1 /*
2 * Copyright (C) 2022 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #define LOG_TAG "ExtCamDevSsn"
18 // #define LOG_NDEBUG 0
19 #include <log/log.h>
20
21 #include "ExternalCameraDeviceSession.h"
22
23 #include <Exif.h>
24 #include <ExternalCameraOfflineSession.h>
25 #include <aidl/android/hardware/camera/device/CameraBlob.h>
26 #include <aidl/android/hardware/camera/device/CameraBlobId.h>
27 #include <aidl/android/hardware/camera/device/ErrorMsg.h>
28 #include <aidl/android/hardware/camera/device/ShutterMsg.h>
29 #include <aidl/android/hardware/camera/device/StreamBufferRet.h>
30 #include <aidl/android/hardware/camera/device/StreamBuffersVal.h>
31 #include <aidl/android/hardware/camera/device/StreamConfigurationMode.h>
32 #include <aidl/android/hardware/camera/device/StreamRotation.h>
33 #include <aidl/android/hardware/camera/device/StreamType.h>
34 #include <aidl/android/hardware/graphics/common/Dataspace.h>
35 #include <aidlcommonsupport/NativeHandle.h>
36 #include <convert.h>
37 #include <linux/videodev2.h>
38 #include <sync/sync.h>
39 #include <utils/Trace.h>
40 #include <deque>
41
42 #define HAVE_JPEG // required for libyuv.h to export MJPEG decode APIs
43 #include <libyuv.h>
44 #include <libyuv/convert.h>
45
46 namespace android {
47 namespace hardware {
48 namespace camera {
49 namespace device {
50 namespace implementation {
51
52 namespace {
53
54 // Size of request/result metadata fast message queue. Change to 0 to always use hwbinder buffer.
55 static constexpr size_t kMetadataMsgQueueSize = 1 << 18 /* 256kB */;
56
57 const int kBadFramesAfterStreamOn = 1; // drop x frames after streamOn to get rid of some initial
58 // bad frames. TODO: develop a better bad frame detection
59 // method
60 constexpr int MAX_RETRY = 15; // Allow retry some ioctl failures a few times to account for some
61 // webcam showing temporarily ioctl failures.
62 constexpr int IOCTL_RETRY_SLEEP_US = 33000; // 33ms * MAX_RETRY = 0.5 seconds
63
64 // Constants for tryLock during dumpstate
65 static constexpr int kDumpLockRetries = 50;
66 static constexpr int kDumpLockSleep = 60000;
67
tryLock(Mutex & mutex)68 bool tryLock(Mutex& mutex) {
69 bool locked = false;
70 for (int i = 0; i < kDumpLockRetries; ++i) {
71 if (mutex.tryLock() == NO_ERROR) {
72 locked = true;
73 break;
74 }
75 usleep(kDumpLockSleep);
76 }
77 return locked;
78 }
79
tryLock(std::mutex & mutex)80 bool tryLock(std::mutex& mutex) {
81 bool locked = false;
82 for (int i = 0; i < kDumpLockRetries; ++i) {
83 if (mutex.try_lock()) {
84 locked = true;
85 break;
86 }
87 usleep(kDumpLockSleep);
88 }
89 return locked;
90 }
91
92 } // anonymous namespace
93
94 using ::aidl::android::hardware::camera::device::BufferRequestStatus;
95 using ::aidl::android::hardware::camera::device::CameraBlob;
96 using ::aidl::android::hardware::camera::device::CameraBlobId;
97 using ::aidl::android::hardware::camera::device::ErrorMsg;
98 using ::aidl::android::hardware::camera::device::ShutterMsg;
99 using ::aidl::android::hardware::camera::device::StreamBuffer;
100 using ::aidl::android::hardware::camera::device::StreamBufferRet;
101 using ::aidl::android::hardware::camera::device::StreamBuffersVal;
102 using ::aidl::android::hardware::camera::device::StreamConfigurationMode;
103 using ::aidl::android::hardware::camera::device::StreamRotation;
104 using ::aidl::android::hardware::camera::device::StreamType;
105 using ::aidl::android::hardware::graphics::common::Dataspace;
106 using ::android::hardware::camera::common::V1_0::helper::ExifUtils;
107
108 // Static instances
109 const int ExternalCameraDeviceSession::kMaxProcessedStream;
110 const int ExternalCameraDeviceSession::kMaxStallStream;
111 HandleImporter ExternalCameraDeviceSession::sHandleImporter;
112
ExternalCameraDeviceSession(const std::shared_ptr<ICameraDeviceCallback> & callback,const ExternalCameraConfig & cfg,const std::vector<SupportedV4L2Format> & sortedFormats,const CroppingType & croppingType,const common::V1_0::helper::CameraMetadata & chars,const std::string & cameraId,unique_fd v4l2Fd)113 ExternalCameraDeviceSession::ExternalCameraDeviceSession(
114 const std::shared_ptr<ICameraDeviceCallback>& callback, const ExternalCameraConfig& cfg,
115 const std::vector<SupportedV4L2Format>& sortedFormats, const CroppingType& croppingType,
116 const common::V1_0::helper::CameraMetadata& chars, const std::string& cameraId,
117 unique_fd v4l2Fd)
118 : mCallback(callback),
119 mCfg(cfg),
120 mCameraCharacteristics(chars),
121 mSupportedFormats(sortedFormats),
122 mCroppingType(croppingType),
123 mCameraId(cameraId),
124 mV4l2Fd(std::move(v4l2Fd)),
125 mMaxThumbResolution(getMaxThumbResolution()),
126 mMaxJpegResolution(getMaxJpegResolution()) {}
127
getMaxThumbResolution() const128 Size ExternalCameraDeviceSession::getMaxThumbResolution() const {
129 return getMaxThumbnailResolution(mCameraCharacteristics);
130 }
131
getMaxJpegResolution() const132 Size ExternalCameraDeviceSession::getMaxJpegResolution() const {
133 Size ret{0, 0};
134 for (auto& fmt : mSupportedFormats) {
135 if (fmt.width * fmt.height > ret.width * ret.height) {
136 ret = Size{fmt.width, fmt.height};
137 }
138 }
139 return ret;
140 }
141
initialize()142 bool ExternalCameraDeviceSession::initialize() {
143 if (mV4l2Fd.get() < 0) {
144 ALOGE("%s: invalid v4l2 device fd %d!", __FUNCTION__, mV4l2Fd.get());
145 return true;
146 }
147
148 struct v4l2_capability capability;
149 int ret = ioctl(mV4l2Fd.get(), VIDIOC_QUERYCAP, &capability);
150 std::string make, model;
151 if (ret < 0) {
152 ALOGW("%s v4l2 QUERYCAP failed", __FUNCTION__);
153 mExifMake = "Generic UVC webcam";
154 mExifModel = "Generic UVC webcam";
155 } else {
156 // capability.card is UTF-8 encoded
157 char card[32];
158 int j = 0;
159 for (int i = 0; i < 32; i++) {
160 if (capability.card[i] < 128) {
161 card[j++] = capability.card[i];
162 }
163 if (capability.card[i] == '\0') {
164 break;
165 }
166 }
167 if (j == 0 || card[j - 1] != '\0') {
168 mExifMake = "Generic UVC webcam";
169 mExifModel = "Generic UVC webcam";
170 } else {
171 mExifMake = card;
172 mExifModel = card;
173 }
174 }
175
176 initOutputThread();
177 if (mOutputThread == nullptr) {
178 ALOGE("%s: init OutputThread failed!", __FUNCTION__);
179 return true;
180 }
181 mOutputThread->setExifMakeModel(mExifMake, mExifModel);
182
183 status_t status = initDefaultRequests();
184 if (status != OK) {
185 ALOGE("%s: init default requests failed!", __FUNCTION__);
186 return true;
187 }
188
189 mRequestMetadataQueue =
190 std::make_unique<RequestMetadataQueue>(kMetadataMsgQueueSize, false /* non blocking */);
191 if (!mRequestMetadataQueue->isValid()) {
192 ALOGE("%s: invalid request fmq", __FUNCTION__);
193 return true;
194 }
195
196 mResultMetadataQueue =
197 std::make_shared<ResultMetadataQueue>(kMetadataMsgQueueSize, false /* non blocking */);
198 if (!mResultMetadataQueue->isValid()) {
199 ALOGE("%s: invalid result fmq", __FUNCTION__);
200 return true;
201 }
202
203 mOutputThread->run();
204 return false;
205 }
206
isInitFailed()207 bool ExternalCameraDeviceSession::isInitFailed() {
208 Mutex::Autolock _l(mLock);
209 if (!mInitialized) {
210 mInitFail = initialize();
211 mInitialized = true;
212 }
213 return mInitFail;
214 }
215
initOutputThread()216 void ExternalCameraDeviceSession::initOutputThread() {
217 // Grab a shared_ptr to 'this' from ndk::SharedRefBase::ref()
218 std::shared_ptr<ExternalCameraDeviceSession> thiz = ref<ExternalCameraDeviceSession>();
219
220 mBufferRequestThread = std::make_shared<BufferRequestThread>(/*parent=*/thiz, mCallback);
221 mBufferRequestThread->run();
222 mOutputThread = std::make_shared<OutputThread>(/*parent=*/thiz, mCroppingType,
223 mCameraCharacteristics, mBufferRequestThread);
224 }
225
closeOutputThread()226 void ExternalCameraDeviceSession::closeOutputThread() {
227 if (mOutputThread != nullptr) {
228 mOutputThread->flush();
229 mOutputThread->requestExitAndWait();
230 mOutputThread.reset();
231 }
232 }
233
closeBufferRequestThread()234 void ExternalCameraDeviceSession::closeBufferRequestThread() {
235 if (mBufferRequestThread != nullptr) {
236 mBufferRequestThread->requestExitAndWait();
237 mBufferRequestThread.reset();
238 }
239 }
240
initStatus() const241 Status ExternalCameraDeviceSession::initStatus() const {
242 Mutex::Autolock _l(mLock);
243 Status status = Status::OK;
244 if (mInitFail || mClosed) {
245 ALOGI("%s: session initFailed %d closed %d", __FUNCTION__, mInitFail, mClosed);
246 status = Status::INTERNAL_ERROR;
247 }
248 return status;
249 }
250
~ExternalCameraDeviceSession()251 ExternalCameraDeviceSession::~ExternalCameraDeviceSession() {
252 if (!isClosed()) {
253 ALOGE("ExternalCameraDeviceSession deleted before close!");
254 closeImpl();
255 }
256 }
257
constructDefaultRequestSettings(RequestTemplate in_type,CameraMetadata * _aidl_return)258 ScopedAStatus ExternalCameraDeviceSession::constructDefaultRequestSettings(
259 RequestTemplate in_type, CameraMetadata* _aidl_return) {
260 CameraMetadata emptyMetadata;
261 Status status = initStatus();
262 if (status != Status::OK) {
263 return fromStatus(status);
264 }
265 switch (in_type) {
266 case RequestTemplate::PREVIEW:
267 case RequestTemplate::STILL_CAPTURE:
268 case RequestTemplate::VIDEO_RECORD:
269 case RequestTemplate::VIDEO_SNAPSHOT: {
270 *_aidl_return = mDefaultRequests[in_type];
271 break;
272 }
273 case RequestTemplate::MANUAL:
274 case RequestTemplate::ZERO_SHUTTER_LAG:
275 // Don't support MANUAL, ZSL templates
276 status = Status::ILLEGAL_ARGUMENT;
277 break;
278 default:
279 ALOGE("%s: unknown request template type %d", __FUNCTION__, static_cast<int>(in_type));
280 status = Status::ILLEGAL_ARGUMENT;
281 break;
282 }
283 return fromStatus(status);
284 }
285
configureStreams(const StreamConfiguration & in_requestedConfiguration,std::vector<HalStream> * _aidl_return)286 ScopedAStatus ExternalCameraDeviceSession::configureStreams(
287 const StreamConfiguration& in_requestedConfiguration,
288 std::vector<HalStream>* _aidl_return) {
289 uint32_t blobBufferSize = 0;
290 _aidl_return->clear();
291 Mutex::Autolock _il(mInterfaceLock);
292
293 Status status =
294 isStreamCombinationSupported(in_requestedConfiguration, mSupportedFormats, mCfg);
295 if (status != Status::OK) {
296 return fromStatus(status);
297 }
298
299 status = initStatus();
300 if (status != Status::OK) {
301 return fromStatus(status);
302 }
303
304 {
305 std::lock_guard<std::mutex> lk(mInflightFramesLock);
306 if (!mInflightFrames.empty()) {
307 ALOGE("%s: trying to configureStreams while there are still %zu inflight frames!",
308 __FUNCTION__, mInflightFrames.size());
309 return fromStatus(Status::INTERNAL_ERROR);
310 }
311 }
312
313 Mutex::Autolock _l(mLock);
314 {
315 Mutex::Autolock _cl(mCbsLock);
316 // Add new streams
317 for (const auto& stream : in_requestedConfiguration.streams) {
318 if (mStreamMap.count(stream.id) == 0) {
319 mStreamMap[stream.id] = stream;
320 mCirculatingBuffers.emplace(stream.id, CirculatingBuffers{});
321 }
322 }
323
324 // Cleanup removed streams
325 for (auto it = mStreamMap.begin(); it != mStreamMap.end();) {
326 int id = it->first;
327 bool found = false;
328 for (const auto& stream : in_requestedConfiguration.streams) {
329 if (id == stream.id) {
330 found = true;
331 break;
332 }
333 }
334 if (!found) {
335 // Unmap all buffers of deleted stream
336 cleanupBuffersLocked(id);
337 it = mStreamMap.erase(it);
338 } else {
339 ++it;
340 }
341 }
342 }
343
344 // Now select a V4L2 format to produce all output streams
345 float desiredAr = (mCroppingType == VERTICAL) ? kMaxAspectRatio : kMinAspectRatio;
346 uint32_t maxDim = 0;
347 for (const auto& stream : in_requestedConfiguration.streams) {
348 float aspectRatio = ASPECT_RATIO(stream);
349 ALOGI("%s: request stream %dx%d", __FUNCTION__, stream.width, stream.height);
350 if ((mCroppingType == VERTICAL && aspectRatio < desiredAr) ||
351 (mCroppingType == HORIZONTAL && aspectRatio > desiredAr)) {
352 desiredAr = aspectRatio;
353 }
354
355 // The dimension that's not cropped
356 uint32_t dim = (mCroppingType == VERTICAL) ? stream.width : stream.height;
357 if (dim > maxDim) {
358 maxDim = dim;
359 }
360 }
361
362 // Find the smallest format that matches the desired aspect ratio and is wide/high enough
363 SupportedV4L2Format v4l2Fmt{.width = 0, .height = 0};
364 for (const auto& fmt : mSupportedFormats) {
365 uint32_t dim = (mCroppingType == VERTICAL) ? fmt.width : fmt.height;
366 if (dim >= maxDim) {
367 float aspectRatio = ASPECT_RATIO(fmt);
368 if (isAspectRatioClose(aspectRatio, desiredAr)) {
369 v4l2Fmt = fmt;
