xref: /aosp_15_r20/frameworks/native/libs/binder/Parcel.cpp (revision 38e8c45f13ce32b0dcecb25141ffecaf386fa17f)
1 /*
2  * Copyright (C) 2005 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #define LOG_TAG "Parcel"
18 //#define LOG_NDEBUG 0
19 
20 #include <endian.h>
21 #include <errno.h>
22 #include <fcntl.h>
23 #include <inttypes.h>
24 #include <pthread.h>
25 #include <stdint.h>
26 #include <stdio.h>
27 #include <stdlib.h>
28 #include <sys/mman.h>
29 #include <sys/resource.h>
30 #include <sys/stat.h>
31 #include <sys/types.h>
32 #include <unistd.h>
33 #include <algorithm>
34 
35 #include <binder/Binder.h>
36 #include <binder/BpBinder.h>
37 #include <binder/Functional.h>
38 #include <binder/IPCThreadState.h>
39 #include <binder/Parcel.h>
40 #include <binder/ProcessState.h>
41 #include <binder/Stability.h>
42 #include <binder/Status.h>
43 #include <binder/TextOutput.h>
44 
45 #ifndef BINDER_DISABLE_BLOB
46 #include <cutils/ashmem.h>
47 #endif
48 #include <utils/String16.h>
49 #include <utils/String8.h>
50 
51 #include "OS.h"
52 #include "RpcState.h"
53 #include "Static.h"
54 #include "Utils.h"
55 
56 // A lot of code in this file uses definitions from the
57 // Linux kernel header for Binder <linux/android/binder.h>
58 // which is included indirectly via "binder_module.h".
59 // Non-Linux OSes do not have that header, so libbinder should be
60 // built for those targets without kernel binder support, i.e.,
61 // without BINDER_WITH_KERNEL_IPC. For this reason, all code in this
62 // file that depends on kernel binder, including the header itself,
63 // is conditional on BINDER_WITH_KERNEL_IPC.
64 #ifdef BINDER_WITH_KERNEL_IPC
65 #include <linux/sched.h>
66 #include "binder_module.h"
67 #else  // BINDER_WITH_KERNEL_IPC
68 // Needed by {read,write}Pointer
69 typedef uintptr_t binder_uintptr_t;
70 #endif // BINDER_WITH_KERNEL_IPC
71 
72 #ifdef __BIONIC__
73 #include <android/fdsan.h>
74 #endif
75 
76 #define LOG_REFS(...)
77 // #define LOG_REFS(...) ALOG(LOG_DEBUG, LOG_TAG, __VA_ARGS__)
78 #define LOG_ALLOC(...)
79 // #define LOG_ALLOC(...) ALOG(LOG_DEBUG, LOG_TAG, __VA_ARGS__)
80 
81 // ---------------------------------------------------------------------------
82 
83 // This macro should never be used at runtime, as a too large value
84 // of s could cause an integer overflow. Instead, you should always
85 // use the wrapper function pad_size()
86 #define PAD_SIZE_UNSAFE(s) (((s) + 3) & ~3UL)
87 
pad_size(size_t s)88 static size_t pad_size(size_t s) {
89     if (s > (std::numeric_limits<size_t>::max() - 3)) {
90         LOG_ALWAYS_FATAL("pad size too big %zu", s);
91     }
92     return PAD_SIZE_UNSAFE(s);
93 }
94 
95 // Note: must be kept in sync with android/os/StrictMode.java's PENALTY_GATHER
96 #define STRICT_MODE_PENALTY_GATHER (1 << 31)
97 
98 namespace android {
99 
100 using namespace android::binder::impl;
101 using binder::borrowed_fd;
102 using binder::unique_fd;
103 
104 // many things compile this into prebuilts on the stack
105 #ifdef __LP64__
106 static_assert(sizeof(Parcel) == 120);
107 #else
108 static_assert(sizeof(Parcel) == 60);
109 #endif
110 
111 static std::atomic<size_t> gParcelGlobalAllocCount;
112 static std::atomic<size_t> gParcelGlobalAllocSize;
113 
114 // Maximum number of file descriptors per Parcel.
115 constexpr size_t kMaxFds = 1024;
116 
117 // Maximum size of a blob to transfer in-place.
118 [[maybe_unused]] static const size_t BLOB_INPLACE_LIMIT = 16 * 1024;
119 
120 #if defined(__BIONIC__)
FdTag(int fd,const void * old_addr,const void * new_addr)121 static void FdTag(int fd, const void* old_addr, const void* new_addr) {
122     if (android_fdsan_exchange_owner_tag) {
123         uint64_t old_tag = android_fdsan_create_owner_tag(ANDROID_FDSAN_OWNER_TYPE_PARCEL,
124                                                           reinterpret_cast<uint64_t>(old_addr));
125         uint64_t new_tag = android_fdsan_create_owner_tag(ANDROID_FDSAN_OWNER_TYPE_PARCEL,
126                                                           reinterpret_cast<uint64_t>(new_addr));
127         android_fdsan_exchange_owner_tag(fd, old_tag, new_tag);
128     }
129 }
FdTagClose(int fd,const void * addr)130 static void FdTagClose(int fd, const void* addr) {
131     if (android_fdsan_close_with_tag) {
132         uint64_t tag = android_fdsan_create_owner_tag(ANDROID_FDSAN_OWNER_TYPE_PARCEL,
133                                                       reinterpret_cast<uint64_t>(addr));
134         android_fdsan_close_with_tag(fd, tag);
135     } else {
136         close(fd);
137     }
138 }
139 #else
FdTag(int fd,const void * old_addr,const void * new_addr)140 static void FdTag(int fd, const void* old_addr, const void* new_addr) {
141     (void)fd;
142     (void)old_addr;
143     (void)new_addr;
144 }
FdTagClose(int fd,const void * addr)145 static void FdTagClose(int fd, const void* addr) {
146     (void)addr;
147     close(fd);
148 }
149 #endif
150 
151 enum {
152     BLOB_INPLACE = 0,
153     BLOB_ASHMEM_IMMUTABLE = 1,
154     BLOB_ASHMEM_MUTABLE = 2,
155 };
156 
157 #ifdef BINDER_WITH_KERNEL_IPC
acquire_object(const sp<ProcessState> & proc,const flat_binder_object & obj,const void * who)158 static void acquire_object(const sp<ProcessState>& proc, const flat_binder_object& obj,
159                            const void* who) {
160     switch (obj.hdr.type) {
161         case BINDER_TYPE_BINDER:
162             if (obj.binder) {
163                 LOG_REFS("Parcel %p acquiring reference on local %llu", who, obj.cookie);
164                 reinterpret_cast<IBinder*>(obj.cookie)->incStrong(who);
165             }
166             return;
167         case BINDER_TYPE_HANDLE: {
168             const sp<IBinder> b = proc->getStrongProxyForHandle(obj.handle);
169             if (b != nullptr) {
170                 LOG_REFS("Parcel %p acquiring reference on remote %p", who, b.get());
171                 b->incStrong(who);
172             }
173             return;
174         }
175         case BINDER_TYPE_FD: {
176             if (obj.cookie != 0) { // owned
177                 FdTag(obj.handle, nullptr, who);
178             }
179             return;
180         }
181     }
182 
183     ALOGE("Invalid object type 0x%08x to acquire", obj.hdr.type);
184 }
185 
release_object(const sp<ProcessState> & proc,const flat_binder_object & obj,const void * who)186 static void release_object(const sp<ProcessState>& proc, const flat_binder_object& obj,
187                            const void* who) {
188     switch (obj.hdr.type) {
189         case BINDER_TYPE_BINDER:
190             if (obj.binder) {
191                 LOG_REFS("Parcel %p releasing reference on local %llu", who, obj.cookie);
192                 reinterpret_cast<IBinder*>(obj.cookie)->decStrong(who);
193             }
194             return;
195         case BINDER_TYPE_HANDLE: {
196             const sp<IBinder> b = proc->getStrongProxyForHandle(obj.handle);
197             if (b != nullptr) {
198                 LOG_REFS("Parcel %p releasing reference on remote %p", who, b.get());
199                 b->decStrong(who);
200             }
201             return;
202         }
203         case BINDER_TYPE_FD: {
204             // note: this path is not used when mOwner, so the tag is also released
205             // in 'closeFileDescriptors'
206             if (obj.cookie != 0) { // owned
207                 FdTagClose(obj.handle, who);
208             }
209             return;
210         }
211     }
212 
213     ALOGE("Invalid object type 0x%08x to release", obj.hdr.type);
214 }
215 #endif // BINDER_WITH_KERNEL_IPC
216 
toRawFd(const std::variant<unique_fd,borrowed_fd> & v)217 static int toRawFd(const std::variant<unique_fd, borrowed_fd>& v) {
218     return std::visit([](const auto& fd) { return fd.get(); }, v);
219 }
220 
RpcFields(const sp<RpcSession> & session)221 Parcel::RpcFields::RpcFields(const sp<RpcSession>& session) : mSession(session) {
222     LOG_ALWAYS_FATAL_IF(mSession == nullptr);
223 }
224 
finishFlattenBinder(const sp<IBinder> & binder)225 status_t Parcel::finishFlattenBinder(const sp<IBinder>& binder)
226 {
227     internal::Stability::tryMarkCompilationUnit(binder.get());
228     int16_t rep = internal::Stability::getRepr(binder.get());
229     return writeInt32(rep);
230 }
231 
finishUnflattenBinder(const sp<IBinder> & binder,sp<IBinder> * out) const232 status_t Parcel::finishUnflattenBinder(
233     const sp<IBinder>& binder, sp<IBinder>* out) const
234 {
235     int32_t stability;
236     status_t status = readInt32(&stability);
237     if (status != OK) return status;
238 
239     status = internal::Stability::setRepr(binder.get(), static_cast<int16_t>(stability),
240                                           true /*log*/);
241     if (status != OK) return status;
242 
243     *out = binder;
244     return OK;
245 }
246 
247 #ifdef BINDER_WITH_KERNEL_IPC
schedPolicyMask(int policy,int priority)248 static constexpr inline int schedPolicyMask(int policy, int priority) {
249     return (priority & FLAT_BINDER_FLAG_PRIORITY_MASK) | ((policy & 3) << FLAT_BINDER_FLAG_SCHED_POLICY_SHIFT);
250 }
251 #endif // BINDER_WITH_KERNEL_IPC
252 
flattenBinder(const sp<IBinder> & binder)253 status_t Parcel::flattenBinder(const sp<IBinder>& binder) {
254     BBinder* local = nullptr;
255     if (binder) local = binder->localBinder();
256     if (local) local->setParceled();
257 
258     if (const auto* rpcFields = maybeRpcFields()) {
259         if (binder) {
260             status_t status = writeInt32(RpcFields::TYPE_BINDER); // non-null
261             if (status != OK) return status;
262             uint64_t address;
263             // TODO(b/167966510): need to undo this if the Parcel is not sent
264             status = rpcFields->mSession->state()->onBinderLeaving(rpcFields->mSession, binder,
265                                                                    &address);
266             if (status != OK) return status;
267             status = writeUint64(address);
268             if (status != OK) return status;
269         } else {
270             status_t status = writeInt32(RpcFields::TYPE_BINDER_NULL); // null
271             if (status != OK) return status;
272         }
273         return finishFlattenBinder(binder);
274     }
275 
276 #ifdef BINDER_WITH_KERNEL_IPC
277     flat_binder_object obj;
278 
279     int schedBits = 0;
280     if (!IPCThreadState::self()->backgroundSchedulingDisabled()) {
281         schedBits = schedPolicyMask(SCHED_NORMAL, 19);
282     }
283 
284     if (binder != nullptr) {
285         if (!local) {
286             BpBinder *proxy = binder->remoteBinder();
287             if (proxy == nullptr) {
288                 ALOGE("null proxy");
289             } else {
290                 if (proxy->isRpcBinder()) {
291                     ALOGE("Sending a socket binder over kernel binder is prohibited");
292                     return INVALID_OPERATION;
293                 }
294             }
295             const int32_t handle = proxy ? proxy->getPrivateAccessor().binderHandle() : 0;
296             obj.hdr.type = BINDER_TYPE_HANDLE;
297             obj.binder = 0; /* Don't pass uninitialized stack data to a remote process */
298             obj.flags = 0;
299             obj.handle = handle;
300             obj.cookie = 0;
301         } else {
302             int policy = local->getMinSchedulerPolicy();
303             int priority = local->getMinSchedulerPriority();
304 
305             if (policy != 0 || priority != 0) {
306                 // override value, since it is set explicitly
307                 schedBits = schedPolicyMask(policy, priority);
308             }
309             obj.flags = FLAT_BINDER_FLAG_ACCEPTS_FDS;
310             if (local->isRequestingSid()) {
311                 obj.flags |= FLAT_BINDER_FLAG_TXN_SECURITY_CTX;
312             }
313             if (local->isInheritRt()) {
314                 obj.flags |= FLAT_BINDER_FLAG_INHERIT_RT;
315             }
316             obj.hdr.type = BINDER_TYPE_BINDER;
317             obj.binder = reinterpret_cast<uintptr_t>(local->getWeakRefs());
318             obj.cookie = reinterpret_cast<uintptr_t>(local);
319         }
320     } else {
321         obj.hdr.type = BINDER_TYPE_BINDER;
322         obj.flags = 0;
323         obj.binder = 0;
324         obj.cookie = 0;
325     }
326 
327     obj.flags |= schedBits;
328 
329     status_t status = writeObject(obj, false);
330     if (status != OK) return status;
331 
332     return finishFlattenBinder(binder);
333 #else  // BINDER_WITH_KERNEL_IPC
334     LOG_ALWAYS_FATAL("Binder kernel driver disabled at build time");
335     return INVALID_OPERATION;
336 #endif // BINDER_WITH_KERNEL_IPC
337 }
338 
unflattenBinder(sp<IBinder> * out) const339 status_t Parcel::unflattenBinder(sp<IBinder>* out) const
340 {
341     if (const auto* rpcFields = maybeRpcFields()) {
342         int32_t isPresent;
343         status_t status = readInt32(&isPresent);
344         if (status != OK) return status;
345 
346         sp<IBinder> binder;
347 
348         if (isPresent & 1) {
349             uint64_t addr;
350             if (status_t status = readUint64(&addr); status != OK) return status;
351             if (status_t status =
352                         rpcFields->mSession->state()->onBinderEntering(rpcFields->mSession, addr,
353                                                                        &binder);
354                 status != OK)
355                 return status;
356             if (status_t status =
357                         rpcFields->mSession->state()->flushExcessBinderRefs(rpcFields->mSession,
358                                                                             addr, binder);
359                 status != OK)
360                 return status;
361         }
362 
363         return finishUnflattenBinder(binder, out);
364     }
365 
366 #ifdef BINDER_WITH_KERNEL_IPC
367     const flat_binder_object* flat = readObject(false);
368 
369     if (flat) {
370         switch (flat->hdr.type) {
371             case BINDER_TYPE_BINDER: {
372                 sp<IBinder> binder =
373                         sp<IBinder>::fromExisting(reinterpret_cast<IBinder*>(flat->cookie));
374                 return finishUnflattenBinder(binder, out);
375             }
376             case BINDER_TYPE_HANDLE: {
377                 sp<IBinder> binder =
378                     ProcessState::self()->getStrongProxyForHandle(flat->handle);
379                 return finishUnflattenBinder(binder, out);
380             }
381         }
382     }
383     return BAD_TYPE;
384 #else  // BINDER_WITH_KERNEL_IPC
385     LOG_ALWAYS_FATAL("Binder kernel driver disabled at build time");
386     return INVALID_OPERATION;
387 #endif // BINDER_WITH_KERNEL_IPC
388 }
389 
390 // ---------------------------------------------------------------------------
391 
Parcel()392 Parcel::Parcel()
393 {
394     LOG_ALLOC("Parcel %p: constructing", this);
395     initState();
396 }
397 
~Parcel()398 Parcel::~Parcel()
399 {
400     freeDataNoInit();
401     LOG_ALLOC("Parcel %p: destroyed", this);
402 }
403 
getGlobalAllocSize()404 size_t Parcel::getGlobalAllocSize() {
405     return gParcelGlobalAllocSize.load();
406 }
407 
getGlobalAllocCount()408 size_t Parcel::getGlobalAllocCount() {
409     return gParcelGlobalAllocCount.load();
410 }
411 
data() const412 const uint8_t* Parcel::data() const
413 {
414     return mData;
415 }
416 
dataSize() const417 size_t Parcel::dataSize() const
418 {
419     return (mDataSize > mDataPos ? mDataSize : mDataPos);
420 }
421 
dataBufferSize() const422 size_t Parcel::dataBufferSize() const {
423     return mDataSize;
424 }
425 
dataAvail() const426 size_t Parcel::dataAvail() const
427 {
428     size_t result = dataSize() - dataPosition();
429     if (result > INT32_MAX) {
430         LOG_ALWAYS_FATAL("result too big: %zu", result);
431     }
432     return result;
433 }
434 
dataPosition() const435 size_t Parcel::dataPosition() const
436 {
437     return mDataPos;
438 }
439 
dataCapacity() const440 size_t Parcel::dataCapacity() const
441 {
442     return mDataCapacity;
443 }
444 
setDataSize(size_t size)445 status_t Parcel::setDataSize(size_t size)
446 {
447     if (size > INT32_MAX) {
448         // don't accept size_t values which may have come from an
449         // inadvertent conversion from a negative int.
450         return BAD_VALUE;
451     }
452 
453     status_t err;
454     err = continueWrite(size);
455     if (err == NO_ERROR) {
456         mDataSize = size;
457         ALOGV("setDataSize Setting data size of %p to %zu", this, mDataSize);
458     }
459     return err;
460 }
461 
setDataPosition(size_t pos) const462 void Parcel::setDataPosition(size_t pos) const
463 {
464     if (pos > INT32_MAX) {
465         // don't accept size_t values which may have come from an
466         // inadvertent conversion from a negative int.
467         LOG_ALWAYS_FATAL("pos too big: %zu", pos);
468     }
469 
470     mDataPos = pos;
471     if (const auto* kernelFields = maybeKernelFields()) {
472         kernelFields->mNextObjectHint = 0;
473         kernelFields->mObjectsSorted = false;
474     }
475 }
476 
setDataCapacity(size_t size)477 status_t Parcel::setDataCapacity(size_t size)
478 {
479     if (size > INT32_MAX) {
480         // don't accept size_t values which may have come from an
481         // inadvertent conversion from a negative int.
