xref: /aosp_15_r20/external/webrtc/third_party/abseil-cpp/absl/time/time.h (revision d9f758449e529ab9291ac668be2861e7a55c2422)
1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // -----------------------------------------------------------------------------
16 // File: time.h
17 // -----------------------------------------------------------------------------
18 //
19 // This header file defines abstractions for computing with absolute points
20 // in time, durations of time, and formatting and parsing time within a given
21 // time zone. The following abstractions are defined:
22 //
23 //  * `absl::Time` defines an absolute, specific instance in time
24 //  * `absl::Duration` defines a signed, fixed-length span of time
25 //  * `absl::TimeZone` defines geopolitical time zone regions (as collected
26 //     within the IANA Time Zone database (https://www.iana.org/time-zones)).
27 //
28 // Note: Absolute times are distinct from civil times, which refer to the
29 // human-scale time commonly represented by `YYYY-MM-DD hh:mm:ss`. The mapping
30 // between absolute and civil times can be specified by use of time zones
31 // (`absl::TimeZone` within this API). That is:
32 //
33 //   Civil Time = F(Absolute Time, Time Zone)
34 //   Absolute Time = G(Civil Time, Time Zone)
35 //
36 // See civil_time.h for abstractions related to constructing and manipulating
37 // civil time.
38 //
39 // Example:
40 //
41 //   absl::TimeZone nyc;
42 //   // LoadTimeZone() may fail so it's always better to check for success.
43 //   if (!absl::LoadTimeZone("America/New_York", &nyc)) {
44 //      // handle error case
45 //   }
46 //
47 //   // My flight leaves NYC on Jan 2, 2017 at 03:04:05
48 //   absl::CivilSecond cs(2017, 1, 2, 3, 4, 5);
49 //   absl::Time takeoff = absl::FromCivil(cs, nyc);
50 //
51 //   absl::Duration flight_duration = absl::Hours(21) + absl::Minutes(35);
52 //   absl::Time landing = takeoff + flight_duration;
53 //
54 //   absl::TimeZone syd;
55 //   if (!absl::LoadTimeZone("Australia/Sydney", &syd)) {
56 //      // handle error case
57 //   }
58 //   std::string s = absl::FormatTime(
59 //       "My flight will land in Sydney on %Y-%m-%d at %H:%M:%S",
60 //       landing, syd);
61 
62 #ifndef ABSL_TIME_TIME_H_
63 #define ABSL_TIME_TIME_H_
64 
65 #if !defined(_MSC_VER)
66 #include <sys/time.h>
67 #else
68 // We don't include `winsock2.h` because it drags in `windows.h` and friends,
69 // and they define conflicting macros like OPAQUE, ERROR, and more. This has the
70 // potential to break Abseil users.
71 //
72 // Instead we only forward declare `timeval` and require Windows users include
73 // `winsock2.h` themselves. This is both inconsistent and troublesome, but so is
74 // including 'windows.h' so we are picking the lesser of two evils here.
75 struct timeval;
76 #endif
77 #include <chrono>  // NOLINT(build/c++11)
78 #include <cmath>
79 #include <cstdint>
80 #include <ctime>
81 #include <ostream>
82 #include <string>
83 #include <type_traits>
84 #include <utility>
85 
86 #include "absl/base/macros.h"
87 #include "absl/strings/string_view.h"
88 #include "absl/time/civil_time.h"
89 #include "absl/time/internal/cctz/include/cctz/time_zone.h"
90 
91 namespace absl {
92 ABSL_NAMESPACE_BEGIN
93 
94 class Duration;  // Defined below
95 class Time;      // Defined below
96 class TimeZone;  // Defined below
97 
98 namespace time_internal {
99 int64_t IDivDuration(bool satq, Duration num, Duration den, Duration* rem);
100 constexpr Time FromUnixDuration(Duration d);
101 constexpr Duration ToUnixDuration(Time t);
102 constexpr int64_t GetRepHi(Duration d);
103 constexpr uint32_t GetRepLo(Duration d);
104 constexpr Duration MakeDuration(int64_t hi, uint32_t lo);
105 constexpr Duration MakeDuration(int64_t hi, int64_t lo);
106 inline Duration MakePosDoubleDuration(double n);
107 constexpr int64_t kTicksPerNanosecond = 4;
108 constexpr int64_t kTicksPerSecond = 1000 * 1000 * 1000 * kTicksPerNanosecond;
109 template <std::intmax_t N>
110 constexpr Duration FromInt64(int64_t v, std::ratio<1, N>);
111 constexpr Duration FromInt64(int64_t v, std::ratio<60>);
112 constexpr Duration FromInt64(int64_t v, std::ratio<3600>);
113 template <typename T>
114 using EnableIfIntegral = typename std::enable_if<
115     std::is_integral<T>::value || std::is_enum<T>::value, int>::type;
116 template <typename T>
117 using EnableIfFloat =
118     typename std::enable_if<std::is_floating_point<T>::value, int>::type;
119 }  // namespace time_internal
120 
121 // Duration
122 //
123 // The `absl::Duration` class represents a signed, fixed-length amount of time.
124 // A `Duration` is generated using a unit-specific factory function, or is
125 // the result of subtracting one `absl::Time` from another. Durations behave
126 // like unit-safe integers and they support all the natural integer-like
127 // arithmetic operations. Arithmetic overflows and saturates at +/- infinity.
128 // `Duration` should be passed by value rather than const reference.
129 //
130 // Factory functions `Nanoseconds()`, `Microseconds()`, `Milliseconds()`,
131 // `Seconds()`, `Minutes()`, `Hours()` and `InfiniteDuration()` allow for
132 // creation of constexpr `Duration` values
133 //
134 // Examples:
135 //
136 //   constexpr absl::Duration ten_ns = absl::Nanoseconds(10);
137 //   constexpr absl::Duration min = absl::Minutes(1);
138 //   constexpr absl::Duration hour = absl::Hours(1);
139 //   absl::Duration dur = 60 * min;  // dur == hour
140 //   absl::Duration half_sec = absl::Milliseconds(500);
141 //   absl::Duration quarter_sec = 0.25 * absl::Seconds(1);
142 //
143 // `Duration` values can be easily converted to an integral number of units
144 // using the division operator.
145 //
146 // Example:
147 //
148 //   constexpr absl::Duration dur = absl::Milliseconds(1500);
149 //   int64_t ns = dur / absl::Nanoseconds(1);   // ns == 1500000000
150 //   int64_t ms = dur / absl::Milliseconds(1);  // ms == 1500
151 //   int64_t sec = dur / absl::Seconds(1);    // sec == 1 (subseconds truncated)
152 //   int64_t min = dur / absl::Minutes(1);    // min == 0
153 //
154 // See the `IDivDuration()` and `FDivDuration()` functions below for details on
155 // how to access the fractional parts of the quotient.
156 //
157 // Alternatively, conversions can be performed using helpers such as
158 // `ToInt64Microseconds()` and `ToDoubleSeconds()`.
159 class Duration {
160  public:
161   // Value semantics.
Duration()162   constexpr Duration() : rep_hi_(0), rep_lo_(0) {}  // zero-length duration
163 
164   // Copyable.
165 #if !defined(__clang__) && defined(_MSC_VER) && _MSC_VER < 1930
166   // Explicitly defining the constexpr copy constructor avoids an MSVC bug.
Duration(const Duration & d)167   constexpr Duration(const Duration& d)
168       : rep_hi_(d.rep_hi_), rep_lo_(d.rep_lo_) {}
169 #else
170   constexpr Duration(const Duration& d) = default;
171 #endif
172   Duration& operator=(const Duration& d) = default;
173 
174   // Compound assignment operators.
175   Duration& operator+=(Duration d);
176   Duration& operator-=(Duration d);
177   Duration& operator*=(int64_t r);
178   Duration& operator*=(double r);
179   Duration& operator/=(int64_t r);
180   Duration& operator/=(double r);
181   Duration& operator%=(Duration rhs);
182 
183   // Overloads that forward to either the int64_t or double overloads above.
184   // Integer operands must be representable as int64_t.
185   template <typename T, time_internal::EnableIfIntegral<T> = 0>
186   Duration& operator*=(T r) {
187     int64_t x = r;
188     return *this *= x;
189   }
190 
191   template <typename T, time_internal::EnableIfIntegral<T> = 0>
192   Duration& operator/=(T r) {
193     int64_t x = r;
194     return *this /= x;
195   }
196 
197   template <typename T, time_internal::EnableIfFloat<T> = 0>
198   Duration& operator*=(T r) {
199     double x = r;
200     return *this *= x;
201   }
202 
203   template <typename T, time_internal::EnableIfFloat<T> = 0>
204   Duration& operator/=(T r) {
205     double x = r;
206     return *this /= x;
207   }
208 
209   template <typename H>
AbslHashValue(H h,Duration d)210   friend H AbslHashValue(H h, Duration d) {
211     return H::combine(std::move(h), d.rep_hi_, d.rep_lo_);
212   }
213 
214  private:
215   friend constexpr int64_t time_internal::GetRepHi(Duration d);
216   friend constexpr uint32_t time_internal::GetRepLo(Duration d);
217   friend constexpr Duration time_internal::MakeDuration(int64_t hi,
218                                                         uint32_t lo);
Duration(int64_t hi,uint32_t lo)219   constexpr Duration(int64_t hi, uint32_t lo) : rep_hi_(hi), rep_lo_(lo) {}
220   int64_t rep_hi_;
221   uint32_t rep_lo_;
222 };
223 
224 // Relational Operators
225 constexpr bool operator<(Duration lhs, Duration rhs);
226 constexpr bool operator>(Duration lhs, Duration rhs) { return rhs < lhs; }
227 constexpr bool operator>=(Duration lhs, Duration rhs) { return !(lhs < rhs); }
228 constexpr bool operator<=(Duration lhs, Duration rhs) { return !(rhs < lhs); }
229 constexpr bool operator==(Duration lhs, Duration rhs);
230 constexpr bool operator!=(Duration lhs, Duration rhs) { return !(lhs == rhs); }
231 
232 // Additive Operators
233 constexpr Duration operator-(Duration d);
234 inline Duration operator+(Duration lhs, Duration rhs) { return lhs += rhs; }
235 inline Duration operator-(Duration lhs, Duration rhs) { return lhs -= rhs; }
236 
237 // Multiplicative Operators
238 // Integer operands must be representable as int64_t.