370 // since mSupportedFormats is sorted by width then height, the first matching fmt
371 // will be the smallest one with matching aspect ratio
372 break;
373 }
374 }
375 }
376
377 if (v4l2Fmt.width == 0) {
378 // Cannot find exact good aspect ratio candidate, try to find a close one
379 for (const auto& fmt : mSupportedFormats) {
380 uint32_t dim = (mCroppingType == VERTICAL) ? fmt.width : fmt.height;
381 if (dim >= maxDim) {
382 float aspectRatio = ASPECT_RATIO(fmt);
383 if ((mCroppingType == VERTICAL && aspectRatio < desiredAr) ||
384 (mCroppingType == HORIZONTAL && aspectRatio > desiredAr)) {
385 v4l2Fmt = fmt;
386 break;
387 }
388 }
389 }
390 }
391
392 if (v4l2Fmt.width == 0) {
393 ALOGE("%s: unable to find a resolution matching (%s at least %d, aspect ratio %f)",
394 __FUNCTION__, (mCroppingType == VERTICAL) ? "width" : "height", maxDim, desiredAr);
395 return fromStatus(Status::ILLEGAL_ARGUMENT);
396 }
397
398 if (configureV4l2StreamLocked(v4l2Fmt) != 0) {
399 ALOGE("V4L configuration failed!, format:%c%c%c%c, w %d, h %d", v4l2Fmt.fourcc & 0xFF,
400 (v4l2Fmt.fourcc >> 8) & 0xFF, (v4l2Fmt.fourcc >> 16) & 0xFF,
401 (v4l2Fmt.fourcc >> 24) & 0xFF, v4l2Fmt.width, v4l2Fmt.height);
402 return fromStatus(Status::INTERNAL_ERROR);
403 }
404
405 Size v4lSize = {v4l2Fmt.width, v4l2Fmt.height};
406 Size thumbSize{0, 0};
407 camera_metadata_ro_entry entry =
408 mCameraCharacteristics.find(ANDROID_JPEG_AVAILABLE_THUMBNAIL_SIZES);
409 for (uint32_t i = 0; i < entry.count; i += 2) {
410 Size sz{entry.data.i32[i], entry.data.i32[i + 1]};
411 if (sz.width * sz.height > thumbSize.width * thumbSize.height) {
412 thumbSize = sz;
413 }
414 }
415
416 if (thumbSize.width * thumbSize.height == 0) {
417 ALOGE("%s: non-zero thumbnail size not available", __FUNCTION__);
418 return fromStatus(Status::INTERNAL_ERROR);
419 }
420
421 mBlobBufferSize = blobBufferSize;
422 status = mOutputThread->allocateIntermediateBuffers(
423 v4lSize, mMaxThumbResolution, in_requestedConfiguration.streams, blobBufferSize);
424 if (status != Status::OK) {
425 ALOGE("%s: allocating intermediate buffers failed!", __FUNCTION__);
426 return fromStatus(status);
427 }
428
429 std::vector<HalStream>& out = *_aidl_return;
430 out.resize(in_requestedConfiguration.streams.size());
431 for (size_t i = 0; i < in_requestedConfiguration.streams.size(); i++) {
432 out[i].overrideDataSpace = in_requestedConfiguration.streams[i].dataSpace;
433 out[i].id = in_requestedConfiguration.streams[i].id;
434 // TODO: double check should we add those CAMERA flags
435 mStreamMap[in_requestedConfiguration.streams[i].id].usage = out[i].producerUsage =
436 static_cast<BufferUsage>(((int64_t)in_requestedConfiguration.streams[i].usage) |
437 ((int64_t)BufferUsage::CPU_WRITE_OFTEN) |
438 ((int64_t)BufferUsage::CAMERA_OUTPUT));
439 out[i].consumerUsage = static_cast<BufferUsage>(0);
440 out[i].maxBuffers = static_cast<int32_t>(mV4L2BufferCount);
441
442 switch (in_requestedConfiguration.streams[i].format) {
443 case PixelFormat::BLOB:
444 case PixelFormat::YCBCR_420_888:
445 case PixelFormat::YV12: // Used by SurfaceTexture
446 case PixelFormat::Y16:
447 // No override
448 out[i].overrideFormat = in_requestedConfiguration.streams[i].format;
449 break;
450 case PixelFormat::IMPLEMENTATION_DEFINED:
451 // Implementation Defined
452 // This should look at the Stream's dataspace flag to determine the format or leave
453 // it as is if the rest of the system knows how to handle a private format. To keep
454 // this HAL generic, this is being overridden to YUV420
455 out[i].overrideFormat = PixelFormat::YCBCR_420_888;
456 // Save overridden format in mStreamMap
457 mStreamMap[in_requestedConfiguration.streams[i].id].format = out[i].overrideFormat;
458 break;
459 default:
460 ALOGE("%s: unsupported format 0x%x", __FUNCTION__,
461 in_requestedConfiguration.streams[i].format);
462 return fromStatus(Status::ILLEGAL_ARGUMENT);
463 }
464 }
465
466 mFirstRequest = true;
467 mLastStreamConfigCounter = in_requestedConfiguration.streamConfigCounter;
468 return fromStatus(Status::OK);
469 }
470
flush()471 ScopedAStatus ExternalCameraDeviceSession::flush() {
472 ATRACE_CALL();
473 Mutex::Autolock _il(mInterfaceLock);
474 Status status = initStatus();
475 if (status != Status::OK) {
476 return fromStatus(status);
477 }
478 mOutputThread->flush();
479 return fromStatus(Status::OK);
480 }
481
getCaptureRequestMetadataQueue(MQDescriptor<int8_t,SynchronizedReadWrite> * _aidl_return)482 ScopedAStatus ExternalCameraDeviceSession::getCaptureRequestMetadataQueue(
483 MQDescriptor<int8_t, SynchronizedReadWrite>* _aidl_return) {
484 Mutex::Autolock _il(mInterfaceLock);
485 *_aidl_return = mRequestMetadataQueue->dupeDesc();
486 return fromStatus(Status::OK);
487 }
488
getCaptureResultMetadataQueue(MQDescriptor<int8_t,SynchronizedReadWrite> * _aidl_return)489 ScopedAStatus ExternalCameraDeviceSession::getCaptureResultMetadataQueue(
490 MQDescriptor<int8_t, SynchronizedReadWrite>* _aidl_return) {
491 Mutex::Autolock _il(mInterfaceLock);
492 *_aidl_return = mResultMetadataQueue->dupeDesc();
493 return fromStatus(Status::OK);
494 }
495
isReconfigurationRequired(const CameraMetadata & in_oldSessionParams,const CameraMetadata & in_newSessionParams,bool * _aidl_return)496 ScopedAStatus ExternalCameraDeviceSession::isReconfigurationRequired(
497 const CameraMetadata& in_oldSessionParams, const CameraMetadata& in_newSessionParams,
498 bool* _aidl_return) {
499 // reconfiguration required if there is any change in the session params
500 *_aidl_return = in_oldSessionParams != in_newSessionParams;
501 return fromStatus(Status::OK);
502 }
503
processCaptureRequest(const std::vector<CaptureRequest> & in_requests,const std::vector<BufferCache> & in_cachesToRemove,int32_t * _aidl_return)504 ScopedAStatus ExternalCameraDeviceSession::processCaptureRequest(
505 const std::vector<CaptureRequest>& in_requests,
506 const std::vector<BufferCache>& in_cachesToRemove, int32_t* _aidl_return) {
507 Mutex::Autolock _il(mInterfaceLock);
508 updateBufferCaches(in_cachesToRemove);
509
510 int32_t& numRequestProcessed = *_aidl_return;
511 numRequestProcessed = 0;
512 Status s = Status::OK;
513 for (size_t i = 0; i < in_requests.size(); i++, numRequestProcessed++) {
514 s = processOneCaptureRequest(in_requests[i]);
515 if (s != Status::OK) {
516 break;
517 }
518 }
519
520 return fromStatus(s);
521 }
522
processOneCaptureRequest(const CaptureRequest & request)523 Status ExternalCameraDeviceSession::processOneCaptureRequest(const CaptureRequest& request) {
524 ATRACE_CALL();
525 Status status = initStatus();
526 if (status != Status::OK) {
527 return status;
528 }
529
530 if (request.inputBuffer.streamId != -1) {
531 ALOGE("%s: external camera does not support reprocessing!", __FUNCTION__);
532 return Status::ILLEGAL_ARGUMENT;
533 }
534
535 Mutex::Autolock _l(mLock);
536 if (!mV4l2Streaming) {
537 ALOGE("%s: cannot process request in streamOff state!", __FUNCTION__);
538 return Status::INTERNAL_ERROR;
539 }
540
541 if (request.outputBuffers.empty()) {
542 ALOGE("%s: No output buffers provided.", __FUNCTION__);
543 return Status::ILLEGAL_ARGUMENT;
544 }
545
546 for (auto& outputBuf : request.outputBuffers) {
547 if (outputBuf.streamId == -1 || mStreamMap.find(outputBuf.streamId) == mStreamMap.end()) {
548 ALOGE("%s: Invalid streamId in CaptureRequest.outputBuffers: %d", __FUNCTION__,
549 outputBuf.streamId);
550 return Status::ILLEGAL_ARGUMENT;
551 }
552 }
553
554 const camera_metadata_t* rawSettings = nullptr;
555 bool converted;
556 CameraMetadata settingsFmq; // settings from FMQ
557
558 if (request.fmqSettingsSize > 0) {
559 // non-blocking read; client must write metadata before calling
560 // processOneCaptureRequest
561 settingsFmq.metadata.resize(request.fmqSettingsSize);
562 bool read = mRequestMetadataQueue->read(
563 reinterpret_cast<int8_t*>(settingsFmq.metadata.data()), request.fmqSettingsSize);
564 if (read) {
565 converted = convertFromAidl(settingsFmq, &rawSettings);
566 } else {
567 ALOGE("%s: capture request settings metadata couldn't be read from fmq!", __FUNCTION__);
568 converted = false;
569 }
570 } else {
571 converted = convertFromAidl(request.settings, &rawSettings);
572 }
573
574 if (converted && rawSettings != nullptr) {
575 mLatestReqSetting = rawSettings;
576 }
577
578 if (!converted) {
579 ALOGE("%s: capture request settings metadata is corrupt!", __FUNCTION__);
580 return Status::ILLEGAL_ARGUMENT;
581 }
582
583 if (mFirstRequest && rawSettings == nullptr) {
584 ALOGE("%s: capture request settings must not be null for first request!", __FUNCTION__);
585 return Status::ILLEGAL_ARGUMENT;
586 }
587
588 size_t numOutputBufs = request.outputBuffers.size();
589
590 if (numOutputBufs == 0) {
591 ALOGE("%s: capture request must have at least one output buffer!", __FUNCTION__);
592 return Status::ILLEGAL_ARGUMENT;
593 }
594
595 camera_metadata_entry fpsRange = mLatestReqSetting.find(ANDROID_CONTROL_AE_TARGET_FPS_RANGE);
596 if (fpsRange.count == 2) {
597 double requestFpsMax = fpsRange.data.i32[1];
598 double closestFps = 0.0;
599 double fpsError = 1000.0;
600 bool fpsSupported = false;
601 for (const auto& fr : mV4l2StreamingFmt.frameRates) {
602 double f = fr.getFramesPerSecond();
603 if (std::fabs(requestFpsMax - f) < 1.0) {
604 fpsSupported = true;
605 break;
606 }
607 if (std::fabs(requestFpsMax - f) < fpsError) {
608 fpsError = std::fabs(requestFpsMax - f);
609 closestFps = f;
610 }
611 }
612 if (!fpsSupported) {
613 /* This can happen in a few scenarios:
614 * 1. The application is sending an FPS range not supported by the configured outputs.
615 * 2. The application is sending a valid FPS range for all configured outputs, but
616 * the selected V4L2 size can only run at slower speed. This should be very rare
617 * though: for this to happen a sensor needs to support at least 3 different aspect
618 * ratio outputs, and when (at least) two outputs are both not the main aspect ratio
619 * of the webcam, a third size that's larger might be picked and runs into this
620 * issue.
621 */
622 ALOGW("%s: cannot reach fps %d! Will do %f instead", __FUNCTION__, fpsRange.data.i32[1],
623 closestFps);
624 requestFpsMax = closestFps;
625 }
626
627 if (requestFpsMax != mV4l2StreamingFps) {
628 {
629 std::unique_lock<std::mutex> lk(mV4l2BufferLock);
630 while (mNumDequeuedV4l2Buffers != 0) {
631 // Wait until pipeline is idle before reconfigure stream
632 int waitRet = waitForV4L2BufferReturnLocked(lk);
633 if (waitRet != 0) {
634 ALOGE("%s: wait for pipeline idle failed!", __FUNCTION__);
635 return Status::INTERNAL_ERROR;
636 }
637 }
638 }
639 configureV4l2StreamLocked(mV4l2StreamingFmt, requestFpsMax);
640 }
641 }
642
643 nsecs_t shutterTs = 0;
644 std::unique_ptr<V4L2Frame> frameIn = dequeueV4l2FrameLocked(&shutterTs);
645 if (frameIn == nullptr) {
646 ALOGE("%s: V4L2 deque frame failed!", __FUNCTION__);
647 return Status::INTERNAL_ERROR;
648 }
649
650 std::shared_ptr<HalRequest> halReq = std::make_shared<HalRequest>();
651 halReq->frameNumber = request.frameNumber;
652 halReq->setting = mLatestReqSetting;
653 halReq->frameIn = std::move(frameIn);
654 halReq->shutterTs = shutterTs;
655 halReq->buffers.resize(numOutputBufs);
656 for (size_t i = 0; i < numOutputBufs; i++) {
657 HalStreamBuffer& halBuf = halReq->buffers[i];
658 int streamId = halBuf.streamId = request.outputBuffers[i].streamId;
659 halBuf.bufferId = request.outputBuffers[i].bufferId;
660 const Stream& stream = mStreamMap[streamId];
661 halBuf.width = stream.width;
662 halBuf.height = stream.height;
663 halBuf.format = stream.format;
664 halBuf.usage = stream.usage;
665 halBuf.bufPtr = nullptr; // threadloop will request buffer from cameraservice
666 halBuf.acquireFence = 0; // threadloop will request fence from cameraservice
667 halBuf.fenceTimeout = false;
668 }
669 {
670 std::lock_guard<std::mutex> lk(mInflightFramesLock);
671 mInflightFrames.insert(halReq->frameNumber);
672 }
673 // Send request to OutputThread for the rest of processing
674 mOutputThread->submitRequest(halReq);
675 mFirstRequest = false;
676 return Status::OK;
677 }
678
signalStreamFlush(const std::vector<int32_t> &,int32_t in_streamConfigCounter)679 ScopedAStatus ExternalCameraDeviceSession::signalStreamFlush(
680 const std::vector<int32_t>& /*in_streamIds*/, int32_t in_streamConfigCounter) {
681 {
682 Mutex::Autolock _l(mLock);
683 if (in_streamConfigCounter < mLastStreamConfigCounter) {
684 // stale call. new streams have been configured since this call was issued.
685 // Do nothing.
686 return fromStatus(Status::OK);
687 }
688 }
689
690 // TODO: implement if needed.
