xref: /aosp_15_r20/frameworks/native/services/inputflinger/tests/FakeEventHub.cpp (revision 38e8c45f13ce32b0dcecb25141ffecaf386fa17f)
1 /*
2  * Copyright 2022 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "FakeEventHub.h"
18 
19 #include <optional>
20 
21 #include <android-base/thread_annotations.h>
22 #include <gtest/gtest.h>
23 #include <linux/input-event-codes.h>
24 
25 #include "TestConstants.h"
26 
27 namespace android {
28 
29 const std::string FakeEventHub::BATTERY_DEVPATH = "/sys/devices/mydevice/power_supply/mybattery";
30 
~FakeEventHub()31 FakeEventHub::~FakeEventHub() {
32     for (size_t i = 0; i < mDevices.size(); i++) {
33         delete mDevices.valueAt(i);
34     }
35 }
36 
addDevice(int32_t deviceId,const std::string & name,ftl::Flags<InputDeviceClass> classes,int bus)37 void FakeEventHub::addDevice(int32_t deviceId, const std::string& name,
38                              ftl::Flags<InputDeviceClass> classes, int bus) {
39     Device* device = new Device(classes);
40     device->identifier.name = name;
41     device->identifier.bus = bus;
42     mDevices.add(deviceId, device);
43 
44     enqueueEvent(ARBITRARY_TIME, READ_TIME, deviceId, EventHubInterface::DEVICE_ADDED, 0, 0);
45 }
46 
removeDevice(int32_t deviceId)47 void FakeEventHub::removeDevice(int32_t deviceId) {
48     delete mDevices.valueFor(deviceId);
49     mDevices.removeItem(deviceId);
50 
51     enqueueEvent(ARBITRARY_TIME, READ_TIME, deviceId, EventHubInterface::DEVICE_REMOVED, 0, 0);
52 }
53 
isDeviceEnabled(int32_t deviceId) const54 bool FakeEventHub::isDeviceEnabled(int32_t deviceId) const {
55     Device* device = getDevice(deviceId);
56     if (device == nullptr) {
57         ALOGE("Incorrect device id=%" PRId32 " provided to %s", deviceId, __func__);
58         return false;
59     }
60     return device->enabled;
61 }
62 
enableDevice(int32_t deviceId)63 status_t FakeEventHub::enableDevice(int32_t deviceId) {
64     status_t result;
65     Device* device = getDevice(deviceId);
66     if (device == nullptr) {
67         ALOGE("Incorrect device id=%" PRId32 " provided to %s", deviceId, __func__);
68         return BAD_VALUE;
69     }
70     if (device->enabled) {
71         ALOGW("Duplicate call to %s, device %" PRId32 " already enabled", __func__, deviceId);
72         return OK;
73     }
74     result = device->enable();
75     return result;
76 }
77 
disableDevice(int32_t deviceId)78 status_t FakeEventHub::disableDevice(int32_t deviceId) {
79     Device* device = getDevice(deviceId);
80     if (device == nullptr) {
81         ALOGE("Incorrect device id=%" PRId32 " provided to %s", deviceId, __func__);
82         return BAD_VALUE;
83     }
84     if (!device->enabled) {
85         ALOGW("Duplicate call to %s, device %" PRId32 " already disabled", __func__, deviceId);
86         return OK;
87     }
88     return device->disable();
89 }
90 
addConfigurationProperty(int32_t deviceId,const char * key,const char * value)91 void FakeEventHub::addConfigurationProperty(int32_t deviceId, const char* key, const char* value) {
92     getDevice(deviceId)->configuration.addProperty(key, value);
93 }
94 
addConfigurationMap(int32_t deviceId,const PropertyMap * configuration)95 void FakeEventHub::addConfigurationMap(int32_t deviceId, const PropertyMap* configuration) {
96     getDevice(deviceId)->configuration.addAll(configuration);
97 }
98 
addAbsoluteAxis(int32_t deviceId,int axis,int32_t minValue,int32_t maxValue,int flat,int fuzz,int resolution)99 void FakeEventHub::addAbsoluteAxis(int32_t deviceId, int axis, int32_t minValue, int32_t maxValue,
100                                    int flat, int fuzz, int resolution) {