239 template <typename T>
240 Duration operator*(Duration lhs, T rhs) {
241   return lhs *= rhs;
242 }
243 template <typename T>
244 Duration operator*(T lhs, Duration rhs) {
245   return rhs *= lhs;
246 }
247 template <typename T>
248 Duration operator/(Duration lhs, T rhs) {
249   return lhs /= rhs;
250 }
251 inline int64_t operator/(Duration lhs, Duration rhs) {
252   return time_internal::IDivDuration(true, lhs, rhs,
253                                      &lhs);  // trunc towards zero
254 }
255 inline Duration operator%(Duration lhs, Duration rhs) { return lhs %= rhs; }
256 
257 // IDivDuration()
258 //
259 // Divides a numerator `Duration` by a denominator `Duration`, returning the
260 // quotient and remainder. The remainder always has the same sign as the
261 // numerator. The returned quotient and remainder respect the identity:
262 //
263 //   numerator = denominator * quotient + remainder
264 //
265 // Returned quotients are capped to the range of `int64_t`, with the difference
266 // spilling into the remainder to uphold the above identity. This means that the
267 // remainder returned could differ from the remainder returned by
268 // `Duration::operator%` for huge quotients.
269 //
270 // See also the notes on `InfiniteDuration()` below regarding the behavior of
271 // division involving zero and infinite durations.
272 //
273 // Example:
274 //
275 //   constexpr absl::Duration a =
276 //       absl::Seconds(std::numeric_limits<int64_t>::max());  // big
277 //   constexpr absl::Duration b = absl::Nanoseconds(1);       // small
278 //
279 //   absl::Duration rem = a % b;
280 //   // rem == absl::ZeroDuration()
281 //
282 //   // Here, q would overflow int64_t, so rem accounts for the difference.
283 //   int64_t q = absl::IDivDuration(a, b, &rem);
284 //   // q == std::numeric_limits<int64_t>::max(), rem == a - b * q
IDivDuration(Duration num,Duration den,Duration * rem)285 inline int64_t IDivDuration(Duration num, Duration den, Duration* rem) {
286   return time_internal::IDivDuration(true, num, den,
287                                      rem);  // trunc towards zero
288 }
289 
290 // FDivDuration()
291 //
292 // Divides a `Duration` numerator into a fractional number of units of a
293 // `Duration` denominator.
294 //
295 // See also the notes on `InfiniteDuration()` below regarding the behavior of
296 // division involving zero and infinite durations.
297 //
298 // Example:
299 //
300 //   double d = absl::FDivDuration(absl::Milliseconds(1500), absl::Seconds(1));
301 //   // d == 1.5
302 double FDivDuration(Duration num, Duration den);
303 
304 // ZeroDuration()
305 //
306 // Returns a zero-length duration. This function behaves just like the default
307 // constructor, but the name helps make the semantics clear at call sites.
ZeroDuration()308 constexpr Duration ZeroDuration() { return Duration(); }
309 
310 // AbsDuration()
311 //
312 // Returns the absolute value of a duration.
AbsDuration(Duration d)313 inline Duration AbsDuration(Duration d) {
314   return (d < ZeroDuration()) ? -d : d;
315 }
316 
317 // Trunc()
318 //
319 // Truncates a duration (toward zero) to a multiple of a non-zero unit.
320 //
321 // Example:
322 //
323 //   absl::Duration d = absl::Nanoseconds(123456789);
324 //   absl::Duration a = absl::Trunc(d, absl::Microseconds(1));  // 123456us
325 Duration Trunc(Duration d, Duration unit);
326 
327 // Floor()
328 //
329 // Floors a duration using the passed duration unit to its largest value not
330 // greater than the duration.
331 //
332 // Example:
333 //
334 //   absl::Duration d = absl::Nanoseconds(123456789);
335 //   absl::Duration b = absl::Floor(d, absl::Microseconds(1));  // 123456us
336 Duration Floor(Duration d, Duration unit);
337 
338 // Ceil()
339 //
340 // Returns the ceiling of a duration using the passed duration unit to its
341 // smallest value not less than the duration.
342 //
343 // Example:
344 //
345 //   absl::Duration d = absl::Nanoseconds(123456789);
346 //   absl::Duration c = absl::Ceil(d, absl::Microseconds(1));   // 123457us
347 Duration Ceil(Duration d, Duration unit);
348 
349 // InfiniteDuration()
350 //
351 // Returns an infinite `Duration`.  To get a `Duration` representing negative
352 // infinity, use `-InfiniteDuration()`.
353 //
354 // Duration arithmetic overflows to +/- infinity and saturates. In general,
355 // arithmetic with `Duration` infinities is similar to IEEE 754 infinities
356 // except where IEEE 754 NaN would be involved, in which case +/-
357 // `InfiniteDuration()` is used in place of a "nan" Duration.
358 //
359 // Examples:
360 //
361 //   constexpr absl::Duration inf = absl::InfiniteDuration();
362 //   const absl::Duration d = ... any finite duration ...
363 //
364 //   inf == inf + inf
365 //   inf == inf + d
366 //   inf == inf - inf
367 //   -inf == d - inf
368 //
369 //   inf == d * 1e100
370 //   inf == inf / 2
371 //   0 == d / inf
372 //   INT64_MAX == inf / d
373 //
374 //   d < inf
375 //   -inf < d
376 //
377 //   // Division by zero returns infinity, or INT64_MIN/MAX where appropriate.
378 //   inf == d / 0
379 //   INT64_MAX == d / absl::ZeroDuration()
380 //
381 // The examples involving the `/` operator above also apply to `IDivDuration()`
382 // and `FDivDuration()`.
383 constexpr Duration InfiniteDuration();
384 
385 // Nanoseconds()
386 // Microseconds()
387 // Milliseconds()
388 // Seconds()
389 // Minutes()
390 // Hours()
391 //
392 // Factory functions for constructing `Duration` values from an integral number
393 // of the unit indicated by the factory function's name. The number must be
394 // representable as int64_t.
395 //
396 // NOTE: no "Days()" factory function exists because "a day" is ambiguous.
397 // Civil days are not always 24 hours long, and a 24-hour duration often does
398 // not correspond with a civil day. If a 24-hour duration is needed, use
399 // `absl::Hours(24)`. If you actually want a civil day, use absl::CivilDay
400 // from civil_time.h.
401 //
402 // Example:
403 //
404 //   absl::Duration a = absl::Seconds(60);
405 //   absl::Duration b = absl::Minutes(1);  // b == a
406 template <typename T, time_internal::EnableIfIntegral<T> = 0>
Nanoseconds(T n)407 constexpr Duration Nanoseconds(T n) {
408   return time_internal::FromInt64(n, std::nano{});
409 }
410 template <typename T, time_internal::EnableIfIntegral<T> = 0>
Microseconds(T n)411 constexpr Duration Microseconds(T n) {
412   return time_internal::FromInt64(n, std::micro{});
413 }
414 template <typename T, time_internal::EnableIfIntegral<T> = 0>
Milliseconds(T n)415 constexpr Duration Milliseconds(T n) {
416   return time_internal::FromInt64(n, std::milli{});
417 }
418 template <typename T, time_internal::EnableIfIntegral<T> = 0>
Seconds(T n)419 constexpr Duration Seconds(T n) {
420   return time_internal::FromInt64(n, std::ratio<1>{});
421 }
422 template <typename T, time_internal::EnableIfIntegral<T> = 0>
Minutes(T n)423 constexpr Duration Minutes(T n) {
424   return time_internal::FromInt64(n, std::ratio<60>{});
425 }
426 template <typename T, time_internal::EnableIfIntegral<T> = 0>
Hours(T n)427 constexpr Duration Hours(T n) {
428   return time_internal::FromInt64(n, std::ratio<3600>{});
429 }
430 
431 // Factory overloads for constructing `Duration` values from a floating-point
432 // number of the unit indicated by the factory function's name. These functions
433 // exist for convenience, but they are not as efficient as the integral
434 // factories, which should be preferred.
435 //
436 // Example:
437 //
438 //   auto a = absl::Seconds(1.5);        // OK
439 //   auto b = absl::Milliseconds(1500);  // BETTER
440 template <typename T, time_internal::EnableIfFloat<T> = 0>
Nanoseconds(T n)441 Duration Nanoseconds(T n) {
442   return n * Nanoseconds(1);
443 }
444 template <typename T, time_internal::EnableIfFloat<T> = 0>
Microseconds(T n)445 Duration Microseconds(T n) {
446   return n * Microseconds(1);
447 }
448 template <typename T, time_internal::EnableIfFloat<T> = 0>
Milliseconds(T n)449 Duration Milliseconds(T n) {
450   return n * Milliseconds(1);
451 }
452 template <typename T, time_internal::EnableIfFloat<T> = 0>
Seconds(T n)453 Duration Seconds(T n) {
454   if (n >= 0) {  // Note: `NaN >= 0` is false.
