xref: /aosp_15_r20/external/webrtc/third_party/abseil-cpp/absl/synchronization/mutex.h (revision d9f758449e529ab9291ac668be2861e7a55c2422)
1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // -----------------------------------------------------------------------------
16 // mutex.h
17 // -----------------------------------------------------------------------------
18 //
19 // This header file defines a `Mutex` -- a mutually exclusive lock -- and the
20 // most common type of synchronization primitive for facilitating locks on
21 // shared resources. A mutex is used to prevent multiple threads from accessing
22 // and/or writing to a shared resource concurrently.
23 //
24 // Unlike a `std::mutex`, the Abseil `Mutex` provides the following additional
25 // features:
26 //   * Conditional predicates intrinsic to the `Mutex` object
27 //   * Shared/reader locks, in addition to standard exclusive/writer locks
28 //   * Deadlock detection and debug support.
29 //
30 // The following helper classes are also defined within this file:
31 //
32 //  MutexLock - An RAII wrapper to acquire and release a `Mutex` for exclusive/
33 //              write access within the current scope.
34 //
35 //  ReaderMutexLock
36 //            - An RAII wrapper to acquire and release a `Mutex` for shared/read
37 //              access within the current scope.
38 //
39 //  WriterMutexLock
40 //            - Effectively an alias for `MutexLock` above, designed for use in
41 //              distinguishing reader and writer locks within code.
42 //
43 // In addition to simple mutex locks, this file also defines ways to perform
44 // locking under certain conditions.
45 //
46 //  Condition - (Preferred) Used to wait for a particular predicate that
47 //              depends on state protected by the `Mutex` to become true.
48 //  CondVar   - A lower-level variant of `Condition` that relies on
49 //              application code to explicitly signal the `CondVar` when
50 //              a condition has been met.
51 //
52 // See below for more information on using `Condition` or `CondVar`.
53 //
54 // Mutexes and mutex behavior can be quite complicated. The information within
55 // this header file is limited, as a result. Please consult the Mutex guide for
56 // more complete information and examples.
57 
58 #ifndef ABSL_SYNCHRONIZATION_MUTEX_H_
59 #define ABSL_SYNCHRONIZATION_MUTEX_H_
60 
61 #include <atomic>
62 #include <cstdint>
63 #include <string>
64 
65 #include "absl/base/const_init.h"
66 #include "absl/base/internal/identity.h"
67 #include "absl/base/internal/low_level_alloc.h"
68 #include "absl/base/internal/thread_identity.h"
69 #include "absl/base/internal/tsan_mutex_interface.h"
70 #include "absl/base/port.h"
71 #include "absl/base/thread_annotations.h"
72 #include "absl/synchronization/internal/kernel_timeout.h"
73 #include "absl/synchronization/internal/per_thread_sem.h"
74 #include "absl/time/time.h"
75 
76 namespace absl {
77 ABSL_NAMESPACE_BEGIN
78 
79 class Condition;
80 struct SynchWaitParams;
81 
82 // -----------------------------------------------------------------------------
83 // Mutex
84 // -----------------------------------------------------------------------------
85 //
86 // A `Mutex` is a non-reentrant (aka non-recursive) Mutually Exclusive lock
87 // on some resource, typically a variable or data structure with associated
88 // invariants. Proper usage of mutexes prevents concurrent access by different
89 // threads to the same resource.
90 //
91 // A `Mutex` has two basic operations: `Mutex::Lock()` and `Mutex::Unlock()`.
92 // The `Lock()` operation *acquires* a `Mutex` (in a state known as an
93 // *exclusive* -- or write -- lock), while the `Unlock()` operation *releases* a
94 // Mutex. During the span of time between the Lock() and Unlock() operations,
95 // a mutex is said to be *held*. By design all mutexes support exclusive/write
96 // locks, as this is the most common way to use a mutex.
97 //
98 // The `Mutex` state machine for basic lock/unlock operations is quite simple:
99 //
100 // |                | Lock()     | Unlock() |
101 // |----------------+------------+----------|
102 // | Free           | Exclusive  | invalid  |
103 // | Exclusive      | blocks     | Free     |
104 //
105 // Attempts to `Unlock()` must originate from the thread that performed the
106 // corresponding `Lock()` operation.
107 //
108 // An "invalid" operation is disallowed by the API. The `Mutex` implementation
109 // is allowed to do anything on an invalid call, including but not limited to
110 // crashing with a useful error message, silently succeeding, or corrupting
111 // data structures. In debug mode, the implementation attempts to crash with a
112 // useful error message.
113 //
114 // `Mutex` is not guaranteed to be "fair" in prioritizing waiting threads; it
115 // is, however, approximately fair over long periods, and starvation-free for
116 // threads at the same priority.
117 //
118 // The lock/unlock primitives are now annotated with lock annotations
119 // defined in (base/thread_annotations.h). When writing multi-threaded code,
120 // you should use lock annotations whenever possible to document your lock
121 // synchronization policy. Besides acting as documentation, these annotations
122 // also help compilers or static analysis tools to identify and warn about
123 // issues that could potentially result in race conditions and deadlocks.
124 //
125 // For more information about the lock annotations, please see
126 // [Thread Safety Analysis](http://clang.llvm.org/docs/ThreadSafetyAnalysis.html)
127 // in the Clang documentation.
128 //
129 // See also `MutexLock`, below, for scoped `Mutex` acquisition.
130 
131 class ABSL_LOCKABLE Mutex {
132  public:
133   // Creates a `Mutex` that is not held by anyone. This constructor is
134   // typically used for Mutexes allocated on the heap or the stack.
135   //
136   // To create `Mutex` instances with static storage duration
137   // (e.g. a namespace-scoped or global variable), see
138   // `Mutex::Mutex(absl::kConstInit)` below instead.
139   Mutex();
140 
141   // Creates a mutex with static storage duration.  A global variable
142   // constructed this way avoids the lifetime issues that can occur on program
143   // startup and shutdown.  (See absl/base/const_init.h.)
144   //
145   // For Mutexes allocated on the heap and stack, instead use the default
146   // constructor, which can interact more fully with the thread sanitizer.