101     Device* device = getDevice(deviceId);
102 
103     RawAbsoluteAxisInfo info;
104     info.minValue = minValue;
105     info.maxValue = maxValue;
106     info.flat = flat;
107     info.fuzz = fuzz;
108     info.resolution = resolution;
109     device->absoluteAxes.add(axis, info);
110 }
111 
addRelativeAxis(int32_t deviceId,int32_t axis)112 void FakeEventHub::addRelativeAxis(int32_t deviceId, int32_t axis) {
113     getDevice(deviceId)->relativeAxes.add(axis, true);
114 }
115 
setKeyCodeState(int32_t deviceId,int32_t keyCode,int32_t state)116 void FakeEventHub::setKeyCodeState(int32_t deviceId, int32_t keyCode, int32_t state) {
117     getDevice(deviceId)->keyCodeStates.replaceValueFor(keyCode, state);
118 }
119 
setRawLayoutInfo(int32_t deviceId,RawLayoutInfo info)120 void FakeEventHub::setRawLayoutInfo(int32_t deviceId, RawLayoutInfo info) {
121     getDevice(deviceId)->layoutInfo = info;
122 }
123 
setScanCodeState(int32_t deviceId,int32_t scanCode,int32_t state)124 void FakeEventHub::setScanCodeState(int32_t deviceId, int32_t scanCode, int32_t state) {
125     getDevice(deviceId)->scanCodeStates.replaceValueFor(scanCode, state);
126 }
127 
setSwitchState(int32_t deviceId,int32_t switchCode,int32_t state)128 void FakeEventHub::setSwitchState(int32_t deviceId, int32_t switchCode, int32_t state) {
129     getDevice(deviceId)->switchStates.replaceValueFor(switchCode, state);
130 }
131 
setAbsoluteAxisValue(int32_t deviceId,int32_t axis,int32_t value)132 void FakeEventHub::setAbsoluteAxisValue(int32_t deviceId, int32_t axis, int32_t value) {
133     getDevice(deviceId)->absoluteAxisValue.replaceValueFor(axis, value);
134 }
135 
addKey(int32_t deviceId,int32_t scanCode,int32_t usageCode,int32_t keyCode,uint32_t flags)136 void FakeEventHub::addKey(int32_t deviceId, int32_t scanCode, int32_t usageCode, int32_t keyCode,
137                           uint32_t flags) {
138     Device* device = getDevice(deviceId);
139     KeyInfo info;
140     info.keyCode = keyCode;
141     info.flags = flags;
142     if (scanCode) {
143         device->keysByScanCode.add(scanCode, info);
144     }
145     if (usageCode) {
146         device->keysByUsageCode.add(usageCode, info);
147     }
148 }
149 
addKeyCodeMapping(int32_t deviceId,int32_t fromKeyCode,int32_t toKeyCode)150 void FakeEventHub::addKeyCodeMapping(int32_t deviceId, int32_t fromKeyCode, int32_t toKeyCode) {
151     getDevice(deviceId)->keyCodeMapping.insert_or_assign(fromKeyCode, toKeyCode);
152 }
153 
setKeyRemapping(int32_t deviceId,const std::map<int32_t,int32_t> & keyRemapping) const154 void FakeEventHub::setKeyRemapping(int32_t deviceId,
155                                    const std::map<int32_t, int32_t>& keyRemapping) const {
156     Device* device = getDevice(deviceId);
157     device->keyRemapping = keyRemapping;
158 }
159 
addLed(int32_t deviceId,int32_t led,bool initialState)160 void FakeEventHub::addLed(int32_t deviceId, int32_t led, bool initialState) {
161     getDevice(deviceId)->leds.add(led, initialState);
162 }
163 
addSensorAxis(int32_t deviceId,int32_t absCode,InputDeviceSensorType sensorType,int32_t sensorDataIndex)164 void FakeEventHub::addSensorAxis(int32_t deviceId, int32_t absCode,
165                                  InputDeviceSensorType sensorType, int32_t sensorDataIndex) {
166     SensorInfo info;
167     info.sensorType = sensorType;
168     info.sensorDataIndex = sensorDataIndex;
169     getDevice(deviceId)->sensorsByAbsCode.emplace(absCode, info);
170 }
171 
setMscEvent(int32_t deviceId,int32_t mscEvent)172 void FakeEventHub::setMscEvent(int32_t deviceId, int32_t mscEvent) {
