xref: /aosp_15_r20/frameworks/native/vulkan/libvulkan/swapchain.cpp (revision 38e8c45f13ce32b0dcecb25141ffecaf386fa17f)
1 /*
2  * Copyright 2015 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "vulkan/vulkan_core.h"
18 #define ATRACE_TAG ATRACE_TAG_GRAPHICS
19 
20 #include <aidl/android/hardware/graphics/common/Dataspace.h>
21 #include <aidl/android/hardware/graphics/common/PixelFormat.h>
22 #include <android/hardware/graphics/common/1.0/types.h>
23 #include <android/hardware_buffer.h>
24 #include <grallocusage/GrallocUsageConversion.h>
25 #include <graphicsenv/GraphicsEnv.h>
26 #include <hardware/gralloc.h>
27 #include <hardware/gralloc1.h>
28 #include <log/log.h>
29 #include <sync/sync.h>
30 #include <system/window.h>
31 #include <ui/BufferQueueDefs.h>
32 #include <utils/StrongPointer.h>
33 #include <utils/Timers.h>
34 #include <utils/Trace.h>
35 
36 #include <algorithm>
37 #include <unordered_set>
38 #include <vector>
39 
40 #include "driver.h"
41 
42 using PixelFormat = aidl::android::hardware::graphics::common::PixelFormat;
43 using DataSpace = aidl::android::hardware::graphics::common::Dataspace;
44 using android::hardware::graphics::common::V1_0::BufferUsage;
45 
46 namespace vulkan {
47 namespace driver {
48 
49 namespace {
50 
convertGralloc1ToBufferUsage(uint64_t producerUsage,uint64_t consumerUsage)51 static uint64_t convertGralloc1ToBufferUsage(uint64_t producerUsage,
52                                              uint64_t consumerUsage) {
53     static_assert(uint64_t(GRALLOC1_CONSUMER_USAGE_CPU_READ_OFTEN) ==
54                       uint64_t(GRALLOC1_PRODUCER_USAGE_CPU_READ_OFTEN),
55                   "expected ConsumerUsage and ProducerUsage CPU_READ_OFTEN "
56                   "bits to match");
57     uint64_t merged = producerUsage | consumerUsage;
58     if ((merged & (GRALLOC1_CONSUMER_USAGE_CPU_READ_OFTEN)) ==
59         GRALLOC1_CONSUMER_USAGE_CPU_READ_OFTEN) {
60         merged &= ~uint64_t(GRALLOC1_CONSUMER_USAGE_CPU_READ_OFTEN);
61         merged |= BufferUsage::CPU_READ_OFTEN;
62     }
63     if ((merged & (GRALLOC1_PRODUCER_USAGE_CPU_WRITE_OFTEN)) ==
64         GRALLOC1_PRODUCER_USAGE_CPU_WRITE_OFTEN) {
65         merged &= ~uint64_t(GRALLOC1_PRODUCER_USAGE_CPU_WRITE_OFTEN);
66         merged |= BufferUsage::CPU_WRITE_OFTEN;
67     }
68     return merged;
69 }
70 
71 const VkSurfaceTransformFlagsKHR kSupportedTransforms =
72     VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR |
73     VK_SURFACE_TRANSFORM_ROTATE_90_BIT_KHR |
74     VK_SURFACE_TRANSFORM_ROTATE_180_BIT_KHR |
75     VK_SURFACE_TRANSFORM_ROTATE_270_BIT_KHR |
76     VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_BIT_KHR |
77     VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_90_BIT_KHR |
78     VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_180_BIT_KHR |
79     VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_270_BIT_KHR |
80     VK_SURFACE_TRANSFORM_INHERIT_BIT_KHR;
81 
TranslateNativeToVulkanTransform(int native)82 VkSurfaceTransformFlagBitsKHR TranslateNativeToVulkanTransform(int native) {
83     // Native and Vulkan transforms are isomorphic, but are represented
84     // differently. Vulkan transforms are built up of an optional horizontal
85     // mirror, followed by a clockwise 0/90/180/270-degree rotation. Native
86     // transforms are built up from a horizontal flip, vertical flip, and
87     // 90-degree rotation, all optional but always in that order.
88 
89     switch (native) {
90         case 0:
91             return VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR;
92         case NATIVE_WINDOW_TRANSFORM_FLIP_H:
93             return VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_BIT_KHR;
94         case NATIVE_WINDOW_TRANSFORM_FLIP_V:
95             return VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_180_BIT_KHR;
96         case NATIVE_WINDOW_TRANSFORM_ROT_180:
97             return VK_SURFACE_TRANSFORM_ROTATE_180_BIT_KHR;
98         case NATIVE_WINDOW_TRANSFORM_ROT_90:
99             return VK_SURFACE_TRANSFORM_ROTATE_90_BIT_KHR;
100         case NATIVE_WINDOW_TRANSFORM_FLIP_H | NATIVE_WINDOW_TRANSFORM_ROT_90:
101             return VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_90_BIT_KHR;
102         case NATIVE_WINDOW_TRANSFORM_FLIP_V | NATIVE_WINDOW_TRANSFORM_ROT_90:
103             return VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_270_BIT_KHR;
104         case NATIVE_WINDOW_TRANSFORM_ROT_270:
105             return VK_SURFACE_TRANSFORM_ROTATE_270_BIT_KHR;
106         case NATIVE_WINDOW_TRANSFORM_INVERSE_DISPLAY:
107         default:
108             return VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR;
109     }
110 }
111 
TranslateVulkanToNativeTransform(VkSurfaceTransformFlagBitsKHR transform)112 int TranslateVulkanToNativeTransform(VkSurfaceTransformFlagBitsKHR transform) {
113     switch (transform) {
114         case VK_SURFACE_TRANSFORM_ROTATE_90_BIT_KHR:
115             return NATIVE_WINDOW_TRANSFORM_ROT_90;
116         case VK_SURFACE_TRANSFORM_ROTATE_180_BIT_KHR:
117             return NATIVE_WINDOW_TRANSFORM_ROT_180;
118         case VK_SURFACE_TRANSFORM_ROTATE_270_BIT_KHR:
119             return NATIVE_WINDOW_TRANSFORM_ROT_270;
120         case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_BIT_KHR:
121             return NATIVE_WINDOW_TRANSFORM_FLIP_H;
122         case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_90_BIT_KHR:
123             return NATIVE_WINDOW_TRANSFORM_FLIP_H |
124                    NATIVE_WINDOW_TRANSFORM_ROT_90;
125         case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_180_BIT_KHR:
126             return NATIVE_WINDOW_TRANSFORM_FLIP_V;
127         case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_270_BIT_KHR:
128             return NATIVE_WINDOW_TRANSFORM_FLIP_V |
129                    NATIVE_WINDOW_TRANSFORM_ROT_90;
130         case VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR:
131         case VK_SURFACE_TRANSFORM_INHERIT_BIT_KHR:
132         default:
133             return 0;
134     }
135 }
136 
InvertTransformToNative(VkSurfaceTransformFlagBitsKHR transform)137 int InvertTransformToNative(VkSurfaceTransformFlagBitsKHR transform) {
138     switch (transform) {
139         case VK_SURFACE_TRANSFORM_ROTATE_90_BIT_KHR:
140             return NATIVE_WINDOW_TRANSFORM_ROT_270;
141         case VK_SURFACE_TRANSFORM_ROTATE_180_BIT_KHR:
142             return NATIVE_WINDOW_TRANSFORM_ROT_180;
143         case VK_SURFACE_TRANSFORM_ROTATE_270_BIT_KHR:
144             return NATIVE_WINDOW_TRANSFORM_ROT_90;
145         case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_BIT_KHR:
146             return NATIVE_WINDOW_TRANSFORM_FLIP_H;
147         case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_90_BIT_KHR:
148             return NATIVE_WINDOW_TRANSFORM_FLIP_H |
149                    NATIVE_WINDOW_TRANSFORM_ROT_90;
150         case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_180_BIT_KHR:
151             return NATIVE_WINDOW_TRANSFORM_FLIP_V;
152         case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_270_BIT_KHR:
153             return NATIVE_WINDOW_TRANSFORM_FLIP_V |
154                    NATIVE_WINDOW_TRANSFORM_ROT_90;
155         case VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR:
156         case VK_SURFACE_TRANSFORM_INHERIT_BIT_KHR:
157         default:
158             return 0;
159     }
160 }
161 
162 const static VkColorSpaceKHR colorSpaceSupportedByVkEXTSwapchainColorspace[] = {
163     VK_COLOR_SPACE_DISPLAY_P3_NONLINEAR_EXT,
164     VK_COLOR_SPACE_DISPLAY_P3_LINEAR_EXT,
165     VK_COLOR_SPACE_DCI_P3_NONLINEAR_EXT,
166     VK_COLOR_SPACE_BT709_LINEAR_EXT,
167     VK_COLOR_SPACE_BT709_NONLINEAR_EXT,
168     VK_COLOR_SPACE_BT2020_LINEAR_EXT,
169     VK_COLOR_SPACE_HDR10_ST2084_EXT,
170     VK_COLOR_SPACE_HDR10_HLG_EXT,
171     VK_COLOR_SPACE_ADOBERGB_LINEAR_EXT,
172     VK_COLOR_SPACE_ADOBERGB_NONLINEAR_EXT,
173     VK_COLOR_SPACE_PASS_THROUGH_EXT,
174     VK_COLOR_SPACE_DCI_P3_LINEAR_EXT};
175 
176 const static VkColorSpaceKHR
177     colorSpaceSupportedByVkEXTSwapchainColorspaceOnFP16SurfaceOnly[] = {
178         VK_COLOR_SPACE_EXTENDED_SRGB_LINEAR_EXT,
179         VK_COLOR_SPACE_EXTENDED_SRGB_NONLINEAR_EXT};
180 
181 class TimingInfo {
182    public:
TimingInfo(const VkPresentTimeGOOGLE * qp,uint64_t nativeFrameId)183     TimingInfo(const VkPresentTimeGOOGLE* qp, uint64_t nativeFrameId)
184         : vals_{qp->presentID, qp->desiredPresentTime, 0, 0, 0},
185           native_frame_id_(nativeFrameId) {}
ready() const186     bool ready() const {
187         return (timestamp_desired_present_time_ !=
188                         NATIVE_WINDOW_TIMESTAMP_PENDING &&
189                 timestamp_actual_present_time_ !=
190                         NATIVE_WINDOW_TIMESTAMP_PENDING &&
191                 timestamp_render_complete_time_ !=
192                         NATIVE_WINDOW_TIMESTAMP_PENDING &&
193                 timestamp_composition_latch_time_ !=
194                         NATIVE_WINDOW_TIMESTAMP_PENDING);
195     }
calculate(int64_t rdur)196     void calculate(int64_t rdur) {
197         bool anyTimestampInvalid =
198                 (timestamp_actual_present_time_ ==
199                         NATIVE_WINDOW_TIMESTAMP_INVALID) ||
200                 (timestamp_render_complete_time_ ==
201                         NATIVE_WINDOW_TIMESTAMP_INVALID) ||
202                 (timestamp_composition_latch_time_ ==
203                         NATIVE_WINDOW_TIMESTAMP_INVALID);
204         if (anyTimestampInvalid) {
205             ALOGE("Unexpectedly received invalid timestamp.");
206             vals_.actualPresentTime = 0;
207             vals_.earliestPresentTime = 0;
208             vals_.presentMargin = 0;
209             return;
210         }
211 
212         vals_.actualPresentTime =
213                 static_cast<uint64_t>(timestamp_actual_present_time_);
214         int64_t margin = (timestamp_composition_latch_time_ -
215                            timestamp_render_complete_time_);
216         // Calculate vals_.earliestPresentTime, and potentially adjust
217         // vals_.presentMargin.  The initial value of vals_.earliestPresentTime
218         // is vals_.actualPresentTime.  If we can subtract rdur (the duration
219         // of a refresh cycle) from vals_.earliestPresentTime (and also from
220         // vals_.presentMargin) and still leave a positive margin, then we can
221         // report to the application that it could have presented earlier than
222         // it did (per the extension specification).  If for some reason, we
223         // can do this subtraction repeatedly, we do, since
224         // vals_.earliestPresentTime really is supposed to be the "earliest".
225         int64_t early_time = timestamp_actual_present_time_;
226         while ((margin > rdur) &&
227                ((early_time - rdur) > timestamp_composition_latch_time_)) {
228             early_time -= rdur;
229             margin -= rdur;
230         }
231         vals_.earliestPresentTime = static_cast<uint64_t>(early_time);
232         vals_.presentMargin = static_cast<uint64_t>(margin);
233     }
get_values(VkPastPresentationTimingGOOGLE * values) const234     void get_values(VkPastPresentationTimingGOOGLE* values) const {
235         *values = vals_;
236     }
237 
238    public:
239     VkPastPresentationTimingGOOGLE vals_ { 0, 0, 0, 0, 0 };
240 
241     uint64_t native_frame_id_ { 0 };
242     int64_t timestamp_desired_present_time_{ NATIVE_WINDOW_TIMESTAMP_PENDING };
243     int64_t timestamp_actual_present_time_ { NATIVE_WINDOW_TIMESTAMP_PENDING };
244     int64_t timestamp_render_complete_time_ { NATIVE_WINDOW_TIMESTAMP_PENDING };
245     int64_t timestamp_composition_latch_time_
246             { NATIVE_WINDOW_TIMESTAMP_PENDING };
247 };
248 
249 struct Surface {
250     android::sp<ANativeWindow> window;
251     VkSwapchainKHR swapchain_handle;
252     uint64_t consumer_usage;
253 
254     // Indicate whether this surface has been used by a swapchain, no matter the
255     // swapchain is still current or has been destroyed.
256     bool used_by_swapchain;
257 };
258 
HandleFromSurface(Surface * surface)259 VkSurfaceKHR HandleFromSurface(Surface* surface) {
260     return VkSurfaceKHR(reinterpret_cast<uint64_t>(surface));
261 }
262 
SurfaceFromHandle(VkSurfaceKHR handle)263 Surface* SurfaceFromHandle(VkSurfaceKHR handle) {
264     return reinterpret_cast<Surface*>(handle);
265 }
266 
267 // Maximum number of TimingInfo structs to keep per swapchain:
268 enum { MAX_TIMING_INFOS = 10 };
269 // Minimum number of frames to look for in the past (so we don't cause
270 // syncronous requests to Surface Flinger):
271 enum { MIN_NUM_FRAMES_AGO = 5 };
272 
IsSharedPresentMode(VkPresentModeKHR mode)273 bool IsSharedPresentMode(VkPresentModeKHR mode) {
274     return mode == VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR ||
275         mode == VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR;
276 }
277 
278 struct Swapchain {
Swapchainvulkan::driver::__anon9e9787210111::Swapchain279     Swapchain(Surface& surface_,
280               uint32_t num_images_,
281               VkPresentModeKHR present_mode,
282               int pre_transform_,
283               int64_t refresh_duration_)
284         : surface(surface_),
285           num_images(num_images_),
286           mailbox_mode(present_mode == VK_PRESENT_MODE_MAILBOX_KHR),
287           pre_transform(pre_transform_),
288           frame_timestamps_enabled(false),
289           refresh_duration(refresh_duration_),
290           acquire_next_image_timeout(-1),
291           shared(IsSharedPresentMode(present_mode)) {
292     }
293 
get_refresh_durationvulkan::driver::__anon9e9787210111::Swapchain294     VkResult get_refresh_duration(uint64_t& outRefreshDuration)
295     {
296         ANativeWindow* window = surface.window.get();
297         int err = native_window_get_refresh_cycle_duration(
298             window,
299             &refresh_duration);
300         if (err != android::OK) {
301             ALOGE("%s:native_window_get_refresh_cycle_duration failed: %s (%d)",
302                 __func__, strerror(-err), err );
303             return VK_ERROR_SURFACE_LOST_KHR;
304         }
305         outRefreshDuration = refresh_duration;
306         return VK_SUCCESS;
307     }
308 
309     Surface& surface;
310     uint32_t num_images;
311     bool mailbox_mode;
312     int pre_transform;
313     bool frame_timestamps_enabled;
314     int64_t refresh_duration;
315     nsecs_t acquire_next_image_timeout;
316     bool shared;
317 
318     struct Image {
Imagevulkan::driver::__anon9e9787210111::Swapchain::Image319         Image()
320             : image(VK_NULL_HANDLE),
321               dequeue_fence(-1),
322               release_fence(-1),
323               dequeued(false) {}
324         VkImage image;
325         // If the image is bound to memory, an sp to the underlying gralloc buffer.
326         // Otherwise, nullptr; the image will be bound to memory as part of
327         // AcquireNextImage.
328         android::sp<ANativeWindowBuffer> buffer;
329         // The fence is only valid when the buffer is dequeued, and should be
330         // -1 any other time. When valid, we own the fd, and must ensure it is
331         // closed: either by closing it explicitly when queueing the buffer,
332         // or by passing ownership e.g. to ANativeWindow::cancelBuffer().
333         int dequeue_fence;
334         // This fence is a dup of the sync fd returned from the driver via
335         // vkQueueSignalReleaseImageANDROID upon vkQueuePresentKHR. We must
336         // ensure it is closed upon re-presenting or releasing the image.