691 return fromStatus(Status::OK);
692 }
693
switchToOffline(const std::vector<int32_t> & in_streamsToKeep,CameraOfflineSessionInfo * out_offlineSessionInfo,std::shared_ptr<ICameraOfflineSession> * _aidl_return)694 ScopedAStatus ExternalCameraDeviceSession::switchToOffline(
695 const std::vector<int32_t>& in_streamsToKeep,
696 CameraOfflineSessionInfo* out_offlineSessionInfo,
697 std::shared_ptr<ICameraOfflineSession>* _aidl_return) {
698 std::vector<NotifyMsg> msgs;
699 std::vector<CaptureResult> results;
700 CameraOfflineSessionInfo info;
701 std::shared_ptr<ICameraOfflineSession> session;
702 Status st = switchToOffline(in_streamsToKeep, &msgs, &results, &info, &session);
703
704 mCallback->notify(msgs);
705 invokeProcessCaptureResultCallback(results, /* tryWriteFmq= */ true);
706 freeReleaseFences(results);
707
708 // setup return values
709 *out_offlineSessionInfo = info;
710 *_aidl_return = session;
711 return fromStatus(st);
712 }
713
switchToOffline(const std::vector<int32_t> & offlineStreams,std::vector<NotifyMsg> * msgs,std::vector<CaptureResult> * results,CameraOfflineSessionInfo * info,std::shared_ptr<ICameraOfflineSession> * session)714 Status ExternalCameraDeviceSession::switchToOffline(
715 const std::vector<int32_t>& offlineStreams, std::vector<NotifyMsg>* msgs,
716 std::vector<CaptureResult>* results, CameraOfflineSessionInfo* info,
717 std::shared_ptr<ICameraOfflineSession>* session) {
718 ATRACE_CALL();
719 if (offlineStreams.size() > 1) {
720 ALOGE("%s: more than one offline stream is not supported", __FUNCTION__);
721 return Status::ILLEGAL_ARGUMENT;
722 }
723
724 if (msgs == nullptr || results == nullptr || info == nullptr || session == nullptr) {
725 ALOGE("%s, output arguments (%p, %p, %p, %p) must not be null", __FUNCTION__, msgs, results,
726 info, session);
727 }
728
729 Mutex::Autolock _il(mInterfaceLock);
730 Status status = initStatus();
731 if (status != Status::OK) {
732 return status;
733 }
734
735 Mutex::Autolock _l(mLock);
736 for (auto streamId : offlineStreams) {
737 if (!supportOfflineLocked(streamId)) {
738 return Status::ILLEGAL_ARGUMENT;
739 }
740 }
741
742 // pause output thread and get all remaining inflight requests
743 auto remainingReqs = mOutputThread->switchToOffline();
744 std::vector<std::shared_ptr<HalRequest>> halReqs;
745
746 // Send out buffer/request error for remaining requests and filter requests
747 // to be handled in offline mode
748 for (auto& halReq : remainingReqs) {
749 bool dropReq = canDropRequest(offlineStreams, halReq);
750 if (dropReq) {
751 // Request is dropped completely. Just send request error and
752 // there is no need to send the request to offline session
753 processCaptureRequestError(halReq, msgs, results);
754 continue;
755 }
756
757 // All requests reach here must have at least one offline stream output
758 NotifyMsg shutter;
759 aidl::android::hardware::camera::device::ShutterMsg shutterMsg = {
760 .frameNumber = static_cast<int32_t>(halReq->frameNumber),
761 .timestamp = halReq->shutterTs};
762 shutter.set<NotifyMsg::Tag::shutter>(shutterMsg);
763 msgs->push_back(shutter);
764
765 std::vector<HalStreamBuffer> offlineBuffers;
766 for (const auto& buffer : halReq->buffers) {
767 bool dropBuffer = true;
768 for (auto offlineStreamId : offlineStreams) {
769 if (buffer.streamId == offlineStreamId) {
770 dropBuffer = false;
771 break;
772 }
773 }
774 if (dropBuffer) {
775 aidl::android::hardware::camera::device::ErrorMsg errorMsg = {
776 .frameNumber = static_cast<int32_t>(halReq->frameNumber),
777 .errorStreamId = buffer.streamId,
778 .errorCode = ErrorCode::ERROR_BUFFER};
779
780 NotifyMsg error;
781 error.set<NotifyMsg::Tag::error>(errorMsg);
782 msgs->push_back(error);
783
784 results->push_back({
785 .frameNumber = static_cast<int32_t>(halReq->frameNumber),
786 .outputBuffers = {},
787 .inputBuffer = {.streamId = -1},
788 .partialResult = 0, // buffer only result
789 });
790
791 CaptureResult& result = results->back();
792 result.outputBuffers.resize(1);
793 StreamBuffer& outputBuffer = result.outputBuffers[0];
794 outputBuffer.streamId = buffer.streamId;
795 outputBuffer.bufferId = buffer.bufferId;
796 outputBuffer.status = BufferStatus::ERROR;
797 if (buffer.acquireFence >= 0) {
798 native_handle_t* handle = native_handle_create(/*numFds*/ 1, /*numInts*/ 0);
799 handle->data[0] = buffer.acquireFence;
800 outputBuffer.releaseFence = android::dupToAidl(handle);
801 native_handle_delete(handle);
802 }
803 } else {
804 offlineBuffers.push_back(buffer);
805 }
806 }
807 halReq->buffers = offlineBuffers;
808 halReqs.push_back(halReq);
809 }
810
811 // convert hal requests to offline request
812 std::deque<std::shared_ptr<HalRequest>> offlineReqs(halReqs.size());
813 size_t i = 0;
814 for (auto& v4lReq : halReqs) {
815 offlineReqs[i] = std::make_shared<HalRequest>();
816 offlineReqs[i]->frameNumber = v4lReq->frameNumber;
817 offlineReqs[i]->setting = v4lReq->setting;
818 offlineReqs[i]->shutterTs = v4lReq->shutterTs;
819 offlineReqs[i]->buffers = v4lReq->buffers;
820 std::shared_ptr<V4L2Frame> v4l2Frame(static_cast<V4L2Frame*>(v4lReq->frameIn.get()));
821 offlineReqs[i]->frameIn = std::make_shared<AllocatedV4L2Frame>(v4l2Frame);
822 i++;
823 // enqueue V4L2 frame
824 enqueueV4l2Frame(v4l2Frame);
825 }
826
827 // Collect buffer caches/streams
828 std::vector<Stream> streamInfos(offlineStreams.size());
829 std::map<int, CirculatingBuffers> circulatingBuffers;
830 {
831 Mutex::Autolock _cbsl(mCbsLock);
832 for (auto streamId : offlineStreams) {
833 circulatingBuffers[streamId] = mCirculatingBuffers.at(streamId);
834 mCirculatingBuffers.erase(streamId);
835 streamInfos.push_back(mStreamMap.at(streamId));
836 mStreamMap.erase(streamId);
837 }
838 }
839
840 fillOfflineSessionInfo(offlineStreams, offlineReqs, circulatingBuffers, info);
841 // create the offline session object
842 bool afTrigger;
843 {
844 std::lock_guard<std::mutex> _lk(mAfTriggerLock);
845 afTrigger = mAfTrigger;
846 }
847
848 std::shared_ptr<ExternalCameraOfflineSession> sessionImpl =
849 ndk::SharedRefBase::make<ExternalCameraOfflineSession>(
850 mCroppingType, mCameraCharacteristics, mCameraId, mExifMake, mExifModel,
851 mBlobBufferSize, afTrigger, streamInfos, offlineReqs, circulatingBuffers);
852
853 bool initFailed = sessionImpl->initialize();
854 if (initFailed) {
855 ALOGE("%s: offline session initialize failed!", __FUNCTION__);
856 return Status::INTERNAL_ERROR;
857 }
858
859 // cleanup stream and buffer caches
860 {
861 Mutex::Autolock _cbsl(mCbsLock);
862 for (auto pair : mStreamMap) {
863 cleanupBuffersLocked(/*Stream ID*/ pair.first);
864 }
865 mCirculatingBuffers.clear();
866 }
867 mStreamMap.clear();
868
869 // update inflight records
870 {
871 std::lock_guard<std::mutex> _lk(mInflightFramesLock);
872 mInflightFrames.clear();
873 }
874
875 // stop v4l2 streaming
876 if (v4l2StreamOffLocked() != 0) {
877 ALOGE("%s: stop V4L2 streaming failed!", __FUNCTION__);
878 return Status::INTERNAL_ERROR;
879 }
880
881 // No need to return session if there is no offline requests left
882 if (!offlineReqs.empty()) {
883 *session = sessionImpl;
884 } else {
885 *session = nullptr;
886 }
887
888 return Status::OK;
889 }
890
891 #define ARRAY_SIZE(a) (sizeof(a) / sizeof(a[0]))
892 #define UPDATE(md, tag, data, size) \
893 do { \
894 if ((md).update((tag), (data), (size))) { \
895 ALOGE("Update " #tag " failed!"); \
896 return BAD_VALUE; \
897 } \
898 } while (0)
899
initDefaultRequests()900 status_t ExternalCameraDeviceSession::initDefaultRequests() {
901 common::V1_0::helper::CameraMetadata md;
902
903 const uint8_t aberrationMode = ANDROID_COLOR_CORRECTION_ABERRATION_MODE_OFF;
904 UPDATE(md, ANDROID_COLOR_CORRECTION_ABERRATION_MODE, &aberrationMode, 1);
905
906 const int32_t exposureCompensation = 0;
907 UPDATE(md, ANDROID_CONTROL_AE_EXPOSURE_COMPENSATION, &exposureCompensation, 1);
908
909 const uint8_t videoStabilizationMode = ANDROID_CONTROL_VIDEO_STABILIZATION_MODE_OFF;
910 UPDATE(md, ANDROID_CONTROL_VIDEO_STABILIZATION_MODE, &videoStabilizationMode, 1);
911
912 const uint8_t awbMode = ANDROID_CONTROL_AWB_MODE_AUTO;
913 UPDATE(md, ANDROID_CONTROL_AWB_MODE, &awbMode, 1);
914
915 const uint8_t aeMode = ANDROID_CONTROL_AE_MODE_ON;
916 UPDATE(md, ANDROID_CONTROL_AE_MODE, &aeMode, 1);
917
918 const uint8_t aePrecaptureTrigger = ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER_IDLE;
919 UPDATE(md, ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER, &aePrecaptureTrigger, 1);
920
921 const uint8_t afMode = ANDROID_CONTROL_AF_MODE_AUTO;
922 UPDATE(md, ANDROID_CONTROL_AF_MODE, &afMode, 1);
923
924 const uint8_t afTrigger = ANDROID_CONTROL_AF_TRIGGER_IDLE;
925 UPDATE(md, ANDROID_CONTROL_AF_TRIGGER, &afTrigger, 1);
926
927 const uint8_t sceneMode = ANDROID_CONTROL_SCENE_MODE_DISABLED;
928 UPDATE(md, ANDROID_CONTROL_SCENE_MODE, &sceneMode, 1);
929
930 const uint8_t effectMode = ANDROID_CONTROL_EFFECT_MODE_OFF;
931 UPDATE(md, ANDROID_CONTROL_EFFECT_MODE, &effectMode, 1);
932
933 const uint8_t flashMode = ANDROID_FLASH_MODE_OFF;
934 UPDATE(md, ANDROID_FLASH_MODE, &flashMode, 1);
935
936 const int32_t thumbnailSize[] = {240, 180};
937 UPDATE(md, ANDROID_JPEG_THUMBNAIL_SIZE, thumbnailSize, 2);
938
939 const uint8_t jpegQuality = 90;
940 UPDATE(md, ANDROID_JPEG_QUALITY, &jpegQuality, 1);
941 UPDATE(md, ANDROID_JPEG_THUMBNAIL_QUALITY, &jpegQuality, 1);
942
943 const int32_t jpegOrientation = 0;
944 UPDATE(md, ANDROID_JPEG_ORIENTATION, &jpegOrientation, 1);
945
946 const uint8_t oisMode = ANDROID_LENS_OPTICAL_STABILIZATION_MODE_OFF;
947 UPDATE(md, ANDROID_LENS_OPTICAL_STABILIZATION_MODE, &oisMode, 1);
948
949 const uint8_t nrMode = ANDROID_NOISE_REDUCTION_MODE_OFF;
950 UPDATE(md, ANDROID_NOISE_REDUCTION_MODE, &nrMode, 1);
951
952 const int32_t testPatternModes = ANDROID_SENSOR_TEST_PATTERN_MODE_OFF;
953 UPDATE(md, ANDROID_SENSOR_TEST_PATTERN_MODE, &testPatternModes, 1);
954
955 const uint8_t fdMode = ANDROID_STATISTICS_FACE_DETECT_MODE_OFF;
956 UPDATE(md, ANDROID_STATISTICS_FACE_DETECT_MODE, &fdMode, 1);
957
958 const uint8_t hotpixelMode = ANDROID_STATISTICS_HOT_PIXEL_MAP_MODE_OFF;
959 UPDATE(md, ANDROID_STATISTICS_HOT_PIXEL_MAP_MODE, &hotpixelMode, 1);
960
961 bool support30Fps = false;
962 int32_t maxFps = std::numeric_limits<int32_t>::min();
963 for (const auto& supportedFormat : mSupportedFormats) {
964 for (const auto& fr : supportedFormat.frameRates) {
965 int32_t framerateInt = static_cast<int32_t>(fr.getFramesPerSecond());
966 if (maxFps < framerateInt) {
967 maxFps = framerateInt;
968 }
969 if (framerateInt == 30) {
970 support30Fps = true;
971 break;
972 }
973 }
974 if (support30Fps) {
975 break;
976 }
977 }
978
979 int32_t defaultFramerate = support30Fps ? 30 : maxFps;
980 int32_t defaultFpsRange[] = {defaultFramerate / 2, defaultFramerate};
981 UPDATE(md, ANDROID_CONTROL_AE_TARGET_FPS_RANGE, defaultFpsRange, ARRAY_SIZE(defaultFpsRange));
982
983 uint8_t antibandingMode = ANDROID_CONTROL_AE_ANTIBANDING_MODE_AUTO;
984 UPDATE(md, ANDROID_CONTROL_AE_ANTIBANDING_MODE, &antibandingMode, 1);
985
986 const uint8_t controlMode = ANDROID_CONTROL_MODE_AUTO;
987 UPDATE(md, ANDROID_CONTROL_MODE, &controlMode, 1);
988
989 for (const auto& type : ndk::enum_range<RequestTemplate>()) {
990 common::V1_0::helper::CameraMetadata mdCopy = md;
991 uint8_t intent = ANDROID_CONTROL_CAPTURE_INTENT_PREVIEW;
992 switch (type) {
993 case RequestTemplate::PREVIEW:
994 intent = ANDROID_CONTROL_CAPTURE_INTENT_PREVIEW;
995 break;
996 case RequestTemplate::STILL_CAPTURE:
997 intent = ANDROID_CONTROL_CAPTURE_INTENT_STILL_CAPTURE;
998 break;
999 case RequestTemplate::VIDEO_RECORD:
1000 intent = ANDROID_CONTROL_CAPTURE_INTENT_VIDEO_RECORD;
1001 break;
1002 case RequestTemplate::VIDEO_SNAPSHOT:
1003 intent = ANDROID_CONTROL_CAPTURE_INTENT_VIDEO_SNAPSHOT;
1004 break;
1005 default:
1006 ALOGV("%s: unsupported RequestTemplate type %d", __FUNCTION__, type);
1007 continue;
1008 }
1009 UPDATE(mdCopy, ANDROID_CONTROL_CAPTURE_INTENT, &intent, 1);
1010 camera_metadata_t* mdPtr = mdCopy.release();
1011 uint8_t* rawMd = reinterpret_cast<uint8_t*>(mdPtr);
1012 CameraMetadata aidlMd;
1013 aidlMd.metadata.assign(rawMd, rawMd + get_camera_metadata_size(mdPtr));
1014 mDefaultRequests[type] = aidlMd;
1015 free_camera_metadata(mdPtr);
1016 }
1017 return OK;
1018 }
1019
fillCaptureResult(common::V1_0::helper::CameraMetadata & md,nsecs_t timestamp)1020 status_t ExternalCameraDeviceSession::fillCaptureResult(common::V1_0::helper::CameraMetadata& md,
1021 nsecs_t timestamp) {
1022 bool afTrigger = false;
1023 {
1024 std::lock_guard<std::mutex> lk(mAfTriggerLock);
1025 afTrigger = mAfTrigger;
1026 if (md.exists(ANDROID_CONTROL_AF_TRIGGER)) {
1027 camera_metadata_entry entry = md.find(ANDROID_CONTROL_AF_TRIGGER);
1028 if (entry.data.u8[0] == ANDROID_CONTROL_AF_TRIGGER_START) {
1029 mAfTrigger = afTrigger = true;
1030 } else if (entry.data.u8[0] == ANDROID_CONTROL_AF_TRIGGER_CANCEL) {
1031 mAfTrigger = afTrigger = false;
1032 }
1033 }
1034 }
1035
1036 // For USB camera, the USB camera handles everything and we don't have control
1037 // over AF. We only simply fake the AF metadata based on the request
1038 // received here.
1039 uint8_t afState;
1040 if (afTrigger) {
1041 afState = ANDROID_CONTROL_AF_STATE_FOCUSED_LOCKED;
1042 } else {
1043 afState = ANDROID_CONTROL_AF_STATE_INACTIVE;
1044 }
1045 UPDATE(md, ANDROID_CONTROL_AF_STATE, &afState, 1);
1046
1047 camera_metadata_ro_entry activeArraySize =
1048 mCameraCharacteristics.find(ANDROID_SENSOR_INFO_ACTIVE_ARRAY_SIZE);
1049
1050 return fillCaptureResultCommon(md, timestamp, activeArraySize);
1051 }
1052
configureV4l2StreamLocked(const SupportedV4L2Format & v4l2Fmt,double requestFps)1053 int ExternalCameraDeviceSession::configureV4l2StreamLocked(const SupportedV4L2Format& v4l2Fmt,
1054 double requestFps) {
1055 ATRACE_CALL();
1056 int ret = v4l2StreamOffLocked();
1057 if (ret != OK) {
1058 ALOGE("%s: stop v4l2 streaming failed: ret %d", __FUNCTION__, ret);
1059 return ret;
1060 }
1061
1062 // VIDIOC_S_FMT w/h/fmt
1063 v4l2_format fmt;
1064 fmt.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
1065 fmt.fmt.pix.width = v4l2Fmt.width;
1066 fmt.fmt.pix.height = v4l2Fmt.height;
1067 fmt.fmt.pix.pixelformat = v4l2Fmt.fourcc;
1068
1069 {
1070 int numAttempt = 0;
1071 do {
1072 ret = TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_S_FMT, &fmt));
1073 if (numAttempt == MAX_RETRY) {
1074 break;
1075 }
1076 numAttempt++;
1077 if (ret < 0) {
1078 ALOGW("%s: VIDIOC_S_FMT failed, wait 33ms and try again", __FUNCTION__);
1079 usleep(IOCTL_RETRY_SLEEP_US); // sleep and try again
1080 }
1081 } while (ret < 0);
1082 if (ret < 0) {
1083 ALOGE("%s: S_FMT ioctl failed: %s", __FUNCTION__, strerror(errno));
1084 return -errno;
1085 }
1086 }
1087
1088 if (v4l2Fmt.width != fmt.fmt.pix.width || v4l2Fmt.height != fmt.fmt.pix.height ||
1089 v4l2Fmt.fourcc != fmt.fmt.pix.pixelformat) {
1090 ALOGE("%s: S_FMT expect %c%c%c%c %dx%d, got %c%c%c%c %dx%d instead!", __FUNCTION__,
1091 v4l2Fmt.fourcc & 0xFF, (v4l2Fmt.fourcc >> 8) & 0xFF, (v4l2Fmt.fourcc >> 16) & 0xFF,
1092 (v4l2Fmt.fourcc >> 24) & 0xFF, v4l2Fmt.width, v4l2Fmt.height,
1093 fmt.fmt.pix.pixelformat & 0xFF, (fmt.fmt.pix.pixelformat >> 8) & 0xFF,
1094 (fmt.fmt.pix.pixelformat >> 16) & 0xFF, (fmt.fmt.pix.pixelformat >> 24) & 0xFF,
1095 fmt.fmt.pix.width, fmt.fmt.pix.height);
1096 return -EINVAL;
1097 }
1098
1099 uint32_t bufferSize = fmt.fmt.pix.sizeimage;
1100 ALOGI("%s: V4L2 buffer size is %d", __FUNCTION__, bufferSize);
1101 uint32_t expectedMaxBufferSize = kMaxBytesPerPixel * fmt.fmt.pix.width * fmt.fmt.pix.height;
1102 if ((bufferSize == 0) || (bufferSize > expectedMaxBufferSize)) {
1103 ALOGE("%s: V4L2 buffer size: %u looks invalid. Expected maximum size: %u", __FUNCTION__,
1104 bufferSize, expectedMaxBufferSize);
1105 return -EINVAL;
1106 }
1107 mMaxV4L2BufferSize = bufferSize;
1108
1109 const double kDefaultFps = 30.0;
1110 double fps = std::numeric_limits<double>::max();
1111 if (requestFps != 0.0) {
1112 fps = requestFps;
1113 } else {
1114 double maxFps = -1.0;
1115 // Try to pick the slowest fps that is at least 30
1116 for (const auto& fr : v4l2Fmt.frameRates) {
1117 double f = fr.getFramesPerSecond();
1118 if (maxFps < f) {
1119 maxFps = f;
1120 }
1121 if (f >= kDefaultFps && f < fps) {
1122 fps = f;
1123 }
1124 }
1125 // No fps > 30 found, use the highest fps available within supported formats.
1126 if (fps == std::numeric_limits<double>::max()) {
1127 fps = maxFps;
1128 }
1129 }
1130
1131 int fpsRet = setV4l2FpsLocked(fps);
1132 if (fpsRet != 0 && fpsRet != -EINVAL) {
1133 ALOGE("%s: set fps failed: %s", __FUNCTION__, strerror(fpsRet));
1134 return fpsRet;
1135 }
1136
1137 uint32_t v4lBufferCount = (fps >= kDefaultFps) ? mCfg.numVideoBuffers : mCfg.numStillBuffers;
1138
1139 // Double the max lag in theory.