147   //
148   // Example usage:
149   //   namespace foo {
150   //   ABSL_CONST_INIT absl::Mutex mu(absl::kConstInit);
151   //   }
152   explicit constexpr Mutex(absl::ConstInitType);
153 
154   ~Mutex();
155 
156   // Mutex::Lock()
157   //
158   // Blocks the calling thread, if necessary, until this `Mutex` is free, and
159   // then acquires it exclusively. (This lock is also known as a "write lock.")
160   void Lock() ABSL_EXCLUSIVE_LOCK_FUNCTION();
161 
162   // Mutex::Unlock()
163   //
164   // Releases this `Mutex` and returns it from the exclusive/write state to the
165   // free state. Calling thread must hold the `Mutex` exclusively.
166   void Unlock() ABSL_UNLOCK_FUNCTION();
167 
168   // Mutex::TryLock()
169   //
170   // If the mutex can be acquired without blocking, does so exclusively and
171   // returns `true`. Otherwise, returns `false`. Returns `true` with high
172   // probability if the `Mutex` was free.
173   bool TryLock() ABSL_EXCLUSIVE_TRYLOCK_FUNCTION(true);
174 
175   // Mutex::AssertHeld()
176   //
177   // Require that the mutex be held exclusively (write mode) by this thread.
178   //
179   // If the mutex is not currently held by this thread, this function may report
180   // an error (typically by crashing with a diagnostic) or it may do nothing.
181   // This function is intended only as a tool to assist debugging; it doesn't
182   // guarantee correctness.
183   void AssertHeld() const ABSL_ASSERT_EXCLUSIVE_LOCK();
184 
185   // ---------------------------------------------------------------------------
186   // Reader-Writer Locking
187   // ---------------------------------------------------------------------------
188 
189   // A Mutex can also be used as a starvation-free reader-writer lock.
190   // Neither read-locks nor write-locks are reentrant/recursive to avoid
191   // potential client programming errors.
192   //
193   // The Mutex API provides `Writer*()` aliases for the existing `Lock()`,
194   // `Unlock()` and `TryLock()` methods for use within applications mixing
195   // reader/writer locks. Using `Reader*()` and `Writer*()` operations in this
196   // manner can make locking behavior clearer when mixing read and write modes.
197   //
198   // Introducing reader locks necessarily complicates the `Mutex` state
199   // machine somewhat. The table below illustrates the allowed state transitions
200   // of a mutex in such cases. Note that ReaderLock() may block even if the lock
201   // is held in shared mode; this occurs when another thread is blocked on a
202   // call to WriterLock().
203   //
204   // ---------------------------------------------------------------------------
205   //     Operation: WriterLock() Unlock()  ReaderLock()           ReaderUnlock()
206   // ---------------------------------------------------------------------------
207   // State
208   // ---------------------------------------------------------------------------
209   // Free           Exclusive    invalid   Shared(1)              invalid
210   // Shared(1)      blocks       invalid   Shared(2) or blocks    Free
211   // Shared(n) n>1  blocks       invalid   Shared(n+1) or blocks  Shared(n-1)
212   // Exclusive      blocks       Free      blocks                 invalid
213   // ---------------------------------------------------------------------------
214   //
215   // In comments below, "shared" refers to a state of Shared(n) for any n > 0.
216 
217   // Mutex::ReaderLock()
218   //
219   // Blocks the calling thread, if necessary, until this `Mutex` is either free,
220   // or in shared mode, and then acquires a share of it. Note that
221   // `ReaderLock()` will block if some other thread has an exclusive/writer lock
222   // on the mutex.
223 
224   void ReaderLock() ABSL_SHARED_LOCK_FUNCTION();
225 
226   // Mutex::ReaderUnlock()
227   //
228   // Releases a read share of this `Mutex`. `ReaderUnlock` may return a mutex to
229   // the free state if this thread holds the last reader lock on the mutex. Note
230   // that you cannot call `ReaderUnlock()` on a mutex held in write mode.
231   void ReaderUnlock() ABSL_UNLOCK_FUNCTION();
232 
233   // Mutex::ReaderTryLock()
234   //
235   // If the mutex can be acquired without blocking, acquires this mutex for
236   // shared access and returns `true`. Otherwise, returns `false`. Returns
237   // `true` with high probability if the `Mutex` was free or shared.
238   bool ReaderTryLock() ABSL_SHARED_TRYLOCK_FUNCTION(true);
239 
240   // Mutex::AssertReaderHeld()
241   //
242   // Require that the mutex be held at least in shared mode (read mode) by this
243   // thread.
244   //
245   // If the mutex is not currently held by this thread, this function may report
246   // an error (typically by crashing with a diagnostic) or it may do nothing.
247   // This function is intended only as a tool to assist debugging; it doesn't
248   // guarantee correctness.
249   void AssertReaderHeld() const ABSL_ASSERT_SHARED_LOCK();
250 
251   // Mutex::WriterLock()
252   // Mutex::WriterUnlock()
253   // Mutex::WriterTryLock()
254   //
255   // Aliases for `Mutex::Lock()`, `Mutex::Unlock()`, and `Mutex::TryLock()`.
256   //
257   // These methods may be used (along with the complementary `Reader*()`
258   // methods) to distingish simple exclusive `Mutex` usage (`Lock()`,
259   // etc.) from reader/writer lock usage.
WriterLock()260   void WriterLock() ABSL_EXCLUSIVE_LOCK_FUNCTION() { this->Lock(); }
261 
WriterUnlock()262   void WriterUnlock() ABSL_UNLOCK_FUNCTION() { this->Unlock(); }
263 
WriterTryLock()264   bool WriterTryLock() ABSL_EXCLUSIVE_TRYLOCK_FUNCTION(true) {
265     return this->TryLock();
266   }
267 
268   // ---------------------------------------------------------------------------
269   // Conditional Critical Regions
270   // ---------------------------------------------------------------------------
271 
272   // Conditional usage of a `Mutex` can occur using two distinct paradigms:
273   //
274   //   * Use of `Mutex` member functions with `Condition` objects.
275   //   * Use of the separate `CondVar` abstraction.