337         int release_fence;
338         bool dequeued;
339     } images[android::BufferQueueDefs::NUM_BUFFER_SLOTS];
340 
341     std::vector<TimingInfo> timing;
342 };
343 
HandleFromSwapchain(Swapchain * swapchain)344 VkSwapchainKHR HandleFromSwapchain(Swapchain* swapchain) {
345     return VkSwapchainKHR(reinterpret_cast<uint64_t>(swapchain));
346 }
347 
SwapchainFromHandle(VkSwapchainKHR handle)348 Swapchain* SwapchainFromHandle(VkSwapchainKHR handle) {
349     return reinterpret_cast<Swapchain*>(handle);
350 }
351 
IsFencePending(int fd)352 static bool IsFencePending(int fd) {
353     if (fd < 0)
354         return false;
355 
356     errno = 0;
357     return sync_wait(fd, 0 /* timeout */) == -1 && errno == ETIME;
358 }
359 
ReleaseSwapchainImage(VkDevice device,bool shared_present,ANativeWindow * window,int release_fence,Swapchain::Image & image,bool defer_if_pending)360 void ReleaseSwapchainImage(VkDevice device,
361                            bool shared_present,
362                            ANativeWindow* window,
363                            int release_fence,
364                            Swapchain::Image& image,
365                            bool defer_if_pending) {
366     ATRACE_CALL();
367 
368     ALOG_ASSERT(release_fence == -1 || image.dequeued,
369                 "ReleaseSwapchainImage: can't provide a release fence for "
370                 "non-dequeued images");
371 
372     if (image.dequeued) {
373         if (release_fence >= 0) {
374             // We get here from vkQueuePresentKHR. The application is
375             // responsible for creating an execution dependency chain from
376             // vkAcquireNextImage (dequeue_fence) to vkQueuePresentKHR
377             // (release_fence), so we can drop the dequeue_fence here.
378             if (image.dequeue_fence >= 0)
379                 close(image.dequeue_fence);
380         } else {
381             // We get here during swapchain destruction, or various serious
382             // error cases e.g. when we can't create the release_fence during
383             // vkQueuePresentKHR. In non-error cases, the dequeue_fence should
384             // have already signalled, since the swapchain images are supposed
385             // to be idle before the swapchain is destroyed. In error cases,
386             // there may be rendering in flight to the image, but since we
387             // weren't able to create a release_fence, waiting for the
388             // dequeue_fence is about the best we can do.
389             release_fence = image.dequeue_fence;
390         }
391         image.dequeue_fence = -1;
392 
393         // It's invalid to call cancelBuffer on a shared buffer
394         if (window && !shared_present) {
395             window->cancelBuffer(window, image.buffer.get(), release_fence);
396         } else {
397             if (release_fence >= 0) {
398                 sync_wait(release_fence, -1 /* forever */);
399                 close(release_fence);
400             }
401         }
402         release_fence = -1;
403         image.dequeued = false;
404     }
405 
406     if (defer_if_pending && IsFencePending(image.release_fence))
407         return;
408 
409     if (image.release_fence >= 0) {
410         close(image.release_fence);
411         image.release_fence = -1;
412     }
413 
414     if (image.image) {
415         ATRACE_BEGIN("DestroyImage");
416         GetData(device).driver.DestroyImage(device, image.image, nullptr);
417         ATRACE_END();
418         image.image = VK_NULL_HANDLE;
419     }
420 
421     image.buffer.clear();
422 }
423 
OrphanSwapchain(VkDevice device,Swapchain * swapchain)424 void OrphanSwapchain(VkDevice device, Swapchain* swapchain) {
425     if (swapchain->surface.swapchain_handle != HandleFromSwapchain(swapchain))
426         return;
427     for (uint32_t i = 0; i < swapchain->num_images; i++) {
428         if (!swapchain->images[i].dequeued) {
429             ReleaseSwapchainImage(device, swapchain->shared, nullptr, -1,
430                                   swapchain->images[i], true);
431         }
432     }
433     swapchain->surface.swapchain_handle = VK_NULL_HANDLE;
434     swapchain->timing.clear();
435 }
436 
get_num_ready_timings(Swapchain & swapchain)437 uint32_t get_num_ready_timings(Swapchain& swapchain) {
438     if (swapchain.timing.size() < MIN_NUM_FRAMES_AGO) {
439         return 0;
440     }
441 
442     uint32_t num_ready = 0;
443     const size_t num_timings = swapchain.timing.size() - MIN_NUM_FRAMES_AGO + 1;
444     for (uint32_t i = 0; i < num_timings; i++) {
445         TimingInfo& ti = swapchain.timing[i];
446         if (ti.ready()) {
447             // This TimingInfo is ready to be reported to the user.  Add it
448             // to the num_ready.
449             num_ready++;
450             continue;
451         }
452         // This TimingInfo is not yet ready to be reported to the user,
453         // and so we should look for any available timestamps that
454         // might make it ready.
455         int64_t desired_present_time = 0;
456         int64_t render_complete_time = 0;
457         int64_t composition_latch_time = 0;
458         int64_t actual_present_time = 0;
459         // Obtain timestamps:
460         int err = native_window_get_frame_timestamps(
461             swapchain.surface.window.get(), ti.native_frame_id_,
462             &desired_present_time, &render_complete_time,
463             &composition_latch_time,
464             nullptr,  //&first_composition_start_time,
465             nullptr,  //&last_composition_start_time,
466             nullptr,  //&composition_finish_time,
467             &actual_present_time,
468             nullptr,  //&dequeue_ready_time,
469             nullptr /*&reads_done_time*/);
470 
471         if (err != android::OK) {
472             continue;
473         }
474 
475         // Record the timestamp(s) we received, and then see if this TimingInfo
476         // is ready to be reported to the user:
477         ti.timestamp_desired_present_time_ = desired_present_time;
478         ti.timestamp_actual_present_time_ = actual_present_time;
479         ti.timestamp_render_complete_time_ = render_complete_time;
480         ti.timestamp_composition_latch_time_ = composition_latch_time;
481 
482         if (ti.ready()) {
483             // The TimingInfo has received enough timestamps, and should now
484             // use those timestamps to calculate the info that should be
485             // reported to the user:
486             ti.calculate(swapchain.refresh_duration);
487             num_ready++;
488         }
489     }
490     return num_ready;
491 }
492 
copy_ready_timings(Swapchain & swapchain,uint32_t * count,VkPastPresentationTimingGOOGLE * timings)493 void copy_ready_timings(Swapchain& swapchain,
494                         uint32_t* count,
495                         VkPastPresentationTimingGOOGLE* timings) {
496     if (swapchain.timing.empty()) {
497         *count = 0;
498         return;
499     }
500 
501     size_t last_ready = swapchain.timing.size() - 1;
502     while (!swapchain.timing[last_ready].ready()) {
503         if (last_ready == 0) {
504             *count = 0;
505             return;
506         }
507         last_ready--;
508     }
509 
510     uint32_t num_copied = 0;
511     int32_t num_to_remove = 0;
512     for (uint32_t i = 0; i <= last_ready && num_copied < *count; i++) {
513         const TimingInfo& ti = swapchain.timing[i];
514         if (ti.ready()) {
515             ti.get_values(&timings[num_copied]);
516             num_copied++;
517         }
518         num_to_remove++;
519     }
520 
521     // Discard old frames that aren't ready if newer frames are ready.
522     // We don't expect to get the timing info for those old frames.
523     swapchain.timing.erase(swapchain.timing.begin(),
524                            swapchain.timing.begin() + num_to_remove);
525 
526     *count = num_copied;
527 }
528 
GetNativePixelFormat(VkFormat format)529 PixelFormat GetNativePixelFormat(VkFormat format) {
530     PixelFormat native_format = PixelFormat::RGBA_8888;
531     switch (format) {
532         case VK_FORMAT_R8G8B8A8_UNORM:
533         case VK_FORMAT_R8G8B8A8_SRGB:
534             native_format = PixelFormat::RGBA_8888;
535             break;
536         case VK_FORMAT_R5G6B5_UNORM_PACK16:
537             native_format = PixelFormat::RGB_565;
538             break;
539         case VK_FORMAT_R16G16B16A16_SFLOAT:
540             native_format = PixelFormat::RGBA_FP16;
541             break;
542         case VK_FORMAT_A2B10G10R10_UNORM_PACK32:
543             native_format = PixelFormat::RGBA_1010102;
544             break;
545         case VK_FORMAT_R8_UNORM:
546             native_format = PixelFormat::R_8;
547             break;
548         case VK_FORMAT_R10X6G10X6B10X6A10X6_UNORM_4PACK16:
549             native_format = PixelFormat::RGBA_10101010;
550             break;
551         default:
552             ALOGV("unsupported swapchain format %d", format);
553             break;
554     }
555     return native_format;
556 }
557 
GetNativeDataspace(VkColorSpaceKHR colorspace,VkFormat format)558 DataSpace GetNativeDataspace(VkColorSpaceKHR colorspace, VkFormat format) {
559     switch (colorspace) {
560         case VK_COLOR_SPACE_SRGB_NONLINEAR_KHR:
561             return DataSpace::SRGB;
562         case VK_COLOR_SPACE_DISPLAY_P3_NONLINEAR_EXT:
563             return DataSpace::DISPLAY_P3;
564         case VK_COLOR_SPACE_EXTENDED_SRGB_LINEAR_EXT:
565             return DataSpace::SCRGB_LINEAR;
566         case VK_COLOR_SPACE_EXTENDED_SRGB_NONLINEAR_EXT:
567             return DataSpace::SCRGB;
568         case VK_COLOR_SPACE_DCI_P3_LINEAR_EXT:
569             return DataSpace::DCI_P3_LINEAR;
570         case VK_COLOR_SPACE_DCI_P3_NONLINEAR_EXT:
571             return DataSpace::DCI_P3;
572         case VK_COLOR_SPACE_BT709_LINEAR_EXT:
573             return DataSpace::SRGB_LINEAR;
574         case VK_COLOR_SPACE_BT709_NONLINEAR_EXT:
575             return DataSpace::SRGB;
576         case VK_COLOR_SPACE_BT2020_LINEAR_EXT:
577             if (format == VK_FORMAT_R16G16B16A16_SFLOAT) {
578                 return DataSpace::BT2020_LINEAR_EXTENDED;
579             } else {
580                 return DataSpace::BT2020_LINEAR;
581             }
582         case VK_COLOR_SPACE_HDR10_ST2084_EXT:
583             return DataSpace::BT2020_PQ;
584         case VK_COLOR_SPACE_DOLBYVISION_EXT:
585             return DataSpace::BT2020_PQ;
586         case VK_COLOR_SPACE_HDR10_HLG_EXT:
587             return DataSpace::BT2020_HLG;
588         case VK_COLOR_SPACE_ADOBERGB_LINEAR_EXT:
589             return DataSpace::ADOBE_RGB_LINEAR;
590         case VK_COLOR_SPACE_ADOBERGB_NONLINEAR_EXT:
591             return DataSpace::ADOBE_RGB;
592         // Pass through is intended to allow app to provide data that is passed
593         // to the display system without modification.
594         case VK_COLOR_SPACE_PASS_THROUGH_EXT:
595             return DataSpace::ARBITRARY;
596 
597         default:
598             // This indicates that we don't know about the
599             // dataspace specified and we should indicate that
600             // it's unsupported
601             return DataSpace::UNKNOWN;
602     }
603 }
604 
605 }  // anonymous namespace
606 
607 VKAPI_ATTR
CreateAndroidSurfaceKHR(VkInstance instance,const VkAndroidSurfaceCreateInfoKHR * pCreateInfo,const VkAllocationCallbacks * allocator,VkSurfaceKHR * out_surface)608 VkResult CreateAndroidSurfaceKHR(
609     VkInstance instance,
610     const VkAndroidSurfaceCreateInfoKHR* pCreateInfo,
611     const VkAllocationCallbacks* allocator,
612     VkSurfaceKHR* out_surface) {
613     ATRACE_CALL();
614 
615     if (!allocator)
616         allocator = &GetData(instance).allocator;
617     void* mem = allocator->pfnAllocation(allocator->pUserData, sizeof(Surface),
618                                          alignof(Surface),
619                                          VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
620     if (!mem)
621         return VK_ERROR_OUT_OF_HOST_MEMORY;
622     Surface* surface = new (mem) Surface;
623 
624     surface->window = pCreateInfo->window;
625     surface->swapchain_handle = VK_NULL_HANDLE;
626     surface->used_by_swapchain = false;
627     int err = native_window_get_consumer_usage(surface->window.get(),
628                                                &surface->consumer_usage);
629     if (err != android::OK) {
630         ALOGE("native_window_get_consumer_usage() failed: %s (%d)",
631               strerror(-err), err);
632         surface->~Surface();
633         allocator->pfnFree(allocator->pUserData, surface);
634         return VK_ERROR_SURFACE_LOST_KHR;
635     }
636 
637     err =
638         native_window_api_connect(surface->window.get(), NATIVE_WINDOW_API_EGL);
639     if (err != android::OK) {
640         ALOGE("native_window_api_connect() failed: %s (%d)", strerror(-err),
641               err);
642         surface->~Surface();
643         allocator->pfnFree(allocator->pUserData, surface);
644         return VK_ERROR_NATIVE_WINDOW_IN_USE_KHR;
645     }
646 
647     *out_surface = HandleFromSurface(surface);
648     return VK_SUCCESS;
649 }
650 
651 VKAPI_ATTR
DestroySurfaceKHR(VkInstance instance,VkSurfaceKHR surface_handle,const VkAllocationCallbacks * allocator)652 void DestroySurfaceKHR(VkInstance instance,
653                        VkSurfaceKHR surface_handle,
654                        const VkAllocationCallbacks* allocator) {
655     ATRACE_CALL();
656 
657     Surface* surface = SurfaceFromHandle(surface_handle);
658     if (!surface)
659         return;
660     native_window_api_disconnect(surface->window.get(), NATIVE_WINDOW_API_EGL);
661     ALOGV_IF(surface->swapchain_handle != VK_NULL_HANDLE,
662              "destroyed VkSurfaceKHR 0x%" PRIx64
663              " has active VkSwapchainKHR 0x%" PRIx64,
664              reinterpret_cast<uint64_t>(surface_handle),
665              reinterpret_cast<uint64_t>(surface->swapchain_handle));
666     surface->~Surface();
667     if (!allocator)
668         allocator = &GetData(instance).allocator;
669     allocator->pfnFree(allocator->pUserData, surface);
670 }
671 
672 VKAPI_ATTR
GetPhysicalDeviceSurfaceSupportKHR(VkPhysicalDevice,uint32_t,VkSurfaceKHR,VkBool32 * supported)673 VkResult GetPhysicalDeviceSurfaceSupportKHR(VkPhysicalDevice /*pdev*/,
674                                             uint32_t /*queue_family*/,
675                                             VkSurfaceKHR /*surface_handle*/,
676                                             VkBool32* supported) {
677     *supported = VK_TRUE;
678     return VK_SUCCESS;
679 }
680 
681 VKAPI_ATTR
GetPhysicalDeviceSurfaceCapabilitiesKHR(VkPhysicalDevice pdev,VkSurfaceKHR surface,VkSurfaceCapabilitiesKHR * capabilities)682 VkResult GetPhysicalDeviceSurfaceCapabilitiesKHR(
683     VkPhysicalDevice pdev,
684     VkSurfaceKHR surface,
685     VkSurfaceCapabilitiesKHR* capabilities) {
686     ATRACE_CALL();
687 
688     // Implement in terms of GetPhysicalDeviceSurfaceCapabilities2KHR
689 
690     VkPhysicalDeviceSurfaceInfo2KHR info2 = {
691         VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SURFACE_INFO_2_KHR,
692         nullptr,
693         surface
694     };
695 
696     VkSurfaceCapabilities2KHR caps2 = {
697         VK_STRUCTURE_TYPE_SURFACE_CAPABILITIES_2_KHR,
698         nullptr,
699         {},
700     };
701 
702     VkResult result = GetPhysicalDeviceSurfaceCapabilities2KHR(pdev, &info2, &caps2);
703     *capabilities = caps2.surfaceCapabilities;
704     return result;
705 }
706 
707 // Does the call-twice and VK_INCOMPLETE handling for querying lists
708 // of things, where we already have the full set built in a vector.
709 template <typename T>
CopyWithIncomplete(std::vector<T> const & things,T * callerPtr,uint32_t * callerCount)710 VkResult CopyWithIncomplete(std::vector<T> const& things,
711         T* callerPtr, uint32_t* callerCount) {
712     VkResult result = VK_SUCCESS;
713     if (callerPtr) {
714         if (things.size() > *callerCount)
715             result = VK_INCOMPLETE;
716         *callerCount = std::min(uint32_t(things.size()), *callerCount);
717         std::copy(things.begin(), things.begin() + *callerCount, callerPtr);
718     } else {
719         *callerCount = things.size();
720     }
721     return result;
722 }
723 
724 VKAPI_ATTR
GetPhysicalDeviceSurfaceFormatsKHR(VkPhysicalDevice pdev,VkSurfaceKHR surface_handle,uint32_t * count,VkSurfaceFormatKHR * formats)725 VkResult GetPhysicalDeviceSurfaceFormatsKHR(VkPhysicalDevice pdev,
726                                             VkSurfaceKHR surface_handle,
727                                             uint32_t* count,
728                                             VkSurfaceFormatKHR* formats) {
729     ATRACE_CALL();
730 
731     const InstanceData& instance_data = GetData(pdev);
732 
733     uint64_t consumer_usage = 0;
734     bool colorspace_ext =
735         instance_data.hook_extensions.test(ProcHook::EXT_swapchain_colorspace);
736     if (surface_handle == VK_NULL_HANDLE) {
737         ProcHook::Extension surfaceless = ProcHook::GOOGLE_surfaceless_query;
738         bool surfaceless_enabled =
739             instance_data.hook_extensions.test(surfaceless);
740         if (!surfaceless_enabled) {
741             return VK_ERROR_SURFACE_LOST_KHR;
742         }
743         // Support for VK_GOOGLE_surfaceless_query.