1140 mMaxLagNs = v4lBufferCount * 1000000000LL * 2 / fps;
1141 ALOGI("%s: set mMaxLagNs to %" PRIu64 " ns, v4lBufferCount %u", __FUNCTION__, mMaxLagNs,
1142 v4lBufferCount);
1143
1144 // VIDIOC_REQBUFS: create buffers
1145 v4l2_requestbuffers req_buffers{};
1146 req_buffers.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
1147 req_buffers.memory = V4L2_MEMORY_MMAP;
1148 req_buffers.count = v4lBufferCount;
1149 if (TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_REQBUFS, &req_buffers)) < 0) {
1150 ALOGE("%s: VIDIOC_REQBUFS failed: %s", __FUNCTION__, strerror(errno));
1151 return -errno;
1152 }
1153
1154 // Driver can indeed return more buffer if it needs more to operate
1155 if (req_buffers.count < v4lBufferCount) {
1156 ALOGE("%s: VIDIOC_REQBUFS expected %d buffers, got %d instead", __FUNCTION__,
1157 v4lBufferCount, req_buffers.count);
1158 return NO_MEMORY;
1159 }
1160
1161 // VIDIOC_QUERYBUF: get buffer offset in the V4L2 fd
1162 // VIDIOC_QBUF: send buffer to driver
1163 mV4L2BufferCount = req_buffers.count;
1164 for (uint32_t i = 0; i < req_buffers.count; i++) {
1165 v4l2_buffer buffer = {
1166 .index = i, .type = V4L2_BUF_TYPE_VIDEO_CAPTURE, .memory = V4L2_MEMORY_MMAP};
1167
1168 if (TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_QUERYBUF, &buffer)) < 0) {
1169 ALOGE("%s: QUERYBUF %d failed: %s", __FUNCTION__, i, strerror(errno));
1170 return -errno;
1171 }
1172
1173 if (TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_QBUF, &buffer)) < 0) {
1174 ALOGE("%s: QBUF %d failed: %s", __FUNCTION__, i, strerror(errno));
1175 return -errno;
1176 }
1177 }
1178
1179 {
1180 // VIDIOC_STREAMON: start streaming
1181 v4l2_buf_type capture_type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
1182 int numAttempt = 0;
1183 do {
1184 ret = TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_STREAMON, &capture_type));
1185 if (numAttempt == MAX_RETRY) {
1186 break;
1187 }
1188 if (ret < 0) {
1189 ALOGW("%s: VIDIOC_STREAMON failed, wait 33ms and try again", __FUNCTION__);
1190 usleep(IOCTL_RETRY_SLEEP_US); // sleep 100 ms and try again
1191 }
1192 } while (ret < 0);
1193
1194 if (ret < 0) {
1195 ALOGE("%s: VIDIOC_STREAMON ioctl failed: %s", __FUNCTION__, strerror(errno));
1196 return -errno;
1197 }
1198 }
1199
1200 // Swallow first few frames after streamOn to account for bad frames from some devices
1201 for (int i = 0; i < kBadFramesAfterStreamOn; i++) {
1202 v4l2_buffer buffer{};
1203 buffer.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
1204 buffer.memory = V4L2_MEMORY_MMAP;
1205 if (TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_DQBUF, &buffer)) < 0) {
1206 ALOGE("%s: DQBUF fails: %s", __FUNCTION__, strerror(errno));
1207 return -errno;
1208 }
1209
1210 if (TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_QBUF, &buffer)) < 0) {
1211 ALOGE("%s: QBUF index %d fails: %s", __FUNCTION__, buffer.index, strerror(errno));
1212 return -errno;
1213 }
1214 }
1215
1216 ALOGI("%s: start V4L2 streaming %dx%d@%ffps", __FUNCTION__, v4l2Fmt.width, v4l2Fmt.height, fps);
1217 mV4l2StreamingFmt = v4l2Fmt;
1218 mV4l2Streaming = true;
1219 return OK;
1220 }
1221
dequeueV4l2FrameLocked(nsecs_t * shutterTs)1222 std::unique_ptr<V4L2Frame> ExternalCameraDeviceSession::dequeueV4l2FrameLocked(nsecs_t* shutterTs) {
1223 ATRACE_CALL();
1224 std::unique_ptr<V4L2Frame> ret = nullptr;
1225 if (shutterTs == nullptr) {
1226 ALOGE("%s: shutterTs must not be null!", __FUNCTION__);
1227 return ret;
1228 }
1229
1230 {
1231 std::unique_lock<std::mutex> lk(mV4l2BufferLock);
1232 if (mNumDequeuedV4l2Buffers == mV4L2BufferCount) {
1233 int waitRet = waitForV4L2BufferReturnLocked(lk);
1234 if (waitRet != 0) {
1235 return ret;
1236 }
1237 }
1238 }
1239
1240 uint64_t lagNs = 0;
1241 v4l2_buffer buffer{};
1242 do {
1243 ATRACE_BEGIN("VIDIOC_DQBUF");
1244 buffer.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
1245 buffer.memory = V4L2_MEMORY_MMAP;
1246 if (TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_DQBUF, &buffer)) < 0) {
1247 ALOGE("%s: DQBUF fails: %s", __FUNCTION__, strerror(errno));
1248 return ret;
1249 }
1250 ATRACE_END();
1251
1252 if (buffer.index >= mV4L2BufferCount) {
1253 ALOGE("%s: Invalid buffer id: %d", __FUNCTION__, buffer.index);
1254 return ret;
1255 }
1256
1257 if (buffer.flags & V4L2_BUF_FLAG_ERROR) {
1258 ALOGE("%s: v4l2 buf error! buf flag 0x%x", __FUNCTION__, buffer.flags);
1259 // TODO: try to dequeue again
1260 }
1261
1262 if (buffer.bytesused > mMaxV4L2BufferSize) {
1263 ALOGE("%s: v4l2 buffer bytes used: %u maximum %u", __FUNCTION__, buffer.bytesused,
1264 mMaxV4L2BufferSize);
1265 return ret;
1266 }
1267
1268 nsecs_t curTimeNs = systemTime(SYSTEM_TIME_MONOTONIC);
1269
1270 if (buffer.flags & V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC) {
1271 // Ideally we should also check for V4L2_BUF_FLAG_TSTAMP_SRC_SOE, but
1272 // even V4L2_BUF_FLAG_TSTAMP_SRC_EOF is better than capture a timestamp now
1273 *shutterTs = static_cast<nsecs_t>(buffer.timestamp.tv_sec) * 1000000000LL +
1274 buffer.timestamp.tv_usec * 1000LL;
1275 } else {
1276 *shutterTs = curTimeNs;
1277 }
1278
1279 // The tactic only takes effect on v4l2 buffers with flag V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC.
1280 // Most USB cameras should have the feature.
1281 if (curTimeNs < *shutterTs) {
1282 lagNs = 0;
1283 ALOGW("%s: should not happen, the monotonic clock has issue, shutterTs is in the "
1284 "future, curTimeNs %" PRId64 " < "
1285 "shutterTs %" PRId64 "",
1286 __func__, curTimeNs, *shutterTs);
1287 } else {
1288 lagNs = curTimeNs - *shutterTs;
1289 }
1290
1291 if (lagNs > mMaxLagNs) {
1292 ALOGI("%s: drop too old buffer, index %d, lag %" PRIu64 " ns > max %" PRIu64 " ns", __FUNCTION__,
1293 buffer.index, lagNs, mMaxLagNs);
1294 int retVal = ioctl(mV4l2Fd.get(), VIDIOC_QBUF, &buffer);
1295 if (retVal) {
1296 ALOGE("%s: unexpected VIDIOC_QBUF failed, retVal %d", __FUNCTION__, retVal);
1297 return ret;
1298 }
1299 }
1300 } while (lagNs > mMaxLagNs);
1301
1302 {
1303 std::lock_guard<std::mutex> lk(mV4l2BufferLock);
1304 mNumDequeuedV4l2Buffers++;
1305 }
1306
1307 return std::make_unique<V4L2Frame>(mV4l2StreamingFmt.width, mV4l2StreamingFmt.height,
1308 mV4l2StreamingFmt.fourcc, buffer.index, mV4l2Fd.get(),
1309 buffer.bytesused, buffer.m.offset);
1310 }
1311
enqueueV4l2Frame(const std::shared_ptr<V4L2Frame> & frame)1312 void ExternalCameraDeviceSession::enqueueV4l2Frame(const std::shared_ptr<V4L2Frame>& frame) {
1313 ATRACE_CALL();
1314 frame->unmap();
1315 ATRACE_BEGIN("VIDIOC_QBUF");
1316 v4l2_buffer buffer{};
1317 buffer.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
1318 buffer.memory = V4L2_MEMORY_MMAP;
1319 buffer.index = frame->mBufferIndex;
1320 if (TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_QBUF, &buffer)) < 0) {
1321 ALOGE("%s: QBUF index %d fails: %s", __FUNCTION__, frame->mBufferIndex, strerror(errno));
1322 return;
1323 }
1324 ATRACE_END();
1325
1326 {
1327 std::lock_guard<std::mutex> lk(mV4l2BufferLock);
1328 mNumDequeuedV4l2Buffers--;
1329 }
1330 mV4L2BufferReturned.notify_one();
1331 }
1332
isSupported(const Stream & stream,const std::vector<SupportedV4L2Format> & supportedFormats,const ExternalCameraConfig & devCfg)1333 bool ExternalCameraDeviceSession::isSupported(
1334 const Stream& stream, const std::vector<SupportedV4L2Format>& supportedFormats,
1335 const ExternalCameraConfig& devCfg) {
1336 Dataspace ds = stream.dataSpace;
1337 PixelFormat fmt = stream.format;
1338 uint32_t width = stream.width;
1339 uint32_t height = stream.height;
1340 // TODO: check usage flags
1341
1342 if (stream.streamType != StreamType::OUTPUT) {
1343 ALOGE("%s: does not support non-output stream type", __FUNCTION__);
1344 return false;
1345 }
1346
1347 if (stream.rotation != StreamRotation::ROTATION_0) {
1348 ALOGE("%s: does not support stream rotation", __FUNCTION__);
1349 return false;
1350 }
1351
1352 switch (fmt) {
1353 case PixelFormat::BLOB:
1354 if (ds != Dataspace::JFIF) {
1355 ALOGI("%s: BLOB format does not support dataSpace %x", __FUNCTION__, ds);
1356 return false;
1357 }
1358 break;
1359 case PixelFormat::IMPLEMENTATION_DEFINED:
1360 case PixelFormat::YCBCR_420_888:
1361 case PixelFormat::YV12:
1362 // TODO: check what dataspace we can support here.
1363 // intentional no-ops.
1364 break;
1365 case PixelFormat::Y16:
1366 if (!devCfg.depthEnabled) {
1367 ALOGI("%s: Depth is not Enabled", __FUNCTION__);
1368 return false;
1369 }
1370 if (!(static_cast<int32_t>(ds) & static_cast<int32_t>(Dataspace::DEPTH))) {
1371 ALOGI("%s: Y16 supports only dataSpace DEPTH", __FUNCTION__);
1372 return false;
1373 }
1374 break;
1375 default:
1376 ALOGI("%s: does not support format %x", __FUNCTION__, fmt);
1377 return false;
1378 }
1379
1380 // Assume we can convert any V4L2 format to any of supported output format for now, i.e.
1381 // ignoring v4l2Fmt.fourcc for now. Might need more subtle check if we support more v4l format
1382 // in the futrue.
1383 for (const auto& v4l2Fmt : supportedFormats) {
1384 if (width == v4l2Fmt.width && height == v4l2Fmt.height) {
1385 return true;
1386 }
1387 }
1388 ALOGI("%s: resolution %dx%d is not supported", __FUNCTION__, width, height);
1389 return false;
1390 }
1391
importBuffer(int32_t streamId,uint64_t bufId,buffer_handle_t buf,buffer_handle_t ** outBufPtr)1392 Status ExternalCameraDeviceSession::importBuffer(int32_t streamId, uint64_t bufId,
1393 buffer_handle_t buf,
1394 /*out*/ buffer_handle_t** outBufPtr) {
1395 Mutex::Autolock _l(mCbsLock);
1396 return importBufferLocked(streamId, bufId, buf, outBufPtr);
1397 }
1398
importBufferLocked(int32_t streamId,uint64_t bufId,buffer_handle_t buf,buffer_handle_t ** outBufPtr)1399 Status ExternalCameraDeviceSession::importBufferLocked(int32_t streamId, uint64_t bufId,
1400 buffer_handle_t buf,
1401 buffer_handle_t** outBufPtr) {
1402 return importBufferImpl(mCirculatingBuffers, sHandleImporter, streamId, bufId, buf, outBufPtr);
1403 }
1404
close()1405 ScopedAStatus ExternalCameraDeviceSession::close() {
1406 closeImpl();
1407 return fromStatus(Status::OK);
1408 }
1409
closeImpl()1410 void ExternalCameraDeviceSession::closeImpl() {
1411 Mutex::Autolock _il(mInterfaceLock);
1412 bool closed = isClosed();
1413 if (!closed) {
1414 closeOutputThread();
1415 closeBufferRequestThread();
1416
1417 Mutex::Autolock _l(mLock);
1418 // free all buffers
1419 {
1420 Mutex::Autolock _cbsl(mCbsLock);
1421 for (auto pair : mStreamMap) {
1422 cleanupBuffersLocked(/*Stream ID*/ pair.first);
1423 }
1424 }
1425 v4l2StreamOffLocked();
1426 ALOGV("%s: closing V4L2 camera FD %d", __FUNCTION__, mV4l2Fd.get());
1427 mV4l2Fd.reset();
1428 mClosed = true;
1429 }
1430 }
1431
isClosed()1432 bool ExternalCameraDeviceSession::isClosed() {
1433 Mutex::Autolock _l(mLock);
1434 return mClosed;
1435 }
1436
repeatingRequestEnd(int32_t,const std::vector<int32_t> &)1437 ScopedAStatus ExternalCameraDeviceSession::repeatingRequestEnd(
1438 int32_t /*in_frameNumber*/, const std::vector<int32_t>& /*in_streamIds*/) {
1439 // TODO: Figure this one out.
1440 return fromStatus(Status::OK);
1441 }
1442
v4l2StreamOffLocked()1443 int ExternalCameraDeviceSession::v4l2StreamOffLocked() {
1444 if (!mV4l2Streaming) {
1445 return OK;
1446 }
1447
1448 {
1449 std::lock_guard<std::mutex> lk(mV4l2BufferLock);
1450 if (mNumDequeuedV4l2Buffers != 0) {
1451 ALOGE("%s: there are %zu inflight V4L buffers", __FUNCTION__, mNumDequeuedV4l2Buffers);
1452 return -1;
1453 }
1454 }
1455 mV4L2BufferCount = 0;
1456
1457 // VIDIOC_STREAMOFF
1458 v4l2_buf_type capture_type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
1459 if (TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_STREAMOFF, &capture_type)) < 0) {
1460 ALOGE("%s: STREAMOFF failed: %s", __FUNCTION__, strerror(errno));
1461 return -errno;
1462 }
1463
1464 // VIDIOC_REQBUFS: clear buffers
1465 v4l2_requestbuffers req_buffers{};
1466 req_buffers.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
1467 req_buffers.memory = V4L2_MEMORY_MMAP;
1468 req_buffers.count = 0;
1469 if (TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_REQBUFS, &req_buffers)) < 0) {
1470 ALOGE("%s: REQBUFS failed: %s", __FUNCTION__, strerror(errno));
1471 return -errno;
1472 }
1473
1474 mV4l2Streaming = false;
1475 return OK;
1476 }
1477
setV4l2FpsLocked(double fps)1478 int ExternalCameraDeviceSession::setV4l2FpsLocked(double fps) {
1479 // VIDIOC_G_PARM/VIDIOC_S_PARM: set fps
1480 v4l2_streamparm streamparm = {.type = V4L2_BUF_TYPE_VIDEO_CAPTURE};
1481 // The following line checks that the driver knows about framerate get/set.
1482 int ret = TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_G_PARM, &streamparm));
1483 if (ret != 0) {
1484 if (errno == -EINVAL) {
1485 ALOGW("%s: device does not support VIDIOC_G_PARM", __FUNCTION__);
1486 }
1487 return -errno;
1488 }
1489 // Now check if the device is able to accept a capture framerate set.
1490 if (!(streamparm.parm.capture.capability & V4L2_CAP_TIMEPERFRAME)) {
1491 ALOGW("%s: device does not support V4L2_CAP_TIMEPERFRAME", __FUNCTION__);
1492 return -EINVAL;
1493 }
1494
1495 // fps is float, approximate by a fraction.