455     if (n >= static_cast<T>((std::numeric_limits<int64_t>::max)())) {
456       return InfiniteDuration();
457     }
458     return time_internal::MakePosDoubleDuration(n);
459   } else {
460     if (std::isnan(n))
461       return std::signbit(n) ? -InfiniteDuration() : InfiniteDuration();
462     if (n <= (std::numeric_limits<int64_t>::min)()) return -InfiniteDuration();
463     return -time_internal::MakePosDoubleDuration(-n);
464   }
465 }
466 template <typename T, time_internal::EnableIfFloat<T> = 0>
Minutes(T n)467 Duration Minutes(T n) {
468   return n * Minutes(1);
469 }
470 template <typename T, time_internal::EnableIfFloat<T> = 0>
Hours(T n)471 Duration Hours(T n) {
472   return n * Hours(1);
473 }
474 
475 // ToInt64Nanoseconds()
476 // ToInt64Microseconds()
477 // ToInt64Milliseconds()
478 // ToInt64Seconds()
479 // ToInt64Minutes()
480 // ToInt64Hours()
481 //
482 // Helper functions that convert a Duration to an integral count of the
483 // indicated unit. These return the same results as the `IDivDuration()`
484 // function, though they usually do so more efficiently; see the
485 // documentation of `IDivDuration()` for details about overflow, etc.
486 //
487 // Example:
488 //
489 //   absl::Duration d = absl::Milliseconds(1500);
490 //   int64_t isec = absl::ToInt64Seconds(d);  // isec == 1
491 ABSL_ATTRIBUTE_PURE_FUNCTION int64_t ToInt64Nanoseconds(Duration d);
492 ABSL_ATTRIBUTE_PURE_FUNCTION int64_t ToInt64Microseconds(Duration d);
493 ABSL_ATTRIBUTE_PURE_FUNCTION int64_t ToInt64Milliseconds(Duration d);
494 ABSL_ATTRIBUTE_PURE_FUNCTION int64_t ToInt64Seconds(Duration d);
495 ABSL_ATTRIBUTE_PURE_FUNCTION int64_t ToInt64Minutes(Duration d);
496 ABSL_ATTRIBUTE_PURE_FUNCTION int64_t ToInt64Hours(Duration d);
497 
498 // ToDoubleNanoseconds()
499 // ToDoubleMicroseconds()
500 // ToDoubleMilliseconds()
501 // ToDoubleSeconds()
502 // ToDoubleMinutes()
503 // ToDoubleHours()
504 //
505 // Helper functions that convert a Duration to a floating point count of the
506 // indicated unit. These functions are shorthand for the `FDivDuration()`
507 // function above; see its documentation for details about overflow, etc.
508 //
509 // Example:
510 //
511 //   absl::Duration d = absl::Milliseconds(1500);
512 //   double dsec = absl::ToDoubleSeconds(d);  // dsec == 1.5
513 ABSL_ATTRIBUTE_PURE_FUNCTION double ToDoubleNanoseconds(Duration d);
514 ABSL_ATTRIBUTE_PURE_FUNCTION double ToDoubleMicroseconds(Duration d);
515 ABSL_ATTRIBUTE_PURE_FUNCTION double ToDoubleMilliseconds(Duration d);
516 ABSL_ATTRIBUTE_PURE_FUNCTION double ToDoubleSeconds(Duration d);
517 ABSL_ATTRIBUTE_PURE_FUNCTION double ToDoubleMinutes(Duration d);
518 ABSL_ATTRIBUTE_PURE_FUNCTION double ToDoubleHours(Duration d);
519 
520 // FromChrono()
521 //
522 // Converts any of the pre-defined std::chrono durations to an absl::Duration.
523 //
524 // Example:
525 //
526 //   std::chrono::milliseconds ms(123);
527 //   absl::Duration d = absl::FromChrono(ms);
528 constexpr Duration FromChrono(const std::chrono::nanoseconds& d);
529 constexpr Duration FromChrono(const std::chrono::microseconds& d);
530 constexpr Duration FromChrono(const std::chrono::milliseconds& d);
531 constexpr Duration FromChrono(const std::chrono::seconds& d);
532 constexpr Duration FromChrono(const std::chrono::minutes& d);
533 constexpr Duration FromChrono(const std::chrono::hours& d);
534 
535 // ToChronoNanoseconds()
536 // ToChronoMicroseconds()
537 // ToChronoMilliseconds()
538 // ToChronoSeconds()
539 // ToChronoMinutes()
540 // ToChronoHours()
541 //
542 // Converts an absl::Duration to any of the pre-defined std::chrono durations.
543 // If overflow would occur, the returned value will saturate at the min/max
544 // chrono duration value instead.
545 //
546 // Example:
547 //
548 //   absl::Duration d = absl::Microseconds(123);
549 //   auto x = absl::ToChronoMicroseconds(d);
550 //   auto y = absl::ToChronoNanoseconds(d);  // x == y
551 //   auto z = absl::ToChronoSeconds(absl::InfiniteDuration());
552 //   // z == std::chrono::seconds::max()
553 std::chrono::nanoseconds ToChronoNanoseconds(Duration d);
554 std::chrono::microseconds ToChronoMicroseconds(Duration d);
555 std::chrono::milliseconds ToChronoMilliseconds(Duration d);
556 std::chrono::seconds ToChronoSeconds(Duration d);
557 std::chrono::minutes ToChronoMinutes(Duration d);
558 std::chrono::hours ToChronoHours(Duration d);
559 
560 // FormatDuration()
561 //
562 // Returns a string representing the duration in the form "72h3m0.5s".
563 // Returns "inf" or "-inf" for +/- `InfiniteDuration()`.
564 std::string FormatDuration(Duration d);
565 
566 // Output stream operator.
567 inline std::ostream& operator<<(std::ostream& os, Duration d) {
568   return os << FormatDuration(d);
569 }
570 
571 // ParseDuration()
572 //
573 // Parses a duration string consisting of a possibly signed sequence of
574 // decimal numbers, each with an optional fractional part and a unit
575 // suffix.  The valid suffixes are "ns", "us" "ms", "s", "m", and "h".
576 // Simple examples include "300ms", "-1.5h", and "2h45m".  Parses "0" as
577 // `ZeroDuration()`. Parses "inf" and "-inf" as +/- `InfiniteDuration()`.
578 bool ParseDuration(absl::string_view dur_string, Duration* d);
579 
580 // AbslParseFlag()
581 //
582 // Parses a command-line flag string representation `text` into a Duration
583 // value. Duration flags must be specified in a format that is valid input for
584 // `absl::ParseDuration()`.
585 bool AbslParseFlag(absl::string_view text, Duration* dst, std::string* error);
586 
587 
588 // AbslUnparseFlag()
589 //
590 // Unparses a Duration value into a command-line string representation using
591 // the format specified by `absl::ParseDuration()`.
592 std::string AbslUnparseFlag(Duration d);
593 
594 ABSL_DEPRECATED("Use AbslParseFlag() instead.")
595 bool ParseFlag(const std::string& text, Duration* dst, std::string* error);
596 ABSL_DEPRECATED("Use AbslUnparseFlag() instead.")
597 std::string UnparseFlag(Duration d);
598 
599 // Time
600 //
601 // An `absl::Time` represents a specific instant in time. Arithmetic operators
602 // are provided for naturally expressing time calculations. Instances are
603 // created using `absl::Now()` and the `absl::From*()` factory functions that
604 // accept the gamut of other time representations. Formatting and parsing
605 // functions are provided for conversion to and from strings.  `absl::Time`
606 // should be passed by value rather than const reference.
607 //
608 // `absl::Time` assumes there are 60 seconds in a minute, which means the
609 // underlying time scales must be "smeared" to eliminate leap seconds.
610 // See https://developers.google.com/time/smear.
611 //
612 // Even though `absl::Time` supports a wide range of timestamps, exercise
613 // caution when using values in the distant past. `absl::Time` uses the
614 // Proleptic Gregorian calendar, which extends the Gregorian calendar backward
615 // to dates before its introduction in 1582.
616 // See https://en.wikipedia.org/wiki/Proleptic_Gregorian_calendar
617 // for more information. Use the ICU calendar classes to convert a date in
618 // some other calendar (http://userguide.icu-project.org/datetime/calendar).
619 //
620 // Similarly, standardized time zones are a reasonably recent innovation, with
621 // the Greenwich prime meridian being established in 1884. The TZ database
622 // itself does not profess accurate offsets for timestamps prior to 1970. The
623 // breakdown of future timestamps is subject to the whim of regional
624 // governments.
625 //
626 // The `absl::Time` class represents an instant in time as a count of clock
627 // ticks of some granularity (resolution) from some starting point (epoch).
628 //
629 // `absl::Time` uses a resolution that is high enough to avoid loss in
630 // precision, and a range that is wide enough to avoid overflow, when
631 // converting between tick counts in most Google time scales (i.e., resolution
632 // of at least one nanosecond, and range +/-100 billion years).  Conversions
633 // between the time scales are performed by truncating (towards negative
634 // infinity) to the nearest representable point.
635 //
636 // Examples:
637 //
638 //   absl::Time t1 = ...;
639 //   absl::Time t2 = t1 + absl::Minutes(2);
640 //   absl::Duration d = t2 - t1;  // == absl::Minutes(2)
641 //
642 class Time {
643  public:
644   // Value semantics.
645 
646   // Returns the Unix epoch.  However, those reading your code may not know
647   // or expect the Unix epoch as the default value, so make your code more
648   // readable by explicitly initializing all instances before use.
649   //
650   // Example:
651   //   absl::Time t = absl::UnixEpoch();
652   //   absl::Time t = absl::Now();
653   //   absl::Time t = absl::TimeFromTimeval(tv);
654   //   absl::Time t = absl::InfinitePast();
655   constexpr Time() = default;
656 
657   // Copyable.