482         return BAD_VALUE;
483     }
484 
485     if (size > mDataCapacity) return continueWrite(size);
486     return NO_ERROR;
487 }
488 
setData(const uint8_t * buffer,size_t len)489 status_t Parcel::setData(const uint8_t* buffer, size_t len)
490 {
491     if (len > INT32_MAX) {
492         // don't accept size_t values which may have come from an
493         // inadvertent conversion from a negative int.
494         return BAD_VALUE;
495     }
496 
497     status_t err = restartWrite(len);
498     if (err == NO_ERROR) {
499         memcpy(const_cast<uint8_t*>(data()), buffer, len);
500         mDataSize = len;
501         if (auto* kernelFields = maybeKernelFields()) {
502             kernelFields->mFdsKnown = false;
503         }
504     }
505     return err;
506 }
507 
appendFrom(const Parcel * parcel,size_t offset,size_t len)508 status_t Parcel::appendFrom(const Parcel* parcel, size_t offset, size_t len) {
509     if (isForRpc() != parcel->isForRpc()) {
510         ALOGE("Cannot append Parcel from one context to another. They may be different formats, "
511               "and objects are specific to a context.");
512         return BAD_TYPE;
513     }
514     if (isForRpc() && maybeRpcFields()->mSession != parcel->maybeRpcFields()->mSession) {
515         ALOGE("Cannot append Parcels from different sessions");
516         return BAD_TYPE;
517     }
518 
519     status_t err;
520     const uint8_t* data = parcel->mData;
521     int startPos = mDataPos;
522 
523     if (len == 0) {
524         return NO_ERROR;
525     }
526 
527     if (len > INT32_MAX) {
528         // don't accept size_t values which may have come from an
529         // inadvertent conversion from a negative int.
530         return BAD_VALUE;
531     }
532 
533     // range checks against the source parcel size
534     if ((offset > parcel->mDataSize)
535             || (len > parcel->mDataSize)
536             || (offset + len > parcel->mDataSize)) {
537         return BAD_VALUE;
538     }
539 
540     if ((mDataSize+len) > mDataCapacity) {
541         // grow data
542         err = growData(len);
543         if (err != NO_ERROR) {
544             return err;
545         }
546     }
547 
548     // append data
549     memcpy(mData + mDataPos, data + offset, len);
550     mDataPos += len;
551     mDataSize += len;
552 
553     err = NO_ERROR;
554 
555     if (auto* kernelFields = maybeKernelFields()) {
556 #ifdef BINDER_WITH_KERNEL_IPC
557         auto* otherKernelFields = parcel->maybeKernelFields();
558         LOG_ALWAYS_FATAL_IF(otherKernelFields == nullptr);
559 
560         const binder_size_t* objects = otherKernelFields->mObjects;
561         size_t size = otherKernelFields->mObjectsSize;
562         // Count objects in range
563         int firstIndex = -1, lastIndex = -2;
564         for (int i = 0; i < (int)size; i++) {
565             size_t off = objects[i];
566             if ((off >= offset) && (off + sizeof(flat_binder_object) <= offset + len)) {
567                 if (firstIndex == -1) {
568                     firstIndex = i;
569                 }
570                 lastIndex = i;
571             }
572         }
573         int numObjects = lastIndex - firstIndex + 1;
574         if (numObjects > 0) {
575             const sp<ProcessState> proc(ProcessState::self());
576             // grow objects
577             if (kernelFields->mObjectsCapacity < kernelFields->mObjectsSize + numObjects) {
578                 if ((size_t)numObjects > SIZE_MAX - kernelFields->mObjectsSize)
579                     return NO_MEMORY; // overflow
580                 if (kernelFields->mObjectsSize + numObjects > SIZE_MAX / 3)
581                     return NO_MEMORY; // overflow
582                 size_t newSize = ((kernelFields->mObjectsSize + numObjects) * 3) / 2;
583                 if (newSize > SIZE_MAX / sizeof(binder_size_t)) return NO_MEMORY; // overflow
584                 binder_size_t* objects = (binder_size_t*)realloc(kernelFields->mObjects,
585                                                                  newSize * sizeof(binder_size_t));
586                 if (objects == (binder_size_t*)nullptr) {
587                     return NO_MEMORY;
588                 }
589                 kernelFields->mObjects = objects;
590                 kernelFields->mObjectsCapacity = newSize;
591             }
592 
593             // append and acquire objects
594             int idx = kernelFields->mObjectsSize;
595             for (int i = firstIndex; i <= lastIndex; i++) {
596                 size_t off = objects[i] - offset + startPos;
597                 kernelFields->mObjects[idx++] = off;
598                 kernelFields->mObjectsSize++;
599 
600                 flat_binder_object* flat = reinterpret_cast<flat_binder_object*>(mData + off);
601 
602                 if (flat->hdr.type == BINDER_TYPE_FD) {
603                     // If this is a file descriptor, we need to dup it so the
604                     // new Parcel now owns its own fd, and can declare that we
605                     // officially know we have fds.
606                     flat->handle = fcntl(flat->handle, F_DUPFD_CLOEXEC, 0);
607                     flat->cookie = 1;
608                     kernelFields->mHasFds = kernelFields->mFdsKnown = true;
609                     if (!mAllowFds) {
610                         err = FDS_NOT_ALLOWED;
611                     }
612                 }
613 
614                 acquire_object(proc, *flat, this);
615             }
616         }
617 #else
618         LOG_ALWAYS_FATAL("Binder kernel driver disabled at build time");
619         return INVALID_OPERATION;
620 #endif // BINDER_WITH_KERNEL_IPC
621     } else {
622         auto* rpcFields = maybeRpcFields();
623         LOG_ALWAYS_FATAL_IF(rpcFields == nullptr);
624         auto* otherRpcFields = parcel->maybeRpcFields();
625         if (otherRpcFields == nullptr) {
626             return BAD_TYPE;
627         }
628         if (rpcFields->mSession != otherRpcFields->mSession) {
629             return BAD_TYPE;
630         }
631 
632         const size_t savedDataPos = mDataPos;
633         auto scopeGuard = make_scope_guard([&]() { mDataPos = savedDataPos; });
634 
635         rpcFields->mObjectPositions.reserve(otherRpcFields->mObjectPositions.size());
636         if (otherRpcFields->mFds != nullptr) {
637             if (rpcFields->mFds == nullptr) {
638                 rpcFields->mFds = std::make_unique<decltype(rpcFields->mFds)::element_type>();
639             }
640             rpcFields->mFds->reserve(otherRpcFields->mFds->size());
641         }
642         for (size_t i = 0; i < otherRpcFields->mObjectPositions.size(); i++) {
643             const binder_size_t objPos = otherRpcFields->mObjectPositions[i];
644             if (offset <= objPos && objPos < offset + len) {
645                 size_t newDataPos = objPos - offset + startPos;
646                 rpcFields->mObjectPositions.push_back(newDataPos);
647 
648                 mDataPos = newDataPos;
649                 int32_t objectType;
650                 if (status_t status = readInt32(&objectType); status != OK) {
651                     return status;
652                 }
653                 if (objectType != RpcFields::TYPE_NATIVE_FILE_DESCRIPTOR) {
654                     continue;
655                 }
656 
657                 if (!mAllowFds) {
658                     return FDS_NOT_ALLOWED;
659                 }
660 
661                 // Read FD, duplicate, and add to list.
662                 int32_t fdIndex;
663                 if (status_t status = readInt32(&fdIndex); status != OK) {
664                     return status;
665                 }
666                 int oldFd = toRawFd(otherRpcFields->mFds->at(fdIndex));
667                 // To match kernel binder behavior, we always dup, even if the
668                 // FD was unowned in the source parcel.
669                 int newFd = -1;
670                 if (status_t status = binder::os::dupFileDescriptor(oldFd, &newFd); status != OK) {
671                     ALOGW("Failed to duplicate file descriptor %d: %s", oldFd,
672                           statusToString(status).c_str());
673                 }
674                 rpcFields->mFds->emplace_back(unique_fd(newFd));
675                 // Fixup the index in the data.
676                 mDataPos = newDataPos + 4;
677                 if (status_t status = writeInt32(rpcFields->mFds->size() - 1); status != OK) {
678                     return status;
679                 }
680             }
681         }
682     }
683 
684     return err;
685 }
686 
compareData(const Parcel & other) const687 int Parcel::compareData(const Parcel& other) const {
688     size_t size = dataSize();
689     if (size != other.dataSize()) {
690         return size < other.dataSize() ? -1 : 1;
691     }
692     return memcmp(data(), other.data(), size);
693 }
694 
compareDataInRange(size_t thisOffset,const Parcel & other,size_t otherOffset,size_t len,int * result) const695 status_t Parcel::compareDataInRange(size_t thisOffset, const Parcel& other, size_t otherOffset,
696                                     size_t len, int* result) const {
697     if (len > INT32_MAX || thisOffset > INT32_MAX || otherOffset > INT32_MAX) {
698         // Don't accept size_t values which may have come from an inadvertent conversion from a
699         // negative int.
700         return BAD_VALUE;
701     }
702     size_t thisLimit;
703     if (__builtin_add_overflow(thisOffset, len, &thisLimit) || thisLimit > mDataSize) {
704         return BAD_VALUE;
705     }
706     size_t otherLimit;
707     if (__builtin_add_overflow(otherOffset, len, &otherLimit) || otherLimit > other.mDataSize) {
708         return BAD_VALUE;
709     }
710     *result = memcmp(data() + thisOffset, other.data() + otherOffset, len);
711     return NO_ERROR;
712 }
713 
allowFds() const714 bool Parcel::allowFds() const
715 {
716     return mAllowFds;
717 }
718 
pushAllowFds(bool allowFds)719 bool Parcel::pushAllowFds(bool allowFds)
720 {
721     const bool origValue = mAllowFds;
722     if (!allowFds) {
723         mAllowFds = false;
724     }
725     return origValue;
726 }
727 
restoreAllowFds(bool lastValue)728 void Parcel::restoreAllowFds(bool lastValue)
729 {
730     mAllowFds = lastValue;
731 }
732 
hasFileDescriptors() const733 bool Parcel::hasFileDescriptors() const
734 {
735     if (const auto* rpcFields = maybeRpcFields()) {
736         return rpcFields->mFds != nullptr && !rpcFields->mFds->empty();
737     }
738     auto* kernelFields = maybeKernelFields();
739     if (!kernelFields->mFdsKnown) {
740         scanForFds();
741     }
742     return kernelFields->mHasFds;
743 }
744 
hasBinders(bool * result) const745 status_t Parcel::hasBinders(bool* result) const {
746     status_t status = hasBindersInRange(0, dataSize(), result);
747     ALOGE_IF(status != NO_ERROR, "Error %d calling hasBindersInRange()", status);
748     return status;
749 }
750 
debugReadAllStrongBinders() const751 std::vector<sp<IBinder>> Parcel::debugReadAllStrongBinders() const {
752     std::vector<sp<IBinder>> ret;
753 
754 #ifdef BINDER_WITH_KERNEL_IPC
755     const auto* kernelFields = maybeKernelFields();
756     if (kernelFields == nullptr) {
757         return ret;
758     }
759 
760     size_t initPosition = dataPosition();
761     for (size_t i = 0; i < kernelFields->mObjectsSize; i++) {
762         binder_size_t offset = kernelFields->mObjects[i];
763         const flat_binder_object* flat =
764                 reinterpret_cast<const flat_binder_object*>(mData + offset);
765         if (flat->hdr.type != BINDER_TYPE_BINDER) continue;
766 
767         setDataPosition(offset);
768 
769         sp<IBinder> binder = readStrongBinder();
770         if (binder != nullptr) ret.push_back(binder);
771     }
772 
773     setDataPosition(initPosition);
774 #endif // BINDER_WITH_KERNEL_IPC
775 
776     return ret;
777 }
778 
debugReadAllFileDescriptors() const779 std::vector<int> Parcel::debugReadAllFileDescriptors() const {
780     std::vector<int> ret;
781 
782     if (const auto* kernelFields = maybeKernelFields()) {
783 #ifdef BINDER_WITH_KERNEL_IPC
784         size_t initPosition = dataPosition();
785         for (size_t i = 0; i < kernelFields->mObjectsSize; i++) {
786             binder_size_t offset = kernelFields->mObjects[i];
787             const flat_binder_object* flat =
788                     reinterpret_cast<const flat_binder_object*>(mData + offset);
789             if (flat->hdr.type != BINDER_TYPE_FD) continue;
790 
791             setDataPosition(offset);
792 
793             int fd = readFileDescriptor();
794             LOG_ALWAYS_FATAL_IF(fd == -1);
795             ret.push_back(fd);
796         }
797         setDataPosition(initPosition);
798 #else
799         LOG_ALWAYS_FATAL("Binder kernel driver disabled at build time");
800 #endif
801     } else if (const auto* rpcFields = maybeRpcFields(); rpcFields && rpcFields->mFds) {
802         for (const auto& fd : *rpcFields->mFds) {
803             ret.push_back(toRawFd(fd));
804         }
805     }
806 
807     return ret;
808 }
809 
hasBindersInRange(size_t offset,size_t len,bool * result) const810 status_t Parcel::hasBindersInRange(size_t offset, size_t len, bool* result) const {
811     if (len > INT32_MAX || offset > INT32_MAX) {
812         // Don't accept size_t values which may have come from an inadvertent conversion from a
813         // negative int.
814         return BAD_VALUE;
815     }
816     size_t limit;
817     if (__builtin_add_overflow(offset, len, &limit) || limit > mDataSize) {
818         return BAD_VALUE;
819     }
820     *result = false;
821     if (const auto* kernelFields = maybeKernelFields()) {
822 #ifdef BINDER_WITH_KERNEL_IPC
823         for (size_t i = 0; i < kernelFields->mObjectsSize; i++) {
824             size_t pos = kernelFields->mObjects[i];
825             if (pos < offset) continue;
826             if (pos + sizeof(flat_binder_object) > offset + len) {
827                 if (kernelFields->mObjectsSorted) {
828                     break;
829                 } else {
830                     continue;
831                 }
832             }
833             const flat_binder_object* flat =
834                     reinterpret_cast<const flat_binder_object*>(mData + pos);
835             if (flat->hdr.type == BINDER_TYPE_BINDER || flat->hdr.type == BINDER_TYPE_HANDLE) {
836                 *result = true;
837                 break;
838             }
839         }
840 #else
841         LOG_ALWAYS_FATAL("Binder kernel driver disabled at build time");
842         return INVALID_OPERATION;
843 #endif // BINDER_WITH_KERNEL_IPC
844     } else if (const auto* rpcFields = maybeRpcFields()) {
845         return INVALID_OPERATION;
846     }
847     return NO_ERROR;
848 }
849 
hasFileDescriptorsInRange(size_t offset,size_t len,bool * result) const850 status_t Parcel::hasFileDescriptorsInRange(size_t offset, size_t len, bool* result) const {
851     if (len > INT32_MAX || offset > INT32_MAX) {
852         // Don't accept size_t values which may have come from an inadvertent conversion from a
853         // negative int.
854         return BAD_VALUE;
855     }
856     size_t limit;
857     if (__builtin_add_overflow(offset, len, &limit) || limit > mDataSize) {
858         return BAD_VALUE;
859     }
860     *result = false;
861     if (const auto* kernelFields = maybeKernelFields()) {
862 #ifdef BINDER_WITH_KERNEL_IPC
863         for (size_t i = 0; i < kernelFields->mObjectsSize; i++) {
864             size_t pos = kernelFields->mObjects[i];
865             if (pos < offset) continue;
866             if (pos + sizeof(flat_binder_object) > offset + len) {
867                 if (kernelFields->mObjectsSorted) {
868                     break;
869                 } else {
870                     continue;
871                 }
872             }
873             const flat_binder_object* flat =
874                     reinterpret_cast<const flat_binder_object*>(mData + pos);
875             if (flat->hdr.type == BINDER_TYPE_FD) {
876                 *result = true;
877                 break;
878             }
879         }
880 #else
881         LOG_ALWAYS_FATAL("Binder kernel driver disabled at build time");
882         return INVALID_OPERATION;
883 #endif // BINDER_WITH_KERNEL_IPC
884     } else if (const auto* rpcFields = maybeRpcFields()) {
885         for (uint32_t pos : rpcFields->mObjectPositions) {
886             if (offset <= pos && pos < limit) {
887                 const auto* type = reinterpret_cast<const RpcFields::ObjectType*>(mData + pos);
888                 if (*type == RpcFields::TYPE_NATIVE_FILE_DESCRIPTOR) {
889                     *result = true;
890                     break;
891                 }
892             }
893         }
894     }
895     return NO_ERROR;
896 }
897 
markSensitive() const898 void Parcel::markSensitive() const
899 {
900     mDeallocZero = true;
901 }
902 
markForBinder(const sp<IBinder> & binder)903 void Parcel::markForBinder(const sp<IBinder>& binder) {
904     LOG_ALWAYS_FATAL_IF(mData != nullptr, "format must be set before data is written");
905 
906     if (binder && binder->remoteBinder() && binder->remoteBinder()->isRpcBinder()) {
907         markForRpc(binder->remoteBinder()->getPrivateAccessor().rpcSession());
908     }
909 }
910 
markForRpc(const sp<RpcSession> & session)911 void Parcel::markForRpc(const sp<RpcSession>& session) {
912     LOG_ALWAYS_FATAL_IF(mData != nullptr && mOwner == nullptr,
913                         "format must be set before data is written OR on IPC data");
914 
915     mVariantFields.emplace<RpcFields>(session);
916 }
917 
isForRpc() const918 bool Parcel::isForRpc() const {
919     return std::holds_alternative<RpcFields>(mVariantFields);
920 }
921 
updateWorkSourceRequestHeaderPosition() const922 void Parcel::updateWorkSourceRequestHeaderPosition() const {
923     auto* kernelFields = maybeKernelFields();
924     if (kernelFields == nullptr) {
925         return;
926     }
927 
928     // Only update the request headers once. We only want to point
929     // to the first headers read/written.