1496 const int kFrameRatePrecision = 10000;
1497 streamparm.parm.capture.timeperframe.numerator = kFrameRatePrecision;
1498 streamparm.parm.capture.timeperframe.denominator = (fps * kFrameRatePrecision);
1499
1500 if (TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_S_PARM, &streamparm)) < 0) {
1501 ALOGE("%s: failed to set framerate to %f: %s", __FUNCTION__, fps, strerror(errno));
1502 return -1;
1503 }
1504
1505 double retFps = streamparm.parm.capture.timeperframe.denominator /
1506 static_cast<double>(streamparm.parm.capture.timeperframe.numerator);
1507 if (std::fabs(fps - retFps) > 1.0) {
1508 ALOGE("%s: expect fps %f, got %f instead", __FUNCTION__, fps, retFps);
1509 return -1;
1510 }
1511 mV4l2StreamingFps = fps;
1512 return 0;
1513 }
1514
cleanupInflightFences(std::vector<int> & allFences,size_t numFences)1515 void ExternalCameraDeviceSession::cleanupInflightFences(std::vector<int>& allFences,
1516 size_t numFences) {
1517 for (size_t j = 0; j < numFences; j++) {
1518 sHandleImporter.closeFence(allFences[j]);
1519 }
1520 }
1521
cleanupBuffersLocked(int id)1522 void ExternalCameraDeviceSession::cleanupBuffersLocked(int id) {
1523 for (auto& pair : mCirculatingBuffers.at(id)) {
1524 sHandleImporter.freeBuffer(pair.second);
1525 }
1526 mCirculatingBuffers[id].clear();
1527 mCirculatingBuffers.erase(id);
1528 }
1529
notifyShutter(int32_t frameNumber,nsecs_t shutterTs)1530 void ExternalCameraDeviceSession::notifyShutter(int32_t frameNumber, nsecs_t shutterTs) {
1531 NotifyMsg msg;
1532 msg.set<NotifyMsg::Tag::shutter>(ShutterMsg{
1533 .frameNumber = frameNumber,
1534 .timestamp = shutterTs,
1535 });
1536 mCallback->notify({msg});
1537 }
notifyError(int32_t frameNumber,int32_t streamId,ErrorCode ec)1538 void ExternalCameraDeviceSession::notifyError(int32_t frameNumber, int32_t streamId, ErrorCode ec) {
1539 NotifyMsg msg;
1540 msg.set<NotifyMsg::Tag::error>(ErrorMsg{
1541 .frameNumber = frameNumber,
1542 .errorStreamId = streamId,
1543 .errorCode = ec,
1544 });
1545 mCallback->notify({msg});
1546 }
1547
invokeProcessCaptureResultCallback(std::vector<CaptureResult> & results,bool tryWriteFmq)1548 void ExternalCameraDeviceSession::invokeProcessCaptureResultCallback(
1549 std::vector<CaptureResult>& results, bool tryWriteFmq) {
1550 if (mProcessCaptureResultLock.tryLock() != OK) {
1551 const nsecs_t NS_TO_SECOND = 1000000000;
1552 ALOGV("%s: previous call is not finished! waiting 1s...", __FUNCTION__);
1553 if (mProcessCaptureResultLock.timedLock(/* 1s */ NS_TO_SECOND) != OK) {
1554 ALOGE("%s: cannot acquire lock in 1s, cannot proceed", __FUNCTION__);
1555 return;
1556 }
1557 }
1558 if (tryWriteFmq && mResultMetadataQueue->availableToWrite() > 0) {
1559 for (CaptureResult& result : results) {
1560 CameraMetadata& md = result.result;
1561 if (!md.metadata.empty()) {
1562 if (mResultMetadataQueue->write(reinterpret_cast<int8_t*>(md.metadata.data()),
1563 md.metadata.size())) {
1564 result.fmqResultSize = md.metadata.size();
1565 md.metadata.resize(0);
1566 } else {
1567 ALOGW("%s: couldn't utilize fmq, fall back to hwbinder", __FUNCTION__);
1568 result.fmqResultSize = 0;
1569 }
1570 } else {
1571 result.fmqResultSize = 0;
1572 }
1573 }
1574 }
1575 auto status = mCallback->processCaptureResult(results);
1576 if (!status.isOk()) {
1577 ALOGE("%s: processCaptureResult ERROR : %d:%d", __FUNCTION__, status.getExceptionCode(),
1578 status.getServiceSpecificError());
1579 }
1580
1581 mProcessCaptureResultLock.unlock();
1582 }
1583
waitForV4L2BufferReturnLocked(std::unique_lock<std::mutex> & lk)1584 int ExternalCameraDeviceSession::waitForV4L2BufferReturnLocked(std::unique_lock<std::mutex>& lk) {
1585 ATRACE_CALL();
1586 auto timeout = std::chrono::seconds(kBufferWaitTimeoutSec);
1587 mLock.unlock();
1588 auto st = mV4L2BufferReturned.wait_for(lk, timeout);
1589 // Here we introduce an order where mV4l2BufferLock is acquired before mLock, while
1590 // the normal lock acquisition order is reversed. This is fine because in most of
1591 // cases we are protected by mInterfaceLock. The only thread that can cause deadlock
1592 // is the OutputThread, where we do need to make sure we don't acquire mLock then
1593 // mV4l2BufferLock
1594 mLock.lock();
1595 if (st == std::cv_status::timeout) {
1596 ALOGE("%s: wait for V4L2 buffer return timeout!", __FUNCTION__);
1597 return -1;
1598 }
1599 return 0;
1600 }
1601
supportOfflineLocked(int32_t streamId)1602 bool ExternalCameraDeviceSession::supportOfflineLocked(int32_t streamId) {
1603 const Stream& stream = mStreamMap[streamId];
1604 if (stream.format == PixelFormat::BLOB &&
1605 static_cast<int32_t>(stream.dataSpace) == static_cast<int32_t>(Dataspace::JFIF)) {
1606 return true;
1607 }
1608 // TODO: support YUV output stream?
1609 return false;
1610 }
1611
canDropRequest(const std::vector<int32_t> & offlineStreams,std::shared_ptr<HalRequest> halReq)1612 bool ExternalCameraDeviceSession::canDropRequest(const std::vector<int32_t>& offlineStreams,
1613 std::shared_ptr<HalRequest> halReq) {
1614 for (const auto& buffer : halReq->buffers) {
1615 for (auto offlineStreamId : offlineStreams) {
1616 if (buffer.streamId == offlineStreamId) {
1617 return false;
1618 }
1619 }
1620 }
1621 // Only drop a request completely if it has no offline output
1622 return true;
1623 }
1624
fillOfflineSessionInfo(const std::vector<int32_t> & offlineStreams,std::deque<std::shared_ptr<HalRequest>> & offlineReqs,const std::map<int,CirculatingBuffers> & circulatingBuffers,CameraOfflineSessionInfo * info)1625 void ExternalCameraDeviceSession::fillOfflineSessionInfo(
1626 const std::vector<int32_t>& offlineStreams,
1627 std::deque<std::shared_ptr<HalRequest>>& offlineReqs,
1628 const std::map<int, CirculatingBuffers>& circulatingBuffers,
1629 CameraOfflineSessionInfo* info) {
1630 if (info == nullptr) {
1631 ALOGE("%s: output info must not be null!", __FUNCTION__);
1632 return;
1633 }
1634
1635 info->offlineStreams.resize(offlineStreams.size());
1636 info->offlineRequests.resize(offlineReqs.size());
1637
1638 // Fill in offline reqs and count outstanding buffers
1639 for (size_t i = 0; i < offlineReqs.size(); i++) {
1640 info->offlineRequests[i].frameNumber = offlineReqs[i]->frameNumber;
1641 info->offlineRequests[i].pendingStreams.resize(offlineReqs[i]->buffers.size());
1642 for (size_t bIdx = 0; bIdx < offlineReqs[i]->buffers.size(); bIdx++) {
1643 int32_t streamId = offlineReqs[i]->buffers[bIdx].streamId;
1644 info->offlineRequests[i].pendingStreams[bIdx] = streamId;
1645 }
1646 }
1647
1648 for (size_t i = 0; i < offlineStreams.size(); i++) {
1649 int32_t streamId = offlineStreams[i];
1650 info->offlineStreams[i].id = streamId;
1651 // outstanding buffers are 0 since we are doing hal buffer management and
1652 // offline session will ask for those buffers later
1653 info->offlineStreams[i].numOutstandingBuffers = 0;
1654 const CirculatingBuffers& bufIdMap = circulatingBuffers.at(streamId);
1655 info->offlineStreams[i].circulatingBufferIds.resize(bufIdMap.size());
1656 size_t bIdx = 0;
1657 for (const auto& pair : bufIdMap) {
1658 // Fill in bufferId
1659 info->offlineStreams[i].circulatingBufferIds[bIdx++] = pair.first;
1660 }
1661 }
1662 }
1663
isStreamCombinationSupported(const StreamConfiguration & config,const std::vector<SupportedV4L2Format> & supportedFormats,const ExternalCameraConfig & devCfg)1664 Status ExternalCameraDeviceSession::isStreamCombinationSupported(
1665 const StreamConfiguration& config, const std::vector<SupportedV4L2Format>& supportedFormats,
1666 const ExternalCameraConfig& devCfg) {
1667 if (config.operationMode != StreamConfigurationMode::NORMAL_MODE) {
1668 ALOGE("%s: unsupported operation mode: %d", __FUNCTION__, config.operationMode);
1669 return Status::ILLEGAL_ARGUMENT;
1670 }
1671
1672 if (config.streams.size() == 0) {
1673 ALOGE("%s: cannot configure zero stream", __FUNCTION__);
1674 return Status::ILLEGAL_ARGUMENT;
1675 }
1676
1677 int numProcessedStream = 0;
1678 int numStallStream = 0;
1679 for (const auto& stream : config.streams) {
1680 // Check if the format/width/height combo is supported
1681 if (!isSupported(stream, supportedFormats, devCfg)) {
1682 return Status::ILLEGAL_ARGUMENT;
1683 }
1684 if (stream.format == PixelFormat::BLOB) {
1685 numStallStream++;
1686 } else {
1687 numProcessedStream++;
1688 }
1689 }
1690
1691 if (numProcessedStream > kMaxProcessedStream) {
1692 ALOGE("%s: too many processed streams (expect <= %d, got %d)", __FUNCTION__,
1693 kMaxProcessedStream, numProcessedStream);
1694 return Status::ILLEGAL_ARGUMENT;
1695 }
1696
1697 if (numStallStream > kMaxStallStream) {
1698 ALOGE("%s: too many stall streams (expect <= %d, got %d)", __FUNCTION__, kMaxStallStream,
1699 numStallStream);
1700 return Status::ILLEGAL_ARGUMENT;
1701 }
1702
1703 return Status::OK;
1704 }
updateBufferCaches(const std::vector<BufferCache> & cachesToRemove)1705 void ExternalCameraDeviceSession::updateBufferCaches(
1706 const std::vector<BufferCache>& cachesToRemove) {
1707 Mutex::Autolock _l(mCbsLock);
1708 for (auto& cache : cachesToRemove) {
1709 auto cbsIt = mCirculatingBuffers.find(cache.streamId);
1710 if (cbsIt == mCirculatingBuffers.end()) {
1711 // The stream could have been removed
1712 continue;
1713 }
1714 CirculatingBuffers& cbs = cbsIt->second;
1715 auto it = cbs.find(cache.bufferId);
1716 if (it != cbs.end()) {
1717 sHandleImporter.freeBuffer(it->second);
1718 cbs.erase(it);
1719 } else {
1720 ALOGE("%s: stream %d buffer %" PRIu64 " is not cached", __FUNCTION__, cache.streamId,
1721 cache.bufferId);
1722 }
1723 }
1724 }
1725
processCaptureRequestError(const std::shared_ptr<HalRequest> & req,std::vector<NotifyMsg> * outMsgs,std::vector<CaptureResult> * outResults)1726 Status ExternalCameraDeviceSession::processCaptureRequestError(
1727 const std::shared_ptr<HalRequest>& req, std::vector<NotifyMsg>* outMsgs,
1728 std::vector<CaptureResult>* outResults) {
1729 ATRACE_CALL();
1730 // Return V4L2 buffer to V4L2 buffer queue
1731 std::shared_ptr<V4L2Frame> v4l2Frame = std::static_pointer_cast<V4L2Frame>(req->frameIn);
1732 enqueueV4l2Frame(v4l2Frame);
1733
1734 if (outMsgs == nullptr) {
1735 notifyShutter(req->frameNumber, req->shutterTs);
1736 notifyError(/*frameNum*/ req->frameNumber, /*stream*/ -1, ErrorCode::ERROR_REQUEST);
1737 } else {
1738 NotifyMsg shutter;
1739 shutter.set<NotifyMsg::Tag::shutter>(
1740 ShutterMsg{.frameNumber = req->frameNumber, .timestamp = req->shutterTs});
1741
1742 NotifyMsg error;
1743 error.set<NotifyMsg::Tag::error>(ErrorMsg{.frameNumber = req->frameNumber,
1744 .errorStreamId = -1,
1745 .errorCode = ErrorCode::ERROR_REQUEST});
1746 outMsgs->push_back(shutter);
1747 outMsgs->push_back(error);
1748 }
1749
1750 // Fill output buffers
1751 CaptureResult result;
1752 result.frameNumber = req->frameNumber;
1753 result.partialResult = 1;
1754 result.inputBuffer.streamId = -1;
1755 result.outputBuffers.resize(req->buffers.size());
1756 for (size_t i = 0; i < req->buffers.size(); i++) {
1757 result.outputBuffers[i].streamId = req->buffers[i].streamId;
1758 result.outputBuffers[i].bufferId = req->buffers[i].bufferId;
1759 result.outputBuffers[i].status = BufferStatus::ERROR;
1760 if (req->buffers[i].acquireFence >= 0) {
1761 // numFds = 0 for error
1762 native_handle_t* handle = native_handle_create(/*numFds*/ 0, /*numInts*/ 0);
1763 result.outputBuffers[i].releaseFence = android::dupToAidl(handle);
1764 native_handle_delete(handle);
1765 }
1766 }
1767
1768 // update inflight records
1769 {
1770 std::lock_guard<std::mutex> lk(mInflightFramesLock);
1771 mInflightFrames.erase(req->frameNumber);
1772 }
1773
1774 if (outResults == nullptr) {
1775 // Callback into framework
1776 std::vector<CaptureResult> results(1);
1777 results[0] = std::move(result);
1778 invokeProcessCaptureResultCallback(results, /* tryWriteFmq */ true);
1779 freeReleaseFences(results);
1780 } else {
1781 outResults->push_back(std::move(result));
1782 }
1783 return Status::OK;
1784 }
1785
processCaptureResult(std::shared_ptr<HalRequest> & req)1786 Status ExternalCameraDeviceSession::processCaptureResult(std::shared_ptr<HalRequest>& req) {
1787 ATRACE_CALL();
1788 // Return V4L2 buffer to V4L2 buffer queue
1789 std::shared_ptr<V4L2Frame> v4l2Frame = std::static_pointer_cast<V4L2Frame>(req->frameIn);
1790 enqueueV4l2Frame(v4l2Frame);
1791
1792 // NotifyShutter
1793 notifyShutter(req->frameNumber, req->shutterTs);
1794
1795 // Fill output buffers;
1796 std::vector<CaptureResult> results(1);
1797 CaptureResult& result = results[0];
1798 result.frameNumber = req->frameNumber;
1799 result.partialResult = 1;
1800 result.inputBuffer.streamId = -1;
1801 result.outputBuffers.resize(req->buffers.size());
1802 for (size_t i = 0; i < req->buffers.size(); i++) {
1803 result.outputBuffers[i].streamId = req->buffers[i].streamId;
1804 result.outputBuffers[i].bufferId = req->buffers[i].bufferId;
1805 if (req->buffers[i].fenceTimeout) {
1806 result.outputBuffers[i].status = BufferStatus::ERROR;
1807 if (req->buffers[i].acquireFence >= 0) {
1808 native_handle_t* handle = native_handle_create(/*numFds*/ 1, /*numInts*/ 0);
1809 handle->data[0] = req->buffers[i].acquireFence;
1810 result.outputBuffers[i].releaseFence = android::dupToAidl(handle);
1811 native_handle_delete(handle);
1812 }
1813 notifyError(req->frameNumber, req->buffers[i].streamId, ErrorCode::ERROR_BUFFER);
1814 } else {
1815 result.outputBuffers[i].status = BufferStatus::OK;
1816 // TODO: refactor
1817 if (req->buffers[i].acquireFence >= 0) {
1818 native_handle_t* handle = native_handle_create(/*numFds*/ 1, /*numInts*/ 0);
1819 handle->data[0] = req->buffers[i].acquireFence;
1820 result.outputBuffers[i].releaseFence = android::dupToAidl(handle);
1821 native_handle_delete(handle);
1822 }
1823 }
1824 }
1825
1826 // Fill capture result metadata
1827 fillCaptureResult(req->setting, req->shutterTs);
1828 const camera_metadata_t* rawResult = req->setting.getAndLock();
1829 convertToAidl(rawResult, &result.result);
1830 req->setting.unlock(rawResult);
1831
1832 // update inflight records
1833 {
1834 std::lock_guard<std::mutex> lk(mInflightFramesLock);
1835 mInflightFrames.erase(req->frameNumber);
1836 }
1837
1838 // Callback into framework
1839 invokeProcessCaptureResultCallback(results, /* tryWriteFmq */ true);
1840 freeReleaseFences(results);
1841 return Status::OK;
1842 }
1843
getJpegBufferSize(int32_t width,int32_t height) const1844 ssize_t ExternalCameraDeviceSession::getJpegBufferSize(int32_t width, int32_t height) const {
1845 // Constant from camera3.h
1846 const ssize_t kMinJpegBufferSize = 256 * 1024 + sizeof(CameraBlob);
1847 // Get max jpeg size (area-wise).
1848 if (mMaxJpegResolution.width == 0) {
1849 ALOGE("%s: No supported JPEG stream", __FUNCTION__);
1850 return BAD_VALUE;
1851 }
1852
1853 // Get max jpeg buffer size
1854 ssize_t maxJpegBufferSize = 0;
1855 camera_metadata_ro_entry jpegBufMaxSize = mCameraCharacteristics.find(ANDROID_JPEG_MAX_SIZE);
1856 if (jpegBufMaxSize.count == 0) {
1857 ALOGE("%s: Can't find maximum JPEG size in static metadata!", __FUNCTION__);
1858 return BAD_VALUE;
1859 }
1860 maxJpegBufferSize = jpegBufMaxSize.data.i32[0];
1861
1862 if (maxJpegBufferSize <= kMinJpegBufferSize) {
1863 ALOGE("%s: ANDROID_JPEG_MAX_SIZE (%zd) <= kMinJpegBufferSize (%zd)", __FUNCTION__,
1864 maxJpegBufferSize, kMinJpegBufferSize);
1865 return BAD_VALUE;
1866 }
1867
1868 // Calculate final jpeg buffer size for the given resolution.