276   //
277   // In general, prefer use of `Condition` and the `Mutex` member functions
278   // listed below over `CondVar`. When there are multiple threads waiting on
279   // distinctly different conditions, however, a battery of `CondVar`s may be
280   // more efficient. This section discusses use of `Condition` objects.
281   //
282   // `Mutex` contains member functions for performing lock operations only under
283   // certain conditions, of class `Condition`. For correctness, the `Condition`
284   // must return a boolean that is a pure function, only of state protected by
285   // the `Mutex`. The condition must be invariant w.r.t. environmental state
286   // such as thread, cpu id, or time, and must be `noexcept`. The condition will
287   // always be invoked with the mutex held in at least read mode, so you should
288   // not block it for long periods or sleep it on a timer.
289   //
290   // Since a condition must not depend directly on the current time, use
291   // `*WithTimeout()` member function variants to make your condition
292   // effectively true after a given duration, or `*WithDeadline()` variants to
293   // make your condition effectively true after a given time.
294   //
295   // The condition function should have no side-effects aside from debug
296   // logging; as a special exception, the function may acquire other mutexes
297   // provided it releases all those that it acquires.  (This exception was
298   // required to allow logging.)
299 
300   // Mutex::Await()
301   //
302   // Unlocks this `Mutex` and blocks until simultaneously both `cond` is `true`
303   // and this `Mutex` can be reacquired, then reacquires this `Mutex` in the
304   // same mode in which it was previously held. If the condition is initially
305   // `true`, `Await()` *may* skip the release/re-acquire step.
306   //
307   // `Await()` requires that this thread holds this `Mutex` in some mode.
308   void Await(const Condition &cond);
309 
310   // Mutex::LockWhen()
311   // Mutex::ReaderLockWhen()
312   // Mutex::WriterLockWhen()
313   //
314   // Blocks until simultaneously both `cond` is `true` and this `Mutex` can
315   // be acquired, then atomically acquires this `Mutex`. `LockWhen()` is
316   // logically equivalent to `*Lock(); Await();` though they may have different
317   // performance characteristics.
318   void LockWhen(const Condition &cond) ABSL_EXCLUSIVE_LOCK_FUNCTION();
319 
320   void ReaderLockWhen(const Condition &cond) ABSL_SHARED_LOCK_FUNCTION();
321 
WriterLockWhen(const Condition & cond)322   void WriterLockWhen(const Condition &cond) ABSL_EXCLUSIVE_LOCK_FUNCTION() {
323     this->LockWhen(cond);
324   }
325 
326   // ---------------------------------------------------------------------------
327   // Mutex Variants with Timeouts/Deadlines
328   // ---------------------------------------------------------------------------
329 
330   // Mutex::AwaitWithTimeout()
331   // Mutex::AwaitWithDeadline()
332   //
333   // Unlocks this `Mutex` and blocks until simultaneously:
334   //   - either `cond` is true or the {timeout has expired, deadline has passed}
335   //     and
336   //   - this `Mutex` can be reacquired,
337   // then reacquire this `Mutex` in the same mode in which it was previously
338   // held, returning `true` iff `cond` is `true` on return.
339   //
340   // If the condition is initially `true`, the implementation *may* skip the
341   // release/re-acquire step and return immediately.
342   //
343   // Deadlines in the past are equivalent to an immediate deadline.
344   // Negative timeouts are equivalent to a zero timeout.
345   //
346   // This method requires that this thread holds this `Mutex` in some mode.
347   bool AwaitWithTimeout(const Condition &cond, absl::Duration timeout);
348 
349   bool AwaitWithDeadline(const Condition &cond, absl::Time deadline);
350 
351   // Mutex::LockWhenWithTimeout()
352   // Mutex::ReaderLockWhenWithTimeout()
353   // Mutex::WriterLockWhenWithTimeout()
354   //
355   // Blocks until simultaneously both:
356   //   - either `cond` is `true` or the timeout has expired, and
357   //   - this `Mutex` can be acquired,
358   // then atomically acquires this `Mutex`, returning `true` iff `cond` is
359   // `true` on return.
360   //
361   // Negative timeouts are equivalent to a zero timeout.
362   bool LockWhenWithTimeout(const Condition &cond, absl::Duration timeout)
363       ABSL_EXCLUSIVE_LOCK_FUNCTION();
364   bool ReaderLockWhenWithTimeout(const Condition &cond, absl::Duration timeout)
365       ABSL_SHARED_LOCK_FUNCTION();
WriterLockWhenWithTimeout(const Condition & cond,absl::Duration timeout)366   bool WriterLockWhenWithTimeout(const Condition &cond, absl::Duration timeout)
367       ABSL_EXCLUSIVE_LOCK_FUNCTION() {
368     return this->LockWhenWithTimeout(cond, timeout);
369   }
370 
371   // Mutex::LockWhenWithDeadline()
372   // Mutex::ReaderLockWhenWithDeadline()
373   // Mutex::WriterLockWhenWithDeadline()
374   //
375   // Blocks until simultaneously both:
376   //   - either `cond` is `true` or the deadline has been passed, and
377   //   - this `Mutex` can be acquired,
378   // then atomically acquires this Mutex, returning `true` iff `cond` is `true`
379   // on return.
380   //
381   // Deadlines in the past are equivalent to an immediate deadline.
382   bool LockWhenWithDeadline(const Condition &cond, absl::Time deadline)
383       ABSL_EXCLUSIVE_LOCK_FUNCTION();
384   bool ReaderLockWhenWithDeadline(const Condition &cond, absl::Time deadline)
385       ABSL_SHARED_LOCK_FUNCTION();
WriterLockWhenWithDeadline(const Condition & cond,absl::Time deadline)386   bool WriterLockWhenWithDeadline(const Condition &cond, absl::Time deadline)
387       ABSL_EXCLUSIVE_LOCK_FUNCTION() {
388     return this->LockWhenWithDeadline(cond, deadline);
389   }
390 
391   // ---------------------------------------------------------------------------
392   // Debug Support: Invariant Checking, Deadlock Detection, Logging.
