != signal_wakeup_))
1392           continue;
1393         current_dispatcher_keys_.push_back(key);
1394         int fd = pdispatcher->GetDescriptor();
1395         // "select"ing a file descriptor that is equal to or larger than
1396         // FD_SETSIZE will result in undefined behavior.
1397         RTC_DCHECK_LT(fd, FD_SETSIZE);
1398         if (fd > fdmax)
1399           fdmax = fd;
1400 
1401         uint32_t ff = pdispatcher->GetRequestedEvents();
1402         if (ff & (DE_READ | DE_ACCEPT))
1403           FD_SET(fd, &fdsRead);
1404         if (ff & (DE_WRITE | DE_CONNECT))
1405           FD_SET(fd, &fdsWrite);
1406       }
1407     }
1408 
1409     // Wait then call handlers as appropriate
1410     // < 0 means error
1411     // 0 means timeout
1412     // > 0 means count of descriptors ready
1413     int n = select(fdmax + 1, &fdsRead, &fdsWrite, nullptr, ptvWait);
1414 
1415     // If error, return error.
1416     if (n < 0) {
1417       if (errno != EINTR) {
1418         RTC_LOG_E(LS_ERROR, EN, errno) << "select";
1419         return false;
1420       }
1421       // Else ignore the error and keep going. If this EINTR was for one of the
1422       // signals managed by this PhysicalSocketServer, the
1423       // PosixSignalDeliveryDispatcher will be in the signaled state in the next
1424       // iteration.
1425     } else if (n == 0) {
1426       // If timeout, return success
1427       return true;
1428     } else {
1429       // We have signaled descriptors
1430       CritScope cr(&crit_);
1431       // Iterate only on the dispatchers whose sockets were passed into
1432       // WSAEventSelect; this avoids the ABA problem (a socket being
1433       // destroyed and a new one created with the same file descriptor).
1434       for (uint64_t key : current_dispatcher_keys_) {
1435         if (!dispatcher_by_key_.count(key))
1436           continue;
1437         Dispatcher* pdispatcher = dispatcher_by_key_.at(key);
1438 
1439         int fd = pdispatcher->GetDescriptor();
1440 
1441         bool readable = FD_ISSET(fd, &fdsRead);
1442         if (readable) {
1443           FD_CLR(fd, &fdsRead);
1444         }
1445 
1446         bool writable = FD_ISSET(fd, &fdsWrite);
1447         if (writable) {
1448           FD_CLR(fd, &fdsWrite);
1449         }
1450 
1451         // The error code can be signaled through reads or writes.
1452         ProcessEvents(pdispatcher, readable, writable, /*error_event=*/false,
1453                       readable || writable);
1454       }
1455     }
1456 
1457     // Recalc the time remaining to wait. Doing it here means it doesn't get
1458     // calced twice the first time through the loop
1459     if (ptvWait) {
1460       ptvWait->tv_sec = 0;
1461       ptvWait->tv_usec = 0;
1462       int64_t time_left_us = stop_us - rtc::TimeMicros();
1463       if (time_left_us > 0) {
1464         ptvWait->tv_sec = time_left_us / rtc::kNumMicrosecsPerSec;
1465         ptvWait->tv_usec = time_left_us % rtc::kNumMicrosecsPerSec;
1466       }
1467     }
1468   }
1469 
1470   return true;
1471 }
1472 
1473 #if defined(WEBRTC_USE_EPOLL)
1474 
AddEpoll(Dispatcher * pdispatcher,uint64_t key)1475 void PhysicalSocketServer::AddEpoll(Dispatcher* pdispatcher, uint64_t key) {
1476   RTC_DCHECK(epoll_fd_ != INVALID_SOCKET);
1477   int fd = pdispatcher->GetDescriptor();
1478   RTC_DCHECK(fd != INVALID_SOCKET);
1479   if (fd == INVALID_SOCKET) {
1480     return;
1481   }
1482 
1483   struct epoll_event event = {0};
1484   event.events = GetEpollEvents(pdispatcher->GetRequestedEvents());
1485   if (event.events == 0u) {
1486     // Don't add at all if we don't have any requested events. Could indicate a
1487     // closed socket.