658   constexpr Time(const Time& t) = default;
659   Time& operator=(const Time& t) = default;
660 
661   // Assignment operators.
662   Time& operator+=(Duration d) {
663     rep_ += d;
664     return *this;
665   }
666   Time& operator-=(Duration d) {
667     rep_ -= d;
668     return *this;
669   }
670 
671   // Time::Breakdown
672   //
673   // The calendar and wall-clock (aka "civil time") components of an
674   // `absl::Time` in a certain `absl::TimeZone`. This struct is not
675   // intended to represent an instant in time. So, rather than passing
676   // a `Time::Breakdown` to a function, pass an `absl::Time` and an
677   // `absl::TimeZone`.
678   //
679   // Deprecated. Use `absl::TimeZone::CivilInfo`.
680   struct
681       Breakdown {
682     int64_t year;        // year (e.g., 2013)
683     int month;           // month of year [1:12]
684     int day;             // day of month [1:31]
685     int hour;            // hour of day [0:23]
686     int minute;          // minute of hour [0:59]
687     int second;          // second of minute [0:59]
688     Duration subsecond;  // [Seconds(0):Seconds(1)) if finite
689     int weekday;         // 1==Mon, ..., 7=Sun
690     int yearday;         // day of year [1:366]
691 
692     // Note: The following fields exist for backward compatibility
693     // with older APIs.  Accessing these fields directly is a sign of
694     // imprudent logic in the calling code.  Modern time-related code
695     // should only access this data indirectly by way of FormatTime().
696     // These fields are undefined for InfiniteFuture() and InfinitePast().
697     int offset;             // seconds east of UTC
698     bool is_dst;            // is offset non-standard?
699     const char* zone_abbr;  // time-zone abbreviation (e.g., "PST")
700   };
701 
702   // Time::In()
703   //
704   // Returns the breakdown of this instant in the given TimeZone.
705   //
706   // Deprecated. Use `absl::TimeZone::At(Time)`.
707   Breakdown In(TimeZone tz) const;
708 
709   template <typename H>
AbslHashValue(H h,Time t)710   friend H AbslHashValue(H h, Time t) {
711     return H::combine(std::move(h), t.rep_);
712   }
713 
714  private:
715   friend constexpr Time time_internal::FromUnixDuration(Duration d);
716   friend constexpr Duration time_internal::ToUnixDuration(Time t);
717   friend constexpr bool operator<(Time lhs, Time rhs);
718   friend constexpr bool operator==(Time lhs, Time rhs);
719   friend Duration operator-(Time lhs, Time rhs);
720   friend constexpr Time UniversalEpoch();
721   friend constexpr Time InfiniteFuture();
722   friend constexpr Time InfinitePast();
Time(Duration rep)723   constexpr explicit Time(Duration rep) : rep_(rep) {}
724   Duration rep_;
725 };
726 
727 // Relational Operators
728 constexpr bool operator<(Time lhs, Time rhs) { return lhs.rep_ < rhs.rep_; }
729 constexpr bool operator>(Time lhs, Time rhs) { return rhs < lhs; }
730 constexpr bool operator>=(Time lhs, Time rhs) { return !(lhs < rhs); }
731 constexpr bool operator<=(Time lhs, Time rhs) { return !(rhs < lhs); }
732 constexpr bool operator==(Time lhs, Time rhs) { return lhs.rep_ == rhs.rep_; }
733 constexpr bool operator!=(Time lhs, Time rhs) { return !(lhs == rhs); }
734 
735 // Additive Operators
736 inline Time operator+(Time lhs, Duration rhs) { return lhs += rhs; }
737 inline Time operator+(Duration lhs, Time rhs) { return rhs += lhs; }
738 inline Time operator-(Time lhs, Duration rhs) { return lhs -= rhs; }
739 inline Duration operator-(Time lhs, Time rhs) { return lhs.rep_ - rhs.rep_; }
740 
741 // UnixEpoch()
742 //
743 // Returns the `absl::Time` representing "1970-01-01 00:00:00.0 +0000".
UnixEpoch()744 constexpr Time UnixEpoch() { return Time(); }
745 
746 // UniversalEpoch()
747 //
748 // Returns the `absl::Time` representing "0001-01-01 00:00:00.0 +0000", the
749 // epoch of the ICU Universal Time Scale.
UniversalEpoch()750 constexpr Time UniversalEpoch() {
751   // 719162 is the number of days from 0001-01-01 to 1970-01-01,
752   // assuming the Gregorian calendar.
753   return Time(
754       time_internal::MakeDuration(-24 * 719162 * int64_t{3600}, uint32_t{0}));
755 }
756 
757 // InfiniteFuture()
758 //
759 // Returns an `absl::Time` that is infinitely far in the future.
InfiniteFuture()760 constexpr Time InfiniteFuture() {
761   return Time(time_internal::MakeDuration((std::numeric_limits<int64_t>::max)(),
762                                           ~uint32_t{0}));
763 }
764 
765 // InfinitePast()
766 //
767 // Returns an `absl::Time` that is infinitely far in the past.
InfinitePast()768 constexpr Time InfinitePast() {
769   return Time(time_internal::MakeDuration((std::numeric_limits<int64_t>::min)(),
770                                           ~uint32_t{0}));
771 }
772 
773 // FromUnixNanos()
774 // FromUnixMicros()
775 // FromUnixMillis()
776 // FromUnixSeconds()
777 // FromTimeT()
778 // FromUDate()
779 // FromUniversal()
780 //
781 // Creates an `absl::Time` from a variety of other representations.
782 constexpr Time FromUnixNanos(int64_t ns);
783 constexpr Time FromUnixMicros(int64_t us);
784 constexpr Time FromUnixMillis(int64_t ms);
785 constexpr Time FromUnixSeconds(int64_t s);
786 constexpr Time FromTimeT(time_t t);
787 Time FromUDate(double udate);
788 Time FromUniversal(int64_t universal);
789 
790 // ToUnixNanos()
791 // ToUnixMicros()
792 // ToUnixMillis()
793 // ToUnixSeconds()
794 // ToTimeT()
795 // ToUDate()
796 // ToUniversal()
797 //
798 // Converts an `absl::Time` to a variety of other representations.  Note that
799 // these operations round down toward negative infinity where necessary to
800 // adjust to the resolution of the result type.  Beware of possible time_t
801 // over/underflow in ToTime{T,val,spec}() on 32-bit platforms.
802 int64_t ToUnixNanos(Time t);
803 int64_t ToUnixMicros(Time t);
804 int64_t ToUnixMillis(Time t);
805 int64_t ToUnixSeconds(Time t);
806 time_t ToTimeT(Time t);
807 double ToUDate(Time t);
808 int64_t ToUniversal(Time t);
809 
810 // DurationFromTimespec()
811 // DurationFromTimeval()
812 // ToTimespec()
813 // ToTimeval()
814 // TimeFromTimespec()
815 // TimeFromTimeval()
816 // ToTimespec()
817 // ToTimeval()
818 //
819 // Some APIs use a timespec or a timeval as a Duration (e.g., nanosleep(2)
820 // and select(2)), while others use them as a Time (e.g. clock_gettime(2)
821 // and gettimeofday(2)), so conversion functions are provided for both cases.
822 // The "to timespec/val" direction is easily handled via overloading, but
823 // for "from timespec/val" the desired type is part of the function name.
824 Duration DurationFromTimespec(timespec ts);
825 Duration DurationFromTimeval(timeval tv);
826 timespec ToTimespec(Duration d);
827 timeval ToTimeval(Duration d);
828 Time TimeFromTimespec(timespec ts);
829 Time TimeFromTimeval(timeval tv);
830 timespec ToTimespec(Time t);
831 timeval ToTimeval(Time t);
832 
833 // FromChrono()
834 //
835 // Converts a std::chrono::system_clock::time_point to an absl::Time.
836 //
837 // Example:
838 //
839 //   auto tp = std::chrono::system_clock::from_time_t(123);
840 //   absl::Time t = absl::FromChrono(tp);
841 //   // t == absl::FromTimeT(123)
842 Time FromChrono(const std::chrono::system_clock::time_point& tp);
843 
844 // ToChronoTime()
845 //
846 // Converts an absl::Time to a std::chrono::system_clock::time_point. If
847 // overflow would occur, the returned value will saturate at the min/max time
848 // point value instead.
849 //
850 // Example:
851 //
852 //   absl::Time t = absl::FromTimeT(123);
853 //   auto tp = absl::ToChronoTime(t);
854 //   // tp == std::chrono::system_clock::from_time_t(123);
855 std::chrono::system_clock::time_point ToChronoTime(Time);
856 
857 // AbslParseFlag()
858 //
859 // Parses the command-line flag string representation `text` into a Time value.
860 // Time flags must be specified in a format that matches absl::RFC3339_full.
861 //
862 // For example:
863 //
864 //   --start_time=2016-01-02T03:04:05.678+08:00
865 //
866 // Note: A UTC offset (or 'Z' indicating a zero-offset from UTC) is required.
867 //
868 // Additionally, if you'd like to specify a time as a count of
869 // seconds/milliseconds/etc from the Unix epoch, use an absl::Duration flag
870 // and add that duration to absl::UnixEpoch() to get an absl::Time.
871 bool AbslParseFlag(absl::string_view text, Time* t, std::string* error);
872 
873 // AbslUnparseFlag()
874 //
875 // Unparses a Time value into a command-line string representation using
876 // the format specified by `absl::ParseTime()`.