173     typename BitArray<MSC_MAX>::Buffer buffer;
174     buffer[mscEvent / 32] = 1 << mscEvent % 32;
175     getDevice(deviceId)->mscBitmask.loadFromBuffer(buffer);
176 }
177 
addRawLightInfo(int32_t rawId,RawLightInfo && info)178 void FakeEventHub::addRawLightInfo(int32_t rawId, RawLightInfo&& info) {
179     mRawLightInfos.emplace(rawId, std::move(info));
180 }
181 
fakeLightBrightness(int32_t rawId,int32_t brightness)182 void FakeEventHub::fakeLightBrightness(int32_t rawId, int32_t brightness) {
183     mLightBrightness.emplace(rawId, brightness);
184 }
185 
fakeLightIntensities(int32_t rawId,const std::unordered_map<LightColor,int32_t> intensities)186 void FakeEventHub::fakeLightIntensities(int32_t rawId,
187                                         const std::unordered_map<LightColor, int32_t> intensities) {
188     mLightIntensities.emplace(rawId, std::move(intensities));
189 }
190 
getLedState(int32_t deviceId,int32_t led)191 bool FakeEventHub::getLedState(int32_t deviceId, int32_t led) {
192     return getDevice(deviceId)->leds.valueFor(led);
193 }
194 
getExcludedDevices()195 std::vector<std::string>& FakeEventHub::getExcludedDevices() {
196     return mExcludedDevices;
197 }
198 
addVirtualKeyDefinition(int32_t deviceId,const VirtualKeyDefinition & definition)199 void FakeEventHub::addVirtualKeyDefinition(int32_t deviceId,
200                                            const VirtualKeyDefinition& definition) {
201     getDevice(deviceId)->virtualKeys.push_back(definition);
202 }
203 
enqueueEvent(nsecs_t when,nsecs_t readTime,int32_t deviceId,int32_t type,int32_t code,int32_t value)204 void FakeEventHub::enqueueEvent(nsecs_t when, nsecs_t readTime, int32_t deviceId, int32_t type,
205                                 int32_t code, int32_t value) {
206     std::scoped_lock<std::mutex> lock(mLock);
207     RawEvent event;
208     event.when = when;
209     event.readTime = readTime;
210     event.deviceId = deviceId;
211     event.type = type;
212     event.code = code;
213     event.value = value;
214     mEvents.push_back(event);
215 
216     if (type == EV_ABS) {
217         setAbsoluteAxisValue(deviceId, code, value);
218     }
219 }
220 
setVideoFrames(std::unordered_map<int32_t,std::vector<TouchVideoFrame>> videoFrames)221 void FakeEventHub::setVideoFrames(
222         std::unordered_map<int32_t /*deviceId*/, std::vector<TouchVideoFrame>> videoFrames) {
223     mVideoFrames = std::move(videoFrames);
224 }
225 
assertQueueIsEmpty()226 void FakeEventHub::assertQueueIsEmpty() {
227     std::unique_lock<std::mutex> lock(mLock);
228     base::ScopedLockAssertion assumeLocked(mLock);
229     const bool queueIsEmpty =
230             mEventsCondition.wait_for(lock, WAIT_TIMEOUT,
231                                       [this]() REQUIRES(mLock) { return mEvents.size() == 0; });
232     if (!queueIsEmpty) {
233         FAIL() << "Timed out waiting for EventHub queue to be emptied.";
234     }
235 }
236 
getDevice(int32_t deviceId) const237 FakeEventHub::Device* FakeEventHub::getDevice(int32_t deviceId) const {
238     ssize_t index = mDevices.indexOfKey(deviceId);
239     return index >= 0 ? mDevices.valueAt(index) : nullptr;
240 }
241 
getDeviceClasses(int32_t deviceId) const242 ftl::Flags<InputDeviceClass> FakeEventHub::getDeviceClasses(int32_t deviceId) const {
243     Device* device = getDevice(deviceId);
244     return device ? device->classes : ftl::Flags<InputDeviceClass>(0);
245 }
246 
getDeviceIdentifier(int32_t deviceId) const247 InputDeviceIdentifier FakeEventHub::getDeviceIdentifier(int32_t deviceId) const {
248     Device* device = getDevice(deviceId);
249     return device ? device->identifier : InputDeviceIdentifier();