1488     return;
1489   }
1490   event.data.u64 = key;
1491   int err = epoll_ctl(epoll_fd_, EPOLL_CTL_ADD, fd, &event);
1492   RTC_DCHECK_EQ(err, 0);
1493   if (err == -1) {
1494     RTC_LOG_E(LS_ERROR, EN, errno) << "epoll_ctl EPOLL_CTL_ADD";
1495   }
1496 }
1497 
RemoveEpoll(Dispatcher * pdispatcher)1498 void PhysicalSocketServer::RemoveEpoll(Dispatcher* pdispatcher) {
1499   RTC_DCHECK(epoll_fd_ != INVALID_SOCKET);
1500   int fd = pdispatcher->GetDescriptor();
1501   RTC_DCHECK(fd != INVALID_SOCKET);
1502   if (fd == INVALID_SOCKET) {
1503     return;
1504   }
1505 
1506   struct epoll_event event = {0};
1507   int err = epoll_ctl(epoll_fd_, EPOLL_CTL_DEL, fd, &event);
1508   RTC_DCHECK(err == 0 || errno == ENOENT);
1509   // Ignore ENOENT, which could occur if this descriptor wasn't added due to
1510   // having no requested events.
1511   if (err == -1 && errno != ENOENT) {
1512     RTC_LOG_E(LS_ERROR, EN, errno) << "epoll_ctl EPOLL_CTL_DEL";
1513   }
1514 }
1515 
UpdateEpoll(Dispatcher * pdispatcher,uint64_t key)1516 void PhysicalSocketServer::UpdateEpoll(Dispatcher* pdispatcher, uint64_t key) {
1517   RTC_DCHECK(epoll_fd_ != INVALID_SOCKET);
1518   int fd = pdispatcher->GetDescriptor();
1519   RTC_DCHECK(fd != INVALID_SOCKET);
1520   if (fd == INVALID_SOCKET) {
1521     return;
1522   }
1523 
1524   struct epoll_event event = {0};
1525   event.events = GetEpollEvents(pdispatcher->GetRequestedEvents());
1526   event.data.u64 = key;
1527   // Remove if we don't have any requested events. Could indicate a closed
1528   // socket.
1529   if (event.events == 0u) {
1530     epoll_ctl(epoll_fd_, EPOLL_CTL_DEL, fd, &event);
1531   } else {
1532     int err = epoll_ctl(epoll_fd_, EPOLL_CTL_MOD, fd, &event);
1533     RTC_DCHECK(err == 0 || errno == ENOENT);
1534     if (err == -1) {
1535       // Could have been removed earlier due to no requested events.
1536       if (errno == ENOENT) {
1537         err = epoll_ctl(epoll_fd_, EPOLL_CTL_ADD, fd, &event);
1538         if (err == -1) {
1539           RTC_LOG_E(LS_ERROR, EN, errno) << "epoll_ctl EPOLL_CTL_ADD";
1540         }
1541       } else {
1542         RTC_LOG_E(LS_ERROR, EN, errno) << "epoll_ctl EPOLL_CTL_MOD";
1543       }
1544     }
1545   }
1546 }
1547 
WaitEpoll(int cmsWait)1548 bool PhysicalSocketServer::WaitEpoll(int cmsWait) {
1549   RTC_DCHECK(epoll_fd_ != INVALID_SOCKET);
1550   int64_t tvWait = -1;
1551   int64_t tvStop = -1;
1552   if (cmsWait != kForeverMs) {
1553     tvWait = cmsWait;
1554     tvStop = TimeAfter(cmsWait);
1555   }
1556 
1557   fWait_ = true;
1558   while (fWait_) {
1559     // Wait then call handlers as appropriate
1560     // < 0 means error
1561     // 0 means timeout
1562     // > 0 means count of descriptors ready
1563     int n = epoll_wait(epoll_fd_, epoll_events_.data(), epoll_events_.size(),
1564                        static_cast<int>(tvWait));
1565     if (n < 0) {
1566       if (errno != EINTR) {
1567         RTC_LOG_E(LS_ERROR, EN, errno) << "epoll";
1568         return false;
1569       }
1570       // Else ignore the error and keep going. If this EINTR was for one of the
1571       // signals managed by this PhysicalSocketServer, the
1572       // PosixSignalDeliveryDispatcher will be in the signaled state in the next
1573       // iteration.