877 std::string AbslUnparseFlag(Time t);
878 
879 ABSL_DEPRECATED("Use AbslParseFlag() instead.")
880 bool ParseFlag(const std::string& text, Time* t, std::string* error);
881 ABSL_DEPRECATED("Use AbslUnparseFlag() instead.")
882 std::string UnparseFlag(Time t);
883 
884 // TimeZone
885 //
886 // The `absl::TimeZone` is an opaque, small, value-type class representing a
887 // geo-political region within which particular rules are used for converting
888 // between absolute and civil times (see https://git.io/v59Ly). `absl::TimeZone`
889 // values are named using the TZ identifiers from the IANA Time Zone Database,
890 // such as "America/Los_Angeles" or "Australia/Sydney". `absl::TimeZone` values
891 // are created from factory functions such as `absl::LoadTimeZone()`. Note:
892 // strings like "PST" and "EDT" are not valid TZ identifiers. Prefer to pass by
893 // value rather than const reference.
894 //
895 // For more on the fundamental concepts of time zones, absolute times, and civil
896 // times, see https://github.com/google/cctz#fundamental-concepts
897 //
898 // Examples:
899 //
900 //   absl::TimeZone utc = absl::UTCTimeZone();
901 //   absl::TimeZone pst = absl::FixedTimeZone(-8 * 60 * 60);
902 //   absl::TimeZone loc = absl::LocalTimeZone();
903 //   absl::TimeZone lax;
904 //   if (!absl::LoadTimeZone("America/Los_Angeles", &lax)) {
905 //     // handle error case
906 //   }
907 //
908 // See also:
909 // - https://github.com/google/cctz
910 // - https://www.iana.org/time-zones
911 // - https://en.wikipedia.org/wiki/Zoneinfo
912 class TimeZone {
913  public:
TimeZone(time_internal::cctz::time_zone tz)914   explicit TimeZone(time_internal::cctz::time_zone tz) : cz_(tz) {}
915   TimeZone() = default;  // UTC, but prefer UTCTimeZone() to be explicit.
916 
917   // Copyable.
918   TimeZone(const TimeZone&) = default;
919   TimeZone& operator=(const TimeZone&) = default;
920 
time_zone()921   explicit operator time_internal::cctz::time_zone() const { return cz_; }
922 
name()923   std::string name() const { return cz_.name(); }
924 
925   // TimeZone::CivilInfo
926   //
927   // Information about the civil time corresponding to an absolute time.
928   // This struct is not intended to represent an instant in time. So, rather
929   // than passing a `TimeZone::CivilInfo` to a function, pass an `absl::Time`
930   // and an `absl::TimeZone`.
931   struct CivilInfo {
932     CivilSecond cs;
933     Duration subsecond;
934 
935     // Note: The following fields exist for backward compatibility
936     // with older APIs.  Accessing these fields directly is a sign of
937     // imprudent logic in the calling code.  Modern time-related code
938     // should only access this data indirectly by way of FormatTime().
939     // These fields are undefined for InfiniteFuture() and InfinitePast().
940     int offset;             // seconds east of UTC
941     bool is_dst;            // is offset non-standard?
942     const char* zone_abbr;  // time-zone abbreviation (e.g., "PST")
943   };
944 
945   // TimeZone::At(Time)
946   //
947   // Returns the civil time for this TimeZone at a certain `absl::Time`.
948   // If the input time is infinite, the output civil second will be set to
949   // CivilSecond::max() or min(), and the subsecond will be infinite.
950   //
951   // Example:
952   //
953   //   const auto epoch = lax.At(absl::UnixEpoch());
954   //   // epoch.cs == 1969-12-31 16:00:00
955   //   // epoch.subsecond == absl::ZeroDuration()
956   //   // epoch.offset == -28800
957   //   // epoch.is_dst == false
958   //   // epoch.abbr == "PST"
959   CivilInfo At(Time t) const;
960 
961   // TimeZone::TimeInfo
962   //
963   // Information about the absolute times corresponding to a civil time.
964   // (Subseconds must be handled separately.)
965   //
966   // It is possible for a caller to pass a civil-time value that does
967   // not represent an actual or unique instant in time (due to a shift
968   // in UTC offset in the TimeZone, which results in a discontinuity in
969   // the civil-time components). For example, a daylight-saving-time
970   // transition skips or repeats civil times---in the United States,
971   // March 13, 2011 02:15 never occurred, while November 6, 2011 01:15
972   // occurred twice---so requests for such times are not well-defined.
973   // To account for these possibilities, `absl::TimeZone::TimeInfo` is
974   // richer than just a single `absl::Time`.
975   struct TimeInfo {
976     enum CivilKind {
977       UNIQUE,    // the civil time was singular (pre == trans == post)
978       SKIPPED,   // the civil time did not exist (pre >= trans > post)
979       REPEATED,  // the civil time was ambiguous (pre < trans <= post)
980     } kind;
981     Time pre;    // time calculated using the pre-transition offset
982     Time trans;  // when the civil-time discontinuity occurred
983     Time post;   // time calculated using the post-transition offset
984   };
985 
986   // TimeZone::At(CivilSecond)
987   //
988   // Returns an `absl::TimeInfo` containing the absolute time(s) for this
989   // TimeZone at an `absl::CivilSecond`. When the civil time is skipped or
990   // repeated, returns times calculated using the pre-transition and post-
991   // transition UTC offsets, plus the transition time itself.
992   //
993   // Examples:
994   //
995   //   // A unique civil time
996   //   const auto jan01 = lax.At(absl::CivilSecond(2011, 1, 1, 0, 0, 0));
997   //   // jan01.kind == TimeZone::TimeInfo::UNIQUE
998   //   // jan01.pre    is 2011-01-01 00:00:00 -0800
999   //   // jan01.trans  is 2011-01-01 00:00:00 -0800
1000   //   // jan01.post   is 2011-01-01 00:00:00 -0800
1001   //
1002   //   // A Spring DST transition, when there is a gap in civil time
1003   //   const auto mar13 = lax.At(absl::CivilSecond(2011, 3, 13, 2, 15, 0));
1004   //   // mar13.kind == TimeZone::TimeInfo::SKIPPED
1005   //   // mar13.pre   is 2011-03-13 03:15:00 -0700
1006   //   // mar13.trans is 2011-03-13 03:00:00 -0700
1007   //   // mar13.post  is 2011-03-13 01:15:00 -0800
1008   //
1009   //   // A Fall DST transition, when civil times are repeated
1010   //   const auto nov06 = lax.At(absl::CivilSecond(2011, 11, 6, 1, 15, 0));
1011   //   // nov06.kind == TimeZone::TimeInfo::REPEATED
1012   //   // nov06.pre   is 2011-11-06 01:15:00 -0700
1013   //   // nov06.trans is 2011-11-06 01:00:00 -0800
1014   //   // nov06.post  is 2011-11-06 01:15:00 -0800
1015   TimeInfo At(CivilSecond ct) const;
1016 
1017   // TimeZone::NextTransition()
1018   // TimeZone::PrevTransition()
1019   //
1020   // Finds the time of the next/previous offset change in this time zone.
1021   //
1022   // By definition, `NextTransition(t, &trans)` returns false when `t` is
1023   // `InfiniteFuture()`, and `PrevTransition(t, &trans)` returns false
1024   // when `t` is `InfinitePast()`. If the zone has no transitions, the
1025   // result will also be false no matter what the argument.
1026   //
1027   // Otherwise, when `t` is `InfinitePast()`, `NextTransition(t, &trans)`
1028   // returns true and sets `trans` to the first recorded transition. Chains
1029   // of calls to `NextTransition()/PrevTransition()` will eventually return
1030   // false, but it is unspecified exactly when `NextTransition(t, &trans)`
1031   // jumps to false, or what time is set by `PrevTransition(t, &trans)` for
1032   // a very distant `t`.
1033   //
1034   // Note: Enumeration of time-zone transitions is for informational purposes
1035   // only. Modern time-related code should not care about when offset changes
1036   // occur.
1037   //
1038   // Example:
1039   //   absl::TimeZone nyc;
1040   //   if (!absl::LoadTimeZone("America/New_York", &nyc)) { ... }
1041   //   const auto now = absl::Now();
1042   //   auto t = absl::InfinitePast();
1043   //   absl::TimeZone::CivilTransition trans;
1044   //   while (t <= now && nyc.NextTransition(t, &trans)) {
1045   //     // transition: trans.from -> trans.to
1046   //     t = nyc.At(trans.to).trans;
1047   //   }
1048   struct CivilTransition {
1049     CivilSecond from;  // the civil time we jump from
1050     CivilSecond to;    // the civil time we jump to
1051   };
1052   bool NextTransition(Time t, CivilTransition* trans) const;
1053   bool PrevTransition(Time t, CivilTransition* trans) const;
1054 
1055   template <typename H>
AbslHashValue(H h,TimeZone tz)1056   friend H AbslHashValue(H h, TimeZone tz) {
1057     return H::combine(std::move(h), tz.cz_);
1058   }
1059 
1060  private:
1061   friend bool operator==(TimeZone a, TimeZone b) { return a.cz_ == b.cz_; }
1062   friend bool operator!=(TimeZone a, TimeZone b) { return a.cz_ != b.cz_; }
1063   friend std::ostream& operator<<(std::ostream& os, TimeZone tz) {
1064     return os << tz.name();
1065   }
1066 
1067   time_internal::cctz::time_zone cz_;
1068 };
1069 
1070 // LoadTimeZone()
1071 //
1072 // Loads the named zone. May perform I/O on the initial load of the named
1073 // zone. If the name is invalid, or some other kind of error occurs, returns
1074 // `false` and `*tz` is set to the UTC time zone.