1869 float scaleFactor =
1870 ((float)(width * height)) / (mMaxJpegResolution.width * mMaxJpegResolution.height);
1871 ssize_t jpegBufferSize =
1872 scaleFactor * (maxJpegBufferSize - kMinJpegBufferSize) + kMinJpegBufferSize;
1873 if (jpegBufferSize > maxJpegBufferSize) {
1874 jpegBufferSize = maxJpegBufferSize;
1875 }
1876
1877 return jpegBufferSize;
1878 }
dump(int fd,const char **,uint32_t)1879 binder_status_t ExternalCameraDeviceSession::dump(int fd, const char** /*args*/,
1880 uint32_t /*numArgs*/) {
1881 bool intfLocked = tryLock(mInterfaceLock);
1882 if (!intfLocked) {
1883 dprintf(fd, "!! ExternalCameraDeviceSession interface may be deadlocked !!\n");
1884 }
1885
1886 if (isClosed()) {
1887 dprintf(fd, "External camera %s is closed\n", mCameraId.c_str());
1888 return STATUS_OK;
1889 }
1890
1891 bool streaming = false;
1892 size_t v4L2BufferCount = 0;
1893 SupportedV4L2Format streamingFmt;
1894 {
1895 bool sessionLocked = tryLock(mLock);
1896 if (!sessionLocked) {
1897 dprintf(fd, "!! ExternalCameraDeviceSession mLock may be deadlocked !!\n");
1898 }
1899 streaming = mV4l2Streaming;
1900 streamingFmt = mV4l2StreamingFmt;
1901 v4L2BufferCount = mV4L2BufferCount;
1902
1903 if (sessionLocked) {
1904 mLock.unlock();
1905 }
1906 }
1907
1908 std::unordered_set<uint32_t> inflightFrames;
1909 {
1910 bool iffLocked = tryLock(mInflightFramesLock);
1911 if (!iffLocked) {
1912 dprintf(fd,
1913 "!! ExternalCameraDeviceSession mInflightFramesLock may be deadlocked !!\n");
1914 }
1915 inflightFrames = mInflightFrames;
1916 if (iffLocked) {
1917 mInflightFramesLock.unlock();
1918 }
1919 }
1920
1921 dprintf(fd, "External camera %s V4L2 FD %d, cropping type %s, %s\n", mCameraId.c_str(),
1922 mV4l2Fd.get(), (mCroppingType == VERTICAL) ? "vertical" : "horizontal",
1923 streaming ? "streaming" : "not streaming");
1924
1925 if (streaming) {
1926 // TODO: dump fps later
1927 dprintf(fd, "Current V4L2 format %c%c%c%c %dx%d @ %ffps\n", streamingFmt.fourcc & 0xFF,
1928 (streamingFmt.fourcc >> 8) & 0xFF, (streamingFmt.fourcc >> 16) & 0xFF,
1929 (streamingFmt.fourcc >> 24) & 0xFF, streamingFmt.width, streamingFmt.height,
1930 mV4l2StreamingFps);
1931
1932 size_t numDequeuedV4l2Buffers = 0;
1933 {
1934 std::lock_guard<std::mutex> lk(mV4l2BufferLock);
1935 numDequeuedV4l2Buffers = mNumDequeuedV4l2Buffers;
1936 }
1937 dprintf(fd, "V4L2 buffer queue size %zu, dequeued %zu\n", v4L2BufferCount,
1938 numDequeuedV4l2Buffers);
1939 }
1940
1941 dprintf(fd, "In-flight frames (not sorted):");
1942 for (const auto& frameNumber : inflightFrames) {
1943 dprintf(fd, "%d, ", frameNumber);
1944 }
1945 dprintf(fd, "\n");
1946 mOutputThread->dump(fd);
1947 dprintf(fd, "\n");
1948
1949 if (intfLocked) {
1950 mInterfaceLock.unlock();
1951 }
1952
1953 return STATUS_OK;
1954 }
1955
1956 // Start ExternalCameraDeviceSession::BufferRequestThread functions
BufferRequestThread(std::weak_ptr<OutputThreadInterface> parent,std::shared_ptr<ICameraDeviceCallback> callbacks)1957 ExternalCameraDeviceSession::BufferRequestThread::BufferRequestThread(
1958 std::weak_ptr<OutputThreadInterface> parent,
1959 std::shared_ptr<ICameraDeviceCallback> callbacks)
1960 : mParent(parent), mCallbacks(callbacks) {}
1961
requestBufferStart(const std::vector<HalStreamBuffer> & bufReqs)1962 int ExternalCameraDeviceSession::BufferRequestThread::requestBufferStart(
1963 const std::vector<HalStreamBuffer>& bufReqs) {
1964 if (bufReqs.empty()) {
1965 ALOGE("%s: bufReqs is empty!", __FUNCTION__);
1966 return -1;
1967 }
1968
1969 {
1970 std::lock_guard<std::mutex> lk(mLock);
1971 if (mRequestingBuffer) {
1972 ALOGE("%s: BufferRequestThread does not support more than one concurrent request!",
1973 __FUNCTION__);
1974 return -1;
1975 }
1976
1977 mBufferReqs = bufReqs;
1978 mRequestingBuffer = true;
1979 }
1980 mRequestCond.notify_one();
1981 return 0;
1982 }
1983
waitForBufferRequestDone(std::vector<HalStreamBuffer> * outBufReqs)1984 int ExternalCameraDeviceSession::BufferRequestThread::waitForBufferRequestDone(
1985 std::vector<HalStreamBuffer>* outBufReqs) {
1986 std::unique_lock<std::mutex> lk(mLock);
1987 if (!mRequestingBuffer) {
1988 ALOGE("%s: no pending buffer request!", __FUNCTION__);
1989 return -1;
1990 }
1991
1992 if (mPendingReturnBufferReqs.empty()) {
1993 std::chrono::milliseconds timeout = std::chrono::milliseconds(kReqProcTimeoutMs);
1994 auto st = mRequestDoneCond.wait_for(lk, timeout);
1995 if (st == std::cv_status::timeout) {
1996 mRequestingBuffer = false;
1997 ALOGE("%s: wait for buffer request finish timeout!", __FUNCTION__);
1998 return -1;
1999 }
2000
2001 if (mPendingReturnBufferReqs.empty()) {
2002 mRequestingBuffer = false;
2003 ALOGE("%s: cameraservice did not return any buffers!", __FUNCTION__);
2004 return -1;
2005 }
2006 }
2007 mRequestingBuffer = false;
2008 *outBufReqs = std::move(mPendingReturnBufferReqs);
2009 mPendingReturnBufferReqs.clear();
2010 return 0;
2011 }
2012
waitForNextRequest()2013 void ExternalCameraDeviceSession::BufferRequestThread::waitForNextRequest() {
2014 ATRACE_CALL();
2015 std::unique_lock<std::mutex> lk(mLock);
2016 int waitTimes = 0;
2017 while (mBufferReqs.empty()) {
2018 if (exitPending()) {
2019 return;
2020 }
2021 auto timeout = std::chrono::milliseconds(kReqWaitTimeoutMs);
2022 auto st = mRequestCond.wait_for(lk, timeout);
2023 if (st == std::cv_status::timeout) {
2024 waitTimes++;
2025 if (waitTimes == kReqWaitTimesWarn) {
2026 // BufferRequestThread just wait forever for new buffer request
2027 // But it will print some periodic warning indicating it's waiting
2028 ALOGV("%s: still waiting for new buffer request", __FUNCTION__);
2029 waitTimes = 0;
2030 }
2031 }
2032 }
2033
2034 // Fill in BufferRequest
2035 mHalBufferReqs.resize(mBufferReqs.size());
2036 for (size_t i = 0; i < mHalBufferReqs.size(); i++) {
2037 mHalBufferReqs[i].streamId = mBufferReqs[i].streamId;
2038 mHalBufferReqs[i].numBuffersRequested = 1;
2039 }
2040 }
2041
threadLoop()2042 bool ExternalCameraDeviceSession::BufferRequestThread::threadLoop() {
2043 waitForNextRequest();
2044 if (exitPending()) {
2045 return false;
2046 }
2047
2048 ATRACE_BEGIN("AIDL requestStreamBuffers");
2049 BufferRequestStatus status;
2050 std::vector<StreamBufferRet> bufRets;
2051 ScopedAStatus ret = mCallbacks->requestStreamBuffers(mHalBufferReqs, &bufRets, &status);
2052 if (!ret.isOk()) {
2053 ALOGE("%s: Transaction error: %d:%d", __FUNCTION__, ret.getExceptionCode(),
2054 ret.getServiceSpecificError());
2055 mBufferReqs.clear();
2056 mRequestDoneCond.notify_one();
2057 return false;
2058 }
2059
2060 std::unique_lock<std::mutex> lk(mLock);
2061 if (status == BufferRequestStatus::OK || status == BufferRequestStatus::FAILED_PARTIAL) {
2062 if (bufRets.size() != mHalBufferReqs.size()) {
2063 ALOGE("%s: expect %zu buffer requests returned, only got %zu", __FUNCTION__,
2064 mHalBufferReqs.size(), bufRets.size());
2065 mBufferReqs.clear();
2066 lk.unlock();
2067 mRequestDoneCond.notify_one();
2068 return false;
2069 }
2070
2071 auto parent = mParent.lock();
2072 if (parent == nullptr) {
2073 ALOGE("%s: session has been disconnected!", __FUNCTION__);
2074 mBufferReqs.clear();
2075 lk.unlock();
2076 mRequestDoneCond.notify_one();
2077 return false;
2078 }
2079
2080 std::vector<int> importedFences;
2081 importedFences.resize(bufRets.size());
2082 bool hasError = false;
2083 for (size_t i = 0; i < bufRets.size(); i++) {
2084 int streamId = bufRets[i].streamId;
2085 switch (bufRets[i].val.getTag()) {
2086 case StreamBuffersVal::Tag::error:
2087 continue;
2088 case StreamBuffersVal::Tag::buffers: {
2089 const std::vector<StreamBuffer>& hBufs =
2090 bufRets[i].val.get<StreamBuffersVal::Tag::buffers>();
2091 if (hBufs.size() != 1) {
2092 ALOGE("%s: expect 1 buffer returned, got %zu!", __FUNCTION__, hBufs.size());
2093 hasError = true;
2094 break;
2095 }
2096 const StreamBuffer& hBuf = hBufs[0];
2097
2098 mBufferReqs[i].bufferId = hBuf.bufferId;
2099 // TODO: create a batch import API so we don't need to lock/unlock mCbsLock
2100 // repeatedly?
2101 lk.unlock();
2102 native_handle_t* h = makeFromAidl(hBuf.buffer);
2103 Status s = parent->importBuffer(streamId, hBuf.bufferId, h,
2104 /*out*/ &mBufferReqs[i].bufPtr);
2105 native_handle_delete(h);
2106 lk.lock();
2107
2108 if (s != Status::OK) {
2109 ALOGE("%s: stream %d import buffer failed!", __FUNCTION__, streamId);
2110 cleanupInflightFences(importedFences, i - 1);
2111 hasError = true;
2112 break;
2113 }
2114 h = makeFromAidl(hBuf.acquireFence);
2115 if (!sHandleImporter.importFence(h, mBufferReqs[i].acquireFence)) {
2116 ALOGE("%s: stream %d import fence failed!", __FUNCTION__, streamId);
2117 cleanupInflightFences(importedFences, i - 1);
2118 native_handle_delete(h);
2119 hasError = true;
2120 break;
2121 }
2122 native_handle_delete(h);
2123 importedFences[i] = mBufferReqs[i].acquireFence;
2124 } break;
2125 default:
2126 ALOGE("%s: Unknown StreamBuffersVal!", __FUNCTION__);
2127 hasError = true;
2128 break;
2129 }
2130 if (hasError) {
2131 mBufferReqs.clear();
2132 lk.unlock();
2133 mRequestDoneCond.notify_one();
2134 return true;
2135 }
2136 }
2137 } else {
2138 ALOGE("%s: requestStreamBuffers call failed!", __FUNCTION__);
2139 mBufferReqs.clear();
2140 lk.unlock();
2141 mRequestDoneCond.notify_one();
2142 return true;
2143 }
2144
2145 mPendingReturnBufferReqs = std::move(mBufferReqs);
2146 mBufferReqs.clear();
2147
2148 lk.unlock();
2149 mRequestDoneCond.notify_one();
2150 return true;
2151 }
2152
2153 // End ExternalCameraDeviceSession::BufferRequestThread functions
2154
2155 // Start ExternalCameraDeviceSession::OutputThread functions
2156
OutputThread(std::weak_ptr<OutputThreadInterface> parent,CroppingType ct,const common::V1_0::helper::CameraMetadata & chars,std::shared_ptr<BufferRequestThread> bufReqThread)2157 ExternalCameraDeviceSession::OutputThread::OutputThread(
2158 std::weak_ptr<OutputThreadInterface> parent, CroppingType ct,
2159 const common::V1_0::helper::CameraMetadata& chars,
2160 std::shared_ptr<BufferRequestThread> bufReqThread)
2161 : mParent(parent),
2162 mCroppingType(ct),
2163 mCameraCharacteristics(chars),
2164 mBufferRequestThread(bufReqThread) {}
2165
~OutputThread()2166 ExternalCameraDeviceSession::OutputThread::~OutputThread() {}
2167
allocateIntermediateBuffers(const Size & v4lSize,const Size & thumbSize,const std::vector<Stream> & streams,uint32_t blobBufferSize)2168 Status ExternalCameraDeviceSession::OutputThread::allocateIntermediateBuffers(
2169 const Size& v4lSize, const Size& thumbSize, const std::vector<Stream>& streams,
2170 uint32_t blobBufferSize) {
2171 std::lock_guard<std::mutex> lk(mBufferLock);
2172 if (!mScaledYu12Frames.empty()) {
2173 ALOGE("%s: intermediate buffer pool has %zu inflight buffers! (expect 0)", __FUNCTION__,
2174 mScaledYu12Frames.size());
2175 return Status::INTERNAL_ERROR;
2176 }
2177
2178 // Allocating intermediate YU12 frame
2179 if (mYu12Frame == nullptr || mYu12Frame->mWidth != v4lSize.width ||
2180 mYu12Frame->mHeight != v4lSize.height) {
2181 mYu12Frame.reset();
2182 mYu12Frame = std::make_shared<AllocatedFrame>(v4lSize.width, v4lSize.height);
2183 int ret = mYu12Frame->allocate(&mYu12FrameLayout);
2184 if (ret != 0) {
2185 ALOGE("%s: allocating YU12 frame failed!", __FUNCTION__);
2186 return Status::INTERNAL_ERROR;
2187 }
2188 }
2189
2190 // Allocating intermediate YU12 thumbnail frame
2191 if (mYu12ThumbFrame == nullptr || mYu12ThumbFrame->mWidth != thumbSize.width ||
2192 mYu12ThumbFrame->mHeight != thumbSize.height) {
2193 mYu12ThumbFrame.reset();
2194 mYu12ThumbFrame = std::make_shared<AllocatedFrame>(thumbSize.width, thumbSize.height);
2195 int ret = mYu12ThumbFrame->allocate(&mYu12ThumbFrameLayout);
2196 if (ret != 0) {
2197 ALOGE("%s: allocating YU12 thumb frame failed!", __FUNCTION__);
2198 return Status::INTERNAL_ERROR;
2199 }
2200 }
2201
2202 // Allocating scaled buffers
2203 for (const auto& stream : streams) {
2204 Size sz = {stream.width, stream.height};
2205 if (sz == v4lSize) {
2206 continue; // Don't need an intermediate buffer same size as v4lBuffer
2207 }
2208 if (mIntermediateBuffers.count(sz) == 0) {
2209 // Create new intermediate buffer
2210 std::shared_ptr<AllocatedFrame> buf =
2211 std::make_shared<AllocatedFrame>(stream.width, stream.height);
2212 int ret = buf->allocate();
2213 if (ret != 0) {
2214 ALOGE("%s: allocating intermediate YU12 frame %dx%d failed!", __FUNCTION__,
2215 stream.width, stream.height);
2216 return Status::INTERNAL_ERROR;
2217 }
2218 mIntermediateBuffers[sz] = buf;
2219 }
2220 }
2221
2222 // Remove unconfigured buffers
2223 auto it = mIntermediateBuffers.begin();
2224 while (it != mIntermediateBuffers.end()) {
2225 bool configured = false;
2226 auto sz = it->first;
2227 for (const auto& stream : streams) {
2228 if (stream.width == sz.width && stream.height == sz.height) {
2229 configured = true;
2230 break;
2231 }
2232 }
2233 if (configured) {
2234 it++;
2235 } else {
2236 it = mIntermediateBuffers.erase(it);
2237 }
2238 }
2239
2240 // Allocate mute test pattern frame
2241 mMuteTestPatternFrame.resize(mYu12Frame->mWidth * mYu12Frame->mHeight * 3);
2242
2243 mBlobBufferSize = blobBufferSize;
2244 return Status::OK;
2245 }
2246
submitRequest(const std::shared_ptr<HalRequest> & req)2247 Status ExternalCameraDeviceSession::OutputThread::submitRequest(
2248 const std::shared_ptr<HalRequest>& req) {
2249 std::unique_lock<std::mutex> lk(mRequestListLock);
2250 mRequestList.push_back(req);
2251 lk.unlock();
2252 mRequestCond.notify_one();
2253 return Status::OK;
2254 }
2255
flush()2256 void ExternalCameraDeviceSession::OutputThread::flush() {
2257 ATRACE_CALL();
2258 auto parent = mParent.lock();
2259 if (parent == nullptr) {
2260 ALOGE("%s: session has been disconnected!", __FUNCTION__);
2261 return;
2262 }
2263
2264 std::unique_lock<std::mutex> lk(mRequestListLock);
2265 std::list<std::shared_ptr<HalRequest>> reqs = std::move(mRequestList);
2266 mRequestList.clear();