1574     } else if (n == 0) {
1575       // If timeout, return success
1576       return true;
1577     } else {
1578       // We have signaled descriptors
1579       CritScope cr(&crit_);
1580       for (int i = 0; i < n; ++i) {
1581         const epoll_event& event = epoll_events_[i];
1582         uint64_t key = event.data.u64;
1583         if (!dispatcher_by_key_.count(key)) {
1584           // The dispatcher for this socket no longer exists.
1585           continue;
1586         }
1587         Dispatcher* pdispatcher = dispatcher_by_key_.at(key);
1588 
1589         bool readable = (event.events & (EPOLLIN | EPOLLPRI));
1590         bool writable = (event.events & EPOLLOUT);
1591         bool error = (event.events & (EPOLLRDHUP | EPOLLERR | EPOLLHUP));
1592 
1593         ProcessEvents(pdispatcher, readable, writable, error, error);
1594       }
1595     }
1596 
1597     if (cmsWait != kForeverMs) {
1598       tvWait = TimeDiff(tvStop, TimeMillis());
1599       if (tvWait <= 0) {
1600         // Return success on timeout.
1601         return true;
1602       }
1603     }
1604   }
1605 
1606   return true;
1607 }
1608 
WaitPoll(int cmsWait,Dispatcher * dispatcher)1609 bool PhysicalSocketServer::WaitPoll(int cmsWait, Dispatcher* dispatcher) {
1610   RTC_DCHECK(dispatcher);
1611   int64_t tvWait = -1;
1612   int64_t tvStop = -1;
1613   if (cmsWait != kForeverMs) {
1614     tvWait = cmsWait;
1615     tvStop = TimeAfter(cmsWait);
1616   }
1617 
1618   fWait_ = true;
1619 
1620   struct pollfd fds = {0};
1621   int fd = dispatcher->GetDescriptor();
1622   fds.fd = fd;
1623 
1624   while (fWait_) {
1625     uint32_t ff = dispatcher->GetRequestedEvents();
1626     fds.events = 0;
1627     if (ff & (DE_READ | DE_ACCEPT)) {
1628       fds.events |= POLLIN;
1629     }
1630     if (ff & (DE_WRITE | DE_CONNECT)) {
1631       fds.events |= POLLOUT;
1632     }
1633     fds.revents = 0;
1634 
1635     // Wait then call handlers as appropriate
1636     // < 0 means error
1637     // 0 means timeout
1638     // > 0 means count of descriptors ready
1639     int n = poll(&fds, 1, static_cast<int>(tvWait));
1640     if (n < 0) {
1641       if (errno != EINTR) {
1642         RTC_LOG_E(LS_ERROR, EN, errno) << "poll";
1643         return false;
1644       }
1645       // Else ignore the error and keep going. If this EINTR was for one of the
1646       // signals managed by this PhysicalSocketServer, the
1647       // PosixSignalDeliveryDispatcher will be in the signaled state in the next
1648       // iteration.
1649     } else if (n == 0) {
1650       // If timeout, return success
1651       return true;
1652     } else {
1653       // We have signaled descriptors (should only be the passed dispatcher).
1654       RTC_DCHECK_EQ(n, 1);
1655       RTC_DCHECK_EQ(fds.fd, fd);
1656 
1657       bool readable = (fds.revents & (POLLIN | POLLPRI));
1658       bool writable = (fds.revents & POLLOUT);
1659       bool error = (fds.revents & (POLLRDHUP | POLLERR | POLLHUP));
1660 
1661       ProcessEvents(dispatcher, readable, writable, error, error);
1662     }
1663 
1664     if (cmsWait != kForeverMs) {
1665       tvWait = TimeDiff(tvStop, TimeMillis());
1666       if (tvWait < 0) {
1667         // Return success on timeout.