250 }
251 
getDeviceControllerNumber(int32_t) const252 int32_t FakeEventHub::getDeviceControllerNumber(int32_t) const {
253     return 0;
254 }
255 
getConfiguration(int32_t deviceId) const256 std::optional<PropertyMap> FakeEventHub::getConfiguration(int32_t deviceId) const {
257     Device* device = getDevice(deviceId);
258     if (device == nullptr) {
259         return {};
260     }
261     return device->configuration;
262 }
263 
getAbsoluteAxisInfo(int32_t deviceId,int axis) const264 std::optional<RawAbsoluteAxisInfo> FakeEventHub::getAbsoluteAxisInfo(int32_t deviceId,
265                                                                      int axis) const {
266     Device* device = getDevice(deviceId);
267     if (device) {
268         ssize_t index = device->absoluteAxes.indexOfKey(axis);
269         if (index >= 0) {
270             return device->absoluteAxes.valueAt(index);
271         }
272     }
273     return std::nullopt;
274 }
275 
hasRelativeAxis(int32_t deviceId,int axis) const276 bool FakeEventHub::hasRelativeAxis(int32_t deviceId, int axis) const {
277     Device* device = getDevice(deviceId);
278     if (device) {
279         return device->relativeAxes.indexOfKey(axis) >= 0;
280     }
281     return false;
282 }
283 
hasInputProperty(int32_t,int) const284 bool FakeEventHub::hasInputProperty(int32_t, int) const {
285     return false;
286 }
287 
hasMscEvent(int32_t deviceId,int mscEvent) const288 bool FakeEventHub::hasMscEvent(int32_t deviceId, int mscEvent) const {
289     Device* device = getDevice(deviceId);
290     if (device) {
291         return mscEvent >= 0 && mscEvent <= MSC_MAX ? device->mscBitmask.test(mscEvent) : false;
292     }
293     return false;
294 }
295 
mapKey(int32_t deviceId,int32_t scanCode,int32_t usageCode,int32_t metaState,int32_t * outKeycode,int32_t * outMetaState,uint32_t * outFlags) const296 status_t FakeEventHub::mapKey(int32_t deviceId, int32_t scanCode, int32_t usageCode,
297                               int32_t metaState, int32_t* outKeycode, int32_t* outMetaState,
298                               uint32_t* outFlags) const {
299     Device* device = getDevice(deviceId);
300     if (device) {
301         const KeyInfo* key = getKey(device, scanCode, usageCode);
302         if (key) {
303             if (outKeycode) {
304                 auto it = device->keyRemapping.find(key->keyCode);
305                 *outKeycode = it != device->keyRemapping.end() ? it->second : key->keyCode;
306             }
307             if (outFlags) {
308                 *outFlags = key->flags;
309             }
310             if (outMetaState) {
311                 *outMetaState = metaState;
312             }
313             return OK;
314         }
315     }
316     return NAME_NOT_FOUND;
317 }
318 
getKey(Device * device,int32_t scanCode,int32_t usageCode) const319 const FakeEventHub::KeyInfo* FakeEventHub::getKey(Device* device, int32_t scanCode,
320                                                   int32_t usageCode) const {
321     if (usageCode) {
322         ssize_t index = device->keysByUsageCode.indexOfKey(usageCode);
323         if (index >= 0) {
324             return &device->keysByUsageCode.valueAt(index);
325         }
326     }
327     if (scanCode) {
328         ssize_t index = device->keysByScanCode.indexOfKey(scanCode);
329         if (index >= 0) {
330             return &device->keysByScanCode.valueAt(index);
331         }
332     }
333     return nullptr;
334 }
335 
mapAxis(int32_t,int32_t,AxisInfo *) const336 status_t FakeEventHub::mapAxis(int32_t, int32_t, AxisInfo*) const {
337     return NAME_NOT_FOUND;
338 }