930     if (!kernelFields->mRequestHeaderPresent) {
931         kernelFields->mWorkSourceRequestHeaderPosition = dataPosition();
932         kernelFields->mRequestHeaderPresent = true;
933     }
934 }
935 
936 #ifdef BINDER_WITH_KERNEL_IPC
937 
938 #if defined(__ANDROID__)
939 
940 #if defined(__ANDROID_VNDK__)
941 constexpr int32_t kHeader = B_PACK_CHARS('V', 'N', 'D', 'R');
942 #elif defined(__ANDROID_RECOVERY__)
943 constexpr int32_t kHeader = B_PACK_CHARS('R', 'E', 'C', 'O');
944 #else
945 constexpr int32_t kHeader = B_PACK_CHARS('S', 'Y', 'S', 'T');
946 #endif
947 
948 #else // ANDROID not defined
949 
950 // If kernel binder is used in new environments, we need to make sure it's separated
951 // out and has a separate header.
952 constexpr int32_t kHeader = B_PACK_CHARS('U', 'N', 'K', 'N');
953 #endif
954 
955 #endif // BINDER_WITH_KERNEL_IPC
956 
957 // Write RPC headers.  (previously just the interface token)
writeInterfaceToken(const String16 & interface)958 status_t Parcel::writeInterfaceToken(const String16& interface)
959 {
960     return writeInterfaceToken(interface.c_str(), interface.size());
961 }
962 
writeInterfaceToken(const char16_t * str,size_t len)963 status_t Parcel::writeInterfaceToken(const char16_t* str, size_t len) {
964     if (auto* kernelFields = maybeKernelFields()) {
965 #ifdef BINDER_WITH_KERNEL_IPC
966         const IPCThreadState* threadState = IPCThreadState::self();
967         writeInt32(threadState->getStrictModePolicy() | STRICT_MODE_PENALTY_GATHER);
968         updateWorkSourceRequestHeaderPosition();
969         writeInt32(threadState->shouldPropagateWorkSource() ? threadState->getCallingWorkSourceUid()
970                                                             : IPCThreadState::kUnsetWorkSource);
971         writeInt32(kHeader);
972 #else  // BINDER_WITH_KERNEL_IPC
973         LOG_ALWAYS_FATAL("Binder kernel driver disabled at build time");
974         return INVALID_OPERATION;
975 #endif // BINDER_WITH_KERNEL_IPC
976     }
977 
978     // currently the interface identification token is just its name as a string
979     return writeString16(str, len);
980 }
981 
replaceCallingWorkSourceUid(uid_t uid)982 bool Parcel::replaceCallingWorkSourceUid(uid_t uid)
983 {
984     auto* kernelFields = maybeKernelFields();
985     if (kernelFields == nullptr) {
986         return false;
987     }
988     if (!kernelFields->mRequestHeaderPresent) {
989         return false;
990     }
991 
992     const size_t initialPosition = dataPosition();
993     setDataPosition(kernelFields->mWorkSourceRequestHeaderPosition);
994     status_t err = writeInt32(uid);
995     setDataPosition(initialPosition);
996     return err == NO_ERROR;
997 }
998 
readCallingWorkSourceUid() const999 uid_t Parcel::readCallingWorkSourceUid() const
1000 {
1001     auto* kernelFields = maybeKernelFields();
1002     if (kernelFields == nullptr) {
1003         return false;
1004     }
1005     if (!kernelFields->mRequestHeaderPresent) {
1006         return IPCThreadState::kUnsetWorkSource;
1007     }
1008 
1009     const size_t initialPosition = dataPosition();
1010     setDataPosition(kernelFields->mWorkSourceRequestHeaderPosition);
1011     uid_t uid = readInt32();
1012     setDataPosition(initialPosition);
1013     return uid;
1014 }
1015 
checkInterface(IBinder * binder) const1016 bool Parcel::checkInterface(IBinder* binder) const
1017 {
1018     return enforceInterface(binder->getInterfaceDescriptor());
1019 }
1020 
enforceInterface(const String16 & interface,IPCThreadState * threadState) const1021 bool Parcel::enforceInterface(const String16& interface,
1022                               IPCThreadState* threadState) const
1023 {
1024     return enforceInterface(interface.c_str(), interface.size(), threadState);
1025 }
1026 
enforceInterface(const char16_t * interface,size_t len,IPCThreadState * threadState) const1027 bool Parcel::enforceInterface(const char16_t* interface,
1028                               size_t len,
1029                               IPCThreadState* threadState) const
1030 {
1031     if (auto* kernelFields = maybeKernelFields()) {
1032 #ifdef BINDER_WITH_KERNEL_IPC
1033         // StrictModePolicy.
1034         int32_t strictPolicy = readInt32();
1035         if (threadState == nullptr) {
1036             threadState = IPCThreadState::self();
1037         }
1038         if ((threadState->getLastTransactionBinderFlags() & IBinder::FLAG_ONEWAY) != 0) {
1039             // For one-way calls, the callee is running entirely
1040             // disconnected from the caller, so disable StrictMode entirely.
1041             // Not only does disk/network usage not impact the caller, but
1042             // there's no way to communicate back violations anyway.
1043             threadState->setStrictModePolicy(0);
1044         } else {
1045             threadState->setStrictModePolicy(strictPolicy);
1046         }
1047         // WorkSource.
1048         updateWorkSourceRequestHeaderPosition();
1049         int32_t workSource = readInt32();
1050         threadState->setCallingWorkSourceUidWithoutPropagation(workSource);
1051         // vendor header
1052         int32_t header = readInt32();
1053 
1054         // fuzzers skip this check, because it is for protecting the underlying ABI, but
1055         // we don't want it to reduce our coverage
1056         if (header != kHeader && !mServiceFuzzing) {
1057             ALOGE("Expecting header 0x%x but found 0x%x. Mixing copies of libbinder?", kHeader,
1058                   header);
1059             return false;
1060         }
1061 #else  // BINDER_WITH_KERNEL_IPC
1062         LOG_ALWAYS_FATAL("Binder kernel driver disabled at build time");
1063         (void)threadState;
1064         return false;
1065 #endif // BINDER_WITH_KERNEL_IPC
1066     }
1067 
1068     // Interface descriptor.
1069     size_t parcel_interface_len;
1070     const char16_t* parcel_interface = readString16Inplace(&parcel_interface_len);
1071     if (len == parcel_interface_len &&
1072             (!len || !memcmp(parcel_interface, interface, len * sizeof (char16_t)))) {
1073         return true;
1074     } else {
1075         if (mServiceFuzzing) {
1076             // ignore. Theoretically, this could cause a few false positives, because
1077             // people could assume things about getInterfaceDescriptor if they pass
1078             // this point, but it would be extremely fragile. It's more important that
1079             // we fuzz with the above things read from the Parcel.
1080             return true;
1081         } else {
1082             ALOGW("**** enforceInterface() expected '%s' but read '%s'",
1083                   String8(interface, len).c_str(),
1084                   String8(parcel_interface, parcel_interface_len).c_str());
1085             return false;
1086         }
1087     }
1088 }
1089 
setEnforceNoDataAvail(bool enforceNoDataAvail)1090 void Parcel::setEnforceNoDataAvail(bool enforceNoDataAvail) {
1091     mEnforceNoDataAvail = enforceNoDataAvail;
1092 }
1093 
setServiceFuzzing()1094 void Parcel::setServiceFuzzing() {
1095     mServiceFuzzing = true;
1096 }
1097 
isServiceFuzzing() const1098 bool Parcel::isServiceFuzzing() const {
1099     return mServiceFuzzing;
1100 }
1101 
enforceNoDataAvail() const1102 binder::Status Parcel::enforceNoDataAvail() const {
1103     if (!mEnforceNoDataAvail) {
1104         return binder::Status::ok();
1105     }
1106 
1107     const auto n = dataAvail();
1108     if (n == 0) {
1109         return binder::Status::ok();
1110     }
1111     return binder::Status::
1112             fromExceptionCode(binder::Status::Exception::EX_BAD_PARCELABLE,
1113                               String8::format("Parcel data not fully consumed, unread size: %zu",
1114                                               n));
1115 }
1116 
objectsCount() const1117 size_t Parcel::objectsCount() const
1118 {
1119     if (const auto* kernelFields = maybeKernelFields()) {
1120         return kernelFields->mObjectsSize;
1121     }
1122     return 0;
1123 }
1124 
errorCheck() const1125 status_t Parcel::errorCheck() const
1126 {
1127     return mError;
1128 }
1129 
setError(status_t err)1130 void Parcel::setError(status_t err)
1131 {
1132     mError = err;
1133 }
1134 
finishWrite(size_t len)1135 status_t Parcel::finishWrite(size_t len)
1136 {
1137     if (len > INT32_MAX) {
1138         // don't accept size_t values which may have come from an
1139         // inadvertent conversion from a negative int.
1140         return BAD_VALUE;
1141     }
1142 
1143     //printf("Finish write of %d\n", len);
1144     mDataPos += len;
1145     ALOGV("finishWrite Setting data pos of %p to %zu", this, mDataPos);
1146     if (mDataPos > mDataSize) {
1147         mDataSize = mDataPos;
1148         ALOGV("finishWrite Setting data size of %p to %zu", this, mDataSize);
1149     }
1150     //printf("New pos=%d, size=%d\n", mDataPos, mDataSize);
1151     return NO_ERROR;
1152 }
1153 
write(const void * data,size_t len)1154 status_t Parcel::write(const void* data, size_t len)
1155 {
1156     if (len > INT32_MAX) {
1157         // don't accept size_t values which may have come from an
1158         // inadvertent conversion from a negative int.
1159         return BAD_VALUE;
1160     }
1161 
1162     void* const d = writeInplace(len);
1163     if (d) {
1164         memcpy(d, data, len);
1165         return NO_ERROR;
1166     }
1167     return mError;
1168 }
1169 
writeInplace(size_t len)1170 void* Parcel::writeInplace(size_t len)
1171 {
1172     if (len > INT32_MAX) {
1173         // don't accept size_t values which may have come from an
1174         // inadvertent conversion from a negative int.
1175         return nullptr;
1176     }
1177 
1178     const size_t padded = pad_size(len);
1179 
1180     // check for integer overflow
1181     if (mDataPos+padded < mDataPos) {
1182         return nullptr;
1183     }
1184 
1185     if ((mDataPos+padded) <= mDataCapacity) {
1186 restart_write:
1187         //printf("Writing %ld bytes, padded to %ld\n", len, padded);
1188         uint8_t* const data = mData+mDataPos;
1189 
1190         if (status_t status = validateReadData(mDataPos + padded); status != OK) {
1191             return nullptr; // drops status
1192         }
1193 
1194         // Need to pad at end?
1195         if (padded != len) {
1196 #if BYTE_ORDER == BIG_ENDIAN
1197             static const uint32_t mask[4] = {
1198                 0x00000000, 0xffffff00, 0xffff0000, 0xff000000
1199             };
1200 #endif
1201 #if BYTE_ORDER == LITTLE_ENDIAN
1202             static const uint32_t mask[4] = {
1203                 0x00000000, 0x00ffffff, 0x0000ffff, 0x000000ff
1204             };
1205 #endif
1206             //printf("Applying pad mask: %p to %p\n", (void*)mask[padded-len],
1207             //    *reinterpret_cast<void**>(data+padded-4));
1208             *reinterpret_cast<uint32_t*>(data+padded-4) &= mask[padded-len];
1209         }
1210 
1211         finishWrite(padded);
1212         return data;
1213     }
1214 
1215     status_t err = growData(padded);
1216     if (err == NO_ERROR) goto restart_write;
1217     return nullptr;
1218 }
1219 
writeUtf8AsUtf16(const std::string & str)1220 status_t Parcel::writeUtf8AsUtf16(const std::string& str) {
1221     const uint8_t* strData = (uint8_t*)str.data();
1222     const size_t strLen= str.length();
1223     const ssize_t utf16Len = utf8_to_utf16_length(strData, strLen);
1224     if (utf16Len < 0 || utf16Len > std::numeric_limits<int32_t>::max()) {
1225         return BAD_VALUE;
1226     }
1227 
1228     status_t err = writeInt32(utf16Len);
1229     if (err) {
1230         return err;
1231     }
1232 
1233     // Allocate enough bytes to hold our converted string and its terminating NULL.
1234     void* dst = writeInplace((utf16Len + 1) * sizeof(char16_t));
1235     if (!dst) {
1236         return NO_MEMORY;
1237     }
1238 
1239     utf8_to_utf16(strData, strLen, (char16_t*)dst, (size_t) utf16Len + 1);
1240 
1241     return NO_ERROR;
1242 }
1243 
1244 
writeUtf8AsUtf16(const std::optional<std::string> & str)1245 status_t Parcel::writeUtf8AsUtf16(const std::optional<std::string>& str) { return writeData(str); }
writeUtf8AsUtf16(const std::unique_ptr<std::string> & str)1246 status_t Parcel::writeUtf8AsUtf16(const std::unique_ptr<std::string>& str) { return writeData(str); }
1247 
writeString16(const std::optional<String16> & str)1248 status_t Parcel::writeString16(const std::optional<String16>& str) { return writeData(str); }
writeString16(const std::unique_ptr<String16> & str)1249 status_t Parcel::writeString16(const std::unique_ptr<String16>& str) { return writeData(str); }
1250 
writeByteVector(const std::vector<int8_t> & val)1251 status_t Parcel::writeByteVector(const std::vector<int8_t>& val) { return writeData(val); }
writeByteVector(const std::optional<std::vector<int8_t>> & val)1252 status_t Parcel::writeByteVector(const std::optional<std::vector<int8_t>>& val) { return writeData(val); }
writeByteVector(const std::unique_ptr<std::vector<int8_t>> & val)1253 status_t Parcel::writeByteVector(const std::unique_ptr<std::vector<int8_t>>& val) { return writeData(val); }
writeByteVector(const std::vector<uint8_t> & val)1254 status_t Parcel::writeByteVector(const std::vector<uint8_t>& val) { return writeData(val); }
writeByteVector(const std::optional<std::vector<uint8_t>> & val)1255 status_t Parcel::writeByteVector(const std::optional<std::vector<uint8_t>>& val) { return writeData(val); }
writeByteVector(const std::unique_ptr<std::vector<uint8_t>> & val)1256 status_t Parcel::writeByteVector(const std::unique_ptr<std::vector<uint8_t>>& val){ return writeData(val); }
writeInt32Vector(const std::vector<int32_t> & val)1257 status_t Parcel::writeInt32Vector(const std::vector<int32_t>& val) { return writeData(val); }
writeInt32Vector(const std::optional<std::vector<int32_t>> & val)1258 status_t Parcel::writeInt32Vector(const std::optional<std::vector<int32_t>>& val) { return writeData(val); }
writeInt32Vector(const std::unique_ptr<std::vector<int32_t>> & val)1259 status_t Parcel::writeInt32Vector(const std::unique_ptr<std::vector<int32_t>>& val) { return writeData(val); }
writeInt64Vector(const std::vector<int64_t> & val)1260 status_t Parcel::writeInt64Vector(const std::vector<int64_t>& val) { return writeData(val); }
writeInt64Vector(const std::optional<std::vector<int64_t>> & val)1261 status_t Parcel::writeInt64Vector(const std::optional<std::vector<int64_t>>& val) { return writeData(val); }
writeInt64Vector(const std::unique_ptr<std::vector<int64_t>> & val)1262 status_t Parcel::writeInt64Vector(const std::unique_ptr<std::vector<int64_t>>& val) { return writeData(val); }
writeUint64Vector(const std::vector<uint64_t> & val)1263 status_t Parcel::writeUint64Vector(const std::vector<uint64_t>& val) { return writeData(val); }
writeUint64Vector(const std::optional<std::vector<uint64_t>> & val)1264 status_t Parcel::writeUint64Vector(const std::optional<std::vector<uint64_t>>& val) { return writeData(val); }
writeUint64Vector(const std::unique_ptr<std::vector<uint64_t>> & val)1265 status_t Parcel::writeUint64Vector(const std::unique_ptr<std::vector<uint64_t>>& val) { return writeData(val); }
writeFloatVector(const std::vector<float> & val)1266 status_t Parcel::writeFloatVector(const std::vector<float>& val) { return writeData(val); }
writeFloatVector(const std::optional<std::vector<float>> & val)1267 status_t Parcel::writeFloatVector(const std::optional<std::vector<float>>& val) { return writeData(val); }
writeFloatVector(const std::unique_ptr<std::vector<float>> & val)1268 status_t Parcel::writeFloatVector(const std::unique_ptr<std::vector<float>>& val) { return writeData(val); }
writeDoubleVector(const std::vector<double> & val)1269 status_t Parcel::writeDoubleVector(const std::vector<double>& val) { return writeData(val); }
writeDoubleVector(const std::optional<std::vector<double>> & val)1270 status_t Parcel::writeDoubleVector(const std::optional<std::vector<double>>& val) { return writeData(val); }
writeDoubleVector(const std::unique_ptr<std::vector<double>> & val)1271 status_t Parcel::writeDoubleVector(const std::unique_ptr<std::vector<double>>& val) { return writeData(val); }
writeBoolVector(const std::vector<bool> & val)1272 status_t Parcel::writeBoolVector(const std::vector<bool>& val) { return writeData(val); }
writeBoolVector(const std::optional<std::vector<bool>> & val)1273 status_t Parcel::writeBoolVector(const std::optional<std::vector<bool>>& val) { return writeData(val); }
writeBoolVector(const std::unique_ptr<std::vector<bool>> & val)1274 status_t Parcel::writeBoolVector(const std::unique_ptr<std::vector<bool>>& val) { return writeData(val); }
writeCharVector(const std::vector<char16_t> & val)1275 status_t Parcel::writeCharVector(const std::vector<char16_t>& val) { return writeData(val); }
writeCharVector(const std::optional<std::vector<char16_t>> & val)1276 status_t Parcel::writeCharVector(const std::optional<std::vector<char16_t>>& val) { return writeData(val); }
writeCharVector(const std::unique_ptr<std::vector<char16_t>> & val)1277 status_t Parcel::writeCharVector(const std::unique_ptr<std::vector<char16_t>>& val) { return writeData(val); }
1278 
writeString16Vector(const std::vector<String16> & val)1279 status_t Parcel::writeString16Vector(const std::vector<String16>& val) { return writeData(val); }
writeString16Vector(const std::optional<std::vector<std::optional<String16>>> & val)1280 status_t Parcel::writeString16Vector(
1281         const std::optional<std::vector<std::optional<String16>>>& val) { return writeData(val); }
writeString16Vector(const std::unique_ptr<std::vector<std::unique_ptr<String16>>> & val)1282 status_t Parcel::writeString16Vector(
1283         const std::unique_ptr<std::vector<std::unique_ptr<String16>>>& val) { return writeData(val); }
writeUtf8VectorAsUtf16Vector(const std::optional<std::vector<std::optional<std::string>>> & val)1284 status_t Parcel::writeUtf8VectorAsUtf16Vector(
1285                         const std::optional<std::vector<std::optional<std::string>>>& val) { return writeData(val); }
writeUtf8VectorAsUtf16Vector(const std::unique_ptr<std::vector<std::unique_ptr<std::string>>> & val)1286 status_t Parcel::writeUtf8VectorAsUtf16Vector(
1287                         const std::unique_ptr<std::vector<std::unique_ptr<std::string>>>& val) { return writeData(val); }
writeUtf8VectorAsUtf16Vector(const std::vector<std::string> & val)1288 status_t Parcel::writeUtf8VectorAsUtf16Vector(const std::vector<std::string>& val) { return writeData(val); }
1289 
writeUniqueFileDescriptorVector(const std::vector<unique_fd> & val)1290 status_t Parcel::writeUniqueFileDescriptorVector(const std::vector<unique_fd>& val) {
1291     return writeData(val);
1292 }
writeUniqueFileDescriptorVector(const std::optional<std::vector<unique_fd>> & val)1293 status_t Parcel::writeUniqueFileDescriptorVector(const std::optional<std::vector<unique_fd>>& val) {
1294     return writeData(val);
1295 }