393   // ---------------------------------------------------------------------------
394 
395   // Mutex::EnableInvariantDebugging()
396   //
397   // If `invariant`!=null and if invariant debugging has been enabled globally,
398   // cause `(*invariant)(arg)` to be called at moments when the invariant for
399   // this `Mutex` should hold (for example: just after acquire, just before
400   // release).
401   //
402   // The routine `invariant` should have no side-effects since it is not
403   // guaranteed how many times it will be called; it should check the invariant
404   // and crash if it does not hold. Enabling global invariant debugging may
405   // substantially reduce `Mutex` performance; it should be set only for
406   // non-production runs.  Optimization options may also disable invariant
407   // checks.
408   void EnableInvariantDebugging(void (*invariant)(void *), void *arg);
409 
410   // Mutex::EnableDebugLog()
411   //
412   // Cause all subsequent uses of this `Mutex` to be logged via
413   // `ABSL_RAW_LOG(INFO)`. Log entries are tagged with `name` if no previous
414   // call to `EnableInvariantDebugging()` or `EnableDebugLog()` has been made.
415   //
416   // Note: This method substantially reduces `Mutex` performance.
417   void EnableDebugLog(const char *name);
418 
419   // Deadlock detection
420 
421   // Mutex::ForgetDeadlockInfo()
422   //
423   // Forget any deadlock-detection information previously gathered
424   // about this `Mutex`. Call this method in debug mode when the lock ordering
425   // of a `Mutex` changes.
426   void ForgetDeadlockInfo();
427 
428   // Mutex::AssertNotHeld()
429   //
430   // Return immediately if this thread does not hold this `Mutex` in any
431   // mode; otherwise, may report an error (typically by crashing with a
432   // diagnostic), or may return immediately.
433   //
434   // Currently this check is performed only if all of:
435   //    - in debug mode
436   //    - SetMutexDeadlockDetectionMode() has been set to kReport or kAbort
437   //    - number of locks concurrently held by this thread is not large.
438   // are true.
439   void AssertNotHeld() const;
440 
441   // Special cases.
442 
443   // A `MuHow` is a constant that indicates how a lock should be acquired.
444   // Internal implementation detail.  Clients should ignore.
445   typedef const struct MuHowS *MuHow;
446 
447   // Mutex::InternalAttemptToUseMutexInFatalSignalHandler()
448   //
449   // Causes the `Mutex` implementation to prepare itself for re-entry caused by
450   // future use of `Mutex` within a fatal signal handler. This method is
451   // intended for use only for last-ditch attempts to log crash information.
452   // It does not guarantee that attempts to use Mutexes within the handler will
453   // not deadlock; it merely makes other faults less likely.
454   //
455   // WARNING:  This routine must be invoked from a signal handler, and the
456   // signal handler must either loop forever or terminate the process.
457   // Attempts to return from (or `longjmp` out of) the signal handler once this
458   // call has been made may cause arbitrary program behaviour including
459   // crashes and deadlocks.
460   static void InternalAttemptToUseMutexInFatalSignalHandler();
461 
462  private:
463   std::atomic<intptr_t> mu_;  // The Mutex state.
464 
465   // Post()/Wait() versus associated PerThreadSem; in class for required
466   // friendship with PerThreadSem.
467   static void IncrementSynchSem(Mutex *mu, base_internal::PerThreadSynch *w);
468   static bool DecrementSynchSem(Mutex *mu, base_internal::PerThreadSynch *w,
469                                 synchronization_internal::KernelTimeout t);
470 
471   // slow path acquire
472   void LockSlowLoop(SynchWaitParams *waitp, int flags);
473   // wrappers around LockSlowLoop()
474   bool LockSlowWithDeadline(MuHow how, const Condition *cond,
475                             synchronization_internal::KernelTimeout t,
476                             int flags);
477   void LockSlow(MuHow how, const Condition *cond,
478                 int flags) ABSL_ATTRIBUTE_COLD;
479   // slow path release
480   void UnlockSlow(SynchWaitParams *waitp) ABSL_ATTRIBUTE_COLD;
481   // Common code between Await() and AwaitWithTimeout/Deadline()
482   bool AwaitCommon(const Condition &cond,
483                    synchronization_internal::KernelTimeout t);
484   // Attempt to remove thread s from queue.
485   void TryRemove(base_internal::PerThreadSynch *s);
486   // Block a thread on mutex.
487   void Block(base_internal::PerThreadSynch *s);
488   // Wake a thread; return successor.
489   base_internal::PerThreadSynch *Wakeup(base_internal::PerThreadSynch *w);
490 
491   friend class CondVar;   // for access to Trans()/Fer().
492   void Trans(MuHow how);  // used for CondVar->Mutex transfer
493   void Fer(
494       base_internal::PerThreadSynch *w);  // used for CondVar->Mutex transfer
495 
496   // Catch the error of writing Mutex when intending MutexLock.
Mutex(const volatile Mutex *)497   Mutex(const volatile Mutex * /*ignored*/) {}  // NOLINT(runtime/explicit)
498 
499   Mutex(const Mutex&) = delete;
500   Mutex& operator=(const Mutex&) = delete;
501 };
502 
503 // -----------------------------------------------------------------------------
504 // Mutex RAII Wrappers
505 // -----------------------------------------------------------------------------
506 
507 // MutexLock
508 //
509 // `MutexLock` is a helper class, which acquires and releases a `Mutex` via
510 // RAII.
511 //
512 // Example:
513 //
514 // Class Foo {
515 //  public:
516 //   Foo::Bar* Baz() {
517 //     MutexLock lock(&mu_);
518 //     ...
519 //     return bar;
520 //   }
521 //
522 // private:
523 //   Mutex mu_;
524 // };
525 class ABSL_SCOPED_LOCKABLE MutexLock {
526  public:
527   // Constructors
528 
529   // Calls `mu->Lock()` and returns when that call returns. That is, `*mu` is
530   // guaranteed to be locked when this object is constructed. Requires that
531   // `mu` be dereferenceable.
MutexLock(Mutex * mu)532   explicit MutexLock(Mutex *mu) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu) : mu_(mu) {
533     this->mu_->Lock();
534   }
535 
536   // Like above, but calls `mu->LockWhen(cond)` instead. That is, in addition to
537   // the above, the condition given by `cond` is also guaranteed to hold when
538   // this object is constructed.