744 
745         // TODO(b/203826952): research proper value; temporarily use the
746         // values seen on Pixel
747         consumer_usage = AHARDWAREBUFFER_USAGE_COMPOSER_OVERLAY;
748     } else {
749         Surface& surface = *SurfaceFromHandle(surface_handle);
750         consumer_usage = surface.consumer_usage;
751     }
752 
753     AHardwareBuffer_Desc desc = {};
754     desc.width = 1;
755     desc.height = 1;
756     desc.layers = 1;
757     desc.usage = consumer_usage | AHARDWAREBUFFER_USAGE_GPU_SAMPLED_IMAGE |
758                  AHARDWAREBUFFER_USAGE_GPU_FRAMEBUFFER;
759 
760     // We must support R8G8B8A8
761     std::vector<VkSurfaceFormatKHR> all_formats = {
762         {VK_FORMAT_R8G8B8A8_UNORM, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR},
763         {VK_FORMAT_R8G8B8A8_SRGB, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR},
764     };
765 
766     VkFormat format = VK_FORMAT_UNDEFINED;
767     if (colorspace_ext) {
768         for (VkColorSpaceKHR colorSpace :
769              colorSpaceSupportedByVkEXTSwapchainColorspace) {
770             format = VK_FORMAT_R8G8B8A8_UNORM;
771             if (GetNativeDataspace(colorSpace, format) != DataSpace::UNKNOWN) {
772                 all_formats.emplace_back(
773                     VkSurfaceFormatKHR{format, colorSpace});
774             }
775 
776             format = VK_FORMAT_R8G8B8A8_SRGB;
777             if (GetNativeDataspace(colorSpace, format) != DataSpace::UNKNOWN) {
778                 all_formats.emplace_back(
779                     VkSurfaceFormatKHR{format, colorSpace});
780             }
781         }
782     }
783 
784     // NOTE: Any new formats that are added must be coordinated across different
785     // Android users.  This includes the ANGLE team (a layered implementation of
786     // OpenGL-ES).
787 
788     format = VK_FORMAT_R5G6B5_UNORM_PACK16;
789     desc.format = AHARDWAREBUFFER_FORMAT_R5G6B5_UNORM;
790     if (AHardwareBuffer_isSupported(&desc)) {
791         all_formats.emplace_back(
792             VkSurfaceFormatKHR{format, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR});
793         if (colorspace_ext) {
794             for (VkColorSpaceKHR colorSpace :
795                  colorSpaceSupportedByVkEXTSwapchainColorspace) {
796                 if (GetNativeDataspace(colorSpace, format) !=
797                     DataSpace::UNKNOWN) {
798                     all_formats.emplace_back(
799                         VkSurfaceFormatKHR{format, colorSpace});
800                 }
801             }
802         }
803     }
804 
805     format = VK_FORMAT_R16G16B16A16_SFLOAT;
806     desc.format = AHARDWAREBUFFER_FORMAT_R16G16B16A16_FLOAT;
807     if (AHardwareBuffer_isSupported(&desc)) {
808         all_formats.emplace_back(
809             VkSurfaceFormatKHR{format, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR});
810         if (colorspace_ext) {
811             for (VkColorSpaceKHR colorSpace :
812                  colorSpaceSupportedByVkEXTSwapchainColorspace) {
813                 if (GetNativeDataspace(colorSpace, format) !=
814                     DataSpace::UNKNOWN) {
815                     all_formats.emplace_back(
816                         VkSurfaceFormatKHR{format, colorSpace});
817                 }
818             }
819 
820             for (
821                 VkColorSpaceKHR colorSpace :
822                 colorSpaceSupportedByVkEXTSwapchainColorspaceOnFP16SurfaceOnly) {
823                 if (GetNativeDataspace(colorSpace, format) !=
824                     DataSpace::UNKNOWN) {
825                     all_formats.emplace_back(
826                         VkSurfaceFormatKHR{format, colorSpace});
827                 }
828             }
829         }
830     }
831 
832     format = VK_FORMAT_A2B10G10R10_UNORM_PACK32;
833     desc.format = AHARDWAREBUFFER_FORMAT_R10G10B10A2_UNORM;
834     if (AHardwareBuffer_isSupported(&desc)) {
835         all_formats.emplace_back(
836             VkSurfaceFormatKHR{format, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR});
837         if (colorspace_ext) {
838             for (VkColorSpaceKHR colorSpace :
839                  colorSpaceSupportedByVkEXTSwapchainColorspace) {
840                 if (GetNativeDataspace(colorSpace, format) !=
841                     DataSpace::UNKNOWN) {
842                     all_formats.emplace_back(
843                         VkSurfaceFormatKHR{format, colorSpace});
844                 }
845             }
846         }
847     }
848 
849     format = VK_FORMAT_R8_UNORM;
850     desc.format = AHARDWAREBUFFER_FORMAT_R8_UNORM;
851     if (AHardwareBuffer_isSupported(&desc)) {
852         if (colorspace_ext) {
853             all_formats.emplace_back(
854                 VkSurfaceFormatKHR{format, VK_COLOR_SPACE_PASS_THROUGH_EXT});
855         }
856     }
857 
858     bool rgba10x6_formats_ext = false;
859     uint32_t exts_count;
860     const auto& driver = GetData(pdev).driver;
861     driver.EnumerateDeviceExtensionProperties(pdev, nullptr, &exts_count,
862                                               nullptr);
863     std::vector<VkExtensionProperties> props(exts_count);
864     driver.EnumerateDeviceExtensionProperties(pdev, nullptr, &exts_count,
865                                               props.data());
866     for (uint32_t i = 0; i < exts_count; i++) {
867         VkExtensionProperties prop = props[i];
868         if (strcmp(prop.extensionName,
869                    VK_EXT_RGBA10X6_FORMATS_EXTENSION_NAME) == 0) {
870             rgba10x6_formats_ext = true;
871         }
872     }
873     format = VK_FORMAT_R10X6G10X6B10X6A10X6_UNORM_4PACK16;
874     desc.format = AHARDWAREBUFFER_FORMAT_R10G10B10A10_UNORM;
875     if (AHardwareBuffer_isSupported(&desc) && rgba10x6_formats_ext) {
876         all_formats.emplace_back(
877             VkSurfaceFormatKHR{format, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR});
878         if (colorspace_ext) {
879             for (VkColorSpaceKHR colorSpace :
880                  colorSpaceSupportedByVkEXTSwapchainColorspace) {
881                 if (GetNativeDataspace(colorSpace, format) !=
882                     DataSpace::UNKNOWN) {
883                     all_formats.emplace_back(
884                         VkSurfaceFormatKHR{format, colorSpace});
885                 }
886             }
887         }
888     }
889 
890     // NOTE: Any new formats that are added must be coordinated across different
891     // Android users.  This includes the ANGLE team (a layered implementation of
892     // OpenGL-ES).
893 
894     return CopyWithIncomplete(all_formats, formats, count);
895 }
896 
897 VKAPI_ATTR
GetPhysicalDeviceSurfaceCapabilities2KHR(VkPhysicalDevice physicalDevice,const VkPhysicalDeviceSurfaceInfo2KHR * pSurfaceInfo,VkSurfaceCapabilities2KHR * pSurfaceCapabilities)898 VkResult GetPhysicalDeviceSurfaceCapabilities2KHR(
899     VkPhysicalDevice physicalDevice,
900     const VkPhysicalDeviceSurfaceInfo2KHR* pSurfaceInfo,
901     VkSurfaceCapabilities2KHR* pSurfaceCapabilities) {
902     ATRACE_CALL();
903 
904     auto surface = pSurfaceInfo->surface;
905     auto capabilities = &pSurfaceCapabilities->surfaceCapabilities;
906 
907     VkSurfacePresentModeEXT const *pPresentMode = nullptr;
908     for (auto pNext = reinterpret_cast<VkBaseInStructure const *>(pSurfaceInfo->pNext);
909             pNext; pNext = reinterpret_cast<VkBaseInStructure const *>(pNext->pNext)) {
910         switch (pNext->sType) {
911             case VK_STRUCTURE_TYPE_SURFACE_PRESENT_MODE_EXT:
912                 pPresentMode = reinterpret_cast<VkSurfacePresentModeEXT const *>(pNext);
913                 break;
914 
915             default:
916                 break;
917         }
918     }
919 
920     int err;
921     int width, height;
922     int transform_hint;
923     int max_buffer_count;
924     int min_undequeued_buffers;
925     if (surface == VK_NULL_HANDLE) {
926         const InstanceData& instance_data = GetData(physicalDevice);
927         ProcHook::Extension surfaceless = ProcHook::GOOGLE_surfaceless_query;
928         bool surfaceless_enabled =
929             instance_data.hook_extensions.test(surfaceless);
930         if (!surfaceless_enabled) {
931             // It is an error to pass a surface==VK_NULL_HANDLE unless the
932             // VK_GOOGLE_surfaceless_query extension is enabled
933             return VK_ERROR_SURFACE_LOST_KHR;
934         }
935         // Support for VK_GOOGLE_surfaceless_query.  The primary purpose of this
936         // extension for this function is for
937         // VkSurfaceProtectedCapabilitiesKHR::supportsProtected.  The following
938         // four values cannot be known without a surface.  Default values will
939         // be supplied anyway, but cannot be relied upon.
940         width = 0xFFFFFFFF;
941         height = 0xFFFFFFFF;
942         transform_hint = VK_SURFACE_TRANSFORM_INHERIT_BIT_KHR;
943         capabilities->minImageCount = 0xFFFFFFFF;
944         capabilities->maxImageCount = 0xFFFFFFFF;
945     } else {
946         ANativeWindow* window = SurfaceFromHandle(surface)->window.get();
947 
948         err = window->query(window, NATIVE_WINDOW_DEFAULT_WIDTH, &width);
949         if (err != android::OK) {
950             ALOGE("NATIVE_WINDOW_DEFAULT_WIDTH query failed: %s (%d)",
951                   strerror(-err), err);
952             return VK_ERROR_SURFACE_LOST_KHR;
953         }
954         err = window->query(window, NATIVE_WINDOW_DEFAULT_HEIGHT, &height);
955         if (err != android::OK) {
956             ALOGE("NATIVE_WINDOW_DEFAULT_WIDTH query failed: %s (%d)",
957                   strerror(-err), err);
958             return VK_ERROR_SURFACE_LOST_KHR;
959         }
960 
961         err = window->query(window, NATIVE_WINDOW_TRANSFORM_HINT,
962                             &transform_hint);
963         if (err != android::OK) {
964             ALOGE("NATIVE_WINDOW_TRANSFORM_HINT query failed: %s (%d)",
965                   strerror(-err), err);
966             return VK_ERROR_SURFACE_LOST_KHR;
967         }
968 
969         err = window->query(window, NATIVE_WINDOW_MAX_BUFFER_COUNT,
970                             &max_buffer_count);
971         if (err != android::OK) {
972             ALOGE("NATIVE_WINDOW_MAX_BUFFER_COUNT query failed: %s (%d)",
973                   strerror(-err), err);
974             return VK_ERROR_SURFACE_LOST_KHR;
975         }
976 
977         err = window->query(window, NATIVE_WINDOW_MIN_UNDEQUEUED_BUFFERS,
978                             &min_undequeued_buffers);
979         if (err != android::OK) {
980             ALOGE("NATIVE_WINDOW_MIN_UNDEQUEUED_BUFFERS query failed: %s (%d)",
981                   strerror(-err), err);
982             return VK_ERROR_SURFACE_LOST_KHR;
983         }
984 
985         // Additional buffer count over min_undequeued_buffers in vulkan came from 2 total
986         // being technically enough for fifo (although a poor experience) vs 3 being the
987         // absolute minimum for mailbox to be useful. So min_undequeued_buffers + 2 is sensible
988         static constexpr int default_additional_buffers = 2;
989 
990         if(pPresentMode != nullptr) {
991             switch (pPresentMode->presentMode) {
992                 case VK_PRESENT_MODE_IMMEDIATE_KHR:
993                     ALOGE("Swapchain present mode VK_PRESENT_MODE_IMMEDIATE_KHR is not supported");
994                     break;
995                 case VK_PRESENT_MODE_MAILBOX_KHR:
996                 case VK_PRESENT_MODE_FIFO_KHR:
997                     capabilities->minImageCount = std::min(max_buffer_count,
998                             min_undequeued_buffers + default_additional_buffers);
999                     capabilities->maxImageCount = static_cast<uint32_t>(max_buffer_count);
1000                     break;
1001                 case VK_PRESENT_MODE_FIFO_RELAXED_KHR:
1002                     ALOGE("Swapchain present mode VK_PRESENT_MODE_FIFO_RELEAXED_KHR "
1003                           "is not supported");
1004                     break;
1005                 case VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR:
1006                 case VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR:
1007                     capabilities->minImageCount = 1;
1008                     capabilities->maxImageCount = 1;
1009                     break;
1010 
1011                 default:
1012                     ALOGE("Unrecognized swapchain present mode %u is not supported",
1013                             pPresentMode->presentMode);
1014                     break;
1015             }
1016         } else {
1017             capabilities->minImageCount = std::min(max_buffer_count,
1018                     min_undequeued_buffers + default_additional_buffers);
1019             capabilities->maxImageCount = static_cast<uint32_t>(max_buffer_count);
1020         }
1021     }
1022 
1023     capabilities->currentExtent =
1024         VkExtent2D{static_cast<uint32_t>(width), static_cast<uint32_t>(height)};
1025 
1026     // TODO(http://b/134182502): Figure out what the max extent should be.
1027     capabilities->minImageExtent = VkExtent2D{1, 1};
1028     capabilities->maxImageExtent = VkExtent2D{4096, 4096};
1029 
1030     if (capabilities->maxImageExtent.height <
1031         capabilities->currentExtent.height) {
1032         capabilities->maxImageExtent.height =
1033             capabilities->currentExtent.height;
1034     }
1035 
1036     if (capabilities->maxImageExtent.width <
1037         capabilities->currentExtent.width) {
1038         capabilities->maxImageExtent.width = capabilities->currentExtent.width;
1039     }
1040 
1041     capabilities->maxImageArrayLayers = 1;
1042 
1043     capabilities->supportedTransforms = kSupportedTransforms;
1044     capabilities->currentTransform =
1045         TranslateNativeToVulkanTransform(transform_hint);
1046 
1047     // On Android, window composition is a WindowManager property, not something
1048     // associated with the bufferqueue. It can't be changed from here.
1049     capabilities->supportedCompositeAlpha = VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR;
1050 
1051     capabilities->supportedUsageFlags =
1052         VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT |
1053         VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_STORAGE_BIT |
1054         VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT |
1055         VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT;
1056 
1057     for (auto pNext = reinterpret_cast<VkBaseOutStructure*>(pSurfaceCapabilities->pNext);
1058             pNext; pNext = reinterpret_cast<VkBaseOutStructure*>(pNext->pNext)) {
1059 
1060         switch (pNext->sType) {
1061             case VK_STRUCTURE_TYPE_SHARED_PRESENT_SURFACE_CAPABILITIES_KHR: {
1062                 VkSharedPresentSurfaceCapabilitiesKHR* shared_caps =
1063                     reinterpret_cast<VkSharedPresentSurfaceCapabilitiesKHR*>(pNext);
1064                 // Claim same set of usage flags are supported for
1065                 // shared present modes as for other modes.
1066                 shared_caps->sharedPresentSupportedUsageFlags =
1067                     pSurfaceCapabilities->surfaceCapabilities
1068                         .supportedUsageFlags;
1069             } break;
1070 
1071             case VK_STRUCTURE_TYPE_SURFACE_PROTECTED_CAPABILITIES_KHR: {
1072                 VkSurfaceProtectedCapabilitiesKHR* protected_caps =
1073                     reinterpret_cast<VkSurfaceProtectedCapabilitiesKHR*>(pNext);
1074                 protected_caps->supportsProtected = VK_TRUE;
1075             } break;
1076 
1077             case VK_STRUCTURE_TYPE_SURFACE_PRESENT_SCALING_CAPABILITIES_EXT: {
1078                 VkSurfacePresentScalingCapabilitiesEXT* scaling_caps =
1079                     reinterpret_cast<VkSurfacePresentScalingCapabilitiesEXT*>(pNext);
1080                 // By default, Android stretches the buffer to fit the window,
1081                 // without preserving aspect ratio. Other modes are technically possible
1082                 // but consult with CoGS team before exposing them here!
1083                 scaling_caps->supportedPresentScaling = VK_PRESENT_SCALING_STRETCH_BIT_EXT;
1084 
1085                 // Since we always scale, we don't support any gravity.
1086                 scaling_caps->supportedPresentGravityX = 0;
1087                 scaling_caps->supportedPresentGravityY = 0;
1088 
1089                 // Scaled image limits are just the basic image limits
1090                 scaling_caps->minScaledImageExtent = capabilities->minImageExtent;
1091                 scaling_caps->maxScaledImageExtent = capabilities->maxImageExtent;
1092             } break;
1093 
1094             case VK_STRUCTURE_TYPE_SURFACE_PRESENT_MODE_COMPATIBILITY_EXT: {
1095                 VkSurfacePresentModeCompatibilityEXT* mode_caps =
1096                     reinterpret_cast<VkSurfacePresentModeCompatibilityEXT*>(pNext);
1097 
1098                 ALOG_ASSERT(pPresentMode,
1099                         "querying VkSurfacePresentModeCompatibilityEXT "
1100                         "requires VkSurfacePresentModeEXT to be provided");
1101                 std::vector<VkPresentModeKHR> compatibleModes;
1102                 compatibleModes.push_back(pPresentMode->presentMode);
1103 
1104                 switch (pPresentMode->presentMode) {
1105                     // Shared modes are both compatible with each other.
1106                     case VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR:
1107                         compatibleModes.push_back(VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR);
1108                         break;
1109                     case VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR:
1110                         compatibleModes.push_back(VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR);
1111                         break;
1112                     default:
1113                         // Other modes are only compatible with themselves.
1114                         // TODO: consider whether switching between FIFO and MAILBOX is reasonable
1115                         break;
1116                 }
1117 
1118                 // Note: this does not generate VK_INCOMPLETE since we're nested inside
1119                 // a larger query and there would be no way to determine exactly where it came from.