writeUniqueFileDescriptorVector(const std::unique_ptr<std::vector<unique_fd>> & val)1296 status_t Parcel::writeUniqueFileDescriptorVector(
1297         const std::unique_ptr<std::vector<unique_fd>>& val) {
1298     return writeData(val);
1299 }
1300 
writeStrongBinderVector(const std::vector<sp<IBinder>> & val)1301 status_t Parcel::writeStrongBinderVector(const std::vector<sp<IBinder>>& val) { return writeData(val); }
writeStrongBinderVector(const std::optional<std::vector<sp<IBinder>>> & val)1302 status_t Parcel::writeStrongBinderVector(const std::optional<std::vector<sp<IBinder>>>& val) { return writeData(val); }
writeStrongBinderVector(const std::unique_ptr<std::vector<sp<IBinder>>> & val)1303 status_t Parcel::writeStrongBinderVector(const std::unique_ptr<std::vector<sp<IBinder>>>& val) { return writeData(val); }
1304 
writeParcelable(const Parcelable & parcelable)1305 status_t Parcel::writeParcelable(const Parcelable& parcelable) { return writeData(parcelable); }
1306 
readUtf8FromUtf16(std::optional<std::string> * str) const1307 status_t Parcel::readUtf8FromUtf16(std::optional<std::string>* str) const { return readData(str); }
readUtf8FromUtf16(std::unique_ptr<std::string> * str) const1308 status_t Parcel::readUtf8FromUtf16(std::unique_ptr<std::string>* str) const { return readData(str); }
1309 
readString16(std::optional<String16> * pArg) const1310 status_t Parcel::readString16(std::optional<String16>* pArg) const { return readData(pArg); }
readString16(std::unique_ptr<String16> * pArg) const1311 status_t Parcel::readString16(std::unique_ptr<String16>* pArg) const { return readData(pArg); }
1312 
readByteVector(std::vector<int8_t> * val) const1313 status_t Parcel::readByteVector(std::vector<int8_t>* val) const { return readData(val); }
readByteVector(std::vector<uint8_t> * val) const1314 status_t Parcel::readByteVector(std::vector<uint8_t>* val) const { return readData(val); }
readByteVector(std::optional<std::vector<int8_t>> * val) const1315 status_t Parcel::readByteVector(std::optional<std::vector<int8_t>>* val) const { return readData(val); }
readByteVector(std::unique_ptr<std::vector<int8_t>> * val) const1316 status_t Parcel::readByteVector(std::unique_ptr<std::vector<int8_t>>* val) const { return readData(val); }
readByteVector(std::optional<std::vector<uint8_t>> * val) const1317 status_t Parcel::readByteVector(std::optional<std::vector<uint8_t>>* val) const { return readData(val); }
readByteVector(std::unique_ptr<std::vector<uint8_t>> * val) const1318 status_t Parcel::readByteVector(std::unique_ptr<std::vector<uint8_t>>* val) const { return readData(val); }
readInt32Vector(std::optional<std::vector<int32_t>> * val) const1319 status_t Parcel::readInt32Vector(std::optional<std::vector<int32_t>>* val) const { return readData(val); }
readInt32Vector(std::unique_ptr<std::vector<int32_t>> * val) const1320 status_t Parcel::readInt32Vector(std::unique_ptr<std::vector<int32_t>>* val) const { return readData(val); }
readInt32Vector(std::vector<int32_t> * val) const1321 status_t Parcel::readInt32Vector(std::vector<int32_t>* val) const { return readData(val); }
readInt64Vector(std::optional<std::vector<int64_t>> * val) const1322 status_t Parcel::readInt64Vector(std::optional<std::vector<int64_t>>* val) const { return readData(val); }
readInt64Vector(std::unique_ptr<std::vector<int64_t>> * val) const1323 status_t Parcel::readInt64Vector(std::unique_ptr<std::vector<int64_t>>* val) const { return readData(val); }
readInt64Vector(std::vector<int64_t> * val) const1324 status_t Parcel::readInt64Vector(std::vector<int64_t>* val) const { return readData(val); }
readUint64Vector(std::optional<std::vector<uint64_t>> * val) const1325 status_t Parcel::readUint64Vector(std::optional<std::vector<uint64_t>>* val) const { return readData(val); }
readUint64Vector(std::unique_ptr<std::vector<uint64_t>> * val) const1326 status_t Parcel::readUint64Vector(std::unique_ptr<std::vector<uint64_t>>* val) const { return readData(val); }
readUint64Vector(std::vector<uint64_t> * val) const1327 status_t Parcel::readUint64Vector(std::vector<uint64_t>* val) const { return readData(val); }
readFloatVector(std::optional<std::vector<float>> * val) const1328 status_t Parcel::readFloatVector(std::optional<std::vector<float>>* val) const { return readData(val); }
readFloatVector(std::unique_ptr<std::vector<float>> * val) const1329 status_t Parcel::readFloatVector(std::unique_ptr<std::vector<float>>* val) const { return readData(val); }
readFloatVector(std::vector<float> * val) const1330 status_t Parcel::readFloatVector(std::vector<float>* val) const { return readData(val); }
readDoubleVector(std::optional<std::vector<double>> * val) const1331 status_t Parcel::readDoubleVector(std::optional<std::vector<double>>* val) const { return readData(val); }
readDoubleVector(std::unique_ptr<std::vector<double>> * val) const1332 status_t Parcel::readDoubleVector(std::unique_ptr<std::vector<double>>* val) const { return readData(val); }
readDoubleVector(std::vector<double> * val) const1333 status_t Parcel::readDoubleVector(std::vector<double>* val) const { return readData(val); }
readBoolVector(std::optional<std::vector<bool>> * val) const1334 status_t Parcel::readBoolVector(std::optional<std::vector<bool>>* val) const { return readData(val); }
readBoolVector(std::unique_ptr<std::vector<bool>> * val) const1335 status_t Parcel::readBoolVector(std::unique_ptr<std::vector<bool>>* val) const { return readData(val); }
readBoolVector(std::vector<bool> * val) const1336 status_t Parcel::readBoolVector(std::vector<bool>* val) const { return readData(val); }
readCharVector(std::optional<std::vector<char16_t>> * val) const1337 status_t Parcel::readCharVector(std::optional<std::vector<char16_t>>* val) const { return readData(val); }
readCharVector(std::unique_ptr<std::vector<char16_t>> * val) const1338 status_t Parcel::readCharVector(std::unique_ptr<std::vector<char16_t>>* val) const { return readData(val); }
readCharVector(std::vector<char16_t> * val) const1339 status_t Parcel::readCharVector(std::vector<char16_t>* val) const { return readData(val); }
1340 
readString16Vector(std::optional<std::vector<std::optional<String16>>> * val) const1341 status_t Parcel::readString16Vector(
1342         std::optional<std::vector<std::optional<String16>>>* val) const { return readData(val); }
readString16Vector(std::unique_ptr<std::vector<std::unique_ptr<String16>>> * val) const1343 status_t Parcel::readString16Vector(
1344         std::unique_ptr<std::vector<std::unique_ptr<String16>>>* val) const { return readData(val); }
readString16Vector(std::vector<String16> * val) const1345 status_t Parcel::readString16Vector(std::vector<String16>* val) const { return readData(val); }
readUtf8VectorFromUtf16Vector(std::optional<std::vector<std::optional<std::string>>> * val) const1346 status_t Parcel::readUtf8VectorFromUtf16Vector(
1347         std::optional<std::vector<std::optional<std::string>>>* val) const { return readData(val); }
readUtf8VectorFromUtf16Vector(std::unique_ptr<std::vector<std::unique_ptr<std::string>>> * val) const1348 status_t Parcel::readUtf8VectorFromUtf16Vector(
1349         std::unique_ptr<std::vector<std::unique_ptr<std::string>>>* val) const { return readData(val); }
readUtf8VectorFromUtf16Vector(std::vector<std::string> * val) const1350 status_t Parcel::readUtf8VectorFromUtf16Vector(std::vector<std::string>* val) const { return readData(val); }
1351 
readUniqueFileDescriptorVector(std::optional<std::vector<unique_fd>> * val) const1352 status_t Parcel::readUniqueFileDescriptorVector(std::optional<std::vector<unique_fd>>* val) const {
1353     return readData(val);
1354 }
readUniqueFileDescriptorVector(std::unique_ptr<std::vector<unique_fd>> * val) const1355 status_t Parcel::readUniqueFileDescriptorVector(
1356         std::unique_ptr<std::vector<unique_fd>>* val) const {
1357     return readData(val);
1358 }
readUniqueFileDescriptorVector(std::vector<unique_fd> * val) const1359 status_t Parcel::readUniqueFileDescriptorVector(std::vector<unique_fd>* val) const {
1360     return readData(val);
1361 }
1362 
readStrongBinderVector(std::optional<std::vector<sp<IBinder>>> * val) const1363 status_t Parcel::readStrongBinderVector(std::optional<std::vector<sp<IBinder>>>* val) const { return readData(val); }
readStrongBinderVector(std::unique_ptr<std::vector<sp<IBinder>>> * val) const1364 status_t Parcel::readStrongBinderVector(std::unique_ptr<std::vector<sp<IBinder>>>* val) const { return readData(val); }
readStrongBinderVector(std::vector<sp<IBinder>> * val) const1365 status_t Parcel::readStrongBinderVector(std::vector<sp<IBinder>>* val) const { return readData(val); }
1366 
readParcelable(Parcelable * parcelable) const1367 status_t Parcel::readParcelable(Parcelable* parcelable) const { return readData(parcelable); }
1368 
writeInt32(int32_t val)1369 status_t Parcel::writeInt32(int32_t val)
1370 {
1371     return writeAligned(val);
1372 }
1373 
writeUint32(uint32_t val)1374 status_t Parcel::writeUint32(uint32_t val)
1375 {
1376     return writeAligned(val);
1377 }
1378 
writeInt32Array(size_t len,const int32_t * val)1379 status_t Parcel::writeInt32Array(size_t len, const int32_t *val) {
1380     if (len > INT32_MAX) {
1381         // don't accept size_t values which may have come from an
1382         // inadvertent conversion from a negative int.
1383         return BAD_VALUE;
1384     }
1385 
1386     if (!val) {
1387         return writeInt32(-1);
1388     }
1389     status_t ret = writeInt32(static_cast<uint32_t>(len));
1390     if (ret == NO_ERROR) {
1391         ret = write(val, len * sizeof(*val));
1392     }
1393     return ret;
1394 }
writeByteArray(size_t len,const uint8_t * val)1395 status_t Parcel::writeByteArray(size_t len, const uint8_t *val) {
1396     if (len > INT32_MAX) {
1397         // don't accept size_t values which may have come from an
1398         // inadvertent conversion from a negative int.
1399         return BAD_VALUE;
1400     }
1401 
1402     if (!val) {
1403         return writeInt32(-1);
1404     }
1405     status_t ret = writeInt32(static_cast<uint32_t>(len));
1406     if (ret == NO_ERROR) {
1407         ret = write(val, len * sizeof(*val));
1408     }
1409     return ret;
1410 }
1411 
writeBool(bool val)1412 status_t Parcel::writeBool(bool val)
1413 {
1414     return writeInt32(int32_t(val));
1415 }
1416 
writeChar(char16_t val)1417 status_t Parcel::writeChar(char16_t val)
1418 {
1419     return writeInt32(int32_t(val));
1420 }
1421 
writeByte(int8_t val)1422 status_t Parcel::writeByte(int8_t val)
1423 {
1424     return writeInt32(int32_t(val));
1425 }
1426 
writeInt64(int64_t val)1427 status_t Parcel::writeInt64(int64_t val)
1428 {
1429     return writeAligned(val);
1430 }
1431 
writeUint64(uint64_t val)1432 status_t Parcel::writeUint64(uint64_t val)
1433 {
1434     return writeAligned(val);
1435 }
1436 
writePointer(uintptr_t val)1437 status_t Parcel::writePointer(uintptr_t val)
1438 {
1439     return writeAligned<binder_uintptr_t>(val);
1440 }
1441 
writeFloat(float val)1442 status_t Parcel::writeFloat(float val)
1443 {
1444     return writeAligned(val);
1445 }
1446 
1447 #if defined(__mips__) && defined(__mips_hard_float)
1448 
writeDouble(double val)1449 status_t Parcel::writeDouble(double val)
1450 {
1451     union {
1452         double d;
1453         unsigned long long ll;
1454     } u;
1455     u.d = val;
1456     return writeAligned(u.ll);
1457 }
1458 
1459 #else
1460 
writeDouble(double val)1461 status_t Parcel::writeDouble(double val)
1462 {
1463     return writeAligned(val);
1464 }
1465 
1466 #endif
1467 
writeCString(const char * str)1468 status_t Parcel::writeCString(const char* str)
1469 {
1470     return write(str, strlen(str)+1);
1471 }
1472 
writeString8(const String8 & str)1473 status_t Parcel::writeString8(const String8& str)
1474 {
1475     return writeString8(str.c_str(), str.size());
1476 }
1477 
writeString8(const char * str,size_t len)1478 status_t Parcel::writeString8(const char* str, size_t len)
1479 {
1480     if (str == nullptr) return writeInt32(-1);
1481 
1482     // NOTE: Keep this logic in sync with android_os_Parcel.cpp
1483     status_t err = writeInt32(len);
1484     if (err == NO_ERROR) {
1485         uint8_t* data = (uint8_t*)writeInplace(len+sizeof(char));
1486         if (data) {
1487             memcpy(data, str, len);
1488             *reinterpret_cast<char*>(data+len) = 0;
1489             return NO_ERROR;
1490         }
1491         err = mError;
1492     }
1493     return err;
1494 }
1495 
writeString16(const String16 & str)1496 status_t Parcel::writeString16(const String16& str)
1497 {
1498     return writeString16(str.c_str(), str.size());
1499 }
1500 
writeString16(const char16_t * str,size_t len)1501 status_t Parcel::writeString16(const char16_t* str, size_t len)
1502 {
1503     if (str == nullptr) return writeInt32(-1);
1504 
1505     // NOTE: Keep this logic in sync with android_os_Parcel.cpp
1506     status_t err = writeInt32(len);
1507     if (err == NO_ERROR) {
1508         len *= sizeof(char16_t);
1509         uint8_t* data = (uint8_t*)writeInplace(len+sizeof(char16_t));
1510         if (data) {
1511             memcpy(data, str, len);
1512             *reinterpret_cast<char16_t*>(data+len) = 0;
1513             return NO_ERROR;
1514         }
1515         err = mError;
1516     }
1517     return err;
1518 }
1519 
writeStrongBinder(const sp<IBinder> & val)1520 status_t Parcel::writeStrongBinder(const sp<IBinder>& val)
1521 {
1522     return flattenBinder(val);
1523 }
1524 
1525 
writeRawNullableParcelable(const Parcelable * parcelable)1526 status_t Parcel::writeRawNullableParcelable(const Parcelable* parcelable) {
1527     if (!parcelable) {
1528         return writeInt32(0);
1529     }
1530 
1531     return writeParcelable(*parcelable);
1532 }
1533 
1534 #ifndef BINDER_DISABLE_NATIVE_HANDLE
writeNativeHandle(const native_handle * handle)1535 status_t Parcel::writeNativeHandle(const native_handle* handle)
1536 {
1537     if (!handle || handle->version != sizeof(native_handle))
1538         return BAD_TYPE;
1539 
1540     status_t err;
1541     err = writeInt32(handle->numFds);
1542     if (err != NO_ERROR) return err;
1543 
1544     err = writeInt32(handle->numInts);
1545     if (err != NO_ERROR) return err;
1546 
1547     for (int i=0 ; err==NO_ERROR && i<handle->numFds ; i++)
1548         err = writeDupFileDescriptor(handle->data[i]);
1549 
1550     if (err != NO_ERROR) {
1551         ALOGD("write native handle, write dup fd failed");
1552         return err;
1553     }
1554     err = write(handle->data + handle->numFds, sizeof(int)*handle->numInts);
1555     return err;
1556 }
1557 #endif
1558 
writeFileDescriptor(int fd,bool takeOwnership)1559 status_t Parcel::writeFileDescriptor(int fd, bool takeOwnership) {
1560     if (auto* rpcFields = maybeRpcFields()) {
1561         std::variant<unique_fd, borrowed_fd> fdVariant;
1562         if (takeOwnership) {
1563             fdVariant = unique_fd(fd);
1564         } else {
1565             fdVariant = borrowed_fd(fd);
1566         }
1567         if (!mAllowFds) {
1568             ALOGE("FDs are not allowed in this parcel. Both the service and the client must set "
1569                   "the FileDescriptorTransportMode and agree on the support.");
1570             return FDS_NOT_ALLOWED;
1571         }
1572         switch (rpcFields->mSession->getFileDescriptorTransportMode()) {
1573             case RpcSession::FileDescriptorTransportMode::NONE: {
1574                 ALOGE("FDs are not allowed in this RpcSession. Both the service and the client "
1575                       "must set "
1576                       "the FileDescriptorTransportMode and agree on the support.");
1577                 return FDS_NOT_ALLOWED;
1578             }
1579             case RpcSession::FileDescriptorTransportMode::UNIX:
1580             case RpcSession::FileDescriptorTransportMode::TRUSTY: {
1581                 if (rpcFields->mFds == nullptr) {
1582                     rpcFields->mFds = std::make_unique<decltype(rpcFields->mFds)::element_type>();
1583                 }
1584                 size_t dataPos = mDataPos;
1585                 if (dataPos > UINT32_MAX) {
1586                     return NO_MEMORY;
1587                 }
1588                 if (status_t err = writeInt32(RpcFields::TYPE_NATIVE_FILE_DESCRIPTOR); err != OK) {
1589                     return err;
1590                 }
1591                 if (status_t err = writeInt32(rpcFields->mFds->size()); err != OK) {
1592                     return err;
1593                 }
1594                 rpcFields->mObjectPositions.push_back(dataPos);
1595                 rpcFields->mFds->push_back(std::move(fdVariant));
1596                 return OK;
1597             }
1598         }
1599     }
1600 
1601 #ifdef BINDER_WITH_KERNEL_IPC
1602     flat_binder_object obj;
1603     obj.hdr.type = BINDER_TYPE_FD;
1604     obj.flags = 0;
1605     obj.binder = 0; /* Don't pass uninitialized stack data to a remote process */
1606     obj.handle = fd;
1607     obj.cookie = takeOwnership ? 1 : 0;
1608     return writeObject(obj, true);
1609 #else  // BINDER_WITH_KERNEL_IPC
1610     LOG_ALWAYS_FATAL("Binder kernel driver disabled at build time");
1611     (void)fd;
1612     (void)takeOwnership;
1613     return INVALID_OPERATION;
1614 #endif // BINDER_WITH_KERNEL_IPC
1615 }
1616 
writeDupFileDescriptor(int fd)1617 status_t Parcel::writeDupFileDescriptor(int fd)
1618 {
1619     int dupFd;
1620     if (status_t err = binder::os::dupFileDescriptor(fd, &dupFd); err != OK) {
1621         return err;
1622     }
1623     status_t err = writeFileDescriptor(dupFd, true /*takeOwnership*/);
1624     if (err != OK) {
1625         close(dupFd);
1626     }
1627     return err;
1628 }
1629 
writeParcelFileDescriptor(int fd,bool takeOwnership)1630 status_t Parcel::writeParcelFileDescriptor(int fd, bool takeOwnership)
1631 {
1632     writeInt32(0);
1633     return writeFileDescriptor(fd, takeOwnership);
1634 }
1635 
writeDupParcelFileDescriptor(int fd)1636 status_t Parcel::writeDupParcelFileDescriptor(int fd)
1637 {
1638     int dupFd;
1639     if (status_t err = binder::os::dupFileDescriptor(fd, &dupFd); err != OK) {
1640         return err;
1641     }
1642     status_t err = writeParcelFileDescriptor(dupFd, true /*takeOwnership*/);
1643     if (err != OK) {
1644         close(dupFd);
1645     }
1646     return err;
1647 }
1648 
writeUniqueFileDescriptor(const unique_fd & fd)1649 status_t Parcel::writeUniqueFileDescriptor(const unique_fd& fd) {
1650     return writeDupFileDescriptor(fd.get());
1651 }
1652 
writeBlob(size_t len,bool mutableCopy,WritableBlob * outBlob)1653 status_t Parcel::writeBlob(size_t len, bool mutableCopy, WritableBlob* outBlob)
1654 {
1655 #ifdef BINDER_DISABLE_BLOB
1656     (void)len;
1657     (void)mutableCopy;
1658     (void)outBlob;
1659     return INVALID_OPERATION;
1660 #else
1661     if (len > INT32_MAX) {
1662         // don't accept size_t values which may have come from an
1663         // inadvertent conversion from a negative int.