339 
mapSensor(int32_t deviceId,int32_t absCode) const340 base::Result<std::pair<InputDeviceSensorType, int32_t>> FakeEventHub::mapSensor(
341         int32_t deviceId, int32_t absCode) const {
342     Device* device = getDevice(deviceId);
343     if (!device) {
344         return Errorf("Sensor device not found.");
345     }
346     auto it = device->sensorsByAbsCode.find(absCode);
347     if (it == device->sensorsByAbsCode.end()) {
348         return Errorf("Sensor map not found.");
349     }
350     const SensorInfo& info = it->second;
351     return std::make_pair(info.sensorType, info.sensorDataIndex);
352 }
353 
setExcludedDevices(const std::vector<std::string> & devices)354 void FakeEventHub::setExcludedDevices(const std::vector<std::string>& devices) {
355     mExcludedDevices = devices;
356 }
357 
getEvents(int)358 std::vector<RawEvent> FakeEventHub::getEvents(int) {
359     std::scoped_lock lock(mLock);
360 
361     std::vector<RawEvent> buffer;
362     std::swap(buffer, mEvents);
363 
364     mEventsCondition.notify_all();
365     return buffer;
366 }
367 
getVideoFrames(int32_t deviceId)368 std::vector<TouchVideoFrame> FakeEventHub::getVideoFrames(int32_t deviceId) {
369     auto it = mVideoFrames.find(deviceId);
370     if (it != mVideoFrames.end()) {
371         std::vector<TouchVideoFrame> frames = std::move(it->second);
372         mVideoFrames.erase(deviceId);
373         return frames;
374     }
375     return {};
376 }
377 
getScanCodeState(int32_t deviceId,int32_t scanCode) const378 int32_t FakeEventHub::getScanCodeState(int32_t deviceId, int32_t scanCode) const {
379     Device* device = getDevice(deviceId);
380     if (device) {
381         ssize_t index = device->scanCodeStates.indexOfKey(scanCode);
382         if (index >= 0) {
383             return device->scanCodeStates.valueAt(index);
384         }
385     }
386     return AKEY_STATE_UNKNOWN;
387 }
388 
getRawLayoutInfo(int32_t deviceId) const389 std::optional<RawLayoutInfo> FakeEventHub::getRawLayoutInfo(int32_t deviceId) const {
390     Device* device = getDevice(deviceId);
391     return device ? device->layoutInfo : std::nullopt;
392 }
393 
getKeyCodeState(int32_t deviceId,int32_t keyCode) const394 int32_t FakeEventHub::getKeyCodeState(int32_t deviceId, int32_t keyCode) const {
395     Device* device = getDevice(deviceId);
396     if (device) {
397         ssize_t index = device->keyCodeStates.indexOfKey(keyCode);
398         if (index >= 0) {
399             return device->keyCodeStates.valueAt(index);
400         }
401     }
402     return AKEY_STATE_UNKNOWN;
403 }
404 
getSwitchState(int32_t deviceId,int32_t sw) const405 int32_t FakeEventHub::getSwitchState(int32_t deviceId, int32_t sw) const {
406     Device* device = getDevice(deviceId);
407     if (device) {
408         ssize_t index = device->switchStates.indexOfKey(sw);
409         if (index >= 0) {
410             return device->switchStates.valueAt(index);
411         }
412     }
413     return AKEY_STATE_UNKNOWN;
414 }
415 
getAbsoluteAxisValue(int32_t deviceId,int32_t axis) const416 std::optional<int32_t> FakeEventHub::getAbsoluteAxisValue(int32_t deviceId, int32_t axis) const {
417     Device* device = getDevice(deviceId);
418     if (device) {
419         ssize_t index = device->absoluteAxisValue.indexOfKey(axis);
420         if (index >= 0) {
421             return device->absoluteAxisValue.valueAt(index);
422         }
423     }
424     return std::nullopt;
425 }
426 
setMtSlotValues(int32_t deviceId,int32_t axis,const std::vector<int32_t> & values)427 void FakeEventHub::setMtSlotValues(int32_t deviceId, int32_t axis,