1120                 CopyWithIncomplete(compatibleModes, mode_caps->pPresentModes,
1121                         &mode_caps->presentModeCount);
1122             } break;
1123 
1124             default:
1125                 // Ignore all other extension structs
1126                 break;
1127         }
1128     }
1129 
1130     return VK_SUCCESS;
1131 }
1132 
1133 VKAPI_ATTR
GetPhysicalDeviceSurfaceFormats2KHR(VkPhysicalDevice physicalDevice,const VkPhysicalDeviceSurfaceInfo2KHR * pSurfaceInfo,uint32_t * pSurfaceFormatCount,VkSurfaceFormat2KHR * pSurfaceFormats)1134 VkResult GetPhysicalDeviceSurfaceFormats2KHR(
1135     VkPhysicalDevice physicalDevice,
1136     const VkPhysicalDeviceSurfaceInfo2KHR* pSurfaceInfo,
1137     uint32_t* pSurfaceFormatCount,
1138     VkSurfaceFormat2KHR* pSurfaceFormats) {
1139     ATRACE_CALL();
1140 
1141     if (!pSurfaceFormats) {
1142         return GetPhysicalDeviceSurfaceFormatsKHR(physicalDevice,
1143                                                   pSurfaceInfo->surface,
1144                                                   pSurfaceFormatCount, nullptr);
1145     }
1146 
1147     // temp vector for forwarding; we'll marshal it into the pSurfaceFormats
1148     // after the call.
1149     std::vector<VkSurfaceFormatKHR> surface_formats(*pSurfaceFormatCount);
1150     VkResult result = GetPhysicalDeviceSurfaceFormatsKHR(
1151         physicalDevice, pSurfaceInfo->surface, pSurfaceFormatCount,
1152         surface_formats.data());
1153 
1154     if (result != VK_SUCCESS && result != VK_INCOMPLETE) {
1155         return result;
1156     }
1157 
1158     const auto& driver = GetData(physicalDevice).driver;
1159 
1160     // marshal results individually due to stride difference.
1161     uint32_t formats_to_marshal = *pSurfaceFormatCount;
1162     for (uint32_t i = 0u; i < formats_to_marshal; i++) {
1163         pSurfaceFormats[i].surfaceFormat = surface_formats[i];
1164 
1165         // Query the compression properties for the surface format
1166         VkSurfaceFormat2KHR* pSurfaceFormat = &pSurfaceFormats[i];
1167         while (pSurfaceFormat->pNext) {
1168             pSurfaceFormat =
1169                 reinterpret_cast<VkSurfaceFormat2KHR*>(pSurfaceFormat->pNext);
1170             switch (pSurfaceFormat->sType) {
1171                 case VK_STRUCTURE_TYPE_IMAGE_COMPRESSION_PROPERTIES_EXT: {
1172                     VkImageCompressionPropertiesEXT* surfaceCompressionProps =
1173                         reinterpret_cast<VkImageCompressionPropertiesEXT*>(
1174                             pSurfaceFormat);
1175 
1176                     if (surfaceCompressionProps &&
1177                         (driver.GetPhysicalDeviceImageFormatProperties2KHR ||
1178                          driver.GetPhysicalDeviceImageFormatProperties2)) {
1179                         VkPhysicalDeviceImageFormatInfo2 imageFormatInfo = {};
1180                         imageFormatInfo.sType =
1181                             VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_FORMAT_INFO_2;
1182                         imageFormatInfo.format =
1183                             pSurfaceFormats[i].surfaceFormat.format;
1184                         imageFormatInfo.type = VK_IMAGE_TYPE_2D;
1185                         imageFormatInfo.usage =
1186                             VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
1187                         imageFormatInfo.pNext = nullptr;
1188 
1189                         VkImageCompressionControlEXT compressionControl = {};
1190                         compressionControl.sType =
1191                             VK_STRUCTURE_TYPE_IMAGE_COMPRESSION_CONTROL_EXT;
1192                         compressionControl.pNext = imageFormatInfo.pNext;
1193                         compressionControl.flags =
1194                             VK_IMAGE_COMPRESSION_FIXED_RATE_DEFAULT_EXT;
1195 
1196                         imageFormatInfo.pNext = &compressionControl;
1197 
1198                         VkImageCompressionPropertiesEXT compressionProps = {};
1199                         compressionProps.sType =
1200                             VK_STRUCTURE_TYPE_IMAGE_COMPRESSION_PROPERTIES_EXT;
1201                         compressionProps.pNext = nullptr;
1202 
1203                         VkImageFormatProperties2KHR imageFormatProps = {};
1204                         imageFormatProps.sType =
1205                             VK_STRUCTURE_TYPE_IMAGE_FORMAT_PROPERTIES_2_KHR;
1206                         imageFormatProps.pNext = &compressionProps;
1207 
1208                         VkResult compressionRes =
1209                             GetPhysicalDeviceImageFormatProperties2(
1210                                 physicalDevice, &imageFormatInfo,
1211                                 &imageFormatProps);
1212                         if (compressionRes == VK_SUCCESS) {
1213                             surfaceCompressionProps->imageCompressionFlags =
1214                                 compressionProps.imageCompressionFlags;
1215                             surfaceCompressionProps
1216                                 ->imageCompressionFixedRateFlags =
1217                                 compressionProps.imageCompressionFixedRateFlags;
1218                         } else if (compressionRes ==
1219                                        VK_ERROR_OUT_OF_HOST_MEMORY ||
1220                                    compressionRes ==
1221                                        VK_ERROR_OUT_OF_DEVICE_MEMORY) {
1222                             return compressionRes;
1223                         } else {
1224                             // For any of the *_NOT_SUPPORTED errors we continue
1225                             // onto the next format
1226                             continue;
1227                         }
1228                     }
1229                 } break;
1230 
1231                 default:
1232                     // Ignore all other extension structs
1233                     break;
1234             }
1235         }
1236     }
1237 
1238     return result;
1239 }
1240 
1241 VKAPI_ATTR
GetPhysicalDeviceSurfacePresentModesKHR(VkPhysicalDevice pdev,VkSurfaceKHR surface,uint32_t * count,VkPresentModeKHR * modes)1242 VkResult GetPhysicalDeviceSurfacePresentModesKHR(VkPhysicalDevice pdev,
1243                                                  VkSurfaceKHR surface,
1244                                                  uint32_t* count,
1245                                                  VkPresentModeKHR* modes) {
1246     ATRACE_CALL();
1247 
1248     int err;
1249     int query_value;
1250     std::vector<VkPresentModeKHR> present_modes;
1251     if (surface == VK_NULL_HANDLE) {
1252         const InstanceData& instance_data = GetData(pdev);
1253         ProcHook::Extension surfaceless = ProcHook::GOOGLE_surfaceless_query;
1254         bool surfaceless_enabled =
1255             instance_data.hook_extensions.test(surfaceless);
1256         if (!surfaceless_enabled) {
1257             return VK_ERROR_SURFACE_LOST_KHR;
1258         }
1259         // Support for VK_GOOGLE_surfaceless_query.  The primary purpose of this
1260         // extension for this function is for
1261         // VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR and
1262         // VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR.  We technically cannot
1263         // know if VK_PRESENT_MODE_SHARED_MAILBOX_KHR is supported without a
1264         // surface, and that cannot be relied upon.  Therefore, don't return it.
1265         present_modes.push_back(VK_PRESENT_MODE_FIFO_KHR);
1266     } else {
1267         ANativeWindow* window = SurfaceFromHandle(surface)->window.get();
1268 
1269         err = window->query(window, NATIVE_WINDOW_MIN_UNDEQUEUED_BUFFERS,
1270                             &query_value);
1271         if (err != android::OK || query_value < 0) {
1272             ALOGE(
1273                 "NATIVE_WINDOW_MIN_UNDEQUEUED_BUFFERS query failed: %s (%d) "
1274                 "value=%d",
1275                 strerror(-err), err, query_value);
1276             return VK_ERROR_SURFACE_LOST_KHR;
1277         }
1278         uint32_t min_undequeued_buffers = static_cast<uint32_t>(query_value);
1279 
1280         err =
1281             window->query(window, NATIVE_WINDOW_MAX_BUFFER_COUNT, &query_value);
1282         if (err != android::OK || query_value < 0) {
1283             ALOGE(
1284                 "NATIVE_WINDOW_MAX_BUFFER_COUNT query failed: %s (%d) value=%d",
1285                 strerror(-err), err, query_value);
1286             return VK_ERROR_SURFACE_LOST_KHR;
1287         }
1288         uint32_t max_buffer_count = static_cast<uint32_t>(query_value);
1289 
1290         if (min_undequeued_buffers + 1 < max_buffer_count)
1291             present_modes.push_back(VK_PRESENT_MODE_MAILBOX_KHR);
1292         present_modes.push_back(VK_PRESENT_MODE_FIFO_KHR);
1293     }
1294 
1295     VkPhysicalDevicePresentationPropertiesANDROID present_properties;
1296     QueryPresentationProperties(pdev, &present_properties);
1297     if (present_properties.sharedImage) {
1298         present_modes.push_back(VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR);
1299         present_modes.push_back(VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR);
1300     }
1301 
1302     return CopyWithIncomplete(present_modes, modes, count);
1303 }
1304 
1305 VKAPI_ATTR
GetDeviceGroupPresentCapabilitiesKHR(VkDevice,VkDeviceGroupPresentCapabilitiesKHR * pDeviceGroupPresentCapabilities)1306 VkResult GetDeviceGroupPresentCapabilitiesKHR(
1307     VkDevice,
1308     VkDeviceGroupPresentCapabilitiesKHR* pDeviceGroupPresentCapabilities) {
1309     ATRACE_CALL();
1310 
1311     ALOGV_IF(pDeviceGroupPresentCapabilities->sType !=
1312                  VK_STRUCTURE_TYPE_DEVICE_GROUP_PRESENT_CAPABILITIES_KHR,
1313              "vkGetDeviceGroupPresentCapabilitiesKHR: invalid "
1314              "VkDeviceGroupPresentCapabilitiesKHR structure type %d",
1315              pDeviceGroupPresentCapabilities->sType);
1316 
1317     memset(pDeviceGroupPresentCapabilities->presentMask, 0,
1318            sizeof(pDeviceGroupPresentCapabilities->presentMask));
1319 
1320     // assume device group of size 1
1321     pDeviceGroupPresentCapabilities->presentMask[0] = 1 << 0;
1322     pDeviceGroupPresentCapabilities->modes =
1323         VK_DEVICE_GROUP_PRESENT_MODE_LOCAL_BIT_KHR;
1324 
1325     return VK_SUCCESS;
1326 }
1327 
1328 VKAPI_ATTR
GetDeviceGroupSurfacePresentModesKHR(VkDevice,VkSurfaceKHR,VkDeviceGroupPresentModeFlagsKHR * pModes)1329 VkResult GetDeviceGroupSurfacePresentModesKHR(
1330     VkDevice,
1331     VkSurfaceKHR,
1332     VkDeviceGroupPresentModeFlagsKHR* pModes) {
1333     ATRACE_CALL();
1334 
1335     *pModes = VK_DEVICE_GROUP_PRESENT_MODE_LOCAL_BIT_KHR;
1336     return VK_SUCCESS;
1337 }
1338 
1339 VKAPI_ATTR
GetPhysicalDevicePresentRectanglesKHR(VkPhysicalDevice,VkSurfaceKHR surface,uint32_t * pRectCount,VkRect2D * pRects)1340 VkResult GetPhysicalDevicePresentRectanglesKHR(VkPhysicalDevice,
1341                                                VkSurfaceKHR surface,
1342                                                uint32_t* pRectCount,
1343                                                VkRect2D* pRects) {
1344     ATRACE_CALL();
1345 
1346     if (!pRects) {
1347         *pRectCount = 1;
1348     } else {
1349         uint32_t count = std::min(*pRectCount, 1u);
1350         bool incomplete = *pRectCount < 1;
1351 
1352         *pRectCount = count;
1353 
1354         if (incomplete) {
1355             return VK_INCOMPLETE;
1356         }
1357 
1358         int err;
1359         ANativeWindow* window = SurfaceFromHandle(surface)->window.get();
1360 
1361         int width = 0, height = 0;
1362         err = window->query(window, NATIVE_WINDOW_DEFAULT_WIDTH, &width);
1363         if (err != android::OK) {
1364             ALOGE("NATIVE_WINDOW_DEFAULT_WIDTH query failed: %s (%d)",
1365                   strerror(-err), err);
1366         }
1367         err = window->query(window, NATIVE_WINDOW_DEFAULT_HEIGHT, &height);
1368         if (err != android::OK) {
1369             ALOGE("NATIVE_WINDOW_DEFAULT_WIDTH query failed: %s (%d)",
1370                   strerror(-err), err);
1371         }
1372 
1373         pRects[0].offset.x = 0;
1374         pRects[0].offset.y = 0;
1375         pRects[0].extent = VkExtent2D{static_cast<uint32_t>(width),
1376                                       static_cast<uint32_t>(height)};
1377     }
1378     return VK_SUCCESS;
1379 }
1380 
DestroySwapchainInternal(VkDevice device,VkSwapchainKHR swapchain_handle,const VkAllocationCallbacks * allocator)1381 static void DestroySwapchainInternal(VkDevice device,
1382                                      VkSwapchainKHR swapchain_handle,
1383                                      const VkAllocationCallbacks* allocator) {
1384     ATRACE_CALL();
1385 
1386     const auto& dispatch = GetData(device).driver;
1387     Swapchain* swapchain = SwapchainFromHandle(swapchain_handle);
1388     if (!swapchain) {
1389         return;
1390     }
1391 
1392     bool active = swapchain->surface.swapchain_handle == swapchain_handle;
1393     ANativeWindow* window = active ? swapchain->surface.window.get() : nullptr;
1394 
1395     if (window && swapchain->frame_timestamps_enabled) {
1396         native_window_enable_frame_timestamps(window, false);
1397     }
1398 
1399     for (uint32_t i = 0; i < swapchain->num_images; i++) {
1400         ReleaseSwapchainImage(device, swapchain->shared, window, -1,
1401                               swapchain->images[i], false);
1402     }
1403 
1404     if (active) {
1405         swapchain->surface.swapchain_handle = VK_NULL_HANDLE;
1406     }
1407 
1408     if (!allocator) {
1409         allocator = &GetData(device).allocator;
1410     }
1411 
1412     swapchain->~Swapchain();
1413     allocator->pfnFree(allocator->pUserData, swapchain);
1414 }
1415 
getProducerUsage(const VkDevice & device,const VkSwapchainCreateInfoKHR * create_info,const VkSwapchainImageUsageFlagsANDROID swapchain_image_usage,bool create_protected_swapchain,uint64_t * producer_usage)1416 static VkResult getProducerUsage(const VkDevice& device,
1417                                  const VkSwapchainCreateInfoKHR* create_info,
1418                                  const VkSwapchainImageUsageFlagsANDROID swapchain_image_usage,
1419                                  bool create_protected_swapchain,
1420                                  uint64_t* producer_usage) {
1421     // Get the physical device to query the appropriate producer usage
1422     const VkPhysicalDevice& pdev = GetData(device).driver_physical_device;
1423     const InstanceData& instance_data = GetData(pdev);
1424     const InstanceDriverTable& instance_dispatch = instance_data.driver;
1425     if (instance_dispatch.GetPhysicalDeviceImageFormatProperties2 ||
1426             instance_dispatch.GetPhysicalDeviceImageFormatProperties2KHR) {
1427         // Look through the create_info pNext chain passed to createSwapchainKHR
1428         // for an image compression control struct.
1429         // if one is found AND the appropriate extensions are enabled, create a
1430         // VkImageCompressionControlEXT structure to pass on to
1431         // GetPhysicalDeviceImageFormatProperties2
1432         void* compression_control_pNext = nullptr;
1433         VkImageCompressionControlEXT image_compression = {};
1434         const VkSwapchainCreateInfoKHR* create_infos = create_info;
1435         while (create_infos->pNext) {
1436             create_infos = reinterpret_cast<const VkSwapchainCreateInfoKHR*>(create_infos->pNext);
1437             switch (create_infos->sType) {
1438                 case VK_STRUCTURE_TYPE_IMAGE_COMPRESSION_CONTROL_EXT: {
1439                     const VkImageCompressionControlEXT* compression_infos =
1440                         reinterpret_cast<const VkImageCompressionControlEXT*>(create_infos);
1441                     image_compression = *compression_infos;
1442                     image_compression.pNext = nullptr;
1443                     compression_control_pNext = &image_compression;
1444                 } break;
1445                 default:
1446                     // Ignore all other info structs
1447                     break;
1448             }
1449         }
1450 
1451         // call GetPhysicalDeviceImageFormatProperties2KHR
1452         VkPhysicalDeviceExternalImageFormatInfo external_image_format_info = {
1453             .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_IMAGE_FORMAT_INFO,
1454             .pNext = compression_control_pNext,
1455             .handleType = VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID,
1456         };
1457 
1458         // AHB does not have an sRGB format so we can't pass it to GPDIFP
1459         // We need to convert the format to unorm if it is srgb
1460         VkFormat format = create_info->imageFormat;
1461         if (format == VK_FORMAT_R8G8B8A8_SRGB) {
1462             format = VK_FORMAT_R8G8B8A8_UNORM;
1463         }
1464 
1465         VkPhysicalDeviceImageFormatInfo2 image_format_info = {
1466             .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_FORMAT_INFO_2,
1467             .pNext = &external_image_format_info,
1468             .format = format,
1469             .type = VK_IMAGE_TYPE_2D,
1470             .tiling = VK_IMAGE_TILING_OPTIMAL,
1471             .usage = create_info->imageUsage,
1472             .flags = create_protected_swapchain ? VK_IMAGE_CREATE_PROTECTED_BIT : 0u,
1473         };
1474 
1475         // If supporting mutable format swapchain add the mutable format flag
1476         if (create_info->flags & VK_SWAPCHAIN_CREATE_MUTABLE_FORMAT_BIT_KHR) {
1477             image_format_info.flags |= VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT;
1478             image_format_info.flags |= VK_IMAGE_CREATE_EXTENDED_USAGE_BIT_KHR;
1479         }
1480 
1481         VkAndroidHardwareBufferUsageANDROID ahb_usage;
1482         ahb_usage.sType = VK_STRUCTURE_TYPE_ANDROID_HARDWARE_BUFFER_USAGE_ANDROID;
1483         ahb_usage.pNext = nullptr;
1484 
1485         VkImageFormatProperties2 image_format_properties;
1486         image_format_properties.sType = VK_STRUCTURE_TYPE_IMAGE_FORMAT_PROPERTIES_2;
1487         image_format_properties.pNext = &ahb_usage;
1488 
1489         VkResult result = GetPhysicalDeviceImageFormatProperties2(
1490             pdev, &image_format_info, &image_format_properties);
1491         if (result != VK_SUCCESS) {
1492             ALOGE(
1493                 "VkGetPhysicalDeviceImageFormatProperties2 for AHB usage "
1494                 "failed: %d",
1495                 result);
1496             return VK_ERROR_SURFACE_LOST_KHR;
1497         }
1498 
1499         // Determine if USAGE_FRONT_BUFFER is needed.