1664         return BAD_VALUE;
1665     }
1666 
1667     status_t status;
1668     if (!mAllowFds || len <= BLOB_INPLACE_LIMIT) {
1669         ALOGV("writeBlob: write in place");
1670         status = writeInt32(BLOB_INPLACE);
1671         if (status) return status;
1672 
1673         void* ptr = writeInplace(len);
1674         if (!ptr) return NO_MEMORY;
1675 
1676         outBlob->init(-1, ptr, len, false);
1677         return NO_ERROR;
1678     }
1679 
1680     ALOGV("writeBlob: write to ashmem");
1681     int fd = ashmem_create_region("Parcel Blob", len);
1682     if (fd < 0) return NO_MEMORY;
1683 
1684     int result = ashmem_set_prot_region(fd, PROT_READ | PROT_WRITE);
1685     if (result < 0) {
1686         status = result;
1687     } else {
1688         void* ptr = ::mmap(nullptr, len, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
1689         if (ptr == MAP_FAILED) {
1690             status = -errno;
1691         } else {
1692             if (!mutableCopy) {
1693                 result = ashmem_set_prot_region(fd, PROT_READ);
1694             }
1695             if (result < 0) {
1696                 status = result;
1697             } else {
1698                 status = writeInt32(mutableCopy ? BLOB_ASHMEM_MUTABLE : BLOB_ASHMEM_IMMUTABLE);
1699                 if (!status) {
1700                     status = writeFileDescriptor(fd, true /*takeOwnership*/);
1701                     if (!status) {
1702                         outBlob->init(fd, ptr, len, mutableCopy);
1703                         return NO_ERROR;
1704                     }
1705                 }
1706             }
1707         }
1708         if (::munmap(ptr, len) == -1) {
1709             ALOGW("munmap() failed: %s", strerror(errno));
1710         }
1711     }
1712     ::close(fd);
1713     return status;
1714 #endif
1715 }
1716 
writeDupImmutableBlobFileDescriptor(int fd)1717 status_t Parcel::writeDupImmutableBlobFileDescriptor(int fd)
1718 {
1719     // Must match up with what's done in writeBlob.
1720     if (!mAllowFds) return FDS_NOT_ALLOWED;
1721     status_t status = writeInt32(BLOB_ASHMEM_IMMUTABLE);
1722     if (status) return status;
1723     return writeDupFileDescriptor(fd);
1724 }
1725 
write(const FlattenableHelperInterface & val)1726 status_t Parcel::write(const FlattenableHelperInterface& val)
1727 {
1728     status_t err;
1729 
1730     // size if needed
1731     const size_t len = val.getFlattenedSize();
1732     const size_t fd_count = val.getFdCount();
1733 
1734     if ((len > INT32_MAX) || (fd_count > kMaxFds)) {
1735         // don't accept size_t values which may have come from an
1736         // inadvertent conversion from a negative int.
1737         return BAD_VALUE;
1738     }
1739 
1740     err = this->writeInt32(len);
1741     if (err) return err;
1742 
1743     err = this->writeInt32(fd_count);
1744     if (err) return err;
1745 
1746     // payload
1747     void* const buf = this->writeInplace(len);
1748     if (buf == nullptr)
1749         return BAD_VALUE;
1750 
1751     int* fds = nullptr;
1752     if (fd_count) {
1753         fds = new (std::nothrow) int[fd_count];
1754         if (fds == nullptr) {
1755             ALOGE("write: failed to allocate requested %zu fds", fd_count);
1756             return BAD_VALUE;
1757         }
1758     }
1759 
1760     err = val.flatten(buf, len, fds, fd_count);
1761     for (size_t i=0 ; i<fd_count && err==NO_ERROR ; i++) {
1762         err = this->writeDupFileDescriptor( fds[i] );
1763     }
1764 
1765     if (fd_count) {
1766         delete [] fds;
1767     }
1768 
1769     return err;
1770 }
1771 
writeObject(const flat_binder_object & val,bool nullMetaData)1772 status_t Parcel::writeObject(const flat_binder_object& val, bool nullMetaData)
1773 {
1774     auto* kernelFields = maybeKernelFields();
1775     LOG_ALWAYS_FATAL_IF(kernelFields == nullptr, "Can't write flat_binder_object to RPC Parcel");
1776 
1777 #ifdef BINDER_WITH_KERNEL_IPC
1778     const bool enoughData = (mDataPos+sizeof(val)) <= mDataCapacity;
1779     const bool enoughObjects = kernelFields->mObjectsSize < kernelFields->mObjectsCapacity;
1780     if (enoughData && enoughObjects) {
1781 restart_write:
1782         if (status_t status = validateReadData(mDataPos + sizeof(val)); status != OK) {
1783             return status;
1784         }
1785 
1786         *reinterpret_cast<flat_binder_object*>(mData+mDataPos) = val;
1787 
1788         // remember if it's a file descriptor
1789         if (val.hdr.type == BINDER_TYPE_FD) {
1790             if (!mAllowFds) {
1791                 // fail before modifying our object index
1792                 return FDS_NOT_ALLOWED;
1793             }
1794             kernelFields->mHasFds = kernelFields->mFdsKnown = true;
1795         }
1796 
1797         // Need to write meta-data?
1798         if (nullMetaData || val.binder != 0) {
1799             kernelFields->mObjects[kernelFields->mObjectsSize] = mDataPos;
1800             acquire_object(ProcessState::self(), val, this);
1801             kernelFields->mObjectsSize++;
1802         }
1803 
1804         return finishWrite(sizeof(flat_binder_object));
1805     }
1806 
1807     if (!enoughData) {
1808         const status_t err = growData(sizeof(val));
1809         if (err != NO_ERROR) return err;
1810     }
1811     if (!enoughObjects) {
1812         if (kernelFields->mObjectsSize > SIZE_MAX - 2) return NO_MEMORY;       // overflow
1813         if ((kernelFields->mObjectsSize + 2) > SIZE_MAX / 3) return NO_MEMORY; // overflow
1814         size_t newSize = ((kernelFields->mObjectsSize + 2) * 3) / 2;
1815         if (newSize > SIZE_MAX / sizeof(binder_size_t)) return NO_MEMORY; // overflow
1816         binder_size_t* objects =
1817                 (binder_size_t*)realloc(kernelFields->mObjects, newSize * sizeof(binder_size_t));
1818         if (objects == nullptr) return NO_MEMORY;
1819         kernelFields->mObjects = objects;
1820         kernelFields->mObjectsCapacity = newSize;
1821     }
1822 
1823     goto restart_write;
1824 #else  // BINDER_WITH_KERNEL_IPC
1825     LOG_ALWAYS_FATAL("Binder kernel driver disabled at build time");
1826     (void)val;
1827     (void)nullMetaData;
1828     return INVALID_OPERATION;
1829 #endif // BINDER_WITH_KERNEL_IPC
1830 }
1831 
writeNoException()1832 status_t Parcel::writeNoException()
1833 {
1834     binder::Status status;
1835     return status.writeToParcel(this);
1836 }
1837 
validateReadData(size_t upperBound) const1838 status_t Parcel::validateReadData(size_t upperBound) const
1839 {
1840     const auto* kernelFields = maybeKernelFields();
1841     if (kernelFields == nullptr) {
1842         // Can't validate RPC Parcel reads because the location of binder
1843         // objects is unknown.
1844         return OK;
1845     }
1846 
1847 #ifdef BINDER_WITH_KERNEL_IPC
1848     // Don't allow non-object reads on object data
1849     if (kernelFields->mObjectsSorted || kernelFields->mObjectsSize <= 1) {
1850     data_sorted:
1851         // Expect to check only against the next object
1852         if (kernelFields->mNextObjectHint < kernelFields->mObjectsSize &&
1853             upperBound > kernelFields->mObjects[kernelFields->mNextObjectHint]) {
1854             // For some reason the current read position is greater than the next object
1855             // hint. Iterate until we find the right object
1856             size_t nextObject = kernelFields->mNextObjectHint;
1857             do {
1858                 if (mDataPos < kernelFields->mObjects[nextObject] + sizeof(flat_binder_object)) {
1859                     // Requested info overlaps with an object
1860                     if (!mServiceFuzzing) {
1861                         ALOGE("Attempt to read or write from protected data in Parcel %p. pos: "
1862                               "%zu, nextObject: %zu, object offset: %llu, object size: %zu",
1863                               this, mDataPos, nextObject, kernelFields->mObjects[nextObject],
1864                               sizeof(flat_binder_object));
1865                     }
1866                     return PERMISSION_DENIED;
1867                 }
1868                 nextObject++;
1869             } while (nextObject < kernelFields->mObjectsSize &&
1870                      upperBound > kernelFields->mObjects[nextObject]);
1871             kernelFields->mNextObjectHint = nextObject;
1872         }
1873         return NO_ERROR;
1874     }
1875     // Quickly determine if mObjects is sorted.
1876     binder_size_t* currObj = kernelFields->mObjects + kernelFields->mObjectsSize - 1;
1877     binder_size_t* prevObj = currObj;
1878     while (currObj > kernelFields->mObjects) {
1879         prevObj--;
1880         if(*prevObj > *currObj) {
1881             goto data_unsorted;
1882         }
1883         currObj--;
1884     }
1885     kernelFields->mObjectsSorted = true;
1886     goto data_sorted;
1887 
1888 data_unsorted:
1889     // Insertion Sort mObjects
1890     // Great for mostly sorted lists. If randomly sorted or reverse ordered mObjects become common,
1891     // switch to std::sort(mObjects, mObjects + mObjectsSize);
1892     for (binder_size_t* iter0 = kernelFields->mObjects + 1;
1893          iter0 < kernelFields->mObjects + kernelFields->mObjectsSize; iter0++) {
1894         binder_size_t temp = *iter0;
1895         binder_size_t* iter1 = iter0 - 1;
1896         while (iter1 >= kernelFields->mObjects && *iter1 > temp) {
1897             *(iter1 + 1) = *iter1;
1898             iter1--;
1899         }
1900         *(iter1 + 1) = temp;
1901     }
1902     kernelFields->mNextObjectHint = 0;
1903     kernelFields->mObjectsSorted = true;
1904     goto data_sorted;
1905 #else  // BINDER_WITH_KERNEL_IPC
1906     (void)upperBound;
1907     return NO_ERROR;
1908 #endif // BINDER_WITH_KERNEL_IPC
1909 }
1910 
read(void * outData,size_t len) const1911 status_t Parcel::read(void* outData, size_t len) const
1912 {
1913     if (len > INT32_MAX) {
1914         // don't accept size_t values which may have come from an
1915         // inadvertent conversion from a negative int.
1916         return BAD_VALUE;
1917     }
1918 
1919     if ((mDataPos+pad_size(len)) >= mDataPos && (mDataPos+pad_size(len)) <= mDataSize
1920             && len <= pad_size(len)) {
1921         const auto* kernelFields = maybeKernelFields();
1922         if (kernelFields != nullptr && kernelFields->mObjectsSize > 0) {
1923             status_t err = validateReadData(mDataPos + pad_size(len));
1924             if(err != NO_ERROR) {
1925                 // Still increment the data position by the expected length
1926                 mDataPos += pad_size(len);
1927                 ALOGV("read Setting data pos of %p to %zu", this, mDataPos);
1928                 return err;
1929             }
1930         }
1931         memcpy(outData, mData+mDataPos, len);
1932         mDataPos += pad_size(len);
1933         ALOGV("read Setting data pos of %p to %zu", this, mDataPos);
1934         return NO_ERROR;
1935     }
1936     return NOT_ENOUGH_DATA;
1937 }
1938 
readInplace(size_t len) const1939 const void* Parcel::readInplace(size_t len) const
1940 {
1941     if (len > INT32_MAX) {
1942         // don't accept size_t values which may have come from an
1943         // inadvertent conversion from a negative int.
1944         return nullptr;
1945     }
1946 
1947     if ((mDataPos+pad_size(len)) >= mDataPos && (mDataPos+pad_size(len)) <= mDataSize
1948             && len <= pad_size(len)) {
1949         const auto* kernelFields = maybeKernelFields();
1950         if (kernelFields != nullptr && kernelFields->mObjectsSize > 0) {
1951             status_t err = validateReadData(mDataPos + pad_size(len));
1952             if(err != NO_ERROR) {
1953                 // Still increment the data position by the expected length
1954                 mDataPos += pad_size(len);
1955                 ALOGV("readInplace Setting data pos of %p to %zu", this, mDataPos);
1956                 return nullptr;
1957             }
1958         }
1959 
1960         const void* data = mData+mDataPos;
1961         mDataPos += pad_size(len);
1962         ALOGV("readInplace Setting data pos of %p to %zu", this, mDataPos);
1963         return data;
1964     }
1965     return nullptr;
1966 }
1967 
readOutVectorSizeWithCheck(size_t elmSize,int32_t * size) const1968 status_t Parcel::readOutVectorSizeWithCheck(size_t elmSize, int32_t* size) const {
1969     if (status_t status = readInt32(size); status != OK) return status;
1970     if (*size < 0) return OK; // may be null, client to handle
1971 
1972     LOG_ALWAYS_FATAL_IF(elmSize > INT32_MAX, "Cannot have element as big as %zu", elmSize);
1973 
1974     // approximation, can't know max element size (e.g. if it makes heap
1975     // allocations)
1976     static_assert(sizeof(int) == sizeof(int32_t), "Android is LP64");
1977     int32_t allocationSize;
1978     if (__builtin_smul_overflow(elmSize, *size, &allocationSize)) return NO_MEMORY;
1979 
1980     // High limit of 1MB since something this big could never be returned. Could
1981     // probably scope this down, but might impact very specific usecases.