2267 if (mProcessingRequest) {
2268 auto timeout = std::chrono::seconds(kFlushWaitTimeoutSec);
2269 auto st = mRequestDoneCond.wait_for(lk, timeout);
2270 if (st == std::cv_status::timeout) {
2271 ALOGE("%s: wait for inflight request finish timeout!", __FUNCTION__);
2272 }
2273 }
2274
2275 ALOGV("%s: flushing inflight requests", __FUNCTION__);
2276 lk.unlock();
2277 for (const auto& req : reqs) {
2278 parent->processCaptureRequestError(req);
2279 }
2280 }
2281
dump(int fd)2282 void ExternalCameraDeviceSession::OutputThread::dump(int fd) {
2283 std::lock_guard<std::mutex> lk(mRequestListLock);
2284 if (mProcessingRequest) {
2285 dprintf(fd, "OutputThread processing frame %d\n", mProcessingFrameNumber);
2286 } else {
2287 dprintf(fd, "OutputThread not processing any frames\n");
2288 }
2289 dprintf(fd, "OutputThread request list contains frame: ");
2290 for (const auto& req : mRequestList) {
2291 dprintf(fd, "%d, ", req->frameNumber);
2292 }
2293 dprintf(fd, "\n");
2294 }
2295
setExifMakeModel(const std::string & make,const std::string & model)2296 void ExternalCameraDeviceSession::OutputThread::setExifMakeModel(const std::string& make,
2297 const std::string& model) {
2298 mExifMake = make;
2299 mExifModel = model;
2300 }
2301
2302 std::list<std::shared_ptr<HalRequest>>
switchToOffline()2303 ExternalCameraDeviceSession::OutputThread::switchToOffline() {
2304 ATRACE_CALL();
2305 auto parent = mParent.lock();
2306 if (parent == nullptr) {
2307 ALOGE("%s: session has been disconnected!", __FUNCTION__);
2308 return {};
2309 }
2310
2311 std::unique_lock<std::mutex> lk(mRequestListLock);
2312 std::list<std::shared_ptr<HalRequest>> reqs = std::move(mRequestList);
2313 mRequestList.clear();
2314 if (mProcessingRequest) {
2315 auto timeout = std::chrono::seconds(kFlushWaitTimeoutSec);
2316 auto st = mRequestDoneCond.wait_for(lk, timeout);
2317 if (st == std::cv_status::timeout) {
2318 ALOGE("%s: wait for inflight request finish timeout!", __FUNCTION__);
2319 }
2320 }
2321 lk.unlock();
2322 clearIntermediateBuffers();
2323 ALOGV("%s: returning %zu request for offline processing", __FUNCTION__, reqs.size());
2324 return reqs;
2325 }
2326
requestBufferStart(const std::vector<HalStreamBuffer> & bufs)2327 int ExternalCameraDeviceSession::OutputThread::requestBufferStart(
2328 const std::vector<HalStreamBuffer>& bufs) {
2329 if (mBufferRequestThread == nullptr) {
2330 return 0;
2331 }
2332 return mBufferRequestThread->requestBufferStart(bufs);
2333 }
2334
waitForBufferRequestDone(std::vector<HalStreamBuffer> * outBufs)2335 int ExternalCameraDeviceSession::OutputThread::waitForBufferRequestDone(
2336 std::vector<HalStreamBuffer>* outBufs) {
2337 if (mBufferRequestThread == nullptr) {
2338 return 0;
2339 }
2340 return mBufferRequestThread->waitForBufferRequestDone(outBufs);
2341 }
2342
waitForNextRequest(std::shared_ptr<HalRequest> * out)2343 void ExternalCameraDeviceSession::OutputThread::waitForNextRequest(
2344 std::shared_ptr<HalRequest>* out) {
2345 ATRACE_CALL();
2346 if (out == nullptr) {
2347 ALOGE("%s: out is null", __FUNCTION__);
2348 return;
2349 }
2350
2351 std::unique_lock<std::mutex> lk(mRequestListLock);
2352 int waitTimes = 0;
2353 while (mRequestList.empty()) {
2354 if (exitPending()) {
2355 return;
2356 }
2357 auto timeout = std::chrono::milliseconds(kReqWaitTimeoutMs);
2358 auto st = mRequestCond.wait_for(lk, timeout);
2359 if (st == std::cv_status::timeout) {
2360 waitTimes++;
2361 if (waitTimes == kReqWaitTimesMax) {
2362 // no new request, return
2363 return;
2364 }
2365 }
2366 }
2367 *out = mRequestList.front();
2368 mRequestList.pop_front();
2369 mProcessingRequest = true;
2370 mProcessingFrameNumber = (*out)->frameNumber;
2371 }
2372
signalRequestDone()2373 void ExternalCameraDeviceSession::OutputThread::signalRequestDone() {
2374 std::unique_lock<std::mutex> lk(mRequestListLock);
2375 mProcessingRequest = false;
2376 mProcessingFrameNumber = 0;
2377 lk.unlock();
2378 mRequestDoneCond.notify_one();
2379 }
2380
cropAndScaleLocked(std::shared_ptr<AllocatedFrame> & in,const Size & outSz,YCbCrLayout * out)2381 int ExternalCameraDeviceSession::OutputThread::cropAndScaleLocked(
2382 std::shared_ptr<AllocatedFrame>& in, const Size& outSz, YCbCrLayout* out) {
2383 Size inSz = {in->mWidth, in->mHeight};
2384
2385 int ret;
2386 if (inSz == outSz) {
2387 ret = in->getLayout(out);
2388 if (ret != 0) {
2389 ALOGE("%s: failed to get input image layout", __FUNCTION__);
2390 return ret;
2391 }
2392 return ret;
2393 }
2394
2395 // Cropping to output aspect ratio
2396 IMapper::Rect inputCrop;
2397 ret = getCropRect(mCroppingType, inSz, outSz, &inputCrop);
2398 if (ret != 0) {
2399 ALOGE("%s: failed to compute crop rect for output size %dx%d", __FUNCTION__, outSz.width,
2400 outSz.height);
2401 return ret;
2402 }
2403
2404 YCbCrLayout croppedLayout;
2405 ret = in->getCroppedLayout(inputCrop, &croppedLayout);
2406 if (ret != 0) {
2407 ALOGE("%s: failed to crop input image %dx%d to output size %dx%d", __FUNCTION__, inSz.width,
2408 inSz.height, outSz.width, outSz.height);
2409 return ret;
2410 }
2411
2412 if ((mCroppingType == VERTICAL && inSz.width == outSz.width) ||
2413 (mCroppingType == HORIZONTAL && inSz.height == outSz.height)) {
2414 // No scale is needed
2415 *out = croppedLayout;
2416 return 0;
2417 }
2418
2419 auto it = mScaledYu12Frames.find(outSz);
2420 std::shared_ptr<AllocatedFrame> scaledYu12Buf;
2421 if (it != mScaledYu12Frames.end()) {
2422 scaledYu12Buf = it->second;
2423 } else {
2424 it = mIntermediateBuffers.find(outSz);
2425 if (it == mIntermediateBuffers.end()) {
2426 ALOGE("%s: failed to find intermediate buffer size %dx%d", __FUNCTION__, outSz.width,
2427 outSz.height);
2428 return -1;
2429 }
2430 scaledYu12Buf = it->second;
2431 }
2432 // Scale
2433 YCbCrLayout outLayout;
2434 ret = scaledYu12Buf->getLayout(&outLayout);
2435 if (ret != 0) {
2436 ALOGE("%s: failed to get output buffer layout", __FUNCTION__);
2437 return ret;
2438 }
2439
2440 ret = libyuv::I420Scale(
2441 static_cast<uint8_t*>(croppedLayout.y), croppedLayout.yStride,
2442 static_cast<uint8_t*>(croppedLayout.cb), croppedLayout.cStride,
2443 static_cast<uint8_t*>(croppedLayout.cr), croppedLayout.cStride, inputCrop.width,
2444 inputCrop.height, static_cast<uint8_t*>(outLayout.y), outLayout.yStride,
2445 static_cast<uint8_t*>(outLayout.cb), outLayout.cStride,
2446 static_cast<uint8_t*>(outLayout.cr), outLayout.cStride, outSz.width, outSz.height,
2447 // TODO: b/72261744 see if we can use better filter without losing too much perf
2448 libyuv::FilterMode::kFilterNone);
2449
2450 if (ret != 0) {
2451 ALOGE("%s: failed to scale buffer from %dx%d to %dx%d. Ret %d", __FUNCTION__,
2452 inputCrop.width, inputCrop.height, outSz.width, outSz.height, ret);
2453 return ret;
2454 }
2455
2456 *out = outLayout;
2457 mScaledYu12Frames.insert({outSz, scaledYu12Buf});
2458 return 0;
2459 }
2460
cropAndScaleThumbLocked(std::shared_ptr<AllocatedFrame> & in,const Size & outSz,YCbCrLayout * out)2461 int ExternalCameraDeviceSession::OutputThread::cropAndScaleThumbLocked(
2462 std::shared_ptr<AllocatedFrame>& in, const Size& outSz, YCbCrLayout* out) {
2463 Size inSz{in->mWidth, in->mHeight};
2464
2465 if ((outSz.width * outSz.height) > (mYu12ThumbFrame->mWidth * mYu12ThumbFrame->mHeight)) {
2466 ALOGE("%s: Requested thumbnail size too big (%d,%d) > (%d,%d)", __FUNCTION__, outSz.width,
2467 outSz.height, mYu12ThumbFrame->mWidth, mYu12ThumbFrame->mHeight);
2468 return -1;
2469 }
2470
2471 int ret;
2472
2473 /* This will crop-and-zoom the input YUV frame to the thumbnail size
2474 * Based on the following logic:
2475 * 1) Square pixels come in, square pixels come out, therefore single
2476 * scale factor is computed to either make input bigger or smaller
2477 * depending on if we are upscaling or downscaling
2478 * 2) That single scale factor would either make height too tall or width
2479 * too wide so we need to crop the input either horizontally or vertically
2480 * but not both
2481 */
2482
2483 /* Convert the input and output dimensions into floats for ease of math */
2484 float fWin = static_cast<float>(inSz.width);
2485 float fHin = static_cast<float>(inSz.height);
2486 float fWout = static_cast<float>(outSz.width);
2487 float fHout = static_cast<float>(outSz.height);
2488
2489 /* Compute the one scale factor from (1) above, it will be the smaller of
2490 * the two possibilities. */
2491 float scaleFactor = std::min(fHin / fHout, fWin / fWout);
2492
2493 /* Since we are crop-and-zooming (as opposed to letter/pillar boxing) we can
2494 * simply multiply the output by our scaleFactor to get the cropped input
2495 * size. Note that at least one of {fWcrop, fHcrop} is going to wind up
2496 * being {fWin, fHin} respectively because fHout or fWout cancels out the
2497 * scaleFactor calculation above.
2498 *
2499 * Specifically:
2500 * if ( fHin / fHout ) < ( fWin / fWout ) we crop the sides off
2501 * input, in which case
2502 * scaleFactor = fHin / fHout
2503 * fWcrop = fHin / fHout * fWout
2504 * fHcrop = fHin
2505 *
2506 * Note that fWcrop <= fWin ( because ( fHin / fHout ) * fWout < fWin, which
2507 * is just the inequality above with both sides multiplied by fWout
2508 *
2509 * on the other hand if ( fWin / fWout ) < ( fHin / fHout) we crop the top
2510 * and the bottom off of input, and
2511 * scaleFactor = fWin / fWout
2512 * fWcrop = fWin
2513 * fHCrop = fWin / fWout * fHout
2514 */
2515 float fWcrop = scaleFactor * fWout;
2516 float fHcrop = scaleFactor * fHout;
2517
2518 /* Convert to integer and truncate to an even number */
2519 Size cropSz = {.width = 2 * static_cast<int32_t>(fWcrop / 2.0f),
2520 .height = 2 * static_cast<int32_t>(fHcrop / 2.0f)};
2521
2522 /* Convert to a centered rectange with even top/left */
2523 IMapper::Rect inputCrop{.left = 2 * static_cast<int32_t>((inSz.width - cropSz.width) / 4),
2524 .top = 2 * static_cast<int32_t>((inSz.height - cropSz.height) / 4),
2525 .width = static_cast<int32_t>(cropSz.width),
2526 .height = static_cast<int32_t>(cropSz.height)};
2527
2528 if ((inputCrop.top < 0) || (inputCrop.top >= static_cast<int32_t>(inSz.height)) ||
2529 (inputCrop.left < 0) || (inputCrop.left >= static_cast<int32_t>(inSz.width)) ||
2530 (inputCrop.width <= 0) ||
2531 (inputCrop.width + inputCrop.left > static_cast<int32_t>(inSz.width)) ||
2532 (inputCrop.height <= 0) ||
2533 (inputCrop.height + inputCrop.top > static_cast<int32_t>(inSz.height))) {
2534 ALOGE("%s: came up with really wrong crop rectangle", __FUNCTION__);
2535 ALOGE("%s: input layout %dx%d to for output size %dx%d", __FUNCTION__, inSz.width,
2536 inSz.height, outSz.width, outSz.height);
2537 ALOGE("%s: computed input crop +%d,+%d %dx%d", __FUNCTION__, inputCrop.left, inputCrop.top,
2538 inputCrop.width, inputCrop.height);
2539 return -1;
2540 }
2541
2542 YCbCrLayout inputLayout;
2543 ret = in->getCroppedLayout(inputCrop, &inputLayout);
2544 if (ret != 0) {
2545 ALOGE("%s: failed to crop input layout %dx%d to for output size %dx%d", __FUNCTION__,
2546 inSz.width, inSz.height, outSz.width, outSz.height);
2547 ALOGE("%s: computed input crop +%d,+%d %dx%d", __FUNCTION__, inputCrop.left, inputCrop.top,
2548 inputCrop.width, inputCrop.height);
2549 return ret;
2550 }
2551 ALOGV("%s: crop input layout %dx%d to for output size %dx%d", __FUNCTION__, inSz.width,
2552 inSz.height, outSz.width, outSz.height);
2553 ALOGV("%s: computed input crop +%d,+%d %dx%d", __FUNCTION__, inputCrop.left, inputCrop.top,
2554 inputCrop.width, inputCrop.height);
2555
2556 // Scale
2557 YCbCrLayout outFullLayout;
2558
2559 ret = mYu12ThumbFrame->getLayout(&outFullLayout);
2560 if (ret != 0) {
2561 ALOGE("%s: failed to get output buffer layout", __FUNCTION__);
2562 return ret;
2563 }
2564
2565 ret = libyuv::I420Scale(static_cast<uint8_t*>(inputLayout.y), inputLayout.yStride,
2566 static_cast<uint8_t*>(inputLayout.cb), inputLayout.cStride,
2567 static_cast<uint8_t*>(inputLayout.cr), inputLayout.cStride,
2568 inputCrop.width, inputCrop.height,
2569 static_cast<uint8_t*>(outFullLayout.y), outFullLayout.yStride,
2570 static_cast<uint8_t*>(outFullLayout.cb), outFullLayout.cStride,
2571 static_cast<uint8_t*>(outFullLayout.cr), outFullLayout.cStride,
2572 outSz.width, outSz.height, libyuv::FilterMode::kFilterNone);
2573
2574 if (ret != 0) {
2575 ALOGE("%s: failed to scale buffer from %dx%d to %dx%d. Ret %d", __FUNCTION__,
2576 inputCrop.width, inputCrop.height, outSz.width, outSz.height, ret);
2577 return ret;
2578 }
2579
2580 *out = outFullLayout;
2581 return 0;
2582 }
2583
createJpegLocked(HalStreamBuffer & halBuf,const common::V1_0::helper::CameraMetadata & setting)2584 int ExternalCameraDeviceSession::OutputThread::createJpegLocked(
2585 HalStreamBuffer& halBuf, const common::V1_0::helper::CameraMetadata& setting) {
2586 ATRACE_CALL();
2587 int ret;
2588 auto lfail = [&](auto... args) {
2589 ALOGE(args...);
2590
2591 return 1;
2592 };
2593 auto parent = mParent.lock();
2594 if (parent == nullptr) {
2595 ALOGE("%s: session has been disconnected!", __FUNCTION__);
2596 return 1;
2597 }
2598
2599 ALOGV("%s: HAL buffer sid: %d bid: %" PRIu64 " w: %u h: %u", __FUNCTION__, halBuf.streamId,
2600 static_cast<uint64_t>(halBuf.bufferId), halBuf.width, halBuf.height);
2601 ALOGV("%s: HAL buffer fmt: %x usage: %" PRIx64 " ptr: %p", __FUNCTION__, halBuf.format,
2602 static_cast<uint64_t>(halBuf.usage), halBuf.bufPtr);
2603 ALOGV("%s: YV12 buffer %d x %d", __FUNCTION__, mYu12Frame->mWidth, mYu12Frame->mHeight);
2604
2605 int jpegQuality, thumbQuality;
2606 Size thumbSize;
2607 bool outputThumbnail = true;
2608
2609 if (setting.exists(ANDROID_JPEG_QUALITY)) {
2610 camera_metadata_ro_entry entry = setting.find(ANDROID_JPEG_QUALITY);
2611 jpegQuality = entry.data.u8[0];
2612 } else {
2613 return lfail("%s: ANDROID_JPEG_QUALITY not set", __FUNCTION__);
2614 }
2615
2616 if (setting.exists(ANDROID_JPEG_THUMBNAIL_QUALITY)) {