LoadTimeZone(absl::string_view name,TimeZone * tz)1075 inline bool LoadTimeZone(absl::string_view name, TimeZone* tz) {
1076   if (name == "localtime") {
1077     *tz = TimeZone(time_internal::cctz::local_time_zone());
1078     return true;
1079   }
1080   time_internal::cctz::time_zone cz;
1081   const bool b = time_internal::cctz::load_time_zone(std::string(name), &cz);
1082   *tz = TimeZone(cz);
1083   return b;
1084 }
1085 
1086 // FixedTimeZone()
1087 //
1088 // Returns a TimeZone that is a fixed offset (seconds east) from UTC.
1089 // Note: If the absolute value of the offset is greater than 24 hours
1090 // you'll get UTC (i.e., no offset) instead.
FixedTimeZone(int seconds)1091 inline TimeZone FixedTimeZone(int seconds) {
1092   return TimeZone(
1093       time_internal::cctz::fixed_time_zone(std::chrono::seconds(seconds)));
1094 }
1095 
1096 // UTCTimeZone()
1097 //
1098 // Convenience method returning the UTC time zone.
UTCTimeZone()1099 inline TimeZone UTCTimeZone() {
1100   return TimeZone(time_internal::cctz::utc_time_zone());
1101 }
1102 
1103 // LocalTimeZone()
1104 //
1105 // Convenience method returning the local time zone, or UTC if there is
1106 // no configured local zone.  Warning: Be wary of using LocalTimeZone(),
1107 // and particularly so in a server process, as the zone configured for the
1108 // local machine should be irrelevant.  Prefer an explicit zone name.
LocalTimeZone()1109 inline TimeZone LocalTimeZone() {
1110   return TimeZone(time_internal::cctz::local_time_zone());
1111 }
1112 
1113 // ToCivilSecond()
1114 // ToCivilMinute()
1115 // ToCivilHour()
1116 // ToCivilDay()
1117 // ToCivilMonth()
1118 // ToCivilYear()
1119 //
1120 // Helpers for TimeZone::At(Time) to return particularly aligned civil times.
1121 //
1122 // Example:
1123 //
1124 //   absl::Time t = ...;
1125 //   absl::TimeZone tz = ...;
1126 //   const auto cd = absl::ToCivilDay(t, tz);
ToCivilSecond(Time t,TimeZone tz)1127 inline CivilSecond ToCivilSecond(Time t, TimeZone tz) {
1128   return tz.At(t).cs;  // already a CivilSecond
1129 }
ToCivilMinute(Time t,TimeZone tz)1130 inline CivilMinute ToCivilMinute(Time t, TimeZone tz) {
1131   return CivilMinute(tz.At(t).cs);
1132 }
ToCivilHour(Time t,TimeZone tz)1133 inline CivilHour ToCivilHour(Time t, TimeZone tz) {
1134   return CivilHour(tz.At(t).cs);
1135 }
ToCivilDay(Time t,TimeZone tz)1136 inline CivilDay ToCivilDay(Time t, TimeZone tz) {
1137   return CivilDay(tz.At(t).cs);
1138 }
ToCivilMonth(Time t,TimeZone tz)1139 inline CivilMonth ToCivilMonth(Time t, TimeZone tz) {
1140   return CivilMonth(tz.At(t).cs);
1141 }
ToCivilYear(Time t,TimeZone tz)1142 inline CivilYear ToCivilYear(Time t, TimeZone tz) {
1143   return CivilYear(tz.At(t).cs);
1144 }
1145 
1146 // FromCivil()
1147 //
1148 // Helper for TimeZone::At(CivilSecond) that provides "order-preserving
1149 // semantics." If the civil time maps to a unique time, that time is
1150 // returned. If the civil time is repeated in the given time zone, the
1151 // time using the pre-transition offset is returned. Otherwise, the
1152 // civil time is skipped in the given time zone, and the transition time
1153 // is returned. This means that for any two civil times, ct1 and ct2,
1154 // (ct1 < ct2) => (FromCivil(ct1) <= FromCivil(ct2)), the equal case
1155 // being when two non-existent civil times map to the same transition time.
1156 //
1157 // Note: Accepts civil times of any alignment.
FromCivil(CivilSecond ct,TimeZone tz)1158 inline Time FromCivil(CivilSecond ct, TimeZone tz) {
1159   const auto ti = tz.At(ct);
1160   if (ti.kind == TimeZone::TimeInfo::SKIPPED) return ti.trans;
1161   return ti.pre;
1162 }
1163 
1164 // TimeConversion
1165 //
1166 // An `absl::TimeConversion` represents the conversion of year, month, day,
1167 // hour, minute, and second values (i.e., a civil time), in a particular
1168 // `absl::TimeZone`, to a time instant (an absolute time), as returned by
1169 // `absl::ConvertDateTime()`. Legacy version of `absl::TimeZone::TimeInfo`.
1170 //
1171 // Deprecated. Use `absl::TimeZone::TimeInfo`.
1172 struct
1173     TimeConversion {
1174   Time pre;    // time calculated using the pre-transition offset
1175   Time trans;  // when the civil-time discontinuity occurred
1176   Time post;   // time calculated using the post-transition offset
1177 
1178   enum Kind {
1179     UNIQUE,    // the civil time was singular (pre == trans == post)
1180     SKIPPED,   // the civil time did not exist
1181     REPEATED,  // the civil time was ambiguous
1182   };
1183   Kind kind;
1184 
1185   bool normalized;  // input values were outside their valid ranges
1186 };
1187 
1188 // ConvertDateTime()
1189 //
1190 // Legacy version of `absl::TimeZone::At(absl::CivilSecond)` that takes
1191 // the civil time as six, separate values (YMDHMS).
1192 //
1193 // The input month, day, hour, minute, and second values can be outside
1194 // of their valid ranges, in which case they will be "normalized" during
1195 // the conversion.
1196 //
1197 // Example:
1198 //
1199 //   // "October 32" normalizes to "November 1".
1200 //   absl::TimeConversion tc =
1201 //       absl::ConvertDateTime(2013, 10, 32, 8, 30, 0, lax);
1202 //   // tc.kind == TimeConversion::UNIQUE && tc.normalized == true
1203 //   // absl::ToCivilDay(tc.pre, tz).month() == 11
1204 //   // absl::ToCivilDay(tc.pre, tz).day() == 1
1205 //
1206 // Deprecated. Use `absl::TimeZone::At(CivilSecond)`.
1207 TimeConversion ConvertDateTime(int64_t year, int mon, int day, int hour,
1208                                int min, int sec, TimeZone tz);
1209 
1210 // FromDateTime()
1211 //
1212 // A convenience wrapper for `absl::ConvertDateTime()` that simply returns
1213 // the "pre" `absl::Time`.  That is, the unique result, or the instant that
1214 // is correct using the pre-transition offset (as if the transition never
1215 // happened).
1216 //
1217 // Example:
1218 //
1219 //   absl::Time t = absl::FromDateTime(2017, 9, 26, 9, 30, 0, lax);
1220 //   // t = 2017-09-26 09:30:00 -0700
1221 //
1222 // Deprecated. Use `absl::FromCivil(CivilSecond, TimeZone)`. Note that the
1223 // behavior of `FromCivil()` differs from `FromDateTime()` for skipped civil
1224 // times. If you care about that see `absl::TimeZone::At(absl::CivilSecond)`.
FromDateTime(int64_t year,int mon,int day,int hour,int min,int sec,TimeZone tz)1225 inline Time FromDateTime(int64_t year, int mon, int day, int hour,
1226                          int min, int sec, TimeZone tz) {
1227   return ConvertDateTime(year, mon, day, hour, min, sec, tz).pre;
1228 }
1229 
1230 // FromTM()
1231 //
1232 // Converts the `tm_year`, `tm_mon`, `tm_mday`, `tm_hour`, `tm_min`, and
1233 // `tm_sec` fields to an `absl::Time` using the given time zone. See ctime(3)
1234 // for a description of the expected values of the tm fields. If the civil time
1235 // is unique (see `absl::TimeZone::At(absl::CivilSecond)` above), the matching
1236 // time instant is returned.  Otherwise, the `tm_isdst` field is consulted to
1237 // choose between the possible results.  For a repeated civil time, `tm_isdst !=
1238 // 0` returns the matching DST instant, while `tm_isdst == 0` returns the
1239 // matching non-DST instant.  For a skipped civil time there is no matching
1240 // instant, so `tm_isdst != 0` returns the DST instant, and `tm_isdst == 0`
1241 // returns the non-DST instant, that would have matched if the transition never
1242 // happened.
1243 Time FromTM(const struct tm& tm, TimeZone tz);
1244 
1245 // ToTM()
1246 //
1247 // Converts the given `absl::Time` to a struct tm using the given time zone.
1248 // See ctime(3) for a description of the values of the tm fields.
1249 struct tm ToTM(Time t, TimeZone tz);
1250 
1251 // RFC3339_full
1252 // RFC3339_sec
1253 //
1254 // FormatTime()/ParseTime() format specifiers for RFC3339 date/time strings,
1255 // with trailing zeros trimmed or with fractional seconds omitted altogether.
1256 //
1257 // Note that RFC3339_sec[] matches an ISO 8601 extended format for date and
1258 // time with UTC offset.  Also note the use of "%Y": RFC3339 mandates that
1259 // years have exactly four digits, but we allow them to take their natural
1260 // width.
1261 ABSL_DLL extern const char RFC3339_full[];  // %Y-%m-%d%ET%H:%M:%E*S%Ez
1262 ABSL_DLL extern const char RFC3339_sec[];   // %Y-%m-%d%ET%H:%M:%S%Ez
1263 
1264 // RFC1123_full
1265 // RFC1123_no_wday
1266 //
1267 // FormatTime()/ParseTime() format specifiers for RFC1123 date/time strings.