1500         // GPDIFP2 has no means of using VkSwapchainImageUsageFlagsANDROID when
1501         // querying for producer_usage. So androidHardwareBufferUsage will not
1502         // contain USAGE_FRONT_BUFFER. We need to manually check for usage here.
1503         if (!(swapchain_image_usage & VK_SWAPCHAIN_IMAGE_USAGE_SHARED_BIT_ANDROID)) {
1504             *producer_usage = ahb_usage.androidHardwareBufferUsage;
1505             return VK_SUCCESS;
1506         }
1507 
1508         // Check if USAGE_FRONT_BUFFER is supported for this swapchain
1509         AHardwareBuffer_Desc ahb_desc = {
1510             .width = create_info->imageExtent.width,
1511             .height = create_info->imageExtent.height,
1512             .layers = create_info->imageArrayLayers,
1513             .format = create_info->imageFormat,
1514             .usage = ahb_usage.androidHardwareBufferUsage | AHARDWAREBUFFER_USAGE_FRONT_BUFFER,
1515             .stride = 0, // stride is always ignored when calling isSupported()
1516         };
1517 
1518         // If FRONT_BUFFER is not supported,
1519         // then we need to call GetSwapchainGrallocUsageXAndroid below
1520         if (AHardwareBuffer_isSupported(&ahb_desc)) {
1521             *producer_usage = ahb_usage.androidHardwareBufferUsage;
1522             *producer_usage |= AHARDWAREBUFFER_USAGE_FRONT_BUFFER;
1523             return VK_SUCCESS;
1524         }
1525     }
1526 
1527     uint64_t native_usage = 0;
1528     void* usage_info_pNext = nullptr;
1529     VkResult result;
1530     VkImageCompressionControlEXT image_compression = {};
1531     const auto& dispatch = GetData(device).driver;
1532     if (dispatch.GetSwapchainGrallocUsage4ANDROID) {
1533         ATRACE_BEGIN("GetSwapchainGrallocUsage4ANDROID");
1534         VkGrallocUsageInfo2ANDROID gralloc_usage_info = {};
1535         gralloc_usage_info.sType =
1536             VK_STRUCTURE_TYPE_GRALLOC_USAGE_INFO_2_ANDROID;
1537         gralloc_usage_info.format = create_info->imageFormat;
1538         gralloc_usage_info.imageUsage = create_info->imageUsage;
1539         gralloc_usage_info.swapchainImageUsage = swapchain_image_usage;
1540 
1541         // Look through the pNext chain for an image compression control struct
1542         // if one is found AND the appropriate extensions are enabled,
1543         // append it to be the gralloc usage pNext chain
1544         const VkSwapchainCreateInfoKHR* create_infos = create_info;
1545         while (create_infos->pNext) {
1546             create_infos = reinterpret_cast<const VkSwapchainCreateInfoKHR*>(
1547                 create_infos->pNext);
1548             switch (create_infos->sType) {
1549                 case VK_STRUCTURE_TYPE_IMAGE_COMPRESSION_CONTROL_EXT: {
1550                     const VkImageCompressionControlEXT* compression_infos =
1551                         reinterpret_cast<const VkImageCompressionControlEXT*>(
1552                             create_infos);
1553                     image_compression = *compression_infos;
1554                     image_compression.pNext = nullptr;
1555                     usage_info_pNext = &image_compression;
1556                 } break;
1557 
1558                 default:
1559                     // Ignore all other info structs
1560                     break;
1561             }
1562         }
1563         gralloc_usage_info.pNext = usage_info_pNext;
1564 
1565         result = dispatch.GetSwapchainGrallocUsage4ANDROID(
1566             device, &gralloc_usage_info, &native_usage);
1567         ATRACE_END();
1568         if (result != VK_SUCCESS) {
1569             ALOGE("vkGetSwapchainGrallocUsage4ANDROID failed: %d", result);
1570             return VK_ERROR_SURFACE_LOST_KHR;
1571         }
1572     } else if (dispatch.GetSwapchainGrallocUsage3ANDROID) {
1573         ATRACE_BEGIN("GetSwapchainGrallocUsage3ANDROID");
1574         VkGrallocUsageInfoANDROID gralloc_usage_info = {};
1575         gralloc_usage_info.sType = VK_STRUCTURE_TYPE_GRALLOC_USAGE_INFO_ANDROID;
1576         gralloc_usage_info.format = create_info->imageFormat;
1577         gralloc_usage_info.imageUsage = create_info->imageUsage;
1578 
1579         // Look through the pNext chain for an image compression control struct
1580         // if one is found AND the appropriate extensions are enabled,
1581         // append it to be the gralloc usage pNext chain
1582         const VkSwapchainCreateInfoKHR* create_infos = create_info;
1583         while (create_infos->pNext) {
1584             create_infos = reinterpret_cast<const VkSwapchainCreateInfoKHR*>(
1585                 create_infos->pNext);
1586             switch (create_infos->sType) {
1587                 case VK_STRUCTURE_TYPE_IMAGE_COMPRESSION_CONTROL_EXT: {
1588                     const VkImageCompressionControlEXT* compression_infos =
1589                         reinterpret_cast<const VkImageCompressionControlEXT*>(
1590                             create_infos);
1591                     image_compression = *compression_infos;
1592                     image_compression.pNext = nullptr;
1593                     usage_info_pNext = &image_compression;
1594                 } break;
1595 
1596                 default:
1597                     // Ignore all other info structs
1598                     break;
1599             }
1600         }
1601         gralloc_usage_info.pNext = usage_info_pNext;
1602 
1603         result = dispatch.GetSwapchainGrallocUsage3ANDROID(
1604             device, &gralloc_usage_info, &native_usage);
1605         ATRACE_END();
1606         if (result != VK_SUCCESS) {
1607             ALOGE("vkGetSwapchainGrallocUsage3ANDROID failed: %d", result);
1608             return VK_ERROR_SURFACE_LOST_KHR;
1609         }
1610     } else if (dispatch.GetSwapchainGrallocUsage2ANDROID) {
1611         uint64_t consumer_usage, producer_usage;
1612         ATRACE_BEGIN("GetSwapchainGrallocUsage2ANDROID");
1613         result = dispatch.GetSwapchainGrallocUsage2ANDROID(
1614             device, create_info->imageFormat, create_info->imageUsage,
1615             swapchain_image_usage, &consumer_usage, &producer_usage);
1616         ATRACE_END();
1617         if (result != VK_SUCCESS) {
1618             ALOGE("vkGetSwapchainGrallocUsage2ANDROID failed: %d", result);
1619             return VK_ERROR_SURFACE_LOST_KHR;
1620         }
1621         native_usage =
1622             convertGralloc1ToBufferUsage(producer_usage, consumer_usage);
1623     } else if (dispatch.GetSwapchainGrallocUsageANDROID) {
1624         ATRACE_BEGIN("GetSwapchainGrallocUsageANDROID");
1625         int32_t legacy_usage = 0;
1626         result = dispatch.GetSwapchainGrallocUsageANDROID(
1627             device, create_info->imageFormat, create_info->imageUsage,
1628             &legacy_usage);
1629         ATRACE_END();
1630         if (result != VK_SUCCESS) {
1631             ALOGE("vkGetSwapchainGrallocUsageANDROID failed: %d", result);
1632             return VK_ERROR_SURFACE_LOST_KHR;
1633         }
1634         native_usage = static_cast<uint64_t>(legacy_usage);
1635     }
1636     *producer_usage = native_usage;
1637 
1638     return VK_SUCCESS;
1639 }
1640 
1641 VKAPI_ATTR
CreateSwapchainKHR(VkDevice device,const VkSwapchainCreateInfoKHR * create_info,const VkAllocationCallbacks * allocator,VkSwapchainKHR * swapchain_handle)1642 VkResult CreateSwapchainKHR(VkDevice device,
1643                             const VkSwapchainCreateInfoKHR* create_info,
1644                             const VkAllocationCallbacks* allocator,
1645                             VkSwapchainKHR* swapchain_handle) {
1646     ATRACE_CALL();
1647 
1648     int err;
1649     VkResult result = VK_SUCCESS;
1650 
1651     ALOGV("vkCreateSwapchainKHR: surface=0x%" PRIx64
1652           " minImageCount=%u imageFormat=%u imageColorSpace=%u"
1653           " imageExtent=%ux%u imageUsage=%#x preTransform=%u presentMode=%u"
1654           " oldSwapchain=0x%" PRIx64,
1655           reinterpret_cast<uint64_t>(create_info->surface),
1656           create_info->minImageCount, create_info->imageFormat,
1657           create_info->imageColorSpace, create_info->imageExtent.width,
1658           create_info->imageExtent.height, create_info->imageUsage,
1659           create_info->preTransform, create_info->presentMode,
1660           reinterpret_cast<uint64_t>(create_info->oldSwapchain));
1661 
1662     if (!allocator)
1663         allocator = &GetData(device).allocator;
1664 
1665     PixelFormat native_pixel_format =
1666         GetNativePixelFormat(create_info->imageFormat);
1667     DataSpace native_dataspace = GetNativeDataspace(
1668         create_info->imageColorSpace, create_info->imageFormat);
1669     if (native_dataspace == DataSpace::UNKNOWN) {
1670         ALOGE(
1671             "CreateSwapchainKHR(VkSwapchainCreateInfoKHR.imageColorSpace = %d) "
1672             "failed: Unsupported color space",
1673             create_info->imageColorSpace);
1674         return VK_ERROR_INITIALIZATION_FAILED;
1675     }
1676 
1677     ALOGV_IF(create_info->imageArrayLayers != 1,
1678              "swapchain imageArrayLayers=%u not supported",
1679              create_info->imageArrayLayers);
1680     ALOGV_IF((create_info->preTransform & ~kSupportedTransforms) != 0,
1681              "swapchain preTransform=%#x not supported",
1682              create_info->preTransform);
1683     ALOGV_IF(!(create_info->presentMode == VK_PRESENT_MODE_FIFO_KHR ||
1684                create_info->presentMode == VK_PRESENT_MODE_MAILBOX_KHR ||
1685                create_info->presentMode == VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR ||
1686                create_info->presentMode == VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR),
1687              "swapchain presentMode=%u not supported",
1688              create_info->presentMode);
1689 
1690     Surface& surface = *SurfaceFromHandle(create_info->surface);
1691 
1692     if (surface.swapchain_handle != create_info->oldSwapchain) {
1693         ALOGV("Can't create a swapchain for VkSurfaceKHR 0x%" PRIx64
1694               " because it already has active swapchain 0x%" PRIx64
1695               " but VkSwapchainCreateInfo::oldSwapchain=0x%" PRIx64,
1696               reinterpret_cast<uint64_t>(create_info->surface),
1697               reinterpret_cast<uint64_t>(surface.swapchain_handle),
1698               reinterpret_cast<uint64_t>(create_info->oldSwapchain));
1699         return VK_ERROR_NATIVE_WINDOW_IN_USE_KHR;
1700     }
1701     if (create_info->oldSwapchain != VK_NULL_HANDLE)
1702         OrphanSwapchain(device, SwapchainFromHandle(create_info->oldSwapchain));
1703 
1704     // -- Reset the native window --
1705     // The native window might have been used previously, and had its properties
1706     // changed from defaults. That will affect the answer we get for queries
1707     // like MIN_UNDEQUED_BUFFERS. Reset to a known/default state before we
1708     // attempt such queries.
1709 
1710     // The native window only allows dequeueing all buffers before any have
1711     // been queued, since after that point at least one is assumed to be in
1712     // non-FREE state at any given time. Disconnecting and re-connecting
1713     // orphans the previous buffers, getting us back to the state where we can
1714     // dequeue all buffers.
1715     //
1716     // This is not necessary if the surface was never used previously.
1717     //
1718     // TODO(http://b/134186185) recycle swapchain images more efficiently
1719     ANativeWindow* window = surface.window.get();
1720     if (surface.used_by_swapchain) {
1721         err = native_window_api_disconnect(window, NATIVE_WINDOW_API_EGL);
1722         ALOGW_IF(err != android::OK,
1723                  "native_window_api_disconnect failed: %s (%d)", strerror(-err),
1724                  err);
1725         err = native_window_api_connect(window, NATIVE_WINDOW_API_EGL);
1726         ALOGW_IF(err != android::OK,
1727                  "native_window_api_connect failed: %s (%d)", strerror(-err),
1728                  err);
1729     }
1730 
1731     err =
1732         window->perform(window, NATIVE_WINDOW_SET_DEQUEUE_TIMEOUT, nsecs_t{-1});
1733     if (err != android::OK) {
1734         ALOGE("window->perform(SET_DEQUEUE_TIMEOUT) failed: %s (%d)",
1735               strerror(-err), err);
1736         return VK_ERROR_SURFACE_LOST_KHR;
1737     }
1738 
1739     int swap_interval =
1740         create_info->presentMode == VK_PRESENT_MODE_MAILBOX_KHR ? 0 : 1;
1741     err = window->setSwapInterval(window, swap_interval);
1742     if (err != android::OK) {
1743         ALOGE("native_window->setSwapInterval(1) failed: %s (%d)",
1744               strerror(-err), err);
1745         return VK_ERROR_SURFACE_LOST_KHR;
1746     }
1747 
1748     err = native_window_set_shared_buffer_mode(window, false);
1749     if (err != android::OK) {
1750         ALOGE("native_window_set_shared_buffer_mode(false) failed: %s (%d)",
1751               strerror(-err), err);
1752         return VK_ERROR_SURFACE_LOST_KHR;
1753     }
1754 
1755     err = native_window_set_auto_refresh(window, false);
1756     if (err != android::OK) {
1757         ALOGE("native_window_set_auto_refresh(false) failed: %s (%d)",
1758               strerror(-err), err);
1759         return VK_ERROR_SURFACE_LOST_KHR;
1760     }
1761 
1762     // -- Configure the native window --
1763 
1764     const auto& dispatch = GetData(device).driver;
1765 
1766     err = native_window_set_buffers_format(
1767         window, static_cast<int>(native_pixel_format));
1768     if (err != android::OK) {
1769         ALOGE("native_window_set_buffers_format(%s) failed: %s (%d)",
1770               toString(native_pixel_format).c_str(), strerror(-err), err);
1771         return VK_ERROR_SURFACE_LOST_KHR;
1772     }
1773 
1774     /* Respect consumer default dataspace upon HAL_DATASPACE_ARBITRARY. */
1775     if (native_dataspace != DataSpace::ARBITRARY) {
1776         err = native_window_set_buffers_data_space(
1777             window, static_cast<android_dataspace_t>(native_dataspace));
1778         if (err != android::OK) {
1779             ALOGE("native_window_set_buffers_data_space(%d) failed: %s (%d)",
1780                   native_dataspace, strerror(-err), err);
1781             return VK_ERROR_SURFACE_LOST_KHR;
1782         }
1783     }
1784 
1785     err = native_window_set_buffers_dimensions(
1786         window, static_cast<int>(create_info->imageExtent.width),
1787         static_cast<int>(create_info->imageExtent.height));
1788     if (err != android::OK) {
1789         ALOGE("native_window_set_buffers_dimensions(%d,%d) failed: %s (%d)",
1790               create_info->imageExtent.width, create_info->imageExtent.height,
1791               strerror(-err), err);
1792         return VK_ERROR_SURFACE_LOST_KHR;
1793     }
1794 
1795     // VkSwapchainCreateInfo::preTransform indicates the transformation the app
1796     // applied during rendering. native_window_set_transform() expects the
1797     // inverse: the transform the app is requesting that the compositor perform
1798     // during composition. With native windows, pre-transform works by rendering
1799     // with the same transform the compositor is applying (as in Vulkan), but
1800     // then requesting the inverse transform, so that when the compositor does
1801     // it's job the two transforms cancel each other out and the compositor ends
1802     // up applying an identity transform to the app's buffer.