1982     constexpr int32_t kMaxAllocationSize = 1 * 1000 * 1000;
1983 
1984     if (allocationSize >= kMaxAllocationSize) {
1985         return NO_MEMORY;
1986     }
1987 
1988     return OK;
1989 }
1990 
1991 template<class T>
readAligned(T * pArg) const1992 status_t Parcel::readAligned(T *pArg) const {
1993     static_assert(PAD_SIZE_UNSAFE(sizeof(T)) == sizeof(T));
1994     static_assert(std::is_trivially_copyable_v<T>);
1995 
1996     if ((mDataPos+sizeof(T)) <= mDataSize) {
1997         const auto* kernelFields = maybeKernelFields();
1998         if (kernelFields != nullptr && kernelFields->mObjectsSize > 0) {
1999             status_t err = validateReadData(mDataPos + sizeof(T));
2000             if(err != NO_ERROR) {
2001                 // Still increment the data position by the expected length
2002                 mDataPos += sizeof(T);
2003                 return err;
2004             }
2005         }
2006 
2007         memcpy(pArg, mData + mDataPos, sizeof(T));
2008         mDataPos += sizeof(T);
2009         return NO_ERROR;
2010     } else {
2011         return NOT_ENOUGH_DATA;
2012     }
2013 }
2014 
2015 template<class T>
readAligned() const2016 T Parcel::readAligned() const {
2017     T result;
2018     if (readAligned(&result) != NO_ERROR) {
2019         result = 0;
2020     }
2021 
2022     return result;
2023 }
2024 
2025 template<class T>
writeAligned(T val)2026 status_t Parcel::writeAligned(T val) {
2027     static_assert(PAD_SIZE_UNSAFE(sizeof(T)) == sizeof(T));
2028     static_assert(std::is_trivially_copyable_v<T>);
2029 
2030     if ((mDataPos+sizeof(val)) <= mDataCapacity) {
2031 restart_write:
2032         if (status_t status = validateReadData(mDataPos + sizeof(val)); status != OK) {
2033             return status;
2034         }
2035 
2036         memcpy(mData + mDataPos, &val, sizeof(val));
2037         return finishWrite(sizeof(val));
2038     }
2039 
2040     status_t err = growData(sizeof(val));
2041     if (err == NO_ERROR) goto restart_write;
2042     return err;
2043 }
2044 
readInt32(int32_t * pArg) const2045 status_t Parcel::readInt32(int32_t *pArg) const
2046 {
2047     return readAligned(pArg);
2048 }
2049 
readInt32() const2050 int32_t Parcel::readInt32() const
2051 {
2052     return readAligned<int32_t>();
2053 }
2054 
readUint32(uint32_t * pArg) const2055 status_t Parcel::readUint32(uint32_t *pArg) const
2056 {
2057     return readAligned(pArg);
2058 }
2059 
readUint32() const2060 uint32_t Parcel::readUint32() const
2061 {
2062     return readAligned<uint32_t>();
2063 }
2064 
readInt64(int64_t * pArg) const2065 status_t Parcel::readInt64(int64_t *pArg) const
2066 {
2067     return readAligned(pArg);
2068 }
2069 
2070 
readInt64() const2071 int64_t Parcel::readInt64() const
2072 {
2073     return readAligned<int64_t>();
2074 }
2075 
readUint64(uint64_t * pArg) const2076 status_t Parcel::readUint64(uint64_t *pArg) const
2077 {
2078     return readAligned(pArg);
2079 }
2080 
readUint64() const2081 uint64_t Parcel::readUint64() const
2082 {
2083     return readAligned<uint64_t>();
2084 }
2085 
readPointer(uintptr_t * pArg) const2086 status_t Parcel::readPointer(uintptr_t *pArg) const
2087 {
2088     status_t ret;
2089     binder_uintptr_t ptr;
2090     ret = readAligned(&ptr);
2091     if (!ret)
2092         *pArg = ptr;
2093     return ret;
2094 }
2095 
readPointer() const2096 uintptr_t Parcel::readPointer() const
2097 {
2098     return readAligned<binder_uintptr_t>();
2099 }
2100 
2101 
readFloat(float * pArg) const2102 status_t Parcel::readFloat(float *pArg) const
2103 {
2104     return readAligned(pArg);
2105 }
2106 
2107 
readFloat() const2108 float Parcel::readFloat() const
2109 {
2110     return readAligned<float>();
2111 }
2112 
2113 #if defined(__mips__) && defined(__mips_hard_float)
2114 
readDouble(double * pArg) const2115 status_t Parcel::readDouble(double *pArg) const
2116 {
2117     union {
2118       double d;
2119       unsigned long long ll;
2120     } u;
2121     u.d = 0;
2122     status_t status;
2123     status = readAligned(&u.ll);
2124     *pArg = u.d;
2125     return status;
2126 }
2127 
readDouble() const2128 double Parcel::readDouble() const
2129 {
2130     union {
2131       double d;
2132       unsigned long long ll;
2133     } u;
2134     u.ll = readAligned<unsigned long long>();
2135     return u.d;
2136 }
2137 
2138 #else
2139 
readDouble(double * pArg) const2140 status_t Parcel::readDouble(double *pArg) const
2141 {
2142     return readAligned(pArg);
2143 }
2144 
readDouble() const2145 double Parcel::readDouble() const
2146 {
2147     return readAligned<double>();
2148 }
2149 
2150 #endif
2151 
readBool(bool * pArg) const2152 status_t Parcel::readBool(bool *pArg) const
2153 {
2154     int32_t tmp = 0;
2155     status_t ret = readInt32(&tmp);
2156     *pArg = (tmp != 0);
2157     return ret;
2158 }
2159 
readBool() const2160 bool Parcel::readBool() const
2161 {
2162     return readInt32() != 0;
2163 }
2164 
readChar(char16_t * pArg) const2165 status_t Parcel::readChar(char16_t *pArg) const
2166 {
2167     int32_t tmp = 0;
2168     status_t ret = readInt32(&tmp);
2169     *pArg = char16_t(tmp);
2170     return ret;
2171 }
2172 
readChar() const2173 char16_t Parcel::readChar() const
2174 {
2175     return char16_t(readInt32());
2176 }
2177 
readByte(int8_t * pArg) const2178 status_t Parcel::readByte(int8_t *pArg) const
2179 {
2180     int32_t tmp = 0;
2181     status_t ret = readInt32(&tmp);
2182     *pArg = int8_t(tmp);
2183     return ret;
2184 }
2185 
readByte() const2186 int8_t Parcel::readByte() const
2187 {
2188     return int8_t(readInt32());
2189 }
2190 
readUtf8FromUtf16(std::string * str) const2191 status_t Parcel::readUtf8FromUtf16(std::string* str) const {
2192     size_t utf16Size = 0;
2193     const char16_t* src = readString16Inplace(&utf16Size);
2194     if (!src) {
2195         return UNEXPECTED_NULL;
2196     }
2197 
2198     // Save ourselves the trouble, we're done.
2199     if (utf16Size == 0u) {
2200         str->clear();
2201        return NO_ERROR;
2202     }
2203 
2204     // Allow for closing '\0'
2205     ssize_t utf8Size = utf16_to_utf8_length(src, utf16Size) + 1;
2206     if (utf8Size < 1) {
2207         return BAD_VALUE;
2208     }
2209     // Note that while it is probably safe to assume string::resize keeps a
2210     // spare byte around for the trailing null, we still pass the size including the trailing null
2211     str->resize(utf8Size);
2212     utf16_to_utf8(src, utf16Size, &((*str)[0]), utf8Size);
2213     str->resize(utf8Size - 1);
2214     return NO_ERROR;
2215 }
2216 
readCString() const2217 const char* Parcel::readCString() const
2218 {
2219     if (mDataPos < mDataSize) {
2220         const size_t avail = mDataSize-mDataPos;
2221         const char* str = reinterpret_cast<const char*>(mData+mDataPos);
2222         // is the string's trailing NUL within the parcel's valid bounds?
2223         const char* eos = reinterpret_cast<const char*>(memchr(str, 0, avail));
2224         if (eos) {
2225             const size_t len = eos - str;
2226             return static_cast<const char*>(readInplace(len + 1));
2227         }
2228     }
2229     return nullptr;
2230 }
2231 
readString8() const2232 String8 Parcel::readString8() const
2233 {
2234     size_t len;
2235     const char* str = readString8Inplace(&len);
2236     if (str) return String8(str, len);
2237 
2238     if (!mServiceFuzzing) {
2239         ALOGE("Reading a NULL string not supported here.");
2240     }
2241 
2242     return String8();
2243 }
2244 
readString8(String8 * pArg) const2245 status_t Parcel::readString8(String8* pArg) const
2246 {
2247     size_t len;
2248     const char* str = readString8Inplace(&len);
2249     if (str) {
2250         pArg->setTo(str, len);
2251         return 0;
2252     } else {
2253         *pArg = String8();
2254         return UNEXPECTED_NULL;
2255     }
2256 }
2257 
readString8Inplace(size_t * outLen) const2258 const char* Parcel::readString8Inplace(size_t* outLen) const
2259 {
2260     int32_t size = readInt32();
2261     // watch for potential int overflow from size+1
2262     if (size >= 0 && size < INT32_MAX) {
2263         *outLen = size;
2264         const char* str = (const char*)readInplace(size+1);
2265         if (str != nullptr) {
2266             if (str[size] == '\0') {
2267                 return str;
2268             }
2269             android_errorWriteLog(0x534e4554, "172655291");
2270         }
2271     }
2272     *outLen = 0;
2273     return nullptr;
2274 }
2275 
readString16() const2276 String16 Parcel::readString16() const
2277 {
2278     size_t len;
2279     const char16_t* str = readString16Inplace(&len);
2280     if (str) return String16(str, len);
2281 
2282     if (!mServiceFuzzing) {
2283         ALOGE("Reading a NULL string not supported here.");
2284     }
2285 
2286     return String16();
2287 }
2288 
2289 
readString16(String16 * pArg) const2290 status_t Parcel::readString16(String16* pArg) const
2291 {
2292     size_t len;
2293     const char16_t* str = readString16Inplace(&len);
2294     if (str) {
2295         pArg->setTo(str, len);
2296         return 0;
2297     } else {
2298         *pArg = String16();
2299         return UNEXPECTED_NULL;
2300     }
2301 }
2302 
readString16Inplace(size_t * outLen) const2303 const char16_t* Parcel::readString16Inplace(size_t* outLen) const
2304 {
2305     int32_t size = readInt32();
2306     // watch for potential int overflow from size+1
2307     if (size >= 0 && size < INT32_MAX) {
2308         *outLen = size;
2309         const char16_t* str = (const char16_t*)readInplace((size+1)*sizeof(char16_t));
2310         if (str != nullptr) {
2311             if (str[size] == u'\0') {
2312                 return str;
2313             }
2314             android_errorWriteLog(0x534e4554, "172655291");
2315         }
2316     }
2317     *outLen = 0;
2318     return nullptr;
2319 }
2320 
readStrongBinder(sp<IBinder> * val) const2321 status_t Parcel::readStrongBinder(sp<IBinder>* val) const
2322 {
2323     status_t status = readNullableStrongBinder(val);
2324     if (status == OK && !val->get()) {
2325         if (!mServiceFuzzing) {
2326             ALOGW("Expecting binder but got null!");
2327         }
2328         status = UNEXPECTED_NULL;
2329     }
2330     return status;
2331 }
2332 
readNullableStrongBinder(sp<IBinder> * val) const2333 status_t Parcel::readNullableStrongBinder(sp<IBinder>* val) const
2334 {
2335     return unflattenBinder(val);
2336 }
2337 
readStrongBinder() const2338 sp<IBinder> Parcel::readStrongBinder() const
2339 {
2340     sp<IBinder> val;
2341     // Note that a lot of code in Android reads binders by hand with this
2342     // method, and that code has historically been ok with getting nullptr
2343     // back (while ignoring error codes).
2344     readNullableStrongBinder(&val);
2345     return val;
2346 }
2347 
readExceptionCode() const2348 int32_t Parcel::readExceptionCode() const
2349 {
2350     binder::Status status;
2351     status.readFromParcel(*this);
2352     return status.exceptionCode();
2353 }
2354 
2355 #ifndef BINDER_DISABLE_NATIVE_HANDLE
readNativeHandle() const2356 native_handle* Parcel::readNativeHandle() const
2357 {
2358     int numFds, numInts;
2359     status_t err;
2360     err = readInt32(&numFds);
2361     if (err != NO_ERROR) return nullptr;
2362     err = readInt32(&numInts);
2363     if (err != NO_ERROR) return nullptr;
2364 
2365     native_handle* h = native_handle_create(numFds, numInts);
2366     if (!h) {
2367         return nullptr;
2368     }
2369 
2370     for (int i=0 ; err==NO_ERROR && i<numFds ; i++) {
2371         h->data[i] = fcntl(readFileDescriptor(), F_DUPFD_CLOEXEC, 0);
2372         if (h->data[i] < 0) {
2373             for (int j = 0; j < i; j++) {
2374                 close(h->data[j]);
2375             }
2376             native_handle_delete(h);
2377             return nullptr;
2378         }
2379     }
2380     err = read(h->data + numFds, sizeof(int)*numInts);
2381     if (err != NO_ERROR) {
2382         native_handle_close(h);
2383         native_handle_delete(h);
2384         h = nullptr;
2385     }
2386     return h;
2387 }
2388 #endif
2389 
readFileDescriptor() const2390 int Parcel::readFileDescriptor() const {
2391     if (const auto* rpcFields = maybeRpcFields()) {
2392         if (!std::binary_search(rpcFields->mObjectPositions.begin(),
2393                                 rpcFields->mObjectPositions.end(), mDataPos)) {
2394             if (!mServiceFuzzing) {
2395                 ALOGW("Attempt to read file descriptor from Parcel %p at offset %zu that is not in "
2396                       "the object list",
2397                       this, mDataPos);
2398             }
2399             return BAD_TYPE;
2400         }
2401 
2402         int32_t objectType = readInt32();
2403         if (objectType != RpcFields::TYPE_NATIVE_FILE_DESCRIPTOR) {
2404             return BAD_TYPE;
2405         }
2406 
2407         int32_t fdIndex = readInt32();
2408         if (rpcFields->mFds == nullptr || fdIndex < 0 ||
2409             static_cast<size_t>(fdIndex) >= rpcFields->mFds->size()) {
2410             ALOGE("RPC Parcel contains invalid file descriptor index. index=%d fd_count=%zu",
2411                   fdIndex, rpcFields->mFds ? rpcFields->mFds->size() : 0);
2412             return BAD_VALUE;
2413         }
2414         return toRawFd(rpcFields->mFds->at(fdIndex));
2415     }
2416 
2417 #ifdef BINDER_WITH_KERNEL_IPC
2418     const flat_binder_object* flat = readObject(true);
2419 
2420     if (flat && flat->hdr.type == BINDER_TYPE_FD) {
2421         return flat->handle;
2422     }
2423 
2424     return BAD_TYPE;
2425 #else  // BINDER_WITH_KERNEL_IPC
2426     LOG_ALWAYS_FATAL("Binder kernel driver disabled at build time");
2427     return INVALID_OPERATION;
2428 #endif // BINDER_WITH_KERNEL_IPC
2429 }
2430 
readParcelFileDescriptor() const2431 int Parcel::readParcelFileDescriptor() const {
2432     int32_t hasComm = readInt32();
2433     int fd = readFileDescriptor();
2434     if (hasComm != 0) {
2435         // detach (owned by the binder driver)
2436         int comm = readFileDescriptor();
2437 
2438         // warning: this must be kept in sync with:
2439         // frameworks/base/core/java/android/os/ParcelFileDescriptor.java
2440         enum ParcelFileDescriptorStatus {
2441             DETACHED = 2,
2442         };
2443 
2444 #if BYTE_ORDER == BIG_ENDIAN
2445         const int32_t message = ParcelFileDescriptorStatus::DETACHED;
2446 #endif
2447 #if BYTE_ORDER == LITTLE_ENDIAN
2448         const int32_t message = __builtin_bswap32(ParcelFileDescriptorStatus::DETACHED);
2449 #endif
2450 
2451         ssize_t written = TEMP_FAILURE_RETRY(
2452             ::write(comm, &message, sizeof(message)));
2453 
2454         if (written != sizeof(message)) {
2455             ALOGW("Failed to detach ParcelFileDescriptor written: %zd err: %s",
2456                 written, strerror(errno));
2457             return BAD_TYPE;
2458         }
2459     }
2460     return fd;
2461 }
2462 
readUniqueFileDescriptor(unique_fd * val) const2463 status_t Parcel::readUniqueFileDescriptor(unique_fd* val) const {
2464     int got = readFileDescriptor();
2465 
2466     if (got == BAD_TYPE) {
2467         return BAD_TYPE;
2468     }
2469 
2470     int dupFd;
2471     if (status_t err = binder::os::dupFileDescriptor(got, &dupFd); err != OK) {
2472         return BAD_VALUE;
2473     }
2474 
2475     val->reset(dupFd);
2476 
2477     if (val->get() < 0) {
2478         return BAD_VALUE;
2479     }
2480 
2481     return OK;
2482 }
2483 
readUniqueParcelFileDescriptor(unique_fd * val) const2484 status_t Parcel::readUniqueParcelFileDescriptor(unique_fd* val) const {
2485     int got = readParcelFileDescriptor();
2486 
2487     if (got == BAD_TYPE) {
2488         return BAD_TYPE;
2489     }
2490 
2491     int dupFd;
2492     if (status_t err = binder::os::dupFileDescriptor(got, &dupFd); err != OK) {
2493         return BAD_VALUE;
2494     }
2495 
2496     val->reset(dupFd);
2497 
2498     if (val->get() < 0) {
2499         return BAD_VALUE;
2500     }
2501 
2502     return OK;
2503 }
2504 
readBlob(size_t len,ReadableBlob * outBlob) const2505 status_t Parcel::readBlob(size_t len, ReadableBlob* outBlob) const
2506 {
2507 #ifdef BINDER_DISABLE_BLOB
2508     (void)len;
2509     (void)outBlob;
2510     return INVALID_OPERATION;
2511 #else
2512     int32_t blobType;
2513     status_t status = readInt32(&blobType);
2514     if (status) return status;
2515 
2516     if (blobType == BLOB_INPLACE) {
2517         ALOGV("readBlob: read in place");
2518         const void* ptr = readInplace(len);
2519         if (!ptr) return BAD_VALUE;
2520 
2521         outBlob->init(-1, const_cast<void*>(ptr), len, false);
2522         return NO_ERROR;
2523     }
2524 
2525     ALOGV("readBlob: read from ashmem");
2526     bool isMutable = (blobType == BLOB_ASHMEM_MUTABLE);
2527     int fd = readFileDescriptor();
2528     if (fd == int(BAD_TYPE)) return BAD_VALUE;
2529 
2530     if (!ashmem_valid(fd)) {
2531         ALOGE("invalid fd");
2532         return BAD_VALUE;
2533     }
2534     int size = ashmem_get_size_region(fd);
2535     if (size < 0 || size_t(size) < len) {
2536         ALOGE("request size %zu does not match fd size %d", len, size);
2537         return BAD_VALUE;
2538     }
2539     void* ptr = ::mmap(nullptr, len, isMutable ? PROT_READ | PROT_WRITE : PROT_READ,
2540             MAP_SHARED, fd, 0);
2541     if (ptr == MAP_FAILED) return NO_MEMORY;
2542 
2543     outBlob->init(fd, ptr, len, isMutable);
2544     return NO_ERROR;
2545 #endif
2546 }
2547 
read(FlattenableHelperInterface & val) const2548 status_t Parcel::read(FlattenableHelperInterface& val) const
2549 {
2550     // size
2551     const size_t len = this->readInt32();
2552     const size_t fd_count = this->readInt32();
2553 
2554     if ((len > INT32_MAX) || (fd_count > kMaxFds)) {
2555         // don't accept size_t values which may have come from an
2556         // inadvertent conversion from a negative int.
