xref: /aosp_15_r20/external/zucchini/reference_bytes_mixer.h (revision a03ca8b91e029cd15055c20c78c2e087c84792e4)
1 // Copyright 2018 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef COMPONENTS_ZUCCHINI_REFERENCE_BYTES_MIXER_H_
6 #define COMPONENTS_ZUCCHINI_REFERENCE_BYTES_MIXER_H_
7 
8 #include <stdint.h>
9 
10 #include <memory>
11 
12 #include "components/zucchini/buffer_view.h"
13 #include "components/zucchini/image_utils.h"
14 #include "components/zucchini/rel32_utils.h"
15 
16 namespace zucchini {
17 
18 class Disassembler;
19 
20 // References encoding may be quite complex in some architectures (e.g., ARM),
21 // requiring bit-level manipulation. In general, bits in a reference body fall
22 // under 2 categories:
23 // - Operation bits: Instruction op code, conditionals, or structural data.
24 // - Payload bits: Actual target data of the reference. These may be absolute,
25 //   or be displacements relative to instruction pointer / program counter.
26 // During patch application,
27 //   Old reference bytes = {old operation, old payload},
28 // is transformed to
29 //   New reference bytes = {new operation, new payload}.
30 // New image bytes are written by three sources:
31 //   (1) Direct copy from old image to new image for matched blocks.
32 //   (2) Bytewise diff correction.
33 //   (3) Dedicated reference target correction.
34 //
35 // For references whose operation and payload bits are stored in easily
36 // separable bytes (e.g., rel32 reference in X86), (2) can exclude payload bits.
37 // So during patch application, (1) naively copies everything, (2) fixes
38 // operation bytes only, and (3) fixes payload bytes only.
39 //
40 // For architectures with references whose operation and payload bits may mix
41 // within shared bytes (e.g., ARM rel32), a dilemma arises:
42 // - (2) cannot ignores shared bytes, since otherwise new operation bits not
43 //   properly transfer.
44 // - Having (2) always overwrite these bytes would reduce the benefits of
45 //   reference correction, since references are likely to change.
46 //
47 // Our solution applies a hybrid approach: For each matching old / new reference
48 // pair, define:
49 //   Mixed reference bytes = {new operation, old payload},
50 //
51 // During patch generation, we compute bytewise correction from old reference
52 // bytes to the mixed reference bytes. So during patch application, (2) only
53 // corrects operation bit changes (and skips if they don't change), and (3)
54 // overwrites old payload bits to new payload bits.
55 
56 // A base class for (stateful) mixed reference byte generation. This base class
57 // serves as a stub. Architectures whose references store operation bits and
58 // payload bits can share common bytes (e.g., ARM rel32) should override this.
59 class ReferenceBytesMixer {
60  public:
61   ReferenceBytesMixer();
62   ReferenceBytesMixer(const ReferenceBytesMixer&) = delete;
63   const ReferenceBytesMixer& operator=(const ReferenceBytesMixer&) = delete;
64   virtual ~ReferenceBytesMixer();
65 
66   // Returns a new ReferenceBytesMixer instance that's owned by the caller.
67   static std::unique_ptr<ReferenceBytesMixer> Create(
68       const Disassembler& src_dis,
69       const Disassembler& dst_dis);
70 
71   // Returns the number of bytes that need to be mixed for references with given
72   // |type|. Returns 0 if no mixing is required.
73   virtual int NumBytes(uint8_t type) const;
74 
75   // Computes mixed reference bytes by combining (a) "payload bits" from an
76   // "old" reference of |type| at |old_view[old_offset]| with (b) "operation
77   // bits" from a "new" reference of |type| at |new_view[new_offset]|. Returns
78   // the result as ConstBufferView, which is valid only until the next call to
79   // Mix().
80   virtual ConstBufferView Mix(uint8_t type,
81                               ConstBufferView old_view,
82                               offset_t old_offset,
83                               ConstBufferView new_view,
84                               offset_t new_offset);
85 };
86 
87 // In AArch32 and AArch64, instructions mix operation bits and payload bits in
88 // complex ways. This is the main use case of ReferenceBytesMixer.
89 class ReferenceBytesMixerElfArm : public ReferenceBytesMixer {
90  public:
91   // |exe_type| must be EXE_TYPE_ELF_ARM or EXE_TYPE_ELF_AARCH64.
92   explicit ReferenceBytesMixerElfArm(ExecutableType exe_type);
93   ReferenceBytesMixerElfArm(const ReferenceBytesMixerElfArm&) = delete;
94   const ReferenceBytesMixerElfArm& operator=(const ReferenceBytesMixerElfArm&) =
95       delete;
96   ~ReferenceBytesMixerElfArm() override;
97 
98   // ReferenceBytesMixer:
99   int NumBytes(uint8_t type) const override;
100   ConstBufferView Mix(uint8_t type,
101                       ConstBufferView old_view,
102                       offset_t old_offset,
103                       ConstBufferView new_view,
104                       offset_t new_offset) override;
105 
106  private:
107   ArmCopyDispFun GetCopier(uint8_t type) const;
108 
109   // For simplicity, 32-bit vs. 64-bit distinction is represented by state
110   // |exe_type_|, instead of creating derived classes.
111   const ExecutableType exe_type_;
112 
113   std::vector<uint8_t> out_buffer_;
114 };
115 
116 }  // namespace zucchini
117 
118 #endif  // COMPONENTS_ZUCCHINI_REFERENCE_BYTES_MIXER_H_
119