MutexLock(Mutex * mu,const Condition & cond)539   explicit MutexLock(Mutex *mu, const Condition &cond)
540       ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
541       : mu_(mu) {
542     this->mu_->LockWhen(cond);
543   }
544 
545   MutexLock(const MutexLock &) = delete;  // NOLINT(runtime/mutex)
546   MutexLock(MutexLock&&) = delete;  // NOLINT(runtime/mutex)
547   MutexLock& operator=(const MutexLock&) = delete;
548   MutexLock& operator=(MutexLock&&) = delete;
549 
ABSL_UNLOCK_FUNCTION()550   ~MutexLock() ABSL_UNLOCK_FUNCTION() { this->mu_->Unlock(); }
551 
552  private:
553   Mutex *const mu_;
554 };
555 
556 // ReaderMutexLock
557 //
558 // The `ReaderMutexLock` is a helper class, like `MutexLock`, which acquires and
559 // releases a shared lock on a `Mutex` via RAII.
560 class ABSL_SCOPED_LOCKABLE ReaderMutexLock {
561  public:
ReaderMutexLock(Mutex * mu)562   explicit ReaderMutexLock(Mutex *mu) ABSL_SHARED_LOCK_FUNCTION(mu) : mu_(mu) {
563     mu->ReaderLock();
564   }
565 
ReaderMutexLock(Mutex * mu,const Condition & cond)566   explicit ReaderMutexLock(Mutex *mu, const Condition &cond)
567       ABSL_SHARED_LOCK_FUNCTION(mu)
568       : mu_(mu) {
569     mu->ReaderLockWhen(cond);
570   }
571 
572   ReaderMutexLock(const ReaderMutexLock&) = delete;
573   ReaderMutexLock(ReaderMutexLock&&) = delete;
574   ReaderMutexLock& operator=(const ReaderMutexLock&) = delete;
575   ReaderMutexLock& operator=(ReaderMutexLock&&) = delete;
576 
ABSL_UNLOCK_FUNCTION()577   ~ReaderMutexLock() ABSL_UNLOCK_FUNCTION() { this->mu_->ReaderUnlock(); }
578 
579  private:
580   Mutex *const mu_;
581 };
582 
583 // WriterMutexLock
584 //
585 // The `WriterMutexLock` is a helper class, like `MutexLock`, which acquires and
586 // releases a write (exclusive) lock on a `Mutex` via RAII.
587 class ABSL_SCOPED_LOCKABLE WriterMutexLock {
588  public:
WriterMutexLock(Mutex * mu)589   explicit WriterMutexLock(Mutex *mu) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
590       : mu_(mu) {
591     mu->WriterLock();
592   }
593 
WriterMutexLock(Mutex * mu,const Condition & cond)594   explicit WriterMutexLock(Mutex *mu, const Condition &cond)
595       ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
596       : mu_(mu) {
597     mu->WriterLockWhen(cond);
598   }
599 
600   WriterMutexLock(const WriterMutexLock&) = delete;
601   WriterMutexLock(WriterMutexLock&&) = delete;
602   WriterMutexLock& operator=(const WriterMutexLock&) = delete;
603   WriterMutexLock& operator=(WriterMutexLock&&) = delete;
604 
ABSL_UNLOCK_FUNCTION()605   ~WriterMutexLock() ABSL_UNLOCK_FUNCTION() { this->mu_->WriterUnlock(); }
606 
607  private:
608   Mutex *const mu_;
609 };
610 
611 // -----------------------------------------------------------------------------
612 // Condition
613 // -----------------------------------------------------------------------------
614 //
615 // As noted above, `Mutex` contains a number of member functions which take a
616 // `Condition` as an argument; clients can wait for conditions to become `true`
617 // before attempting to acquire the mutex. These sections are known as
618 // "condition critical" sections. To use a `Condition`, you simply need to
619 // construct it, and use within an appropriate `Mutex` member function;
620 // everything else in the `Condition` class is an implementation detail.
621 //
622 // A `Condition` is specified as a function pointer which returns a boolean.
623 // `Condition` functions should be pure functions -- their results should depend
624 // only on passed arguments, should not consult any external state (such as
625 // clocks), and should have no side-effects, aside from debug logging. Any
626 // objects that the function may access should be limited to those which are
627 // constant while the mutex is blocked on the condition (e.g. a stack variable),
628 // or objects of state protected explicitly by the mutex.
629 //
630 // No matter which construction is used for `Condition`, the underlying
631 // function pointer / functor / callable must not throw any
632 // exceptions. Correctness of `Mutex` / `Condition` is not guaranteed in
633 // the face of a throwing `Condition`. (When Abseil is allowed to depend
634 // on C++17, these function pointers will be explicitly marked
635 // `noexcept`; until then this requirement cannot be enforced in the
636 // type system.)
637 //
638 // Note: to use a `Condition`, you need only construct it and pass it to a
639 // suitable `Mutex' member function, such as `Mutex::Await()`, or to the
640 // constructor of one of the scope guard classes.
641 //
642 // Example using LockWhen/Unlock:
643 //
644 //   // assume count_ is not internal reference count
645 //   int count_ ABSL_GUARDED_BY(mu_);
646 //   Condition count_is_zero(+[](int *count) { return *count == 0; }, &count_);
647 //
648 //   mu_.LockWhen(count_is_zero);
649 //   // ...
650 //   mu_.Unlock();
651 //
652 // Example using a scope guard:
653 //
654 //   {
655 //     MutexLock lock(&mu_, count_is_zero);
656 //     // ...
657 //   }
658 //
659 // When multiple threads are waiting on exactly the same condition, make sure
660 // that they are constructed with the same parameters (same pointer to function
661 // + arg, or same pointer to object + method), so that the mutex implementation
662 // can avoid redundantly evaluating the same condition for each thread.
663 class Condition {
664  public:
665   // A Condition that returns the result of "(*func)(arg)"
666   Condition(bool (*func)(void *), void *arg);
667 
668   // Templated version for people who are averse to casts.