2557         return BAD_VALUE;
2558     }
2559 
2560     // payload
2561     void const* const buf = this->readInplace(pad_size(len));
2562     if (buf == nullptr)
2563         return BAD_VALUE;
2564 
2565     int* fds = nullptr;
2566     if (fd_count) {
2567         fds = new (std::nothrow) int[fd_count];
2568         if (fds == nullptr) {
2569             ALOGE("read: failed to allocate requested %zu fds", fd_count);
2570             return BAD_VALUE;
2571         }
2572     }
2573 
2574     status_t err = NO_ERROR;
2575     for (size_t i=0 ; i<fd_count && err==NO_ERROR ; i++) {
2576         int fd = this->readFileDescriptor();
2577         if (fd < 0 || ((fds[i] = fcntl(fd, F_DUPFD_CLOEXEC, 0)) < 0)) {
2578             err = BAD_VALUE;
2579             ALOGE("fcntl(F_DUPFD_CLOEXEC) failed in Parcel::read, i is %zu, fds[i] is %d, fd_count is %zu, error: %s",
2580                   i, fds[i], fd_count, strerror(fd < 0 ? -fd : errno));
2581             // Close all the file descriptors that were dup-ed.
2582             for (size_t j=0; j<i ;j++) {
2583                 close(fds[j]);
2584             }
2585         }
2586     }
2587 
2588     if (err == NO_ERROR) {
2589         err = val.unflatten(buf, len, fds, fd_count);
2590     }
2591 
2592     if (fd_count) {
2593         delete [] fds;
2594     }
2595 
2596     return err;
2597 }
2598 
2599 #ifdef BINDER_WITH_KERNEL_IPC
readObject(bool nullMetaData) const2600 const flat_binder_object* Parcel::readObject(bool nullMetaData) const
2601 {
2602     const auto* kernelFields = maybeKernelFields();
2603     if (kernelFields == nullptr) {
2604         return nullptr;
2605     }
2606 
2607     const size_t DPOS = mDataPos;
2608     if ((DPOS+sizeof(flat_binder_object)) <= mDataSize) {
2609         const flat_binder_object* obj
2610                 = reinterpret_cast<const flat_binder_object*>(mData+DPOS);
2611         mDataPos = DPOS + sizeof(flat_binder_object);
2612         if (!nullMetaData && (obj->cookie == 0 && obj->binder == 0)) {
2613             // When transferring a NULL object, we don't write it into
2614             // the object list, so we don't want to check for it when
2615             // reading.
2616             ALOGV("readObject Setting data pos of %p to %zu", this, mDataPos);
2617             return obj;
2618         }
2619 
2620         // Ensure that this object is valid...
2621         binder_size_t* const OBJS = kernelFields->mObjects;
2622         const size_t N = kernelFields->mObjectsSize;
2623         size_t opos = kernelFields->mNextObjectHint;
2624 
2625         if (N > 0) {
2626             ALOGV("Parcel %p looking for obj at %zu, hint=%zu",
2627                  this, DPOS, opos);
2628 
2629             // Start at the current hint position, looking for an object at
2630             // the current data position.
2631             if (opos < N) {
2632                 while (opos < (N-1) && OBJS[opos] < DPOS) {
2633                     opos++;
2634                 }
2635             } else {
2636                 opos = N-1;
2637             }
2638             if (OBJS[opos] == DPOS) {
2639                 // Found it!
2640                 ALOGV("Parcel %p found obj %zu at index %zu with forward search",
2641                      this, DPOS, opos);
2642                 kernelFields->mNextObjectHint = opos + 1;
2643                 ALOGV("readObject Setting data pos of %p to %zu", this, mDataPos);
2644                 return obj;
2645             }
2646 
2647             // Look backwards for it...
2648             while (opos > 0 && OBJS[opos] > DPOS) {
2649                 opos--;
2650             }
2651             if (OBJS[opos] == DPOS) {
2652                 // Found it!
2653                 ALOGV("Parcel %p found obj %zu at index %zu with backward search",
2654                      this, DPOS, opos);
2655                 kernelFields->mNextObjectHint = opos + 1;
2656                 ALOGV("readObject Setting data pos of %p to %zu", this, mDataPos);
2657                 return obj;
2658             }
2659         }
2660         if (!mServiceFuzzing) {
2661             ALOGW("Attempt to read object from Parcel %p at offset %zu that is not in the object "
2662                   "list",
2663                   this, DPOS);
2664         }
2665     }
2666     return nullptr;
2667 }
2668 #endif // BINDER_WITH_KERNEL_IPC
2669 
closeFileDescriptors(size_t newObjectsSize)2670 void Parcel::closeFileDescriptors(size_t newObjectsSize) {
2671     if (auto* kernelFields = maybeKernelFields()) {
2672 #ifdef BINDER_WITH_KERNEL_IPC
2673         size_t i = kernelFields->mObjectsSize;
2674         if (i > 0) {
2675             // ALOGI("Closing file descriptors for %zu objects...", i);
2676         }
2677         while (i > newObjectsSize) {
2678             i--;
2679             const flat_binder_object* flat =
2680                     reinterpret_cast<flat_binder_object*>(mData + kernelFields->mObjects[i]);
2681             if (flat->hdr.type == BINDER_TYPE_FD) {
2682                 // ALOGI("Closing fd: %ld", flat->handle);
2683                 // FDs from the kernel are always owned
2684                 FdTagClose(flat->handle, this);
2685             }
2686         }
2687 #else  // BINDER_WITH_KERNEL_IPC
2688         (void)newObjectsSize;
2689         LOG_ALWAYS_FATAL("Binder kernel driver disabled at build time");
2690 #endif // BINDER_WITH_KERNEL_IPC
2691     } else if (auto* rpcFields = maybeRpcFields()) {
2692         rpcFields->mFds.reset();
2693     }
2694 }
2695 
ipcData() const2696 uintptr_t Parcel::ipcData() const
2697 {
2698     return reinterpret_cast<uintptr_t>(mData);
2699 }
2700 
ipcDataSize() const2701 size_t Parcel::ipcDataSize() const
2702 {
2703     return (mDataSize > mDataPos ? mDataSize : mDataPos);
2704 }
2705 
ipcObjects() const2706 uintptr_t Parcel::ipcObjects() const
2707 {
2708     if (const auto* kernelFields = maybeKernelFields()) {
2709         return reinterpret_cast<uintptr_t>(kernelFields->mObjects);
2710     }
2711     return 0;
2712 }
2713 
ipcObjectsCount() const2714 size_t Parcel::ipcObjectsCount() const
2715 {
2716     if (const auto* kernelFields = maybeKernelFields()) {
2717         return kernelFields->mObjectsSize;
2718     }
2719     return 0;
2720 }
2721 
ipcSetDataReference(const uint8_t * data,size_t dataSize,const binder_size_t * objects,size_t objectsCount,release_func relFunc)2722 void Parcel::ipcSetDataReference(const uint8_t* data, size_t dataSize, const binder_size_t* objects,
2723                                  size_t objectsCount, release_func relFunc) {
2724     // this code uses 'mOwner == nullptr' to understand whether it owns memory
2725     LOG_ALWAYS_FATAL_IF(relFunc == nullptr, "must provide cleanup function");
2726 
2727     freeData();
2728 
2729     auto* kernelFields = maybeKernelFields();
2730     LOG_ALWAYS_FATAL_IF(kernelFields == nullptr); // guaranteed by freeData.
2731 
2732     mData = const_cast<uint8_t*>(data);
2733     mDataSize = mDataCapacity = dataSize;
2734     kernelFields->mObjects = const_cast<binder_size_t*>(objects);
2735     kernelFields->mObjectsSize = kernelFields->mObjectsCapacity = objectsCount;
2736     mOwner = relFunc;
2737 
2738 #ifdef BINDER_WITH_KERNEL_IPC
2739     binder_size_t minOffset = 0;
2740     for (size_t i = 0; i < kernelFields->mObjectsSize; i++) {
2741         binder_size_t offset = kernelFields->mObjects[i];
2742         if (offset < minOffset) {
2743             ALOGE("%s: bad object offset %" PRIu64 " < %" PRIu64 "\n",
2744                   __func__, (uint64_t)offset, (uint64_t)minOffset);
2745             kernelFields->mObjectsSize = 0;
2746             break;
2747         }
2748         const flat_binder_object* flat
2749             = reinterpret_cast<const flat_binder_object*>(mData + offset);
2750         uint32_t type = flat->hdr.type;
2751         if (!(type == BINDER_TYPE_BINDER || type == BINDER_TYPE_HANDLE ||
2752               type == BINDER_TYPE_FD)) {
2753             // We should never receive other types (eg BINDER_TYPE_FDA) as long as we don't support
2754             // them in libbinder. If we do receive them, it probably means a kernel bug; try to
2755             // recover gracefully by clearing out the objects.
2756             android_errorWriteLog(0x534e4554, "135930648");
2757             android_errorWriteLog(0x534e4554, "203847542");
2758             ALOGE("%s: unsupported type object (%" PRIu32 ") at offset %" PRIu64 "\n",
2759                   __func__, type, (uint64_t)offset);
2760 
2761             // WARNING: callers of ipcSetDataReference need to make sure they
2762             // don't rely on mObjectsSize in their release_func.
2763             kernelFields->mObjectsSize = 0;
2764             break;
2765         }
2766         if (type == BINDER_TYPE_FD) {
2767             // FDs from the kernel are always owned
2768             FdTag(flat->handle, nullptr, this);
2769         }
2770         minOffset = offset + sizeof(flat_binder_object);
2771     }
2772     scanForFds();
2773 #else  // BINDER_WITH_KERNEL_IPC
2774     LOG_ALWAYS_FATAL_IF(objectsCount != 0,
2775                         "Non-zero objects count passed to Parcel with kernel driver disabled");
2776 #endif // BINDER_WITH_KERNEL_IPC
2777 }
2778 
rpcSetDataReference(const sp<RpcSession> & session,const uint8_t * data,size_t dataSize,const uint32_t * objectTable,size_t objectTableSize,std::vector<std::variant<unique_fd,borrowed_fd>> && ancillaryFds,release_func relFunc)2779 status_t Parcel::rpcSetDataReference(
2780         const sp<RpcSession>& session, const uint8_t* data, size_t dataSize,
2781         const uint32_t* objectTable, size_t objectTableSize,
2782         std::vector<std::variant<unique_fd, borrowed_fd>>&& ancillaryFds, release_func relFunc) {
2783     // this code uses 'mOwner == nullptr' to understand whether it owns memory
2784     LOG_ALWAYS_FATAL_IF(relFunc == nullptr, "must provide cleanup function");
2785 
2786     LOG_ALWAYS_FATAL_IF(session == nullptr);
2787 
2788     if (objectTableSize != ancillaryFds.size()) {
2789         ALOGE("objectTableSize=%zu ancillaryFds.size=%zu", objectTableSize, ancillaryFds.size());
2790         relFunc(data, dataSize, nullptr, 0);
2791         return BAD_VALUE;
2792     }
2793     for (size_t i = 0; i < objectTableSize; i++) {
2794         uint32_t minObjectEnd;
2795         if (__builtin_add_overflow(objectTable[i], sizeof(RpcFields::ObjectType), &minObjectEnd) ||
2796             minObjectEnd >= dataSize) {
2797             ALOGE("received out of range object position: %" PRIu32 " (parcel size is %zu)",
2798                   objectTable[i], dataSize);
2799             relFunc(data, dataSize, nullptr, 0);
2800             return BAD_VALUE;
2801         }
2802     }
2803 
2804     freeData();
2805     markForRpc(session);
2806 
2807     auto* rpcFields = maybeRpcFields();
2808     LOG_ALWAYS_FATAL_IF(rpcFields == nullptr); // guaranteed by markForRpc.
2809 
2810     mData = const_cast<uint8_t*>(data);
2811     mDataSize = mDataCapacity = dataSize;
2812     mOwner = relFunc;
2813 
2814     rpcFields->mObjectPositions.reserve(objectTableSize);
2815     for (size_t i = 0; i < objectTableSize; i++) {
2816         rpcFields->mObjectPositions.push_back(objectTable[i]);
2817     }
2818     if (!ancillaryFds.empty()) {
2819         rpcFields->mFds = std::make_unique<decltype(rpcFields->mFds)::element_type>();
2820         *rpcFields->mFds = std::move(ancillaryFds);
2821     }
2822 
2823     return OK;
2824 }
2825 
print(std::ostream & to,uint32_t) const2826 void Parcel::print(std::ostream& to, uint32_t /*flags*/) const {
2827     to << "Parcel(";
2828 
2829     if (errorCheck() != NO_ERROR) {
2830         const status_t err = errorCheck();
2831         to << "Error: " << (void*)(intptr_t)err << " \"" << strerror(-err) << "\"";
2832     } else if (dataSize() > 0) {
2833         const uint8_t* DATA = data();
2834         to << "\t" << HexDump(DATA, dataSize());
2835 #ifdef BINDER_WITH_KERNEL_IPC
2836         if (const auto* kernelFields = maybeKernelFields()) {
2837             const binder_size_t* OBJS = kernelFields->mObjects;
2838             const size_t N = objectsCount();
2839             for (size_t i = 0; i < N; i++) {
2840                 const flat_binder_object* flat =
2841                         reinterpret_cast<const flat_binder_object*>(DATA + OBJS[i]);
2842                 to << "Object #" << i << " @ " << (void*)OBJS[i] << ": "
2843                    << TypeCode(flat->hdr.type & 0x7f7f7f00) << " = " << flat->binder;
2844             }
2845         }
2846 #endif // BINDER_WITH_KERNEL_IPC
2847     } else {
2848         to << "NULL";
2849     }
2850 
2851     to << ")";
2852 }
2853 
releaseObjects()2854 void Parcel::releaseObjects()
2855 {
2856     auto* kernelFields = maybeKernelFields();
2857     if (kernelFields == nullptr) {
2858         return;
2859     }
2860 
2861 #ifdef BINDER_WITH_KERNEL_IPC
2862     size_t i = kernelFields->mObjectsSize;
2863     if (i == 0) {
2864         return;
2865     }
2866     sp<ProcessState> proc(ProcessState::self());
2867     uint8_t* const data = mData;
2868     binder_size_t* const objects = kernelFields->mObjects;
2869     while (i > 0) {
2870         i--;
2871         const flat_binder_object* flat = reinterpret_cast<flat_binder_object*>(data + objects[i]);
2872         release_object(proc, *flat, this);
2873     }
2874 #endif // BINDER_WITH_KERNEL_IPC
2875 }
2876 
acquireObjects()2877 void Parcel::acquireObjects()
2878 {
2879     auto* kernelFields = maybeKernelFields();
2880     if (kernelFields == nullptr) {
2881         return;
2882     }
2883 
2884 #ifdef BINDER_WITH_KERNEL_IPC
2885     size_t i = kernelFields->mObjectsSize;
2886     if (i == 0) {
2887         return;
2888     }
2889     const sp<ProcessState> proc(ProcessState::self());
2890     uint8_t* const data = mData;
2891     binder_size_t* const objects = kernelFields->mObjects;
2892     while (i > 0) {
2893         i--;
2894         const flat_binder_object* flat = reinterpret_cast<flat_binder_object*>(data + objects[i]);
2895         acquire_object(proc, *flat, this);
2896     }
2897 #endif // BINDER_WITH_KERNEL_IPC
2898 }
2899 
freeData()2900 void Parcel::freeData()
2901 {
2902     freeDataNoInit();
2903     initState();
2904 }
2905 
freeDataNoInit()2906 void Parcel::freeDataNoInit()
2907 {
2908     if (mOwner) {
2909         LOG_ALLOC("Parcel %p: freeing other owner data", this);
2910         //ALOGI("Freeing data ref of %p (pid=%d)", this, getpid());
2911         auto* kernelFields = maybeKernelFields();
2912         // Close FDs before freeing, otherwise they will leak for kernel binder.
2913         closeFileDescriptors(/*newObjectsSize=*/0);
2914         mOwner(mData, mDataSize, kernelFields ? kernelFields->mObjects : nullptr,
2915                kernelFields ? kernelFields->mObjectsSize : 0);
2916     } else {
2917         LOG_ALLOC("Parcel %p: freeing allocated data", this);
2918         releaseObjects();
2919         if (mData) {
2920             LOG_ALLOC("Parcel %p: freeing with %zu capacity", this, mDataCapacity);
2921             gParcelGlobalAllocSize -= mDataCapacity;
2922             gParcelGlobalAllocCount--;
2923             if (mDeallocZero) {
2924                 zeroMemory(mData, mDataSize);
2925             }
2926             free(mData);
2927         }
2928         auto* kernelFields = maybeKernelFields();
2929         if (kernelFields && kernelFields->mObjects) free(kernelFields->mObjects);
2930     }
2931 }
2932 
growData(size_t len)2933 status_t Parcel::growData(size_t len)
2934 {
2935     if (len > INT32_MAX) {
2936         // don't accept size_t values which may have come from an
2937         // inadvertent conversion from a negative int.
2938         return BAD_VALUE;
2939     }
2940 
2941     if (mDataPos > mDataSize) {
2942         // b/370831157 - this case used to abort. We also don't expect mDataPos < mDataSize, but
2943         // this would only waste a bit of memory, so it's okay.
2944         ALOGE("growData only expected at the end of a Parcel. pos: %zu, size: %zu, capacity: %zu",
2945               mDataPos, len, mDataCapacity);
2946         return BAD_VALUE;
2947     }
2948 
2949     if (len > SIZE_MAX - mDataSize) return NO_MEMORY; // overflow
2950     if (mDataSize + len > SIZE_MAX / 3) return NO_MEMORY; // overflow
2951     size_t newSize = ((mDataSize+len)*3)/2;
2952     return (newSize <= mDataSize)
2953             ? (status_t) NO_MEMORY
2954             : continueWrite(std::max(newSize, (size_t) 128));
2955 }
2956 
reallocZeroFree(uint8_t * data,size_t oldCapacity,size_t newCapacity,bool zero)2957 static uint8_t* reallocZeroFree(uint8_t* data, size_t oldCapacity, size_t newCapacity, bool zero) {
2958     if (!zero) {
2959         return (uint8_t*)realloc(data, newCapacity);
2960     }
2961     uint8_t* newData = (uint8_t*)malloc(newCapacity);
2962     if (!newData) {
2963         return nullptr;
2964     }
2965 
2966     memcpy(newData, data, std::min(oldCapacity, newCapacity));
2967     zeroMemory(data, oldCapacity);
2968     free(data);
2969     return newData;
2970 }
2971 
restartWrite(size_t desired)2972 status_t Parcel::restartWrite(size_t desired)
2973 {
2974     if (desired > INT32_MAX) {
2975         // don't accept size_t values which may have come from an
2976         // inadvertent conversion from a negative int.