1668         return true;
1669       }
1670     }
1671   }
1672 
1673   return true;
1674 }
1675 
1676 #endif  // WEBRTC_USE_EPOLL
1677 
1678 #endif  // WEBRTC_POSIX
1679 
1680 #if defined(WEBRTC_WIN)
Wait(webrtc::TimeDelta max_wait_duration,bool process_io)1681 bool PhysicalSocketServer::Wait(webrtc::TimeDelta max_wait_duration,
1682                                 bool process_io) {
1683   // We don't support reentrant waiting.
1684   RTC_DCHECK(!waiting_);
1685   ScopedSetTrue s(&waiting_);
1686 
1687   int cmsWait = ToCmsWait(max_wait_duration);
1688   int64_t cmsTotal = cmsWait;
1689   int64_t cmsElapsed = 0;
1690   int64_t msStart = Time();
1691 
1692   fWait_ = true;
1693   while (fWait_) {
1694     std::vector<WSAEVENT> events;
1695     std::vector<uint64_t> event_owners;
1696 
1697     events.push_back(socket_ev_);
1698 
1699     {
1700       CritScope cr(&crit_);
1701       // Get a snapshot of all current dispatchers; this is used to avoid the
1702       // ABA problem (see later comment) and avoids the dispatcher_by_key_
1703       // iterator being invalidated by calling CheckSignalClose, which may
1704       // remove the dispatcher from the list.
1705       current_dispatcher_keys_.clear();
1706       for (auto const& kv : dispatcher_by_key_) {
1707         current_dispatcher_keys_.push_back(kv.first);
1708       }
1709       for (uint64_t key : current_dispatcher_keys_) {
1710         if (!dispatcher_by_key_.count(key)) {
1711           continue;
1712         }
1713         Dispatcher* disp = dispatcher_by_key_.at(key);
1714         if (!disp)
1715           continue;
1716         if (!process_io && (disp != signal_wakeup_))
1717           continue;
1718         SOCKET s = disp->GetSocket();
1719         if (disp->CheckSignalClose()) {
1720           // We just signalled close, don't poll this socket.
1721         } else if (s != INVALID_SOCKET) {
1722           WSAEventSelect(s, events[0],
1723                          FlagsToEvents(disp->GetRequestedEvents()));
1724         } else {
1725           events.push_back(disp->GetWSAEvent());
1726           event_owners.push_back(key);
1727         }
1728       }
1729     }
1730 
1731     // Which is shorter, the delay wait or the asked wait?
1732 
1733     int64_t cmsNext;
1734     if (cmsWait == kForeverMs) {
1735       cmsNext = cmsWait;
1736     } else {
1737       cmsNext = std::max<int64_t>(0, cmsTotal - cmsElapsed);
1738     }
1739 
1740     // Wait for one of the events to signal
1741     DWORD dw =
1742         WSAWaitForMultipleEvents(static_cast<DWORD>(events.size()), &events[0],
1743                                  false, static_cast<DWORD>(cmsNext), false);
1744 
1745     if (dw == WSA_WAIT_FAILED) {
1746       // Failed?
1747       // TODO(pthatcher): need a better strategy than this!
1748       WSAGetLastError();
1749       RTC_DCHECK_NOTREACHED();
1750       return false;
1751     } else if (dw == WSA_WAIT_TIMEOUT) {
1752       // Timeout?
1753       return true;
1754     } else {
1755       // Figure out which one it is and call it
1756       CritScope cr(&crit_);
1757       int index = dw - WSA_WAIT_EVENT_0;
1758       if (index > 0) {
1759         --index;  // The first event is the socket event
1760         uint64_t key = event_owners[index];
1761         if (!dispatcher_by_key_.count(key)) {
1762           // The dispatcher could have been removed while waiting for events.
1763           continue;
1764         }
1765         Dispatcher* disp = dispatcher_by_key_.at(key);
1766         disp->OnEvent(0, 0);
1767       } else if (process_io) {
1768         // Iterate only on the dispatchers whose sockets were passed into
1769         // WSAEventSelect; this avoids the ABA problem (a socket being
1770         // destroyed and a new one created with the same SOCKET handle).