428                                    const std::vector<int32_t>& values) {
429     Device* device = getDevice(deviceId);
430     if (!device) {
431         FAIL() << "Missing device";
432     }
433     device->mtSlotValues[axis] = values;
434 }
435 
getMtSlotValues(int32_t deviceId,int32_t axis,size_t slotCount) const436 base::Result<std::vector<int32_t>> FakeEventHub::getMtSlotValues(int32_t deviceId, int32_t axis,
437                                                                  size_t slotCount) const {
438     Device* device = getDevice(deviceId);
439     if (!device) {
440         ADD_FAILURE() << "Missing device";
441         return base::ResultError("Missing device", UNKNOWN_ERROR);
442     }
443     const auto& mtSlotValuesIterator = device->mtSlotValues.find(axis);
444     if (mtSlotValuesIterator == device->mtSlotValues.end()) {
445         return base::ResultError("axis not supported", NAME_NOT_FOUND);
446     }
447     const auto& mtSlotValues = mtSlotValuesIterator->second;
448     if (mtSlotValues.size() != slotCount) {
449         ADD_FAILURE() << "MtSlot values specified for " << mtSlotValues.size()
450                       << " slots but expected for " << slotCount << " Slots";
451         return base::ResultError("Slot count mismatch", NAME_NOT_FOUND);
452     }
453     std::vector<int32_t> outValues(slotCount + 1);
454     outValues[0] = axis;
455     std::copy(mtSlotValues.begin(), mtSlotValues.end(), outValues.begin() + 1);
456     return std::move(outValues);
457 }
458 
getKeyCodeForKeyLocation(int32_t deviceId,int32_t locationKeyCode) const459 int32_t FakeEventHub::getKeyCodeForKeyLocation(int32_t deviceId, int32_t locationKeyCode) const {
460     Device* device = getDevice(deviceId);
461     if (!device) {
462         return AKEYCODE_UNKNOWN;
463     }
464     auto it = device->keyCodeMapping.find(locationKeyCode);
465     return it != device->keyCodeMapping.end() ? it->second : locationKeyCode;
466 }
467 
468 // Return true if the device has non-empty key layout.
markSupportedKeyCodes(int32_t deviceId,const std::vector<int32_t> & keyCodes,uint8_t * outFlags) const469 bool FakeEventHub::markSupportedKeyCodes(int32_t deviceId, const std::vector<int32_t>& keyCodes,
470                                          uint8_t* outFlags) const {
471     Device* device = getDevice(deviceId);
472     if (!device) return false;
473 
474     bool result = device->keysByScanCode.size() > 0 || device->keysByUsageCode.size() > 0;
475     for (size_t i = 0; i < keyCodes.size(); i++) {
476         for (size_t j = 0; j < device->keysByScanCode.size(); j++) {
477             if (keyCodes[i] == device->keysByScanCode.valueAt(j).keyCode) {
478                 outFlags[i] = 1;
479             }
480         }
481         for (size_t j = 0; j < device->keysByUsageCode.size(); j++) {
482             if (keyCodes[i] == device->keysByUsageCode.valueAt(j).keyCode) {
483                 outFlags[i] = 1;
484             }
485         }
486     }
487     return result;
488 }
489 
hasScanCode(int32_t deviceId,int32_t scanCode) const490 bool FakeEventHub::hasScanCode(int32_t deviceId, int32_t scanCode) const {
491     Device* device = getDevice(deviceId);
492     if (device) {
493         ssize_t index = device->keysByScanCode.indexOfKey(scanCode);
494         return index >= 0;
495     }
496     return false;
497 }
498 
hasKeyCode(int32_t deviceId,int32_t keyCode) const499 bool FakeEventHub::hasKeyCode(int32_t deviceId, int32_t keyCode) const {
500     Device* device = getDevice(deviceId);
501     if (!device) {
502         return false;
503     }
504     for (size_t i = 0; i < device->keysByScanCode.size(); i++) {