1268 ABSL_DLL extern const char RFC1123_full[];     // %a, %d %b %E4Y %H:%M:%S %z
1269 ABSL_DLL extern const char RFC1123_no_wday[];  // %d %b %E4Y %H:%M:%S %z
1270 
1271 // FormatTime()
1272 //
1273 // Formats the given `absl::Time` in the `absl::TimeZone` according to the
1274 // provided format string. Uses strftime()-like formatting options, with
1275 // the following extensions:
1276 //
1277 //   - %Ez  - RFC3339-compatible numeric UTC offset (+hh:mm or -hh:mm)
1278 //   - %E*z - Full-resolution numeric UTC offset (+hh:mm:ss or -hh:mm:ss)
1279 //   - %E#S - Seconds with # digits of fractional precision
1280 //   - %E*S - Seconds with full fractional precision (a literal '*')
1281 //   - %E#f - Fractional seconds with # digits of precision
1282 //   - %E*f - Fractional seconds with full precision (a literal '*')
1283 //   - %E4Y - Four-character years (-999 ... -001, 0000, 0001 ... 9999)
1284 //   - %ET  - The RFC3339 "date-time" separator "T"
1285 //
1286 // Note that %E0S behaves like %S, and %E0f produces no characters.  In
1287 // contrast %E*f always produces at least one digit, which may be '0'.
1288 //
1289 // Note that %Y produces as many characters as it takes to fully render the
1290 // year.  A year outside of [-999:9999] when formatted with %E4Y will produce
1291 // more than four characters, just like %Y.
1292 //
1293 // We recommend that format strings include the UTC offset (%z, %Ez, or %E*z)
1294 // so that the result uniquely identifies a time instant.
1295 //
1296 // Example:
1297 //
1298 //   absl::CivilSecond cs(2013, 1, 2, 3, 4, 5);
1299 //   absl::Time t = absl::FromCivil(cs, lax);
1300 //   std::string f = absl::FormatTime("%H:%M:%S", t, lax);  // "03:04:05"
1301 //   f = absl::FormatTime("%H:%M:%E3S", t, lax);  // "03:04:05.000"
1302 //
1303 // Note: If the given `absl::Time` is `absl::InfiniteFuture()`, the returned
1304 // string will be exactly "infinite-future". If the given `absl::Time` is
1305 // `absl::InfinitePast()`, the returned string will be exactly "infinite-past".
1306 // In both cases the given format string and `absl::TimeZone` are ignored.
1307 //
1308 std::string FormatTime(absl::string_view format, Time t, TimeZone tz);
1309 
1310 // Convenience functions that format the given time using the RFC3339_full
1311 // format.  The first overload uses the provided TimeZone, while the second
1312 // uses LocalTimeZone().
1313 std::string FormatTime(Time t, TimeZone tz);
1314 std::string FormatTime(Time t);
1315 
1316 // Output stream operator.
1317 inline std::ostream& operator<<(std::ostream& os, Time t) {
1318   return os << FormatTime(t);
1319 }
1320 
1321 // ParseTime()
1322 //
1323 // Parses an input string according to the provided format string and
1324 // returns the corresponding `absl::Time`. Uses strftime()-like formatting
1325 // options, with the same extensions as FormatTime(), but with the
1326 // exceptions that %E#S is interpreted as %E*S, and %E#f as %E*f.  %Ez
1327 // and %E*z also accept the same inputs, which (along with %z) includes
1328 // 'z' and 'Z' as synonyms for +00:00.  %ET accepts either 'T' or 't'.
1329 //
1330 // %Y consumes as many numeric characters as it can, so the matching data
1331 // should always be terminated with a non-numeric.  %E4Y always consumes
1332 // exactly four characters, including any sign.
1333 //
1334 // Unspecified fields are taken from the default date and time of ...
1335 //
1336 //   "1970-01-01 00:00:00.0 +0000"
1337 //
1338 // For example, parsing a string of "15:45" (%H:%M) will return an absl::Time
1339 // that represents "1970-01-01 15:45:00.0 +0000".
1340 //
1341 // Note that since ParseTime() returns time instants, it makes the most sense
1342 // to parse fully-specified date/time strings that include a UTC offset (%z,
1343 // %Ez, or %E*z).
1344 //
1345 // Note also that `absl::ParseTime()` only heeds the fields year, month, day,
1346 // hour, minute, (fractional) second, and UTC offset.  Other fields, like
1347 // weekday (%a or %A), while parsed for syntactic validity, are ignored
1348 // in the conversion.
1349 //
1350 // Date and time fields that are out-of-range will be treated as errors
1351 // rather than normalizing them like `absl::CivilSecond` does.  For example,
1352 // it is an error to parse the date "Oct 32, 2013" because 32 is out of range.
1353 //
1354 // A leap second of ":60" is normalized to ":00" of the following minute
1355 // with fractional seconds discarded.  The following table shows how the
1356 // given seconds and subseconds will be parsed:
1357 //
1358 //   "59.x" -> 59.x  // exact
1359 //   "60.x" -> 00.0  // normalized
1360 //   "00.x" -> 00.x  // exact
1361 //
1362 // Errors are indicated by returning false and assigning an error message
1363 // to the "err" out param if it is non-null.
1364 //
1365 // Note: If the input string is exactly "infinite-future", the returned
1366 // `absl::Time` will be `absl::InfiniteFuture()` and `true` will be returned.
1367 // If the input string is "infinite-past", the returned `absl::Time` will be
1368 // `absl::InfinitePast()` and `true` will be returned.
1369 //
1370 bool ParseTime(absl::string_view format, absl::string_view input, Time* time,
1371                std::string* err);
1372 
1373 // Like ParseTime() above, but if the format string does not contain a UTC
1374 // offset specification (%z/%Ez/%E*z) then the input is interpreted in the
1375 // given TimeZone.  This means that the input, by itself, does not identify a
1376 // unique instant.  Being time-zone dependent, it also admits the possibility
1377 // of ambiguity or non-existence, in which case the "pre" time (as defined
1378 // by TimeZone::TimeInfo) is returned.  For these reasons we recommend that
1379 // all date/time strings include a UTC offset so they're context independent.
1380 bool ParseTime(absl::string_view format, absl::string_view input, TimeZone tz,
1381                Time* time, std::string* err);
1382 
1383 // ============================================================================
1384 // Implementation Details Follow
1385 // ============================================================================
1386 
1387 namespace time_internal {
1388 
1389 // Creates a Duration with a given representation.
1390 // REQUIRES: hi,lo is a valid representation of a Duration as specified
1391 // in time/duration.cc.
1392 constexpr Duration MakeDuration(int64_t hi, uint32_t lo = 0) {
1393   return Duration(hi, lo);
1394 }
1395 
MakeDuration(int64_t hi,int64_t lo)1396 constexpr Duration MakeDuration(int64_t hi, int64_t lo) {
1397   return MakeDuration(hi, static_cast<uint32_t>(lo));
1398 }
1399 
1400 // Make a Duration value from a floating-point number, as long as that number
1401 // is in the range [ 0 .. numeric_limits<int64_t>::max ), that is, as long as
1402 // it's positive and can be converted to int64_t without risk of UB.
MakePosDoubleDuration(double n)1403 inline Duration MakePosDoubleDuration(double n) {
1404   const int64_t int_secs = static_cast<int64_t>(n);
1405   const uint32_t ticks = static_cast<uint32_t>(
1406       std::round((n - static_cast<double>(int_secs)) * kTicksPerSecond));
1407   return ticks < kTicksPerSecond
1408              ? MakeDuration(int_secs, ticks)
1409              : MakeDuration(int_secs + 1, ticks - kTicksPerSecond);
1410 }
1411 
1412 // Creates a normalized Duration from an almost-normalized (sec,ticks)
1413 // pair. sec may be positive or negative.  ticks must be in the range
1414 // -kTicksPerSecond < *ticks < kTicksPerSecond.  If ticks is negative it
1415 // will be normalized to a positive value in the resulting Duration.
MakeNormalizedDuration(int64_t sec,int64_t ticks)1416 constexpr Duration MakeNormalizedDuration(int64_t sec, int64_t ticks) {
1417   return (ticks < 0) ? MakeDuration(sec - 1, ticks + kTicksPerSecond)
1418                      : MakeDuration(sec, ticks);
1419 }
1420 
1421 // Provide access to the Duration representation.
GetRepHi(Duration d)1422 constexpr int64_t GetRepHi(Duration d) { return d.rep_hi_; }
GetRepLo(Duration d)1423 constexpr uint32_t GetRepLo(Duration d) { return d.rep_lo_; }
1424 
1425 // Returns true iff d is positive or negative infinity.
IsInfiniteDuration(Duration d)1426 constexpr bool IsInfiniteDuration(Duration d) {
1427   return GetRepLo(d) == ~uint32_t{0};
1428 }
1429 
1430 // Returns an infinite Duration with the opposite sign.
1431 // REQUIRES: IsInfiniteDuration(d)
OppositeInfinity(Duration d)1432 constexpr Duration OppositeInfinity(Duration d) {
1433   return GetRepHi(d) < 0
1434              ? MakeDuration((std::numeric_limits<int64_t>::max)(), ~uint32_t{0})
1435              : MakeDuration((std::numeric_limits<int64_t>::min)(),
1436                             ~uint32_t{0});
1437 }
1438 
1439 // Returns (-n)-1 (equivalently -(n+1)) without avoidable overflow.
NegateAndSubtractOne(int64_t n)1440 constexpr int64_t NegateAndSubtractOne(int64_t n) {
1441   // Note: Good compilers will optimize this expression to ~n when using
1442   // a two's-complement representation (which is required for int64_t).