1771         for (uint64_t key : current_dispatcher_keys_) {
1772           if (!dispatcher_by_key_.count(key)) {
1773             continue;
1774           }
1775           Dispatcher* disp = dispatcher_by_key_.at(key);
1776           SOCKET s = disp->GetSocket();
1777           if (s == INVALID_SOCKET)
1778             continue;
1779 
1780           WSANETWORKEVENTS wsaEvents;
1781           int err = WSAEnumNetworkEvents(s, events[0], &wsaEvents);
1782           if (err == 0) {
1783             {
1784               if ((wsaEvents.lNetworkEvents & FD_READ) &&
1785                   wsaEvents.iErrorCode[FD_READ_BIT] != 0) {
1786                 RTC_LOG(LS_WARNING)
1787                     << "PhysicalSocketServer got FD_READ_BIT error "
1788                     << wsaEvents.iErrorCode[FD_READ_BIT];
1789               }
1790               if ((wsaEvents.lNetworkEvents & FD_WRITE) &&
1791                   wsaEvents.iErrorCode[FD_WRITE_BIT] != 0) {
1792                 RTC_LOG(LS_WARNING)
1793                     << "PhysicalSocketServer got FD_WRITE_BIT error "
1794                     << wsaEvents.iErrorCode[FD_WRITE_BIT];
1795               }
1796               if ((wsaEvents.lNetworkEvents & FD_CONNECT) &&
1797                   wsaEvents.iErrorCode[FD_CONNECT_BIT] != 0) {
1798                 RTC_LOG(LS_WARNING)
1799                     << "PhysicalSocketServer got FD_CONNECT_BIT error "
1800                     << wsaEvents.iErrorCode[FD_CONNECT_BIT];
1801               }
1802               if ((wsaEvents.lNetworkEvents & FD_ACCEPT) &&
1803                   wsaEvents.iErrorCode[FD_ACCEPT_BIT] != 0) {
1804                 RTC_LOG(LS_WARNING)
1805                     << "PhysicalSocketServer got FD_ACCEPT_BIT error "
1806                     << wsaEvents.iErrorCode[FD_ACCEPT_BIT];
1807               }
1808               if ((wsaEvents.lNetworkEvents & FD_CLOSE) &&
1809                   wsaEvents.iErrorCode[FD_CLOSE_BIT] != 0) {
1810                 RTC_LOG(LS_WARNING)
1811                     << "PhysicalSocketServer got FD_CLOSE_BIT error "
1812                     << wsaEvents.iErrorCode[FD_CLOSE_BIT];
1813               }
1814             }
1815             uint32_t ff = 0;
1816             int errcode = 0;
1817             if (wsaEvents.lNetworkEvents & FD_READ)
1818               ff |= DE_READ;
1819             if (wsaEvents.lNetworkEvents & FD_WRITE)
1820               ff |= DE_WRITE;
1821             if (wsaEvents.lNetworkEvents & FD_CONNECT) {
1822               if (wsaEvents.iErrorCode[FD_CONNECT_BIT] == 0) {
1823                 ff |= DE_CONNECT;
1824               } else {
1825                 ff |= DE_CLOSE;
1826                 errcode = wsaEvents.iErrorCode[FD_CONNECT_BIT];
1827               }
1828             }
1829             if (wsaEvents.lNetworkEvents & FD_ACCEPT)
1830               ff |= DE_ACCEPT;
1831             if (wsaEvents.lNetworkEvents & FD_CLOSE) {
1832               ff |= DE_CLOSE;
1833               errcode = wsaEvents.iErrorCode[FD_CLOSE_BIT];
1834             }
1835             if (ff != 0) {
1836               disp->OnEvent(ff, errcode);
1837             }
1838           }
1839         }
1840       }
1841 
1842       // Reset the network event until new activity occurs
1843       WSAResetEvent(socket_ev_);
1844     }
1845 
1846     // Break?
1847     if (!fWait_)
1848       break;
1849     cmsElapsed = TimeSince(msStart);
1850     if ((cmsWait != kForeverMs) && (cmsElapsed >= cmsWait)) {
1851       break;
1852     }
1853   }
1854 
1855   // Done
1856   return true;
1857 }
1858 #endif  // WEBRTC_WIN
1859 
1860 }  // namespace rtc
1861