1803     err = native_window_set_buffers_transform(
1804         window, InvertTransformToNative(create_info->preTransform));
1805     if (err != android::OK) {
1806         ALOGE("native_window_set_buffers_transform(%d) failed: %s (%d)",
1807               InvertTransformToNative(create_info->preTransform),
1808               strerror(-err), err);
1809         return VK_ERROR_SURFACE_LOST_KHR;
1810     }
1811 
1812     err = native_window_set_scaling_mode(
1813         window, NATIVE_WINDOW_SCALING_MODE_SCALE_TO_WINDOW);
1814     if (err != android::OK) {
1815         ALOGE("native_window_set_scaling_mode(SCALE_TO_WINDOW) failed: %s (%d)",
1816               strerror(-err), err);
1817         return VK_ERROR_SURFACE_LOST_KHR;
1818     }
1819 
1820     VkSwapchainImageUsageFlagsANDROID swapchain_image_usage = 0;
1821     if (IsSharedPresentMode(create_info->presentMode)) {
1822         swapchain_image_usage |= VK_SWAPCHAIN_IMAGE_USAGE_SHARED_BIT_ANDROID;
1823         err = native_window_set_shared_buffer_mode(window, true);
1824         if (err != android::OK) {
1825             ALOGE("native_window_set_shared_buffer_mode failed: %s (%d)", strerror(-err), err);
1826             return VK_ERROR_SURFACE_LOST_KHR;
1827         }
1828     }
1829 
1830     if (create_info->presentMode == VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR) {
1831         err = native_window_set_auto_refresh(window, true);
1832         if (err != android::OK) {
1833             ALOGE("native_window_set_auto_refresh failed: %s (%d)", strerror(-err), err);
1834             return VK_ERROR_SURFACE_LOST_KHR;
1835         }
1836     }
1837 
1838     int query_value;
1839     // TODO: Now that we are calling into GPDSC2 directly, this query may be redundant
1840     //       the call to std::max(min_buffer_count, num_images) may be redundant as well
1841     err = window->query(window, NATIVE_WINDOW_MIN_UNDEQUEUED_BUFFERS,
1842                         &query_value);
1843     if (err != android::OK || query_value < 0) {
1844         ALOGE("window->query failed: %s (%d) value=%d", strerror(-err), err,
1845               query_value);
1846         return VK_ERROR_SURFACE_LOST_KHR;
1847     }
1848     const uint32_t min_undequeued_buffers = static_cast<uint32_t>(query_value);
1849 
1850     // Lower layer insists that we have at least min_undequeued_buffers + 1
1851     // buffers.  This is wasteful and we'd like to relax it in the shared case,
1852     // but not all the pieces are in place for that to work yet.  Note we only
1853     // lie to the lower layer--we don't want to give the app back a swapchain
1854     // with extra images (which they can't actually use!).
1855     const uint32_t min_buffer_count = min_undequeued_buffers + 1;
1856 
1857     // Call into GPDSC2 to get the minimum and maximum allowable buffer count for the surface of
1858     // interest. This step is only necessary if the app requests a number of images
1859     // (create_info->minImageCount) that is less or more than the surface capabilities.
1860     // An app should be calling GPDSC2 and using those values to set create_info, but in the
1861     // event that the app has hard-coded image counts an error can occur
1862     VkSurfacePresentModeEXT present_mode = {
1863         VK_STRUCTURE_TYPE_SURFACE_PRESENT_MODE_EXT,
1864         nullptr,
1865         create_info->presentMode
1866     };
1867     VkPhysicalDeviceSurfaceInfo2KHR surface_info2 = {
1868         VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SURFACE_INFO_2_KHR,
1869         &present_mode,
1870         create_info->surface
1871     };
1872     VkSurfaceCapabilities2KHR surface_capabilities2 = {
1873         VK_STRUCTURE_TYPE_SURFACE_CAPABILITIES_2_KHR,
1874         nullptr,
1875         {},
1876     };
1877     result = GetPhysicalDeviceSurfaceCapabilities2KHR(GetData(device).driver_physical_device,
1878             &surface_info2, &surface_capabilities2);
1879 
1880     uint32_t num_images = create_info->minImageCount;
1881     num_images = std::clamp(num_images,
1882             surface_capabilities2.surfaceCapabilities.minImageCount,
1883             surface_capabilities2.surfaceCapabilities.maxImageCount);
1884 
1885     const uint32_t buffer_count = std::max(min_buffer_count, num_images);
1886     err = native_window_set_buffer_count(window, buffer_count);
1887     if (err != android::OK) {
1888         ALOGE("native_window_set_buffer_count(%d) failed: %s (%d)", buffer_count,
1889               strerror(-err), err);
1890         return VK_ERROR_SURFACE_LOST_KHR;
1891     }
1892 
1893     // In shared mode the num_images must be one regardless of how many
1894     // buffers were allocated for the buffer queue.
1895     if (swapchain_image_usage & VK_SWAPCHAIN_IMAGE_USAGE_SHARED_BIT_ANDROID) {
1896         num_images = 1;
1897     }
1898 
1899     VkImageFormatListCreateInfo extra_mutable_formats = {
1900         .sType = VK_STRUCTURE_TYPE_IMAGE_FORMAT_LIST_CREATE_INFO_KHR,
1901     };
1902     VkImageFormatListCreateInfo* extra_mutable_formats_ptr;
1903 
1904     // Look through the create_info pNext chain passed to createSwapchainKHR
1905     // for an image compression control struct.
1906     // if one is found AND the appropriate extensions are enabled, create a
1907     // VkImageCompressionControlEXT structure to pass on to VkImageCreateInfo
1908     // TODO check for imageCompressionControlSwapchain feature is enabled
1909     void* usage_info_pNext = nullptr;
1910     VkImageCompressionControlEXT image_compression = {};
1911     const VkSwapchainCreateInfoKHR* create_infos = create_info;
1912     while (create_infos->pNext) {
1913         create_infos = reinterpret_cast<const VkSwapchainCreateInfoKHR*>(create_infos->pNext);
1914         switch (create_infos->sType) {
1915             case VK_STRUCTURE_TYPE_IMAGE_COMPRESSION_CONTROL_EXT: {
1916                 const VkImageCompressionControlEXT* compression_infos =
1917                     reinterpret_cast<const VkImageCompressionControlEXT*>(create_infos);
1918                 image_compression = *compression_infos;
1919                 image_compression.pNext = nullptr;
1920                 usage_info_pNext = &image_compression;
1921             } break;
1922             case VK_STRUCTURE_TYPE_IMAGE_FORMAT_LIST_CREATE_INFO: {
1923                 const VkImageFormatListCreateInfo* format_list =
1924                     reinterpret_cast<const VkImageFormatListCreateInfo*>(
1925                         create_infos);
1926                 if (create_info->flags &
1927                     VK_SWAPCHAIN_CREATE_MUTABLE_FORMAT_BIT_KHR) {
1928                     if (format_list && format_list->viewFormatCount > 0 &&
1929                         format_list->pViewFormats) {
1930                         extra_mutable_formats.viewFormatCount =
1931                             format_list->viewFormatCount;
1932                         extra_mutable_formats.pViewFormats =
1933                             format_list->pViewFormats;
1934                         extra_mutable_formats_ptr = &extra_mutable_formats;
1935                     } else {
1936                         ALOGE(
1937                             "vk_swapchain_create_mutable_format_bit_khr was "
1938                             "set during swapchain creation but no valid "
1939                             "vkimageformatlistcreateinfo was found in the "
1940                             "pnext chain");
1941                         return VK_ERROR_INITIALIZATION_FAILED;
1942                     }
1943                 }
1944             } break;
1945             default:
1946                 // Ignore all other info structs
1947                 break;
1948         }
1949     }
1950 
1951     // Get the appropriate native_usage for the images
1952     // Get the consumer usage
1953     uint64_t native_usage = surface.consumer_usage;
1954     // Determine if the swapchain is protected
1955     bool create_protected_swapchain = false;
1956     if (create_info->flags & VK_SWAPCHAIN_CREATE_PROTECTED_BIT_KHR) {
1957         create_protected_swapchain = true;
1958         native_usage |= BufferUsage::PROTECTED;
1959     }
1960     // Get the producer usage
1961     uint64_t producer_usage;
1962     result = getProducerUsage(device, create_info, swapchain_image_usage, create_protected_swapchain, &producer_usage);
1963     if (result != VK_SUCCESS) {
1964         return result;
1965     }
1966     native_usage |= producer_usage;
1967 
1968     err = native_window_set_usage(window, native_usage);
1969     if (err != android::OK) {
1970         ALOGE("native_window_set_usage failed: %s (%d)", strerror(-err), err);
1971         return VK_ERROR_SURFACE_LOST_KHR;
1972     }
1973 
1974     int transform_hint;
1975     err = window->query(window, NATIVE_WINDOW_TRANSFORM_HINT, &transform_hint);
1976     if (err != android::OK) {
1977         ALOGE("NATIVE_WINDOW_TRANSFORM_HINT query failed: %s (%d)",
1978               strerror(-err), err);
1979         return VK_ERROR_SURFACE_LOST_KHR;
1980     }
1981 
1982     int64_t refresh_duration;
1983     err = native_window_get_refresh_cycle_duration(window, &refresh_duration);
1984     if (err != android::OK) {
1985         ALOGE("native_window_get_refresh_cycle_duration query failed: %s (%d)",
1986               strerror(-err), err);
1987         return VK_ERROR_SURFACE_LOST_KHR;
1988     }
1989     // -- Allocate our Swapchain object --
1990     // After this point, we must deallocate the swapchain on error.
1991 
1992     void* mem = allocator->pfnAllocation(allocator->pUserData,
1993                                          sizeof(Swapchain), alignof(Swapchain),
1994                                          VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1995 
1996     if (!mem)
1997         return VK_ERROR_OUT_OF_HOST_MEMORY;
1998 
1999     Swapchain* swapchain = new (mem)
2000         Swapchain(surface, num_images, create_info->presentMode,
2001                   TranslateVulkanToNativeTransform(create_info->preTransform),
2002                   refresh_duration);
2003     VkSwapchainImageCreateInfoANDROID swapchain_image_create = {
2004 #pragma clang diagnostic push
2005 #pragma clang diagnostic ignored "-Wold-style-cast"
2006         .sType = VK_STRUCTURE_TYPE_SWAPCHAIN_IMAGE_CREATE_INFO_ANDROID,
2007 #pragma clang diagnostic pop
2008         .pNext = usage_info_pNext,
2009         .usage = swapchain_image_usage,
2010     };
2011     VkNativeBufferANDROID image_native_buffer = {
2012 #pragma clang diagnostic push
2013 #pragma clang diagnostic ignored "-Wold-style-cast"
2014         .sType = VK_STRUCTURE_TYPE_NATIVE_BUFFER_ANDROID,
2015 #pragma clang diagnostic pop
2016         .pNext = &swapchain_image_create,
2017     };
2018 
2019     VkImageCreateInfo image_create = {
2020         .sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
2021         .pNext = nullptr,
2022         .flags = create_protected_swapchain ? VK_IMAGE_CREATE_PROTECTED_BIT : 0u,
2023         .imageType = VK_IMAGE_TYPE_2D,
2024         .format = create_info->imageFormat,
2025         .extent = {
2026             create_info->imageExtent.width,
2027             create_info->imageExtent.height,
2028             1
2029         },
2030         .mipLevels = 1,
2031         .arrayLayers = 1,
2032         .samples = VK_SAMPLE_COUNT_1_BIT,
2033         .tiling = VK_IMAGE_TILING_OPTIMAL,
2034         .usage = create_info->imageUsage,
2035         .sharingMode = create_info->imageSharingMode,
2036         .queueFamilyIndexCount = create_info->queueFamilyIndexCount,
2037         .pQueueFamilyIndices = create_info->pQueueFamilyIndices,
2038     };
2039 
2040     if (create_info->flags & VK_SWAPCHAIN_CREATE_MUTABLE_FORMAT_BIT_KHR) {
2041         image_create.flags |= VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT;
2042         image_create.flags |= VK_IMAGE_CREATE_EXTENDED_USAGE_BIT_KHR;
2043     }
2044 
2045     // Note: don't do deferred allocation for shared present modes. There's only one buffer
2046     // involved so very little benefit.
2047     if ((create_info->flags & VK_SWAPCHAIN_CREATE_DEFERRED_MEMORY_ALLOCATION_BIT_EXT) &&
2048             !IsSharedPresentMode(create_info->presentMode)) {
2049         // Don't want to touch the underlying gralloc buffers yet;
2050         // instead just create unbound VkImages which will later be bound to memory inside
2051         // AcquireNextImage.
2052         VkImageSwapchainCreateInfoKHR image_swapchain_create = {
2053             .sType = VK_STRUCTURE_TYPE_IMAGE_SWAPCHAIN_CREATE_INFO_KHR,
2054             .pNext = extra_mutable_formats_ptr,
2055             .swapchain = HandleFromSwapchain(swapchain),
2056         };
2057         image_create.pNext = &image_swapchain_create;
2058 
2059         for (uint32_t i = 0; i < num_images; i++) {
2060             Swapchain::Image& img = swapchain->images[i];
2061             img.buffer = nullptr;
2062             img.dequeued = false;
2063 
2064             result = dispatch.CreateImage(device, &image_create, nullptr, &img.image);
2065             if (result != VK_SUCCESS) {
2066                 ALOGD("vkCreateImage w/ for deferred swapchain image failed: %u", result);
2067                 break;
2068             }
2069         }
2070     } else {
2071         // -- Dequeue all buffers and create a VkImage for each --
2072         // Any failures during or after this must cancel the dequeued buffers.
2073 
2074         for (uint32_t i = 0; i < num_images; i++) {
2075             Swapchain::Image& img = swapchain->images[i];
2076 
2077             ANativeWindowBuffer* buffer;
2078             err = window->dequeueBuffer(window, &buffer, &img.dequeue_fence);
2079             if (err != android::OK) {
2080                 ALOGE("dequeueBuffer[%u] failed: %s (%d)", i, strerror(-err), err);
2081                 switch (-err) {
2082                     case ENOMEM:
2083                         result = VK_ERROR_OUT_OF_DEVICE_MEMORY;
2084                         break;
2085                     default:
2086                         result = VK_ERROR_SURFACE_LOST_KHR;
2087                         break;
2088                 }
2089                 break;
2090             }
2091             img.buffer = buffer;
2092             img.dequeued = true;
2093 
2094             image_native_buffer.handle = img.buffer->handle;
2095             image_native_buffer.stride = img.buffer->stride;
2096             image_native_buffer.format = img.buffer->format;
2097             image_native_buffer.usage = int(img.buffer->usage);
2098             android_convertGralloc0To1Usage(int(img.buffer->usage),
2099                 &image_native_buffer.usage2.producer,
2100                 &image_native_buffer.usage2.consumer);
2101             image_native_buffer.usage3 = img.buffer->usage;
2102             image_native_buffer.ahb =
2103                 ANativeWindowBuffer_getHardwareBuffer(img.buffer.get());
2104             image_create.pNext = &image_native_buffer;
2105 
2106             if (extra_mutable_formats_ptr) {
2107                 extra_mutable_formats_ptr->pNext = image_create.pNext;
2108                 image_create.pNext = extra_mutable_formats_ptr;
2109             }
2110 
2111             ATRACE_BEGIN("CreateImage");
2112             result =
2113                 dispatch.CreateImage(device, &image_create, nullptr, &img.image);
2114             ATRACE_END();
2115             if (result != VK_SUCCESS) {
2116                 ALOGD("vkCreateImage w/ native buffer failed: %u", result);
2117                 break;
2118             }
2119         }
2120 
2121         // -- Cancel all buffers, returning them to the queue --
2122         // If an error occurred before, also destroy the VkImage and release the
2123         // buffer reference. Otherwise, we retain a strong reference to the buffer.
2124         for (uint32_t i = 0; i < num_images; i++) {
2125             Swapchain::Image& img = swapchain->images[i];
2126             if (img.dequeued) {
2127                 if (!swapchain->shared) {
2128                     window->cancelBuffer(window, img.buffer.get(),
2129                                          img.dequeue_fence);
2130                     img.dequeue_fence = -1;
2131                     img.dequeued = false;
2132                 }
2133             }
2134         }
2135     }
2136 
2137     if (result != VK_SUCCESS) {
2138         DestroySwapchainInternal(device, HandleFromSwapchain(swapchain),
2139                                  allocator);
2140         return result;
2141     }
2142 
2143     if (transform_hint != swapchain->pre_transform) {
2144         // Log that the app is not doing pre-rotation.
2145         android::GraphicsEnv::getInstance().setTargetStats(
2146             android::GpuStatsInfo::Stats::FALSE_PREROTATION);
2147     }
2148 
2149     // Set stats for creating a Vulkan swapchain
2150     android::GraphicsEnv::getInstance().setTargetStats(
2151         android::GpuStatsInfo::Stats::CREATED_VULKAN_SWAPCHAIN);
2152 
2153     surface.used_by_swapchain = true;
2154     surface.swapchain_handle = HandleFromSwapchain(swapchain);
2155     *swapchain_handle = surface.swapchain_handle;
2156     return VK_SUCCESS;
2157 }
2158 
2159 VKAPI_ATTR
DestroySwapchainKHR(VkDevice device,VkSwapchainKHR swapchain_handle,const VkAllocationCallbacks * allocator)2160 void DestroySwapchainKHR(VkDevice device,
2161                          VkSwapchainKHR swapchain_handle,
2162                          const VkAllocationCallbacks* allocator) {
2163     ATRACE_CALL();
2164 
2165     DestroySwapchainInternal(device, swapchain_handle, allocator);
2166 }
2167 
2168 VKAPI_ATTR
GetSwapchainImagesKHR(VkDevice,VkSwapchainKHR swapchain_handle,uint32_t * count,VkImage * images)2169 VkResult GetSwapchainImagesKHR(VkDevice,
2170                                VkSwapchainKHR swapchain_handle,
2171                                uint32_t* count,
2172                                VkImage* images) {
2173     ATRACE_CALL();
2174 
2175     Swapchain& swapchain = *SwapchainFromHandle(swapchain_handle);
2176     ALOGW_IF(swapchain.surface.swapchain_handle != swapchain_handle,
2177              "getting images for non-active swapchain 0x%" PRIx64
2178              "; only dequeued image handles are valid",
2179              reinterpret_cast<uint64_t>(swapchain_handle));
2180     VkResult result = VK_SUCCESS;
2181     if (images) {
2182         uint32_t n = swapchain.num_images;
2183         if (*count < swapchain.num_images) {
2184             n = *count;
2185             result = VK_INCOMPLETE;
2186         }
2187         for (uint32_t i = 0; i < n; i++)
2188             images[i] = swapchain.images[i].image;
2189         *count = n;
2190     } else {
2191         *count = swapchain.num_images;
2192     }
2193     return result;
2194 }
2195 
2196 VKAPI_ATTR
AcquireNextImageKHR(VkDevice device,VkSwapchainKHR swapchain_handle,uint64_t timeout,VkSemaphore semaphore,VkFence vk_fence,uint32_t * image_index)2197 VkResult AcquireNextImageKHR(VkDevice device,
2198                              VkSwapchainKHR swapchain_handle,
2199                              uint64_t timeout,
2200                              VkSemaphore semaphore,
2201                              VkFence vk_fence,
2202                              uint32_t* image_index) {
2203     ATRACE_CALL();
2204 
2205     Swapchain& swapchain = *SwapchainFromHandle(swapchain_handle);
2206     ANativeWindow* window = swapchain.surface.window.get();
2207     VkResult result;
2208     int err;
2209 
2210     if (swapchain.surface.swapchain_handle != swapchain_handle)
2211         return VK_ERROR_OUT_OF_DATE_KHR;
2212 
2213     if (swapchain.shared) {
2214         // In shared mode, we keep the buffer dequeued all the time, so we don't
2215         // want to dequeue a buffer here. Instead, just ask the driver to ensure
2216         // the semaphore and fence passed to us will be signalled.