505         if (keyCode == device->keysByScanCode.valueAt(i).keyCode) {
506             return true;
507         }
508     }
509     for (size_t j = 0; j < device->keysByUsageCode.size(); j++) {
510         if (keyCode == device->keysByUsageCode.valueAt(j).keyCode) {
511             return true;
512         }
513     }
514     return false;
515 }
516 
hasLed(int32_t deviceId,int32_t led) const517 bool FakeEventHub::hasLed(int32_t deviceId, int32_t led) const {
518     Device* device = getDevice(deviceId);
519     return device && device->leds.indexOfKey(led) >= 0;
520 }
521 
setLedState(int32_t deviceId,int32_t led,bool on)522 void FakeEventHub::setLedState(int32_t deviceId, int32_t led, bool on) {
523     Device* device = getDevice(deviceId);
524     if (device) {
525         ssize_t index = device->leds.indexOfKey(led);
526         if (index >= 0) {
527             device->leds.replaceValueAt(led, on);
528         } else {
529             ADD_FAILURE() << "Attempted to set the state of an LED that the EventHub declared "
530                              "was not present.  led="
531                           << led;
532         }
533     }
534 }
535 
getVirtualKeyDefinitions(int32_t deviceId,std::vector<VirtualKeyDefinition> & outVirtualKeys) const536 void FakeEventHub::getVirtualKeyDefinitions(
537         int32_t deviceId, std::vector<VirtualKeyDefinition>& outVirtualKeys) const {
538     outVirtualKeys.clear();
539 
540     Device* device = getDevice(deviceId);
541     if (device) {
542         outVirtualKeys = device->virtualKeys;
543     }
544 }
545 
getKeyCharacterMap(int32_t) const546 const std::shared_ptr<KeyCharacterMap> FakeEventHub::getKeyCharacterMap(int32_t) const {
547     return nullptr;
548 }
549 
setKeyboardLayoutOverlay(int32_t,std::shared_ptr<KeyCharacterMap>)550 bool FakeEventHub::setKeyboardLayoutOverlay(int32_t, std::shared_ptr<KeyCharacterMap>) {
551     return false;
552 }
553 
getVibratorIds(int32_t deviceId) const554 std::vector<int32_t> FakeEventHub::getVibratorIds(int32_t deviceId) const {
555     return mVibrators;
556 }
557 
getBatteryCapacity(int32_t,int32_t) const558 std::optional<int32_t> FakeEventHub::getBatteryCapacity(int32_t, int32_t) const {
559     return BATTERY_CAPACITY;
560 }
561 
getBatteryStatus(int32_t,int32_t) const562 std::optional<int32_t> FakeEventHub::getBatteryStatus(int32_t, int32_t) const {
563     return BATTERY_STATUS;
564 }
565 
getRawBatteryIds(int32_t deviceId) const566 std::vector<int32_t> FakeEventHub::getRawBatteryIds(int32_t deviceId) const {
567     return {DEFAULT_BATTERY};
568 }
569 
getRawBatteryInfo(int32_t deviceId,int32_t batteryId) const570 std::optional<RawBatteryInfo> FakeEventHub::getRawBatteryInfo(int32_t deviceId,
571                                                               int32_t batteryId) const {
572     if (batteryId != DEFAULT_BATTERY) return {};
573     static const auto BATTERY_INFO = RawBatteryInfo{.id = DEFAULT_BATTERY,
574                                                     .name = "default battery",
575                                                     .flags = InputBatteryClass::CAPACITY,
576                                                     .path = BATTERY_DEVPATH};
577     return BATTERY_INFO;
578 }
579 
getRawLightIds(int32_t deviceId) const580 std::vector<int32_t> FakeEventHub::getRawLightIds(int32_t deviceId) const {
581     std::vector<int32_t> ids;
582     for (const auto& [rawId, info] : mRawLightInfos) {
583         ids.push_back(rawId);
584     }
585     return ids;
586 }
587 
getRawLightInfo(int32_t deviceId,int32_t lightId) const588 std::optional<RawLightInfo> FakeEventHub::getRawLightInfo(int32_t deviceId, int32_t lightId) const {