2977         return BAD_VALUE;
2978     }
2979 
2980     if (mOwner) {
2981         freeData();
2982         return continueWrite(desired);
2983     }
2984 
2985     releaseObjects();
2986 
2987     uint8_t* data = reallocZeroFree(mData, mDataCapacity, desired, mDeallocZero);
2988     if (!data && desired > mDataCapacity) {
2989         LOG_ALWAYS_FATAL("out of memory");
2990         mError = NO_MEMORY;
2991         return NO_MEMORY;
2992     }
2993 
2994     if (data || desired == 0) {
2995         LOG_ALLOC("Parcel %p: restart from %zu to %zu capacity", this, mDataCapacity, desired);
2996         if (mDataCapacity > desired) {
2997             gParcelGlobalAllocSize -= (mDataCapacity - desired);
2998         } else {
2999             gParcelGlobalAllocSize += (desired - mDataCapacity);
3000         }
3001 
3002         if (!mData) {
3003             gParcelGlobalAllocCount++;
3004         }
3005         mData = data;
3006         mDataCapacity = desired;
3007     }
3008 
3009     mDataSize = mDataPos = 0;
3010     ALOGV("restartWrite Setting data size of %p to %zu", this, mDataSize);
3011     ALOGV("restartWrite Setting data pos of %p to %zu", this, mDataPos);
3012 
3013     if (auto* kernelFields = maybeKernelFields()) {
3014         free(kernelFields->mObjects);
3015         kernelFields->mObjects = nullptr;
3016         kernelFields->mObjectsSize = kernelFields->mObjectsCapacity = 0;
3017         kernelFields->mNextObjectHint = 0;
3018         kernelFields->mObjectsSorted = false;
3019         kernelFields->mHasFds = false;
3020         kernelFields->mFdsKnown = true;
3021     } else if (auto* rpcFields = maybeRpcFields()) {
3022         rpcFields->mObjectPositions.clear();
3023         rpcFields->mFds.reset();
3024     }
3025     mAllowFds = true;
3026 
3027     return NO_ERROR;
3028 }
3029 
continueWrite(size_t desired)3030 status_t Parcel::continueWrite(size_t desired)
3031 {
3032     if (desired > INT32_MAX) {
3033         // don't accept size_t values which may have come from an
3034         // inadvertent conversion from a negative int.
3035         return BAD_VALUE;
3036     }
3037 
3038     auto* kernelFields = maybeKernelFields();
3039     auto* rpcFields = maybeRpcFields();
3040 
3041     // If shrinking, first adjust for any objects that appear
3042     // after the new data size.
3043     size_t objectsSize =
3044             kernelFields ? kernelFields->mObjectsSize : rpcFields->mObjectPositions.size();
3045     if (desired < mDataSize) {
3046         if (desired == 0) {
3047             objectsSize = 0;
3048         } else {
3049             if (kernelFields) {
3050 #ifdef BINDER_WITH_KERNEL_IPC
3051                 validateReadData(mDataSize); // hack to sort the objects
3052                 while (objectsSize > 0) {
3053                     if (kernelFields->mObjects[objectsSize - 1] + sizeof(flat_binder_object) <=
3054                         desired)
3055                         break;
3056                     objectsSize--;
3057                 }
3058 #endif // BINDER_WITH_KERNEL_IPC
3059             } else {
3060                 while (objectsSize > 0) {
3061                     // Object size varies by type.
3062                     uint32_t pos = rpcFields->mObjectPositions[objectsSize - 1];
3063                     size_t size = sizeof(RpcFields::ObjectType);
3064                     uint32_t minObjectEnd;
3065                     if (__builtin_add_overflow(pos, sizeof(RpcFields::ObjectType), &minObjectEnd) ||
3066                         minObjectEnd > mDataSize) {
3067                         return BAD_VALUE;
3068                     }
3069                     const auto type = *reinterpret_cast<const RpcFields::ObjectType*>(mData + pos);
3070                     switch (type) {
3071                         case RpcFields::TYPE_BINDER_NULL:
3072                             break;
3073                         case RpcFields::TYPE_BINDER:
3074                             size += sizeof(uint64_t); // address
3075                             break;
3076                         case RpcFields::TYPE_NATIVE_FILE_DESCRIPTOR:
3077                             size += sizeof(int32_t); // fd index
3078                             break;
3079                     }
3080 
3081                     if (pos + size <= desired) break;
3082                     objectsSize--;
3083                 }
3084             }
3085         }
3086     }
3087 
3088     if (mOwner) {
3089         // If the size is going to zero, just release the owner's data.
3090         if (desired == 0) {
3091             freeData();
3092             return NO_ERROR;
3093         }
3094 
3095         // If there is a different owner, we need to take
3096         // posession.
3097         uint8_t* data = (uint8_t*)malloc(desired);
3098         if (!data) {
3099             mError = NO_MEMORY;
3100             return NO_MEMORY;
3101         }
3102         binder_size_t* objects = nullptr;
3103 
3104         if (kernelFields && objectsSize) {
3105             objects = (binder_size_t*)calloc(objectsSize, sizeof(binder_size_t));
3106             if (!objects) {
3107                 free(data);
3108 
3109                 mError = NO_MEMORY;
3110                 return NO_MEMORY;
3111             }
3112 
3113             // Little hack to only acquire references on objects
3114             // we will be keeping.
3115             size_t oldObjectsSize = kernelFields->mObjectsSize;
3116             kernelFields->mObjectsSize = objectsSize;
3117             acquireObjects();
3118             kernelFields->mObjectsSize = oldObjectsSize;
3119         }
3120         if (rpcFields) {
3121             if (status_t status = truncateRpcObjects(objectsSize); status != OK) {
3122                 free(data);
3123                 return status;
3124             }
3125         }
3126 
3127         if (mData) {
3128             memcpy(data, mData, mDataSize < desired ? mDataSize : desired);
3129         }
3130 #ifdef BINDER_WITH_KERNEL_IPC
3131         if (objects && kernelFields && kernelFields->mObjects) {
3132             memcpy(objects, kernelFields->mObjects, objectsSize * sizeof(binder_size_t));
3133             // All FDs are owned when `mOwner`, even when `cookie == 0`. When
3134             // we switch to `!mOwner`, we need to explicitly mark the FDs as
3135             // owned.
3136             for (size_t i = 0; i < objectsSize; i++) {
3137                 flat_binder_object* flat = reinterpret_cast<flat_binder_object*>(data + objects[i]);
3138                 if (flat->hdr.type == BINDER_TYPE_FD) {
3139                     flat->cookie = 1;
3140                 }
3141             }
3142         }
3143         // ALOGI("Freeing data ref of %p (pid=%d)", this, getpid());
3144         if (kernelFields) {
3145             closeFileDescriptors(objectsSize);
3146         }
3147 #endif // BINDER_WITH_KERNEL_IPC
3148         mOwner(mData, mDataSize, kernelFields ? kernelFields->mObjects : nullptr,
3149                kernelFields ? kernelFields->mObjectsSize : 0);
3150         mOwner = nullptr;
3151 
3152         LOG_ALLOC("Parcel %p: taking ownership of %zu capacity", this, desired);
3153         gParcelGlobalAllocSize += desired;
3154         gParcelGlobalAllocCount++;
3155 
3156         mData = data;
3157         mDataSize = (mDataSize < desired) ? mDataSize : desired;
3158         ALOGV("continueWrite Setting data size of %p to %zu", this, mDataSize);
3159         mDataCapacity = desired;
3160         if (kernelFields) {
3161             kernelFields->mObjects = objects;
3162             kernelFields->mObjectsSize = kernelFields->mObjectsCapacity = objectsSize;
3163             kernelFields->mNextObjectHint = 0;
3164             kernelFields->mObjectsSorted = false;
3165         }
3166 
3167     } else if (mData) {
3168         if (kernelFields && objectsSize < kernelFields->mObjectsSize) {
3169 #ifdef BINDER_WITH_KERNEL_IPC
3170             // Need to release refs on any objects we are dropping.
3171             const sp<ProcessState> proc(ProcessState::self());
3172             for (size_t i = objectsSize; i < kernelFields->mObjectsSize; i++) {
3173                 const flat_binder_object* flat =
3174                         reinterpret_cast<flat_binder_object*>(mData + kernelFields->mObjects[i]);
3175                 if (flat->hdr.type == BINDER_TYPE_FD) {
3176                     // will need to rescan because we may have lopped off the only FDs
3177                     kernelFields->mFdsKnown = false;
3178                 }
3179                 release_object(proc, *flat, this);
3180             }
3181 
3182             if (objectsSize == 0) {
3183                 free(kernelFields->mObjects);
3184                 kernelFields->mObjects = nullptr;
3185                 kernelFields->mObjectsCapacity = 0;
3186             } else {
3187                 binder_size_t* objects =
3188                         (binder_size_t*)realloc(kernelFields->mObjects,
3189                                                 objectsSize * sizeof(binder_size_t));
3190                 if (objects) {
3191                     kernelFields->mObjects = objects;
3192                     kernelFields->mObjectsCapacity = objectsSize;
3193                 }
3194             }
3195             kernelFields->mObjectsSize = objectsSize;
3196             kernelFields->mNextObjectHint = 0;
3197             kernelFields->mObjectsSorted = false;
3198 #else  // BINDER_WITH_KERNEL_IPC
3199             LOG_ALWAYS_FATAL("Non-zero numObjects for RPC Parcel");
3200 #endif // BINDER_WITH_KERNEL_IPC
3201         }
3202         if (rpcFields) {
3203             if (status_t status = truncateRpcObjects(objectsSize); status != OK) {
3204                 return status;
3205             }
3206         }
3207 
3208         // We own the data, so we can just do a realloc().
3209         if (desired > mDataCapacity) {
3210             uint8_t* data = reallocZeroFree(mData, mDataCapacity, desired, mDeallocZero);
3211             if (data) {
3212                 LOG_ALLOC("Parcel %p: continue from %zu to %zu capacity", this, mDataCapacity,
3213                         desired);
3214                 gParcelGlobalAllocSize += desired;
3215                 gParcelGlobalAllocSize -= mDataCapacity;
3216                 mData = data;
3217                 mDataCapacity = desired;
3218             } else {
3219                 mError = NO_MEMORY;
3220                 return NO_MEMORY;
3221             }
3222         } else {
3223             if (mDataSize > desired) {
3224                 mDataSize = desired;
3225                 ALOGV("continueWrite Setting data size of %p to %zu", this, mDataSize);
3226             }
3227             if (mDataPos > desired) {
3228                 mDataPos = desired;
3229                 ALOGV("continueWrite Setting data pos of %p to %zu", this, mDataPos);
3230             }
3231         }
3232 
3233     } else {
3234         // This is the first data.  Easy!
3235         uint8_t* data = (uint8_t*)malloc(desired);
3236         if (!data) {
3237             mError = NO_MEMORY;
3238             return NO_MEMORY;
3239         }
3240 
3241         if (!(mDataCapacity == 0 &&
3242               (kernelFields == nullptr ||
3243                (kernelFields->mObjects == nullptr && kernelFields->mObjectsCapacity == 0)))) {
3244             ALOGE("continueWrite: %zu/%p/%zu/%zu", mDataCapacity,
3245                   kernelFields ? kernelFields->mObjects : nullptr,
3246                   kernelFields ? kernelFields->mObjectsCapacity : 0, desired);
3247         }
3248 
3249         LOG_ALLOC("Parcel %p: allocating with %zu capacity", this, desired);
3250         gParcelGlobalAllocSize += desired;
3251         gParcelGlobalAllocCount++;
3252 
3253         mData = data;
3254         mDataSize = mDataPos = 0;
3255         ALOGV("continueWrite Setting data size of %p to %zu", this, mDataSize);
3256         ALOGV("continueWrite Setting data pos of %p to %zu", this, mDataPos);
3257         mDataCapacity = desired;
3258     }
3259 
3260     return NO_ERROR;
3261 }
3262 
truncateRpcObjects(size_t newObjectsSize)3263 status_t Parcel::truncateRpcObjects(size_t newObjectsSize) {
3264     auto* rpcFields = maybeRpcFields();
3265     if (newObjectsSize == 0) {
3266         rpcFields->mObjectPositions.clear();
3267         if (rpcFields->mFds) {
3268             rpcFields->mFds->clear();
3269         }
3270         return OK;
3271     }
3272     while (rpcFields->mObjectPositions.size() > newObjectsSize) {
3273         uint32_t pos = rpcFields->mObjectPositions.back();
3274         uint32_t minObjectEnd;
3275         if (__builtin_add_overflow(pos, sizeof(RpcFields::ObjectType), &minObjectEnd) ||
3276             minObjectEnd > mDataSize) {
3277             return BAD_VALUE;
3278         }
3279         const auto type = *reinterpret_cast<const RpcFields::ObjectType*>(mData + pos);
3280         if (type == RpcFields::TYPE_NATIVE_FILE_DESCRIPTOR) {
3281             uint32_t objectEnd;
3282             if (__builtin_add_overflow(minObjectEnd, sizeof(int32_t), &objectEnd) ||
3283                 objectEnd > mDataSize) {
3284                 return BAD_VALUE;
3285             }
3286             const auto fdIndex = *reinterpret_cast<const int32_t*>(mData + minObjectEnd);
3287             if (rpcFields->mFds == nullptr || fdIndex < 0 ||
3288                 static_cast<size_t>(fdIndex) >= rpcFields->mFds->size()) {
3289                 ALOGE("RPC Parcel contains invalid file descriptor index. index=%d fd_count=%zu",
3290                       fdIndex, rpcFields->mFds ? rpcFields->mFds->size() : 0);
3291                 return BAD_VALUE;
3292             }
3293             // In practice, this always removes the last element.
3294             rpcFields->mFds->erase(rpcFields->mFds->begin() + fdIndex);
3295         }
3296         rpcFields->mObjectPositions.pop_back();
3297     }
3298     return OK;
3299 }
3300 
initState()3301 void Parcel::initState()
3302 {
3303     LOG_ALLOC("Parcel %p: initState", this);
3304     mError = NO_ERROR;
3305     mData = nullptr;
3306     mDataSize = 0;
3307     mDataCapacity = 0;
3308     mDataPos = 0;
3309     ALOGV("initState Setting data size of %p to %zu", this, mDataSize);
3310     ALOGV("initState Setting data pos of %p to %zu", this, mDataPos);
3311     mVariantFields.emplace<KernelFields>();
3312     mAllowFds = true;
3313     mDeallocZero = false;
3314     mOwner = nullptr;
3315     mEnforceNoDataAvail = true;
3316     mServiceFuzzing = false;
3317 }
3318 
scanForFds() const3319 void Parcel::scanForFds() const {
3320     auto* kernelFields = maybeKernelFields();
3321     if (kernelFields == nullptr) {
3322         return;
3323     }
3324     status_t status = hasFileDescriptorsInRange(0, dataSize(), &kernelFields->mHasFds);
3325     ALOGE_IF(status != NO_ERROR, "Error %d calling hasFileDescriptorsInRange()", status);
3326     kernelFields->mFdsKnown = true;
3327 }
3328 
3329 #ifdef BINDER_WITH_KERNEL_IPC
getBlobAshmemSize() const3330 size_t Parcel::getBlobAshmemSize() const
3331 {
3332     // This used to return the size of all blobs that were written to ashmem, now we're returning
3333     // the ashmem currently referenced by this Parcel, which should be equivalent.
3334     // TODO(b/202029388): Remove method once ABI can be changed.
3335     return getOpenAshmemSize();
3336 }
3337 
getOpenAshmemSize() const3338 size_t Parcel::getOpenAshmemSize() const
3339 {
3340     auto* kernelFields = maybeKernelFields();
3341     if (kernelFields == nullptr) {
3342         return 0;
3343     }
3344 
3345     size_t openAshmemSize = 0;
3346 #ifndef BINDER_DISABLE_BLOB
3347     for (size_t i = 0; i < kernelFields->mObjectsSize; i++) {
3348         const flat_binder_object* flat =
3349                 reinterpret_cast<const flat_binder_object*>(mData + kernelFields->mObjects[i]);
3350 
3351         // cookie is compared against zero for historical reasons
3352         // > obj.cookie = takeOwnership ? 1 : 0;
3353         if (flat->hdr.type == BINDER_TYPE_FD && flat->cookie != 0 && ashmem_valid(flat->handle)) {
3354             int size = ashmem_get_size_region(flat->handle);
3355             if (__builtin_add_overflow(openAshmemSize, size, &openAshmemSize)) {
3356                 ALOGE("Overflow when computing ashmem size.");
3357                 return SIZE_MAX;
3358             }
3359         }
3360     }
3361 #endif
3362     return openAshmemSize;
3363 }
3364 #endif // BINDER_WITH_KERNEL_IPC
3365 
3366 // --- Parcel::Blob ---
3367 
Blob()3368 Parcel::Blob::Blob() :
3369         mFd(-1), mData(nullptr), mSize(0), mMutable(false) {
3370 }
3371 
~Blob()3372 Parcel::Blob::~Blob() {
3373     release();
3374 }
3375 
release()3376 void Parcel::Blob::release() {
3377     if (mFd != -1 && mData) {
3378         if (::munmap(mData, mSize) == -1) {
3379             ALOGW("munmap() failed: %s", strerror(errno));
3380         }
3381     }
3382     clear();
3383 }
3384 
init(int fd,void * data,size_t size,bool isMutable)3385 void Parcel::Blob::init(int fd, void* data, size_t size, bool isMutable) {
3386     mFd = fd;
3387     mData = data;
3388     mSize = size;
3389     mMutable = isMutable;
3390 }
3391 
clear()3392 void Parcel::Blob::clear() {
3393     mFd = -1;
3394     mData = nullptr;
3395     mSize = 0;
3396     mMutable = false;
3397 }
3398 
3399 } // namespace android
3400