2617 camera_metadata_ro_entry entry = setting.find(ANDROID_JPEG_THUMBNAIL_QUALITY);
2618 thumbQuality = entry.data.u8[0];
2619 } else {
2620 return lfail("%s: ANDROID_JPEG_THUMBNAIL_QUALITY not set", __FUNCTION__);
2621 }
2622
2623 if (setting.exists(ANDROID_JPEG_THUMBNAIL_SIZE)) {
2624 camera_metadata_ro_entry entry = setting.find(ANDROID_JPEG_THUMBNAIL_SIZE);
2625 thumbSize = Size{.width = entry.data.i32[0], .height = entry.data.i32[1]};
2626 if (thumbSize.width == 0 && thumbSize.height == 0) {
2627 outputThumbnail = false;
2628 }
2629 } else {
2630 return lfail("%s: ANDROID_JPEG_THUMBNAIL_SIZE not set", __FUNCTION__);
2631 }
2632
2633 /* Cropped and scaled YU12 buffer for main and thumbnail */
2634 YCbCrLayout yu12Main;
2635 Size jpegSize{halBuf.width, halBuf.height};
2636
2637 /* Compute temporary buffer sizes accounting for the following:
2638 * thumbnail can't exceed APP1 size of 64K
2639 * main image needs to hold APP1, headers, and at most a poorly
2640 * compressed image */
2641 const ssize_t maxThumbCodeSize = 64 * 1024;
2642 const ssize_t maxJpegCodeSize =
2643 mBlobBufferSize == 0 ? parent->getJpegBufferSize(jpegSize.width, jpegSize.height)
2644 : mBlobBufferSize;
2645
2646 /* Check that getJpegBufferSize did not return an error */
2647 if (maxJpegCodeSize < 0) {
2648 return lfail("%s: getJpegBufferSize returned %zd", __FUNCTION__, maxJpegCodeSize);
2649 }
2650
2651 /* Hold actual thumbnail and main image code sizes */
2652 size_t thumbCodeSize = 0, jpegCodeSize = 0;
2653 /* Temporary thumbnail code buffer */
2654 std::vector<uint8_t> thumbCode(outputThumbnail ? maxThumbCodeSize : 0);
2655
2656 YCbCrLayout yu12Thumb;
2657 if (outputThumbnail) {
2658 ret = cropAndScaleThumbLocked(mYu12Frame, thumbSize, &yu12Thumb);
2659
2660 if (ret != 0) {
2661 return lfail("%s: crop and scale thumbnail failed!", __FUNCTION__);
2662 }
2663 }
2664
2665 /* Scale and crop main jpeg */
2666 ret = cropAndScaleLocked(mYu12Frame, jpegSize, &yu12Main);
2667
2668 if (ret != 0) {
2669 return lfail("%s: crop and scale main failed!", __FUNCTION__);
2670 }
2671
2672 /* Encode the thumbnail image */
2673 if (outputThumbnail) {
2674 ret = encodeJpegYU12(thumbSize, yu12Thumb, thumbQuality, 0, 0, &thumbCode[0],
2675 maxThumbCodeSize, thumbCodeSize);
2676
2677 if (ret != 0) {
2678 return lfail("%s: thumbnail encodeJpegYU12 failed with %d", __FUNCTION__, ret);
2679 }
2680 }
2681
2682 /* Combine camera characteristics with request settings to form EXIF
2683 * metadata */
2684 common::V1_0::helper::CameraMetadata meta(mCameraCharacteristics);
2685 meta.append(setting);
2686
2687 /* Generate EXIF object */
2688 std::unique_ptr<ExifUtils> utils(ExifUtils::create());
2689 /* Make sure it's initialized */
2690 utils->initialize();
2691
2692 utils->setFromMetadata(meta, jpegSize.width, jpegSize.height);
2693 utils->setMake(mExifMake);
2694 utils->setModel(mExifModel);
2695
2696 ret = utils->generateApp1(outputThumbnail ? &thumbCode[0] : nullptr, thumbCodeSize);
2697
2698 if (!ret) {
2699 return lfail("%s: generating APP1 failed", __FUNCTION__);
2700 }
2701
2702 /* Get internal buffer */
2703 size_t exifDataSize = utils->getApp1Length();
2704 const uint8_t* exifData = utils->getApp1Buffer();
2705
2706 /* Lock the HAL jpeg code buffer */
2707 void* bufPtr = sHandleImporter.lock(*(halBuf.bufPtr), static_cast<uint64_t>(halBuf.usage),
2708 maxJpegCodeSize);
2709
2710 if (!bufPtr) {
2711 return lfail("%s: could not lock %zu bytes", __FUNCTION__, maxJpegCodeSize);
2712 }
2713
2714 /* Encode the main jpeg image */
2715 ret = encodeJpegYU12(jpegSize, yu12Main, jpegQuality, exifData, exifDataSize, bufPtr,
2716 maxJpegCodeSize, jpegCodeSize);
2717
2718 /* TODO: Not sure this belongs here, maybe better to pass jpegCodeSize out
2719 * and do this when returning buffer to parent */
2720 CameraBlob blob{CameraBlobId::JPEG, static_cast<int32_t>(jpegCodeSize)};
2721 void* blobDst = reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(bufPtr) + maxJpegCodeSize -
2722 sizeof(CameraBlob));
2723 memcpy(blobDst, &blob, sizeof(CameraBlob));
2724
2725 /* Unlock the HAL jpeg code buffer */
2726 int relFence = sHandleImporter.unlock(*(halBuf.bufPtr));
2727 if (relFence >= 0) {
2728 halBuf.acquireFence = relFence;
2729 }
2730
2731 /* Check if our JPEG actually succeeded */
2732 if (ret != 0) {
2733 return lfail("%s: encodeJpegYU12 failed with %d", __FUNCTION__, ret);
2734 }
2735
2736 ALOGV("%s: encoded JPEG (ret:%d) with Q:%d max size: %zu", __FUNCTION__, ret, jpegQuality,
2737 maxJpegCodeSize);
2738
2739 return 0;
2740 }
2741
clearIntermediateBuffers()2742 void ExternalCameraDeviceSession::OutputThread::clearIntermediateBuffers() {
2743 std::lock_guard<std::mutex> lk(mBufferLock);
2744 mYu12Frame.reset();
2745 mYu12ThumbFrame.reset();
2746 mIntermediateBuffers.clear();
2747 mMuteTestPatternFrame.clear();
2748 mBlobBufferSize = 0;
2749 }
2750
threadLoop()2751 bool ExternalCameraDeviceSession::OutputThread::threadLoop() {
2752 std::shared_ptr<HalRequest> req;
2753 auto parent = mParent.lock();
2754 if (parent == nullptr) {
2755 ALOGE("%s: session has been disconnected!", __FUNCTION__);
2756 return false;
2757 }
2758
2759 // TODO: maybe we need to setup a sensor thread to dq/enq v4l frames
2760 // regularly to prevent v4l buffer queue filled with stale buffers
2761 // when app doesn't program a preview request
2762 waitForNextRequest(&req);
2763 if (req == nullptr) {
2764 // No new request, wait again
2765 return true;
2766 }
2767
2768 auto onDeviceError = [&](auto... args) {
2769 ALOGE(args...);
2770 parent->notifyError(req->frameNumber, /*stream*/ -1, ErrorCode::ERROR_DEVICE);
2771 signalRequestDone();
2772 return false;
2773 };
2774
2775 if (req->frameIn->mFourcc != V4L2_PIX_FMT_MJPEG && req->frameIn->mFourcc != V4L2_PIX_FMT_Z16) {
2776 return onDeviceError("%s: do not support V4L2 format %c%c%c%c", __FUNCTION__,
2777 req->frameIn->mFourcc & 0xFF, (req->frameIn->mFourcc >> 8) & 0xFF,
2778 (req->frameIn->mFourcc >> 16) & 0xFF,
2779 (req->frameIn->mFourcc >> 24) & 0xFF);
2780 }
2781
2782 int res = requestBufferStart(req->buffers);
2783 if (res != 0) {
2784 ALOGE("%s: send BufferRequest failed! res %d", __FUNCTION__, res);
2785 return onDeviceError("%s: failed to send buffer request!", __FUNCTION__);
2786 }
2787
2788 std::unique_lock<std::mutex> lk(mBufferLock);
2789 // Convert input V4L2 frame to YU12 of the same size
2790 // TODO: see if we can save some computation by converting to YV12 here
2791 uint8_t* inData;
2792 size_t inDataSize;
2793 if (req->frameIn->getData(&inData, &inDataSize) != 0) {
2794 lk.unlock();
2795 return onDeviceError("%s: V4L2 buffer map failed", __FUNCTION__);
2796 }
2797
2798 // Process camera mute state
2799 auto testPatternMode = req->setting.find(ANDROID_SENSOR_TEST_PATTERN_MODE);
2800 if (testPatternMode.count == 1) {
2801 if (mCameraMuted != (testPatternMode.data.u8[0] != ANDROID_SENSOR_TEST_PATTERN_MODE_OFF)) {
2802 mCameraMuted = !mCameraMuted;
2803 // Get solid color for test pattern, if any was set
2804 if (testPatternMode.data.u8[0] == ANDROID_SENSOR_TEST_PATTERN_MODE_SOLID_COLOR) {
2805 auto entry = req->setting.find(ANDROID_SENSOR_TEST_PATTERN_DATA);
2806 if (entry.count == 4) {
2807 // Update the mute frame if the pattern color has changed
2808 if (memcmp(entry.data.i32, mTestPatternData, sizeof(mTestPatternData)) != 0) {
2809 memcpy(mTestPatternData, entry.data.i32, sizeof(mTestPatternData));
2810 // Fill the mute frame with the solid color, use only 8 MSB of RGGB as RGB
2811 for (int i = 0; i < mMuteTestPatternFrame.size(); i += 3) {
2812 mMuteTestPatternFrame[i] = entry.data.i32[0] >> 24;
2813 mMuteTestPatternFrame[i + 1] = entry.data.i32[1] >> 24;
2814 mMuteTestPatternFrame[i + 2] = entry.data.i32[3] >> 24;
2815 }
2816 }
2817 }
2818 }
2819 }
2820 }
2821
2822 // TODO: in some special case maybe we can decode jpg directly to gralloc output?
2823 if (req->frameIn->mFourcc == V4L2_PIX_FMT_MJPEG) {
2824 ATRACE_BEGIN("MJPGtoI420");
2825 res = 0;
2826 if (mCameraMuted) {
2827 res = libyuv::ConvertToI420(
2828 mMuteTestPatternFrame.data(), mMuteTestPatternFrame.size(),
2829 static_cast<uint8_t*>(mYu12FrameLayout.y), mYu12FrameLayout.yStride,
2830 static_cast<uint8_t*>(mYu12FrameLayout.cb), mYu12FrameLayout.cStride,
2831 static_cast<uint8_t*>(mYu12FrameLayout.cr), mYu12FrameLayout.cStride, 0, 0,
2832 mYu12Frame->mWidth, mYu12Frame->mHeight, mYu12Frame->mWidth,
2833 mYu12Frame->mHeight, libyuv::kRotate0, libyuv::FOURCC_RAW);
2834 } else {
2835 res = libyuv::MJPGToI420(
2836 inData, inDataSize, static_cast<uint8_t*>(mYu12FrameLayout.y),
2837 mYu12FrameLayout.yStride, static_cast<uint8_t*>(mYu12FrameLayout.cb),
2838 mYu12FrameLayout.cStride, static_cast<uint8_t*>(mYu12FrameLayout.cr),
2839 mYu12FrameLayout.cStride, mYu12Frame->mWidth, mYu12Frame->mHeight,
2840 mYu12Frame->mWidth, mYu12Frame->mHeight);
2841 }
2842 ATRACE_END();
2843
2844 if (res != 0) {
2845 // For some webcam, the first few V4L2 frames might be malformed...
2846 ALOGE("%s: Convert V4L2 frame to YU12 failed! res %d", __FUNCTION__, res);
2847
2848 ATRACE_BEGIN("Wait for BufferRequest done");
2849 res = waitForBufferRequestDone(&req->buffers);
2850 ATRACE_END();
2851
2852 lk.unlock();
2853 Status st = parent->processCaptureRequestError(req);
2854 if (st != Status::OK) {
2855 return onDeviceError("%s: failed to process capture request error!", __FUNCTION__);
2856 }
2857 signalRequestDone();
2858 return true;
2859 }
2860 }
2861
2862 ATRACE_BEGIN("Wait for BufferRequest done");
2863 res = waitForBufferRequestDone(&req->buffers);
2864 ATRACE_END();
2865
2866 if (res != 0) {
2867 // HAL buffer management buffer request can fail
2868 ALOGE("%s: wait for BufferRequest done failed! res %d", __FUNCTION__, res);
2869 lk.unlock();
2870 Status st = parent->processCaptureRequestError(req);
2871 if (st != Status::OK) {
2872 return onDeviceError("%s: failed to process capture request error!", __FUNCTION__);
2873 }
2874 signalRequestDone();
2875 return true;
2876 }
2877
2878 ALOGV("%s processing new request", __FUNCTION__);
2879 const int kSyncWaitTimeoutMs = 500;
2880 for (auto& halBuf : req->buffers) {
2881 if (*(halBuf.bufPtr) == nullptr) {
2882 ALOGW("%s: buffer for stream %d missing", __FUNCTION__, halBuf.streamId);
2883 halBuf.fenceTimeout = true;
2884 } else if (halBuf.acquireFence >= 0) {
2885 int ret = sync_wait(halBuf.acquireFence, kSyncWaitTimeoutMs);
2886 if (ret) {
2887 halBuf.fenceTimeout = true;
2888 } else {
2889 ::close(halBuf.acquireFence);
2890 halBuf.acquireFence = -1;
2891 }
2892 }
2893
2894 if (halBuf.fenceTimeout) {
2895 continue;
2896 }
2897
2898 // Gralloc lockYCbCr the buffer
2899 switch (halBuf.format) {
2900 case PixelFormat::BLOB: {
2901 int ret = createJpegLocked(halBuf, req->setting);
2902
2903 if (ret != 0) {
2904 lk.unlock();
2905 return onDeviceError("%s: createJpegLocked failed with %d", __FUNCTION__, ret);
2906 }
2907 } break;
2908 case PixelFormat::Y16: {
2909 void* outLayout = sHandleImporter.lock(
2910 *(halBuf.bufPtr), static_cast<uint64_t>(halBuf.usage), inDataSize);
2911
2912 std::memcpy(outLayout, inData, inDataSize);
2913
2914 int relFence = sHandleImporter.unlock(*(halBuf.bufPtr));
2915 if (relFence >= 0) {
2916 halBuf.acquireFence = relFence;
2917 }
2918 } break;
2919 case PixelFormat::YCBCR_420_888:
2920 case PixelFormat::YV12: {
2921 android::Rect outRect{0, 0, static_cast<int32_t>(halBuf.width),
2922 static_cast<int32_t>(halBuf.height)};
2923 android_ycbcr result = sHandleImporter.lockYCbCr(
2924 *(halBuf.bufPtr), static_cast<uint64_t>(halBuf.usage), outRect);
2925 ALOGV("%s: outLayout y %p cb %p cr %p y_str %zu c_str %zu c_step %zu", __FUNCTION__,
2926 result.y, result.cb, result.cr, result.ystride, result.cstride,
2927 result.chroma_step);
2928 if (result.ystride > UINT32_MAX || result.cstride > UINT32_MAX ||
2929 result.chroma_step > UINT32_MAX) {
2930 return onDeviceError("%s: lockYCbCr failed. Unexpected values!", __FUNCTION__);
2931 }
2932 YCbCrLayout outLayout = {.y = result.y,
2933 .cb = result.cb,
2934 .cr = result.cr,
2935 .yStride = static_cast<uint32_t>(result.ystride),
2936 .cStride = static_cast<uint32_t>(result.cstride),
2937 .chromaStep = static_cast<uint32_t>(result.chroma_step)};
2938
2939 // Convert to output buffer size/format
2940 uint32_t outputFourcc = getFourCcFromLayout(outLayout);
2941 ALOGV("%s: converting to format %c%c%c%c", __FUNCTION__, outputFourcc & 0xFF,
2942 (outputFourcc >> 8) & 0xFF, (outputFourcc >> 16) & 0xFF,
2943 (outputFourcc >> 24) & 0xFF);
2944
2945 YCbCrLayout cropAndScaled;
2946 ATRACE_BEGIN("cropAndScaleLocked");
2947 int ret = cropAndScaleLocked(mYu12Frame, Size{halBuf.width, halBuf.height},
2948 &cropAndScaled);
2949 ATRACE_END();
2950 if (ret != 0) {
2951 lk.unlock();
2952 return onDeviceError("%s: crop and scale failed!", __FUNCTION__);
2953 }
2954
2955 Size sz{halBuf.width, halBuf.height};
2956 ATRACE_BEGIN("formatConvert");
2957 ret = formatConvert(cropAndScaled, outLayout, sz, outputFourcc);
2958 ATRACE_END();
2959 if (ret != 0) {
2960 lk.unlock();
2961 return onDeviceError("%s: format conversion failed!", __FUNCTION__);
2962 }
2963 int relFence = sHandleImporter.unlock(*(halBuf.bufPtr));
2964 if (relFence >= 0) {
2965 halBuf.acquireFence = relFence;
2966 }
2967 } break;
2968 default:
2969 lk.unlock();
2970 return onDeviceError("%s: unknown output format %x", __FUNCTION__, halBuf.format);
2971 }
2972 } // for each buffer
2973 mScaledYu12Frames.clear();
2974
2975 // Don't hold the lock while calling back to parent
2976 lk.unlock();
2977 Status st = parent->processCaptureResult(req);
2978 if (st != Status::OK) {
2979 return onDeviceError("%s: failed to process capture result!", __FUNCTION__);
2980 }
2981 signalRequestDone();
2982 return true;
2983 }
2984
2985 // End ExternalCameraDeviceSession::OutputThread functions
2986
2987 } // namespace implementation
2988 } // namespace device
2989 } // namespace camera
2990 } // namespace hardware
2991 } // namespace android
2992