1443   return (n < 0) ? -(n + 1) : (-n) - 1;
1444 }
1445 
1446 // Map between a Time and a Duration since the Unix epoch.  Note that these
1447 // functions depend on the above mentioned choice of the Unix epoch for the
1448 // Time representation (and both need to be Time friends).  Without this
1449 // knowledge, we would need to add-in/subtract-out UnixEpoch() respectively.
FromUnixDuration(Duration d)1450 constexpr Time FromUnixDuration(Duration d) { return Time(d); }
ToUnixDuration(Time t)1451 constexpr Duration ToUnixDuration(Time t) { return t.rep_; }
1452 
1453 template <std::intmax_t N>
FromInt64(int64_t v,std::ratio<1,N>)1454 constexpr Duration FromInt64(int64_t v, std::ratio<1, N>) {
1455   static_assert(0 < N && N <= 1000 * 1000 * 1000, "Unsupported ratio");
1456   // Subsecond ratios cannot overflow.
1457   return MakeNormalizedDuration(
1458       v / N, v % N * kTicksPerNanosecond * 1000 * 1000 * 1000 / N);
1459 }
FromInt64(int64_t v,std::ratio<60>)1460 constexpr Duration FromInt64(int64_t v, std::ratio<60>) {
1461   return (v <= (std::numeric_limits<int64_t>::max)() / 60 &&
1462           v >= (std::numeric_limits<int64_t>::min)() / 60)
1463              ? MakeDuration(v * 60)
1464              : v > 0 ? InfiniteDuration() : -InfiniteDuration();
1465 }
FromInt64(int64_t v,std::ratio<3600>)1466 constexpr Duration FromInt64(int64_t v, std::ratio<3600>) {
1467   return (v <= (std::numeric_limits<int64_t>::max)() / 3600 &&
1468           v >= (std::numeric_limits<int64_t>::min)() / 3600)
1469              ? MakeDuration(v * 3600)
1470              : v > 0 ? InfiniteDuration() : -InfiniteDuration();
1471 }
1472 
1473 // IsValidRep64<T>(0) is true if the expression `int64_t{std::declval<T>()}` is
1474 // valid. That is, if a T can be assigned to an int64_t without narrowing.
1475 template <typename T>
1476 constexpr auto IsValidRep64(int) -> decltype(int64_t{std::declval<T>()} == 0) {
1477   return true;
1478 }
1479 template <typename T>
1480 constexpr auto IsValidRep64(char) -> bool {
1481   return false;
1482 }
1483 
1484 // Converts a std::chrono::duration to an absl::Duration.
1485 template <typename Rep, typename Period>
FromChrono(const std::chrono::duration<Rep,Period> & d)1486 constexpr Duration FromChrono(const std::chrono::duration<Rep, Period>& d) {
1487   static_assert(IsValidRep64<Rep>(0), "duration::rep is invalid");
1488   return FromInt64(int64_t{d.count()}, Period{});
1489 }
1490 
1491 template <typename Ratio>
ToInt64(Duration d,Ratio)1492 int64_t ToInt64(Duration d, Ratio) {
1493   // Note: This may be used on MSVC, which may have a system_clock period of
1494   // std::ratio<1, 10 * 1000 * 1000>
1495   return ToInt64Seconds(d * Ratio::den / Ratio::num);
1496 }
1497 // Fastpath implementations for the 6 common duration units.
ToInt64(Duration d,std::nano)1498 inline int64_t ToInt64(Duration d, std::nano) {
1499   return ToInt64Nanoseconds(d);
1500 }
ToInt64(Duration d,std::micro)1501 inline int64_t ToInt64(Duration d, std::micro) {
1502   return ToInt64Microseconds(d);
1503 }
ToInt64(Duration d,std::milli)1504 inline int64_t ToInt64(Duration d, std::milli) {
1505   return ToInt64Milliseconds(d);
1506 }
ToInt64(Duration d,std::ratio<1>)1507 inline int64_t ToInt64(Duration d, std::ratio<1>) {
1508   return ToInt64Seconds(d);
1509 }
ToInt64(Duration d,std::ratio<60>)1510 inline int64_t ToInt64(Duration d, std::ratio<60>) {
1511   return ToInt64Minutes(d);
1512 }
ToInt64(Duration d,std::ratio<3600>)1513 inline int64_t ToInt64(Duration d, std::ratio<3600>) {
1514   return ToInt64Hours(d);
1515 }
1516 
1517 // Converts an absl::Duration to a chrono duration of type T.
1518 template <typename T>
ToChronoDuration(Duration d)1519 T ToChronoDuration(Duration d) {
1520   using Rep = typename T::rep;
1521   using Period = typename T::period;
1522   static_assert(IsValidRep64<Rep>(0), "duration::rep is invalid");
1523   if (time_internal::IsInfiniteDuration(d))
1524     return d < ZeroDuration() ? (T::min)() : (T::max)();
1525   const auto v = ToInt64(d, Period{});
1526   if (v > (std::numeric_limits<Rep>::max)()) return (T::max)();
1527   if (v < (std::numeric_limits<Rep>::min)()) return (T::min)();
1528   return T{v};
1529 }
1530 
1531 }  // namespace time_internal
1532 
1533 constexpr bool operator<(Duration lhs, Duration rhs) {
1534   return time_internal::GetRepHi(lhs) != time_internal::GetRepHi(rhs)
1535              ? time_internal::GetRepHi(lhs) < time_internal::GetRepHi(rhs)
1536          : time_internal::GetRepHi(lhs) == (std::numeric_limits<int64_t>::min)()
1537              ? time_internal::GetRepLo(lhs) + 1 <
1538                    time_internal::GetRepLo(rhs) + 1
1539              : time_internal::GetRepLo(lhs) < time_internal::GetRepLo(rhs);
1540 }
1541 
1542 constexpr bool operator==(Duration lhs, Duration rhs) {
1543   return time_internal::GetRepHi(lhs) == time_internal::GetRepHi(rhs) &&
1544          time_internal::GetRepLo(lhs) == time_internal::GetRepLo(rhs);
1545 }
1546 
1547 constexpr Duration operator-(Duration d) {
1548   // This is a little interesting because of the special cases.
1549   //
1550   // If rep_lo_ is zero, we have it easy; it's safe to negate rep_hi_, we're
1551   // dealing with an integral number of seconds, and the only special case is
1552   // the maximum negative finite duration, which can't be negated.
1553   //
1554   // Infinities stay infinite, and just change direction.
1555   //
1556   // Finally we're in the case where rep_lo_ is non-zero, and we can borrow
1557   // a second's worth of ticks and avoid overflow (as negating int64_t-min + 1
1558   // is safe).
1559   return time_internal::GetRepLo(d) == 0
1560              ? time_internal::GetRepHi(d) ==
1561                        (std::numeric_limits<int64_t>::min)()
1562                    ? InfiniteDuration()
1563                    : time_internal::MakeDuration(-time_internal::GetRepHi(d))
1564              : time_internal::IsInfiniteDuration(d)
1565                    ? time_internal::OppositeInfinity(d)
1566                    : time_internal::MakeDuration(
1567                          time_internal::NegateAndSubtractOne(
1568                              time_internal::GetRepHi(d)),
1569                          time_internal::kTicksPerSecond -
1570                              time_internal::GetRepLo(d));
1571 }
1572 
InfiniteDuration()1573 constexpr Duration InfiniteDuration() {
1574   return time_internal::MakeDuration((std::numeric_limits<int64_t>::max)(),
1575                                      ~uint32_t{0});
1576 }
1577 
FromChrono(const std::chrono::nanoseconds & d)1578 constexpr Duration FromChrono(const std::chrono::nanoseconds& d) {
1579   return time_internal::FromChrono(d);
1580 }
FromChrono(const std::chrono::microseconds & d)1581 constexpr Duration FromChrono(const std::chrono::microseconds& d) {
1582   return time_internal::FromChrono(d);
1583 }
FromChrono(const std::chrono::milliseconds & d)1584 constexpr Duration FromChrono(const std::chrono::milliseconds& d) {
1585   return time_internal::FromChrono(d);
1586 }
FromChrono(const std::chrono::seconds & d)1587 constexpr Duration FromChrono(const std::chrono::seconds& d) {
1588   return time_internal::FromChrono(d);
1589 }
FromChrono(const std::chrono::minutes & d)1590 constexpr Duration FromChrono(const std::chrono::minutes& d) {
1591   return time_internal::FromChrono(d);
1592 }
FromChrono(const std::chrono::hours & d)1593 constexpr Duration FromChrono(const std::chrono::hours& d) {
1594   return time_internal::FromChrono(d);
1595 }
1596 
FromUnixNanos(int64_t ns)1597 constexpr Time FromUnixNanos(int64_t ns) {
1598   return time_internal::FromUnixDuration(Nanoseconds(ns));
1599 }
1600 
FromUnixMicros(int64_t us)1601 constexpr Time FromUnixMicros(int64_t us) {
1602   return time_internal::FromUnixDuration(Microseconds(us));
1603 }
1604 
FromUnixMillis(int64_t ms)1605 constexpr Time FromUnixMillis(int64_t ms) {
1606   return time_internal::FromUnixDuration(Milliseconds(ms));
1607 }
1608 
FromUnixSeconds(int64_t s)1609 constexpr Time FromUnixSeconds(int64_t s) {
1610   return time_internal::FromUnixDuration(Seconds(s));
1611 }
1612 
FromTimeT(time_t t)1613 constexpr Time FromTimeT(time_t t) {
1614   return time_internal::FromUnixDuration(Seconds(t));
1615 }
1616 
1617 ABSL_NAMESPACE_END
1618 }  // namespace absl
1619 
1620 #endif  // ABSL_TIME_TIME_H_
1621