589     auto it = mRawLightInfos.find(lightId);
590     if (it == mRawLightInfos.end()) {
591         return std::nullopt;
592     }
593     return it->second;
594 }
595 
setLightBrightness(int32_t deviceId,int32_t lightId,int32_t brightness)596 void FakeEventHub::setLightBrightness(int32_t deviceId, int32_t lightId, int32_t brightness) {
597     mLightBrightness.emplace(lightId, brightness);
598 }
599 
setLightIntensities(int32_t deviceId,int32_t lightId,std::unordered_map<LightColor,int32_t> intensities)600 void FakeEventHub::setLightIntensities(int32_t deviceId, int32_t lightId,
601                                        std::unordered_map<LightColor, int32_t> intensities) {
602     mLightIntensities.emplace(lightId, intensities);
603 };
604 
getLightBrightness(int32_t deviceId,int32_t lightId) const605 std::optional<int32_t> FakeEventHub::getLightBrightness(int32_t deviceId, int32_t lightId) const {
606     auto lightIt = mLightBrightness.find(lightId);
607     if (lightIt == mLightBrightness.end()) {
608         return std::nullopt;
609     }
610     return lightIt->second;
611 }
612 
getLightIntensities(int32_t deviceId,int32_t lightId) const613 std::optional<std::unordered_map<LightColor, int32_t>> FakeEventHub::getLightIntensities(
614         int32_t deviceId, int32_t lightId) const {
615     auto lightIt = mLightIntensities.find(lightId);
616     if (lightIt == mLightIntensities.end()) {
617         return std::nullopt;
618     }
619     return lightIt->second;
620 };
621 
setSysfsRootPath(int32_t deviceId,std::string sysfsRootPath) const622 void FakeEventHub::setSysfsRootPath(int32_t deviceId, std::string sysfsRootPath) const {
623     Device* device = getDevice(deviceId);
624     if (device == nullptr) {
625         return;
626     }
627     device->sysfsRootPath = sysfsRootPath;
628 }
629 
sysfsNodeChanged(const std::string & sysfsNodePath)630 void FakeEventHub::sysfsNodeChanged(const std::string& sysfsNodePath) {
631     int32_t foundDeviceId = -1;
632     Device* foundDevice = nullptr;
633     for (size_t i = 0; i < mDevices.size(); i++) {
634         Device* d = mDevices.valueAt(i);
635         if (sysfsNodePath.find(d->sysfsRootPath) != std::string::npos) {
636             foundDeviceId = mDevices.keyAt(i);
637             foundDevice = d;
638         }
639     }
640     if (foundDevice == nullptr) {
641         return;
642     }
643     // If device sysfs changed -> reopen the device
644     if (!mRawLightInfos.empty() && !foundDevice->classes.test(InputDeviceClass::LIGHT)) {
645         InputDeviceIdentifier identifier = foundDevice->identifier;
646         ftl::Flags<InputDeviceClass> classes = foundDevice->classes;
647         removeDevice(foundDeviceId);
648         addDevice(foundDeviceId, identifier.name, classes | InputDeviceClass::LIGHT,
649                   identifier.bus);
650     }
651 }
652 
setKernelWakeEnabled(int32_t deviceId,bool enabled)653 bool FakeEventHub::setKernelWakeEnabled(int32_t deviceId, bool enabled) {
654     Device* device = getDevice(deviceId);
655     if (device == nullptr) {
656         return false;
657     }
658     mKernelWakeup.emplace(deviceId, enabled);
659     return true;
660 }
661 
fakeReadKernelWakeup(int32_t deviceId) const662 bool FakeEventHub::fakeReadKernelWakeup(int32_t deviceId) const {
663     Device* device = getDevice(deviceId);
664     if (device == nullptr) {
665         return false;
666     }
667     auto it = mKernelWakeup.find(deviceId);
668     if (it == mKernelWakeup.end()) {
669         return false;
670     }
671     return it->second;
672 }
673 
674 } // namespace android
675