669   //
670   // To use a lambda, prepend it with unary plus, which converts the lambda
671   // into a function pointer:
672   //     Condition(+[](T* t) { return ...; }, arg).
673   //
674   // Note: lambdas in this case must contain no bound variables.
675   //
676   // See class comment for performance advice.
677   template<typename T>
678   Condition(bool (*func)(T *), T *arg);
679 
680   // Templated version for invoking a method that returns a `bool`.
681   //
682   // `Condition(object, &Class::Method)` constructs a `Condition` that evaluates
683   // `object->Method()`.
684   //
685   // Implementation Note: `absl::internal::identity` is used to allow methods to
686   // come from base classes. A simpler signature like
687   // `Condition(T*, bool (T::*)())` does not suffice.
688   template<typename T>
689   Condition(T *object, bool (absl::internal::identity<T>::type::* method)());
690 
691   // Same as above, for const members
692   template<typename T>
693   Condition(const T *object,
694             bool (absl::internal::identity<T>::type::* method)() const);
695 
696   // A Condition that returns the value of `*cond`
697   explicit Condition(const bool *cond);
698 
699   // Templated version for invoking a functor that returns a `bool`.
700   // This approach accepts pointers to non-mutable lambdas, `std::function`,
701   // the result of` std::bind` and user-defined functors that define
702   // `bool F::operator()() const`.
703   //
704   // Example:
705   //
706   //   auto reached = [this, current]() {
707   //     mu_.AssertReaderHeld();                // For annotalysis.
708   //     return processed_ >= current;
709   //   };
710   //   mu_.Await(Condition(&reached));
711   //
712   // NOTE: never use "mu_.AssertHeld()" instead of "mu_.AssertReaderHeld()" in
713   // the lambda as it may be called when the mutex is being unlocked from a
714   // scope holding only a reader lock, which will make the assertion not
715   // fulfilled and crash the binary.
716 
717   // See class comment for performance advice. In particular, if there
718   // might be more than one waiter for the same condition, make sure
719   // that all waiters construct the condition with the same pointers.
720 
721   // Implementation note: The second template parameter ensures that this
722   // constructor doesn't participate in overload resolution if T doesn't have
723   // `bool operator() const`.
724   template <typename T, typename E = decltype(
725       static_cast<bool (T::*)() const>(&T::operator()))>
Condition(const T * obj)726   explicit Condition(const T *obj)
727       : Condition(obj, static_cast<bool (T::*)() const>(&T::operator())) {}
728 
729   // A Condition that always returns `true`.
730   static const Condition kTrue;
731 
732   // Evaluates the condition.
733   bool Eval() const;
734 
735   // Returns `true` if the two conditions are guaranteed to return the same
736   // value if evaluated at the same time, `false` if the evaluation *may* return
737   // different results.
738   //
739   // Two `Condition` values are guaranteed equal if both their `func` and `arg`
740   // components are the same. A null pointer is equivalent to a `true`
741   // condition.
742   static bool GuaranteedEqual(const Condition *a, const Condition *b);
743 
744  private:
745   typedef bool (*InternalFunctionType)(void * arg);
746   typedef bool (Condition::*InternalMethodType)();
747   typedef bool (*InternalMethodCallerType)(void * arg,
748                                            InternalMethodType internal_method);
749 
750   bool (*eval_)(const Condition*);  // Actual evaluator
751   InternalFunctionType function_;   // function taking pointer returning bool
752   InternalMethodType method_;       // method returning bool
753   void *arg_;                       // arg of function_ or object of method_
754 
755   Condition();        // null constructor used only to create kTrue
756 
757   // Various functions eval_ can point to:
758   static bool CallVoidPtrFunction(const Condition*);
759   template <typename T> static bool CastAndCallFunction(const Condition* c);
760   template <typename T> static bool CastAndCallMethod(const Condition* c);
761 };
762 
763 // -----------------------------------------------------------------------------
764 // CondVar
765 // -----------------------------------------------------------------------------
766 //
767 // A condition variable, reflecting state evaluated separately outside of the
768 // `Mutex` object, which can be signaled to wake callers.
769 // This class is not normally needed; use `Mutex` member functions such as
770 // `Mutex::Await()` and intrinsic `Condition` abstractions. In rare cases
771 // with many threads and many conditions, `CondVar` may be faster.
772 //
773 // The implementation may deliver signals to any condition variable at
774 // any time, even when no call to `Signal()` or `SignalAll()` is made; as a
775 // result, upon being awoken, you must check the logical condition you have
776 // been waiting upon.
777 //
778 // Examples:
779 //
780 // Usage for a thread waiting for some condition C protected by mutex mu:
781 //       mu.Lock();
782 //       while (!C) { cv->Wait(&mu); }        // releases and reacquires mu
783 //       //  C holds; process data
784 //       mu.Unlock();
785 //
786 // Usage to wake T is:
787 //       mu.Lock();
788 //       // process data, possibly establishing C
789 //       if (C) { cv->Signal(); }
790 //       mu.Unlock();
791 //
792 // If C may be useful to more than one waiter, use `SignalAll()` instead of
793 // `Signal()`.
794 //
795 // With this implementation it is efficient to use `Signal()/SignalAll()` inside
796 // the locked region; this usage can make reasoning about your program easier.
797 //
798 class CondVar {
799  public:
800   // A `CondVar` allocated on the heap or on the stack can use the this
801   // constructor.
802   CondVar();
803   ~CondVar();
804 
805   // CondVar::Wait()
806   //
807   // Atomically releases a `Mutex` and blocks on this condition variable.
808   // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a
809   // spurious wakeup), then reacquires the `Mutex` and returns.
810   //
811   // Requires and ensures that the current thread holds the `Mutex`.
812   void Wait(Mutex *mu);
813 
814   // CondVar::WaitWithTimeout()
815   //
816   // Atomically releases a `Mutex` and blocks on this condition variable.
817   // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a
818   // spurious wakeup), or until the timeout has expired, then reacquires
819   // the `Mutex` and returns.
820   //
821   // Returns true if the timeout has expired without this `CondVar`
822   // being signalled in any manner. If both the timeout has expired
823   // and this `CondVar` has been signalled, the implementation is free
824   // to return `true` or `false`.