2217         *image_index = 0;
2218         result = GetData(device).driver.AcquireImageANDROID(
2219                 device, swapchain.images[*image_index].image, -1, semaphore, vk_fence);
2220         return result;
2221     }
2222 
2223     const nsecs_t acquire_next_image_timeout =
2224         timeout > (uint64_t)std::numeric_limits<nsecs_t>::max() ? -1 : timeout;
2225     if (acquire_next_image_timeout != swapchain.acquire_next_image_timeout) {
2226         // Cache the timeout to avoid the duplicate binder cost.
2227         err = window->perform(window, NATIVE_WINDOW_SET_DEQUEUE_TIMEOUT,
2228                               acquire_next_image_timeout);
2229         if (err != android::OK) {
2230             ALOGE("window->perform(SET_DEQUEUE_TIMEOUT) failed: %s (%d)",
2231                   strerror(-err), err);
2232             return VK_ERROR_SURFACE_LOST_KHR;
2233         }
2234         swapchain.acquire_next_image_timeout = acquire_next_image_timeout;
2235     }
2236 
2237     ANativeWindowBuffer* buffer;
2238     int fence_fd;
2239     err = window->dequeueBuffer(window, &buffer, &fence_fd);
2240     if (err == android::TIMED_OUT || err == android::INVALID_OPERATION) {
2241         ALOGW("dequeueBuffer timed out: %s (%d)", strerror(-err), err);
2242         return timeout ? VK_TIMEOUT : VK_NOT_READY;
2243     } else if (err != android::OK) {
2244         ALOGE("dequeueBuffer failed: %s (%d)", strerror(-err), err);
2245         return VK_ERROR_SURFACE_LOST_KHR;
2246     }
2247 
2248     uint32_t idx;
2249     for (idx = 0; idx < swapchain.num_images; idx++) {
2250         if (swapchain.images[idx].buffer.get() == buffer) {
2251             swapchain.images[idx].dequeued = true;
2252             swapchain.images[idx].dequeue_fence = fence_fd;
2253             break;
2254         }
2255     }
2256 
2257     // If this is a deferred alloc swapchain, this may be the first time we've
2258     // seen a particular buffer. If so, there should be an empty slot. Find it,
2259     // and bind the gralloc buffer to the VkImage for that slot. If there is no
2260     // empty slot, then we dequeued an unexpected buffer. Non-deferred swapchains
2261     // will also take this path, but will never have an empty slot since we
2262     // populated them all upfront.
2263     if (idx == swapchain.num_images) {
2264         for (idx = 0; idx < swapchain.num_images; idx++) {
2265             if (!swapchain.images[idx].buffer) {
2266                 // Note: this structure is technically required for
2267                 // Vulkan correctness, even though the driver is probably going
2268                 // to use everything from the VkNativeBufferANDROID below.
2269                 // This is kindof silly, but it's how we did the ANB
2270                 // side of VK_KHR_swapchain v69, so we're stuck with it unless
2271                 // we want to go tinkering with the ANB spec some more.
2272                 VkBindImageMemorySwapchainInfoKHR bimsi = {
2273                     .sType = VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_SWAPCHAIN_INFO_KHR,
2274                     .pNext = nullptr,
2275                     .swapchain = swapchain_handle,
2276                     .imageIndex = idx,
2277                 };
2278                 VkNativeBufferANDROID nb = {
2279                     .sType = VK_STRUCTURE_TYPE_NATIVE_BUFFER_ANDROID,
2280                     .pNext = &bimsi,
2281                     .handle = buffer->handle,
2282                     .stride = buffer->stride,
2283                     .format = buffer->format,
2284                     .usage = int(buffer->usage),
2285                     .usage3 = buffer->usage,
2286                     .ahb = ANativeWindowBuffer_getHardwareBuffer(buffer),
2287                 };
2288                 android_convertGralloc0To1Usage(int(buffer->usage),
2289                                                 &nb.usage2.producer,
2290                                                 &nb.usage2.consumer);
2291                 VkBindImageMemoryInfo bimi = {
2292                     .sType = VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_INFO,
2293                     .pNext = &nb,
2294                     .image = swapchain.images[idx].image,
2295                     .memory = VK_NULL_HANDLE,
2296                     .memoryOffset = 0,
2297                 };
2298                 result = GetData(device).driver.BindImageMemory2(device, 1, &bimi);
2299                 if (result != VK_SUCCESS) {
2300                     // This shouldn't really happen. If it does, something is probably
2301                     // unrecoverably wrong with the swapchain and its images. Cancel
2302                     // the buffer and declare the swapchain broken.
2303                     ALOGE("failed to do deferred gralloc buffer bind");
2304                     window->cancelBuffer(window, buffer, fence_fd);
2305                     return VK_ERROR_OUT_OF_DATE_KHR;
2306                 }
2307 
2308                 swapchain.images[idx].dequeued = true;
2309                 swapchain.images[idx].dequeue_fence = fence_fd;
2310                 swapchain.images[idx].buffer = buffer;
2311                 break;
2312             }
2313         }
2314     }
2315 
2316     // The buffer doesn't match any slot. This shouldn't normally happen, but is
2317     // possible if the bufferqueue is reconfigured behind libvulkan's back. If this
2318     // happens, just declare the swapchain to be broken and the app will recreate it.
2319     if (idx == swapchain.num_images) {
2320         ALOGE("dequeueBuffer returned unrecognized buffer");
2321         window->cancelBuffer(window, buffer, fence_fd);
2322         return VK_ERROR_OUT_OF_DATE_KHR;
2323     }
2324 
2325     int fence_clone = -1;
2326     if (fence_fd != -1) {
2327         fence_clone = dup(fence_fd);
2328         if (fence_clone == -1) {
2329             ALOGE("dup(fence) failed, stalling until signalled: %s (%d)",
2330                   strerror(errno), errno);
2331             sync_wait(fence_fd, -1 /* forever */);
2332         }
2333     }
2334 
2335     result = GetData(device).driver.AcquireImageANDROID(
2336         device, swapchain.images[idx].image, fence_clone, semaphore, vk_fence);
2337     if (result != VK_SUCCESS) {
2338         // NOTE: we're relying on AcquireImageANDROID to close fence_clone,
2339         // even if the call fails. We could close it ourselves on failure, but
2340         // that would create a race condition if the driver closes it on a
2341         // failure path: some other thread might create an fd with the same
2342         // number between the time the driver closes it and the time we close
2343         // it. We must assume one of: the driver *always* closes it even on
2344         // failure, or *never* closes it on failure.
2345         window->cancelBuffer(window, buffer, fence_fd);
2346         swapchain.images[idx].dequeued = false;
2347         swapchain.images[idx].dequeue_fence = -1;
2348         return result;
2349     }
2350 
2351     *image_index = idx;
2352     return VK_SUCCESS;
2353 }
2354 
2355 VKAPI_ATTR
AcquireNextImage2KHR(VkDevice device,const VkAcquireNextImageInfoKHR * pAcquireInfo,uint32_t * pImageIndex)2356 VkResult AcquireNextImage2KHR(VkDevice device,
2357                               const VkAcquireNextImageInfoKHR* pAcquireInfo,
2358                               uint32_t* pImageIndex) {
2359     ATRACE_CALL();
2360 
2361     return AcquireNextImageKHR(device, pAcquireInfo->swapchain,
2362                                pAcquireInfo->timeout, pAcquireInfo->semaphore,
2363                                pAcquireInfo->fence, pImageIndex);
2364 }
2365 
WorstPresentResult(VkResult a,VkResult b)2366 static VkResult WorstPresentResult(VkResult a, VkResult b) {
2367     // See the error ranking for vkQueuePresentKHR at the end of section 29.6
2368     // (in spec version 1.0.14).
2369     static const VkResult kWorstToBest[] = {
2370         VK_ERROR_DEVICE_LOST,
2371         VK_ERROR_SURFACE_LOST_KHR,
2372         VK_ERROR_OUT_OF_DATE_KHR,
2373         VK_ERROR_OUT_OF_DEVICE_MEMORY,
2374         VK_ERROR_OUT_OF_HOST_MEMORY,
2375         VK_SUBOPTIMAL_KHR,
2376     };
2377     for (auto result : kWorstToBest) {
2378         if (a == result || b == result)
2379             return result;
2380     }
2381     ALOG_ASSERT(a == VK_SUCCESS, "invalid vkQueuePresentKHR result %d", a);
2382     ALOG_ASSERT(b == VK_SUCCESS, "invalid vkQueuePresentKHR result %d", b);
2383     return a != VK_SUCCESS ? a : b;
2384 }
2385 
2386 // KHR_incremental_present aspect of QueuePresentKHR
SetSwapchainSurfaceDamage(ANativeWindow * window,const VkPresentRegionKHR * pRegion)2387 static void SetSwapchainSurfaceDamage(ANativeWindow *window, const VkPresentRegionKHR *pRegion) {
2388     std::vector<android_native_rect_t> rects(pRegion->rectangleCount);
2389     for (auto i = 0u; i < pRegion->rectangleCount; i++) {
2390         auto const& rect = pRegion->pRectangles[i];
2391         if (rect.layer > 0) {
2392             ALOGV("vkQueuePresentKHR ignoring invalid layer (%u); using layer 0 instead",
2393                 rect.layer);
2394         }
2395 
2396         rects[i].left = rect.offset.x;
2397         rects[i].bottom = rect.offset.y;
2398         rects[i].right = rect.offset.x + rect.extent.width;
2399         rects[i].top = rect.offset.y + rect.extent.height;
2400     }
2401     native_window_set_surface_damage(window, rects.data(), rects.size());
2402 }
2403 
2404 // GOOGLE_display_timing aspect of QueuePresentKHR
SetSwapchainFrameTimestamp(Swapchain & swapchain,const VkPresentTimeGOOGLE * pTime)2405 static void SetSwapchainFrameTimestamp(Swapchain &swapchain, const VkPresentTimeGOOGLE *pTime) {
2406     ANativeWindow *window = swapchain.surface.window.get();
2407 
2408     // We don't know whether the app will actually use GOOGLE_display_timing
2409     // with a particular swapchain until QueuePresent; enable it on the BQ
2410     // now if needed
2411     if (!swapchain.frame_timestamps_enabled) {
2412         ALOGV("Calling native_window_enable_frame_timestamps(true)");
2413         native_window_enable_frame_timestamps(window, true);
2414         swapchain.frame_timestamps_enabled = true;
2415     }
2416 
2417     // Record the nativeFrameId so it can be later correlated to
2418     // this present.
2419     uint64_t nativeFrameId = 0;
2420     int err = native_window_get_next_frame_id(
2421             window, &nativeFrameId);
2422     if (err != android::OK) {
2423         ALOGE("Failed to get next native frame ID.");
2424     }
2425 
2426     // Add a new timing record with the user's presentID and
2427     // the nativeFrameId.
2428     swapchain.timing.emplace_back(pTime, nativeFrameId);
2429     if (swapchain.timing.size() > MAX_TIMING_INFOS) {
2430         swapchain.timing.erase(
2431             swapchain.timing.begin(),
2432             swapchain.timing.begin() + swapchain.timing.size() - MAX_TIMING_INFOS);
2433     }
2434     if (pTime->desiredPresentTime) {
2435         ALOGV(
2436             "Calling native_window_set_buffers_timestamp(%" PRId64 ")",
2437             pTime->desiredPresentTime);
2438         native_window_set_buffers_timestamp(
2439             window,
2440             static_cast<int64_t>(pTime->desiredPresentTime));
2441     }
2442 }
2443 
2444 // EXT_swapchain_maintenance1 present mode change
SetSwapchainPresentMode(ANativeWindow * window,VkPresentModeKHR mode)2445 static bool SetSwapchainPresentMode(ANativeWindow *window, VkPresentModeKHR mode) {
2446     // There is no dynamic switching between non-shared present modes.
2447     // All we support is switching between demand and continuous refresh.
2448     if (!IsSharedPresentMode(mode))
2449         return true;
2450 
2451     int err = native_window_set_auto_refresh(window,
2452             mode == VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR);
2453     if (err != android::OK) {
2454         ALOGE("native_window_set_auto_refresh() failed: %s (%d)",
2455               strerror(-err), err);
2456         return false;
2457     }
2458 
2459     return true;
2460 }
2461 
PresentOneSwapchain(VkQueue queue,Swapchain & swapchain,uint32_t imageIndex,const VkPresentRegionKHR * pRegion,const VkPresentTimeGOOGLE * pTime,VkFence presentFence,const VkPresentModeKHR * pPresentMode,uint32_t waitSemaphoreCount,const VkSemaphore * pWaitSemaphores)2462 static VkResult PresentOneSwapchain(
2463         VkQueue queue,
2464         Swapchain& swapchain,
2465         uint32_t imageIndex,
2466         const VkPresentRegionKHR *pRegion,
2467         const VkPresentTimeGOOGLE *pTime,
2468         VkFence presentFence,
2469         const VkPresentModeKHR *pPresentMode,
2470         uint32_t waitSemaphoreCount,
2471         const VkSemaphore *pWaitSemaphores) {
2472 
2473     VkDevice device = GetData(queue).driver_device;
2474     const auto& dispatch = GetData(queue).driver;
2475 
2476     Swapchain::Image& img = swapchain.images[imageIndex];
2477     VkResult swapchain_result = VK_SUCCESS;
2478     VkResult result;
2479     int err;
2480 
2481     // XXX: long standing issue: QueueSignalReleaseImageANDROID consumes the
2482     // wait semaphores, so this doesn't actually work for the multiple swapchain
2483     // case.
2484     int fence = -1;
2485     result = dispatch.QueueSignalReleaseImageANDROID(
2486         queue, waitSemaphoreCount,
2487         pWaitSemaphores, img.image, &fence);
2488     if (result != VK_SUCCESS) {
2489         ALOGE("QueueSignalReleaseImageANDROID failed: %d", result);
2490         swapchain_result = result;
2491     }
2492     if (img.release_fence >= 0)
2493         close(img.release_fence);
2494     img.release_fence = fence < 0 ? -1 : dup(fence);
2495 
2496     if (swapchain.surface.swapchain_handle == HandleFromSwapchain(&swapchain)) {
2497         ANativeWindow* window = swapchain.surface.window.get();
2498         if (swapchain_result == VK_SUCCESS) {
2499 
2500             if (presentFence != VK_NULL_HANDLE) {
2501                 int fence_copy = fence < 0 ? -1 : dup(fence);
2502                 VkImportFenceFdInfoKHR iffi = {
2503                     VK_STRUCTURE_TYPE_IMPORT_FENCE_FD_INFO_KHR,
2504                     nullptr,
2505                     presentFence,
2506                     VK_FENCE_IMPORT_TEMPORARY_BIT,
2507                     VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT,
2508                     fence_copy,
2509                 };
2510                 if (VK_SUCCESS != dispatch.ImportFenceFdKHR(device, &iffi) && fence_copy >= 0) {
2511                     // ImportFenceFdKHR takes ownership only if it succeeds
2512                     close(fence_copy);
2513                 }
2514             }
2515 
2516             if (pRegion) {
2517                 SetSwapchainSurfaceDamage(window, pRegion);
2518             }
2519             if (pTime) {
2520                 SetSwapchainFrameTimestamp(swapchain, pTime);
2521             }
2522             if (pPresentMode) {
2523                 if (!SetSwapchainPresentMode(window, *pPresentMode))
2524                     swapchain_result = WorstPresentResult(swapchain_result,
2525                         VK_ERROR_SURFACE_LOST_KHR);
2526             }
2527 
2528             err = window->queueBuffer(window, img.buffer.get(), fence);
2529             // queueBuffer always closes fence, even on error
2530             if (err != android::OK) {
2531                 ALOGE("queueBuffer failed: %s (%d)", strerror(-err), err);
2532                 swapchain_result = WorstPresentResult(
2533                     swapchain_result, VK_ERROR_SURFACE_LOST_KHR);
2534             } else {
2535                 if (img.dequeue_fence >= 0) {
2536                     close(img.dequeue_fence);
2537                     img.dequeue_fence = -1;
2538                 }
2539                 img.dequeued = false;
2540             }
2541 
2542             // If the swapchain is in shared mode, immediately dequeue the
2543             // buffer so it can be presented again without an intervening
2544             // call to AcquireNextImageKHR. We expect to get the same buffer
2545             // back from every call to dequeueBuffer in this mode.
2546             if (swapchain.shared && swapchain_result == VK_SUCCESS) {
2547                 ANativeWindowBuffer* buffer;
2548                 int fence_fd;
2549                 err = window->dequeueBuffer(window, &buffer, &fence_fd);
2550                 if (err != android::OK) {
2551                     ALOGE("dequeueBuffer failed: %s (%d)", strerror(-err), err);
2552                     swapchain_result = WorstPresentResult(swapchain_result,
2553                         VK_ERROR_SURFACE_LOST_KHR);
2554                 } else if (img.buffer != buffer) {
2555                     ALOGE("got wrong image back for shared swapchain");
2556                     swapchain_result = WorstPresentResult(swapchain_result,
2557                         VK_ERROR_SURFACE_LOST_KHR);
2558                 } else {
2559                     img.dequeue_fence = fence_fd;
2560                     img.dequeued = true;
2561                 }
2562             }
2563         }
2564         if (swapchain_result != VK_SUCCESS) {
2565             OrphanSwapchain(device, &swapchain);
2566         }
2567         // Android will only return VK_SUBOPTIMAL_KHR for vkQueuePresentKHR,
2568         // and only when the window's transform/rotation changes.  Extent
2569         // changes will not cause VK_SUBOPTIMAL_KHR because of the
2570         // application issues that were caused when the following transform
2571         // change was added.
2572         int window_transform_hint;
2573         err = window->query(window, NATIVE_WINDOW_TRANSFORM_HINT,
2574                             &window_transform_hint);
2575         if (err != android::OK) {
2576             ALOGE("NATIVE_WINDOW_TRANSFORM_HINT query failed: %s (%d)",
2577                   strerror(-err), err);
2578             swapchain_result = WorstPresentResult(
2579                 swapchain_result, VK_ERROR_SURFACE_LOST_KHR);
2580         }
2581         if (swapchain.pre_transform != window_transform_hint) {
2582             swapchain_result =
2583                 WorstPresentResult(swapchain_result, VK_SUBOPTIMAL_KHR);
2584         }
2585     } else {
2586         ReleaseSwapchainImage(device, swapchain.shared, nullptr, fence,
2587                               img, true);
2588         swapchain_result = VK_ERROR_OUT_OF_DATE_KHR;
2589     }
2590 
2591     return swapchain_result;
2592 }
2593 
2594 VKAPI_ATTR
QueuePresentKHR(VkQueue queue,const VkPresentInfoKHR * present_info)2595 VkResult QueuePresentKHR(VkQueue queue, const VkPresentInfoKHR* present_info) {
2596     ATRACE_CALL();
2597 
2598     ALOGV_IF(present_info->sType != VK_STRUCTURE_TYPE_PRESENT_INFO_KHR,
2599              "vkQueuePresentKHR: invalid VkPresentInfoKHR structure type %d",
2600              present_info->sType);
2601 
2602     VkResult final_result = VK_SUCCESS;
2603 
2604     // Look at the pNext chain for supported extension structs:
2605     const VkPresentRegionsKHR* present_regions = nullptr;
2606     const VkPresentTimesInfoGOOGLE* present_times = nullptr;
2607     const VkSwapchainPresentFenceInfoEXT* present_fences = nullptr;
2608     const VkSwapchainPresentModeInfoEXT* present_modes = nullptr;
2609 
2610     const VkPresentRegionsKHR* next =
2611         reinterpret_cast<const VkPresentRegionsKHR*>(present_info->pNext);
2612     while (next) {
2613         switch (next->sType) {
2614             case VK_STRUCTURE_TYPE_PRESENT_REGIONS_KHR:
2615                 present_regions = next;
2616                 break;
2617             case VK_STRUCTURE_TYPE_PRESENT_TIMES_INFO_GOOGLE:
2618                 present_times =
2619                     reinterpret_cast<const VkPresentTimesInfoGOOGLE*>(next);
2620                 break;
2621             case VK_STRUCTURE_TYPE_SWAPCHAIN_PRESENT_FENCE_INFO_EXT:
2622                 present_fences =
2623                     reinterpret_cast<const VkSwapchainPresentFenceInfoEXT*>(next);
2624                 break;
2625             case VK_STRUCTURE_TYPE_SWAPCHAIN_PRESENT_MODE_INFO_EXT:
2626                 present_modes =
2627                     reinterpret_cast<const VkSwapchainPresentModeInfoEXT*>(next);
2628                 break;
2629             default:
2630                 ALOGV("QueuePresentKHR ignoring unrecognized pNext->sType = %x",
2631                       next->sType);
2632                 break;
2633         }
2634         next = reinterpret_cast<const VkPresentRegionsKHR*>(next->pNext);
2635     }
2636     ALOGV_IF(
2637         present_regions &&
2638             present_regions->swapchainCount != present_info->swapchainCount,
2639         "VkPresentRegions::swapchainCount != VkPresentInfo::swapchainCount");
2640     ALOGV_IF(present_times &&
2641                  present_times->swapchainCount != present_info->swapchainCount,
2642              "VkPresentTimesInfoGOOGLE::swapchainCount != "
2643              "VkPresentInfo::swapchainCount");
2644     ALOGV_IF(present_fences &&
2645              present_fences->swapchainCount != present_info->swapchainCount,
2646              "VkSwapchainPresentFenceInfoEXT::swapchainCount != "
2647              "VkPresentInfo::swapchainCount");
2648     ALOGV_IF(present_modes &&
2649              present_modes->swapchainCount != present_info->swapchainCount,
2650              "VkSwapchainPresentModeInfoEXT::swapchainCount != "
2651              "VkPresentInfo::swapchainCount");
2652 
2653     const VkPresentRegionKHR* regions =
2654         (present_regions) ? present_regions->pRegions : nullptr;
2655     const VkPresentTimeGOOGLE* times =
2656         (present_times) ? present_times->pTimes : nullptr;
2657 
2658     for (uint32_t sc = 0; sc < present_info->swapchainCount; sc++) {
2659         Swapchain& swapchain =
2660             *SwapchainFromHandle(present_info->pSwapchains[sc]);
2661 
2662         VkResult swapchain_result = PresentOneSwapchain(
2663             queue,
2664             swapchain,
2665             present_info->pImageIndices[sc],
2666             (regions && !swapchain.mailbox_mode) ? &regions[sc] : nullptr,
2667             times ? &times[sc] : nullptr,
2668             present_fences ? present_fences->pFences[sc] : VK_NULL_HANDLE,
2669             present_modes ? &present_modes->pPresentModes[sc] : nullptr,
2670             present_info->waitSemaphoreCount,
2671             present_info->pWaitSemaphores);
2672 
2673         if (present_info->pResults)
2674             present_info->pResults[sc] = swapchain_result;
2675 
2676         if (swapchain_result != final_result)
2677             final_result = WorstPresentResult(final_result, swapchain_result);
2678     }
2679 
2680     return final_result;
2681 }
2682 
2683 VKAPI_ATTR
GetRefreshCycleDurationGOOGLE(VkDevice,VkSwapchainKHR swapchain_handle,VkRefreshCycleDurationGOOGLE * pDisplayTimingProperties)2684 VkResult GetRefreshCycleDurationGOOGLE(
2685     VkDevice,
2686     VkSwapchainKHR swapchain_handle,
2687     VkRefreshCycleDurationGOOGLE* pDisplayTimingProperties) {
2688     ATRACE_CALL();
2689 
2690     Swapchain& swapchain = *SwapchainFromHandle(swapchain_handle);
2691     VkResult result = swapchain.get_refresh_duration(pDisplayTimingProperties->refreshDuration);
2692 
2693     return result;
2694 }
2695 
2696 VKAPI_ATTR
GetPastPresentationTimingGOOGLE(VkDevice,VkSwapchainKHR swapchain_handle,uint32_t * count,VkPastPresentationTimingGOOGLE * timings)2697 VkResult GetPastPresentationTimingGOOGLE(
2698     VkDevice,
2699     VkSwapchainKHR swapchain_handle,
2700     uint32_t* count,
2701     VkPastPresentationTimingGOOGLE* timings) {
2702     ATRACE_CALL();
2703 
2704     Swapchain& swapchain = *SwapchainFromHandle(swapchain_handle);
2705     if (swapchain.surface.swapchain_handle != swapchain_handle) {
2706         return VK_ERROR_OUT_OF_DATE_KHR;
2707     }
2708 
2709     ANativeWindow* window = swapchain.surface.window.get();
2710     VkResult result = VK_SUCCESS;
2711 
2712     if (!swapchain.frame_timestamps_enabled) {
2713         ALOGV("Calling native_window_enable_frame_timestamps(true)");
2714         native_window_enable_frame_timestamps(window, true);
2715         swapchain.frame_timestamps_enabled = true;
2716     }
2717 
2718     if (timings) {
2719         // Get the latest ready timing count before copying, since the copied
2720         // timing info will be erased in copy_ready_timings function.
2721         uint32_t n = get_num_ready_timings(swapchain);
2722         copy_ready_timings(swapchain, count, timings);
2723         // Check the *count here against the recorded ready timing count, since
2724         // *count can be overwritten per spec describes.
2725         if (*count < n) {
2726             result = VK_INCOMPLETE;
2727         }
2728     } else {
2729         *count = get_num_ready_timings(swapchain);
2730     }
2731 
2732     return result;
2733 }
2734 
2735 VKAPI_ATTR
GetSwapchainStatusKHR(VkDevice,VkSwapchainKHR swapchain_handle)2736 VkResult GetSwapchainStatusKHR(
2737     VkDevice,
2738     VkSwapchainKHR swapchain_handle) {
2739     ATRACE_CALL();
2740 
2741     Swapchain& swapchain = *SwapchainFromHandle(swapchain_handle);
2742     VkResult result = VK_SUCCESS;
2743 
2744     if (swapchain.surface.swapchain_handle != swapchain_handle) {
2745         return VK_ERROR_OUT_OF_DATE_KHR;
2746     }
2747 
2748     // TODO(b/143296009): Implement this function properly
2749 
2750     return result;
2751 }
2752 
SetHdrMetadataEXT(VkDevice,uint32_t swapchainCount,const VkSwapchainKHR * pSwapchains,const VkHdrMetadataEXT * pHdrMetadataEXTs)2753 VKAPI_ATTR void SetHdrMetadataEXT(
2754     VkDevice,
2755     uint32_t swapchainCount,
2756     const VkSwapchainKHR* pSwapchains,
2757     const VkHdrMetadataEXT* pHdrMetadataEXTs) {
2758     ATRACE_CALL();
2759 
2760     for (uint32_t idx = 0; idx < swapchainCount; idx++) {
2761         Swapchain* swapchain = SwapchainFromHandle(pSwapchains[idx]);
2762         if (!swapchain)
2763             continue;
2764 
2765         if (swapchain->surface.swapchain_handle != pSwapchains[idx]) continue;
2766 
2767         ANativeWindow* window = swapchain->surface.window.get();
2768 
2769         VkHdrMetadataEXT vulkanMetadata = pHdrMetadataEXTs[idx];
2770         const android_smpte2086_metadata smpteMetdata = {
2771             {vulkanMetadata.displayPrimaryRed.x,
2772              vulkanMetadata.displayPrimaryRed.y},
2773             {vulkanMetadata.displayPrimaryGreen.x,
2774              vulkanMetadata.displayPrimaryGreen.y},
2775             {vulkanMetadata.displayPrimaryBlue.x,
2776              vulkanMetadata.displayPrimaryBlue.y},
2777             {vulkanMetadata.whitePoint.x, vulkanMetadata.whitePoint.y},
2778             vulkanMetadata.maxLuminance,
2779             vulkanMetadata.minLuminance};
2780         native_window_set_buffers_smpte2086_metadata(window, &smpteMetdata);
2781 
2782         const android_cta861_3_metadata cta8613Metadata = {
2783             vulkanMetadata.maxContentLightLevel,
2784             vulkanMetadata.maxFrameAverageLightLevel};
2785         native_window_set_buffers_cta861_3_metadata(window, &cta8613Metadata);
2786     }
2787 
2788     return;
2789 }
2790 
InterceptBindImageMemory2(uint32_t bind_info_count,const VkBindImageMemoryInfo * bind_infos,std::vector<VkNativeBufferANDROID> * out_native_buffers,std::vector<VkBindImageMemoryInfo> * out_bind_infos)2791 static void InterceptBindImageMemory2(
2792     uint32_t bind_info_count,
2793     const VkBindImageMemoryInfo* bind_infos,
2794     std::vector<VkNativeBufferANDROID>* out_native_buffers,
2795     std::vector<VkBindImageMemoryInfo>* out_bind_infos) {
2796     out_native_buffers->clear();
2797     out_bind_infos->clear();
2798 
2799     if (!bind_info_count)
2800         return;
2801 
2802     std::unordered_set<uint32_t> intercepted_indexes;
2803 
2804     for (uint32_t idx = 0; idx < bind_info_count; idx++) {
2805         auto info = reinterpret_cast<const VkBindImageMemorySwapchainInfoKHR*>(
2806             bind_infos[idx].pNext);
2807         while (info &&
2808                info->sType !=
2809                    VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_SWAPCHAIN_INFO_KHR) {
2810             info = reinterpret_cast<const VkBindImageMemorySwapchainInfoKHR*>(
2811                 info->pNext);
2812         }
2813 
2814         if (!info)
2815             continue;
2816 
2817         ALOG_ASSERT(info->swapchain != VK_NULL_HANDLE,
2818                     "swapchain handle must not be NULL");
2819         const Swapchain* swapchain = SwapchainFromHandle(info->swapchain);
2820         ALOG_ASSERT(
2821             info->imageIndex < swapchain->num_images,
2822             "imageIndex must be less than the number of images in swapchain");
2823 
2824         ANativeWindowBuffer* buffer =
2825             swapchain->images[info->imageIndex].buffer.get();
2826         VkNativeBufferANDROID native_buffer = {
2827 #pragma clang diagnostic push
2828 #pragma clang diagnostic ignored "-Wold-style-cast"
2829             .sType = VK_STRUCTURE_TYPE_NATIVE_BUFFER_ANDROID,
2830 #pragma clang diagnostic pop
2831             .pNext = bind_infos[idx].pNext,
2832             .handle = buffer->handle,
2833             .stride = buffer->stride,
2834             .format = buffer->format,
2835             .usage = int(buffer->usage),
2836             .usage3 = buffer->usage,
2837             .ahb = ANativeWindowBuffer_getHardwareBuffer(buffer),
2838         };
2839         android_convertGralloc0To1Usage(int(buffer->usage),
2840                                         &native_buffer.usage2.producer,
2841                                         &native_buffer.usage2.consumer);
2842         // Reserve enough space to avoid letting re-allocation invalidate the
2843         // addresses of the elements inside.
2844         out_native_buffers->reserve(bind_info_count);
2845         out_native_buffers->emplace_back(native_buffer);
2846 
2847         // Reserve the space now since we know how much is needed now.
2848         out_bind_infos->reserve(bind_info_count);
2849         out_bind_infos->emplace_back(bind_infos[idx]);
2850         out_bind_infos->back().pNext = &out_native_buffers->back();
2851 
2852         intercepted_indexes.insert(idx);
2853     }
2854 
2855     if (intercepted_indexes.empty())
2856         return;
2857 
2858     for (uint32_t idx = 0; idx < bind_info_count; idx++) {
2859         if (intercepted_indexes.count(idx))
2860             continue;
2861         out_bind_infos->emplace_back(bind_infos[idx]);
2862     }
2863 }
2864 
2865 VKAPI_ATTR
BindImageMemory2(VkDevice device,uint32_t bindInfoCount,const VkBindImageMemoryInfo * pBindInfos)2866 VkResult BindImageMemory2(VkDevice device,
2867                           uint32_t bindInfoCount,
2868                           const VkBindImageMemoryInfo* pBindInfos) {
2869     ATRACE_CALL();
2870 
2871     // out_native_buffers is for maintaining the lifecycle of the constructed
2872     // VkNativeBufferANDROID objects inside InterceptBindImageMemory2.
2873     std::vector<VkNativeBufferANDROID> out_native_buffers;
2874     std::vector<VkBindImageMemoryInfo> out_bind_infos;
2875     InterceptBindImageMemory2(bindInfoCount, pBindInfos, &out_native_buffers,
2876                               &out_bind_infos);
2877     return GetData(device).driver.BindImageMemory2(
2878         device, bindInfoCount,
2879         out_bind_infos.empty() ? pBindInfos : out_bind_infos.data());
2880 }
2881 
2882 VKAPI_ATTR
BindImageMemory2KHR(VkDevice device,uint32_t bindInfoCount,const VkBindImageMemoryInfo * pBindInfos)2883 VkResult BindImageMemory2KHR(VkDevice device,
2884                              uint32_t bindInfoCount,
2885                              const VkBindImageMemoryInfo* pBindInfos) {
2886     ATRACE_CALL();
2887 
2888     std::vector<VkNativeBufferANDROID> out_native_buffers;
2889     std::vector<VkBindImageMemoryInfo> out_bind_infos;
2890     InterceptBindImageMemory2(bindInfoCount, pBindInfos, &out_native_buffers,
2891                               &out_bind_infos);
2892     return GetData(device).driver.BindImageMemory2KHR(
2893         device, bindInfoCount,
2894         out_bind_infos.empty() ? pBindInfos : out_bind_infos.data());
2895 }
2896 
2897 VKAPI_ATTR
ReleaseSwapchainImagesEXT(VkDevice,const VkReleaseSwapchainImagesInfoEXT * pReleaseInfo)2898 VkResult ReleaseSwapchainImagesEXT(VkDevice /*device*/,
2899                                    const VkReleaseSwapchainImagesInfoEXT* pReleaseInfo) {
2900     ATRACE_CALL();
2901 
2902     Swapchain& swapchain = *SwapchainFromHandle(pReleaseInfo->swapchain);
2903     ANativeWindow* window = swapchain.surface.window.get();
2904 
2905     // If in shared present mode, don't actually release the image back to the BQ.
2906     // Both sides share it forever.
2907     if (swapchain.shared)
2908         return VK_SUCCESS;
2909 
2910     for (uint32_t i = 0; i < pReleaseInfo->imageIndexCount; i++) {
2911         Swapchain::Image& img = swapchain.images[pReleaseInfo->pImageIndices[i]];
2912         window->cancelBuffer(window, img.buffer.get(), img.dequeue_fence);
2913 
2914         // cancelBuffer has taken ownership of the dequeue fence
2915         img.dequeue_fence = -1;
2916         // if we're still holding a release fence, get rid of it now
2917         if (img.release_fence >= 0) {
2918            close(img.release_fence);
2919            img.release_fence = -1;
2920         }
2921         img.dequeued = false;
2922     }
2923 
2924     return VK_SUCCESS;
2925 }
2926 
2927 }  // namespace driver
2928 }  // namespace vulkan
2929