825   //
826   // Requires and ensures that the current thread holds the `Mutex`.
827   bool WaitWithTimeout(Mutex *mu, absl::Duration timeout);
828 
829   // CondVar::WaitWithDeadline()
830   //
831   // Atomically releases a `Mutex` and blocks on this condition variable.
832   // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a
833   // spurious wakeup), or until the deadline has passed, then reacquires
834   // the `Mutex` and returns.
835   //
836   // Deadlines in the past are equivalent to an immediate deadline.
837   //
838   // Returns true if the deadline has passed without this `CondVar`
839   // being signalled in any manner. If both the deadline has passed
840   // and this `CondVar` has been signalled, the implementation is free
841   // to return `true` or `false`.
842   //
843   // Requires and ensures that the current thread holds the `Mutex`.
844   bool WaitWithDeadline(Mutex *mu, absl::Time deadline);
845 
846   // CondVar::Signal()
847   //
848   // Signal this `CondVar`; wake at least one waiter if one exists.
849   void Signal();
850 
851   // CondVar::SignalAll()
852   //
853   // Signal this `CondVar`; wake all waiters.
854   void SignalAll();
855 
856   // CondVar::EnableDebugLog()
857   //
858   // Causes all subsequent uses of this `CondVar` to be logged via
859   // `ABSL_RAW_LOG(INFO)`. Log entries are tagged with `name` if `name != 0`.
860   // Note: this method substantially reduces `CondVar` performance.
861   void EnableDebugLog(const char *name);
862 
863  private:
864   bool WaitCommon(Mutex *mutex, synchronization_internal::KernelTimeout t);
865   void Remove(base_internal::PerThreadSynch *s);
866   void Wakeup(base_internal::PerThreadSynch *w);
867   std::atomic<intptr_t> cv_;  // Condition variable state.
868   CondVar(const CondVar&) = delete;
869   CondVar& operator=(const CondVar&) = delete;
870 };
871 
872 
873 // Variants of MutexLock.
874 //
875 // If you find yourself using one of these, consider instead using
876 // Mutex::Unlock() and/or if-statements for clarity.
877 
878 // MutexLockMaybe
879 //
880 // MutexLockMaybe is like MutexLock, but is a no-op when mu is null.
881 class ABSL_SCOPED_LOCKABLE MutexLockMaybe {
882  public:
MutexLockMaybe(Mutex * mu)883   explicit MutexLockMaybe(Mutex *mu) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
884       : mu_(mu) {
885     if (this->mu_ != nullptr) {
886       this->mu_->Lock();
887     }
888   }
889 
MutexLockMaybe(Mutex * mu,const Condition & cond)890   explicit MutexLockMaybe(Mutex *mu, const Condition &cond)
891       ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
892       : mu_(mu) {
893     if (this->mu_ != nullptr) {
894       this->mu_->LockWhen(cond);
895     }
896   }
897 
ABSL_UNLOCK_FUNCTION()898   ~MutexLockMaybe() ABSL_UNLOCK_FUNCTION() {
899     if (this->mu_ != nullptr) { this->mu_->Unlock(); }
900   }
901 
902  private:
903   Mutex *const mu_;
904   MutexLockMaybe(const MutexLockMaybe&) = delete;
905   MutexLockMaybe(MutexLockMaybe&&) = delete;
906   MutexLockMaybe& operator=(const MutexLockMaybe&) = delete;
907   MutexLockMaybe& operator=(MutexLockMaybe&&) = delete;
908 };
909 
910 // ReleasableMutexLock
911 //
912 // ReleasableMutexLock is like MutexLock, but permits `Release()` of its
913 // mutex before destruction. `Release()` may be called at most once.
914 class ABSL_SCOPED_LOCKABLE ReleasableMutexLock {
915  public:
ReleasableMutexLock(Mutex * mu)916   explicit ReleasableMutexLock(Mutex *mu) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
917       : mu_(mu) {
918     this->mu_->Lock();
919   }
920 
ReleasableMutexLock(Mutex * mu,const Condition & cond)921   explicit ReleasableMutexLock(Mutex *mu, const Condition &cond)
922       ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
923       : mu_(mu) {
924     this->mu_->LockWhen(cond);
925   }
926 
ABSL_UNLOCK_FUNCTION()927   ~ReleasableMutexLock() ABSL_UNLOCK_FUNCTION() {
928     if (this->mu_ != nullptr) { this->mu_->Unlock(); }
929   }
930 
931   void Release() ABSL_UNLOCK_FUNCTION();
932 
933  private:
934   Mutex *mu_;
935   ReleasableMutexLock(const ReleasableMutexLock&) = delete;
936   ReleasableMutexLock(ReleasableMutexLock&&) = delete;
937   ReleasableMutexLock& operator=(const ReleasableMutexLock&) = delete;
938   ReleasableMutexLock& operator=(ReleasableMutexLock&&) = delete;
939 };
940 
Mutex()941 inline Mutex::Mutex() : mu_(0) {
942   ABSL_TSAN_MUTEX_CREATE(this, __tsan_mutex_not_static);
943 }
944 
Mutex(absl::ConstInitType)945 inline constexpr Mutex::Mutex(absl::ConstInitType) : mu_(0) {}
946 
CondVar()947 inline CondVar::CondVar() : cv_(0) {}
948 
949 // static
950 template <typename T>
CastAndCallMethod(const Condition * c)951 bool Condition::CastAndCallMethod(const Condition *c) {
952   typedef bool (T::*MemberType)();
953   MemberType rm = reinterpret_cast<MemberType>(c->method_);
954   T *x = static_cast<T *>(c->arg_);
955   return (x->*rm)();
956 }
957 
958 // static
959 template <typename T>
CastAndCallFunction(const Condition * c)960 bool Condition::CastAndCallFunction(const Condition *c) {
961   typedef bool (*FuncType)(T *);
962   FuncType fn = reinterpret_cast<FuncType>(c->function_);
963   T *x = static_cast<T *>(c->arg_);
964   return (*fn)(x);
965 }
966 
967 template <typename T>
Condition(bool (* func)(T *),T * arg)968 inline Condition::Condition(bool (*func)(T *), T *arg)
969     : eval_(&CastAndCallFunction<T>),
970       function_(reinterpret_cast<InternalFunctionType>(func)),
971       method_(nullptr),
972       arg_(const_cast<void *>(static_cast<const void *>(arg))) {}
973 
974 template <typename T>
Condition(T * object,bool (absl::internal::identity<T>::type::* method)())975 inline Condition::Condition(T *object,
976                             bool (absl::internal::identity<T>::type::*method)())
977     : eval_(&CastAndCallMethod<T>),
978       function_(nullptr),
979       method_(reinterpret_cast<InternalMethodType>(method)),
980       arg_(object) {}
981 
982 template <typename T>
Condition(const T * object,bool (absl::internal::identity<T>::type::* method)()const)983 inline Condition::Condition(const T *object,
984                             bool (absl::internal::identity<T>::type::*method)()
985                                 const)
986     : eval_(&CastAndCallMethod<T>),
987       function_(nullptr),
988       method_(reinterpret_cast<InternalMethodType>(method)),
989       arg_(reinterpret_cast<void *>(const_cast<T *>(object))) {}
990 
991 // Register hooks for profiling support.
992 //
993 // The function pointer registered here will be called whenever a mutex is
994 // contended.  The callback is given the cycles for which waiting happened (as
995 // measured by //absl/base/internal/cycleclock.h, and which may not
996 // be real "cycle" counts.)
997 //
998 // Calls to this function do not race or block, but there is no ordering
999 // guaranteed between calls to this function and call to the provided hook.
1000 // In particular, the previously registered hook may still be called for some
1001 // time after this function returns.
1002 void RegisterMutexProfiler(void (*fn)(int64_t wait_cycles));
1003 
1004 // Register a hook for Mutex tracing.
1005 //
1006 // The function pointer registered here will be called whenever a mutex is
1007 // contended.  The callback is given an opaque handle to the contended mutex,
1008 // an event name, and the number of wait cycles (as measured by
1009 // //absl/base/internal/cycleclock.h, and which may not be real
1010 // "cycle" counts.)
1011 //
1012 // The only event name currently sent is "slow release".
1013 //
1014 // This has the same memory ordering concerns as RegisterMutexProfiler() above.
1015 void RegisterMutexTracer(void (*fn)(const char *msg, const void *obj,
1016                                     int64_t wait_cycles));
1017 
1018 // TODO(gfalcon): Combine RegisterMutexProfiler() and RegisterMutexTracer()
1019 // into a single interface, since they are only ever called in pairs.
1020 
1021 // Register a hook for CondVar tracing.
1022 //
1023 // The function pointer registered here will be called here on various CondVar
1024 // events.  The callback is given an opaque handle to the CondVar object and
1025 // a string identifying the event.  This is thread-safe, but only a single
1026 // tracer can be registered.
1027 //
1028 // Events that can be sent are "Wait", "Unwait", "Signal wakeup", and
1029 // "SignalAll wakeup".
1030 //
1031 // This has the same memory ordering concerns as RegisterMutexProfiler() above.
1032 void RegisterCondVarTracer(void (*fn)(const char *msg, const void *cv));
1033 
1034 // Register a hook for symbolizing stack traces in deadlock detector reports.
1035 //
1036 // 'pc' is the program counter being symbolized, 'out' is the buffer to write
1037 // into, and 'out_size' is the size of the buffer.  This function can return
1038 // false if symbolizing failed, or true if a NUL-terminated symbol was written
1039 // to 'out.'
1040 //
1041 // This has the same memory ordering concerns as RegisterMutexProfiler() above.
1042 //
1043 // DEPRECATED: The default symbolizer function is absl::Symbolize() and the
1044 // ability to register a different hook for symbolizing stack traces will be
1045 // removed on or after 2023-05-01.
1046 ABSL_DEPRECATED("absl::RegisterSymbolizer() is deprecated and will be removed "
1047                 "on or after 2023-05-01")
1048 void RegisterSymbolizer(bool (*fn)(const void *pc, char *out, int out_size));
1049 
1050 // EnableMutexInvariantDebugging()
1051 //
1052 // Enable or disable global support for Mutex invariant debugging.  If enabled,
1053 // then invariant predicates can be registered per-Mutex for debug checking.
1054 // See Mutex::EnableInvariantDebugging().
1055 void EnableMutexInvariantDebugging(bool enabled);
1056 
1057 // When in debug mode, and when the feature has been enabled globally, the
1058 // implementation will keep track of lock ordering and complain (or optionally
1059 // crash) if a cycle is detected in the acquired-before graph.
1060 
1061 // Possible modes of operation for the deadlock detector in debug mode.
1062 enum class OnDeadlockCycle {
1063   kIgnore,  // Neither report on nor attempt to track cycles in lock ordering
1064   kReport,  // Report lock cycles to stderr when detected
1065   kAbort,  // Report lock cycles to stderr when detected, then abort
1066 };
1067 
1068 // SetMutexDeadlockDetectionMode()
1069 //
1070 // Enable or disable global support for detection of potential deadlocks
1071 // due to Mutex lock ordering inversions.  When set to 'kIgnore', tracking of
1072 // lock ordering is disabled.  Otherwise, in debug builds, a lock ordering graph
1073 // will be maintained internally, and detected cycles will be reported in
1074 // the manner chosen here.
1075 void SetMutexDeadlockDetectionMode(OnDeadlockCycle mode);
1076 
1077 ABSL_NAMESPACE_END
1078 }  // namespace absl
1079 
1080 // In some build configurations we pass --detect-odr-violations to the
1081 // gold linker.  This causes it to flag weak symbol overrides as ODR
1082 // violations.  Because ODR only applies to C++ and not C,
1083 // --detect-odr-violations ignores symbols not mangled with C++ names.
1084 // By changing our extension points to be extern "C", we dodge this
1085 // check.
1086 extern "C" {
1087 void ABSL_INTERNAL_C_SYMBOL(AbslInternalMutexYield)();
1088 }  // extern "C"
1089 
1090 #endif  // ABSL_SYNCHRONIZATION_MUTEX_H_
1091