1 /******************************************************************************
2 *
3 * Copyright 2016 The Android Open Source Project
4 * Copyright 2009-2012 Broadcom Corporation
5 *
6 * Licensed under the Apache License, Version 2.0 (the "License");
7 * you may not use this file except in compliance with the License.
8 * You may obtain a copy of the License at:
9 *
10 * http://www.apache.org/licenses/LICENSE-2.0
11 *
12 * Unless required by applicable law or agreed to in writing, software
13 * distributed under the License is distributed on an "AS IS" BASIS,
14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15 * See the License for the specific language governing permissions and
16 * limitations under the License.
17 *
18 ******************************************************************************/
19
20 #define LOG_TAG "bluetooth-a2dp"
21
22 #include "a2dp_sbc_encoder.h"
23
24 #include <bluetooth/log.h>
25 #include <limits.h>
26 #include <stdio.h>
27 #include <string.h>
28
29 #include <cinttypes>
30 #include <cstdint>
31
32 #include "a2dp_api.h"
33 #include "a2dp_codec_api.h"
34 #include "a2dp_sbc.h"
35 #include "a2dp_sbc_constants.h"
36 #include "a2dp_sbc_up_sample.h"
37 #include "avdt_api.h"
38 #include "common/time_util.h"
39 #include "embdrv/sbc/encoder/include/sbc_encoder.h"
40 #include "internal_include/bt_target.h"
41 #include "osi/include/allocator.h"
42 #include "stack/include/bt_hdr.h"
43
44 /* Buffer pool */
45 #define A2DP_SBC_BUFFER_SIZE BT_DEFAULT_BUFFER_SIZE
46
47 // A2DP SBC encoder interval in milliseconds.
48 #define A2DP_SBC_ENCODER_INTERVAL_MS 20
49
50 /* High quality quality setting @ 44.1 khz */
51 #define A2DP_SBC_DEFAULT_BITRATE 328
52
53 #define A2DP_SBC_NON_EDR_MAX_RATE 229
54
55 #define A2DP_SBC_MAX_PCM_ITER_NUM_PER_TICK 3
56
57 #define A2DP_SBC_MAX_HQ_FRAME_SIZE_44_1 119
58 #define A2DP_SBC_MAX_HQ_FRAME_SIZE_48 115
59
60 /* Define the bitrate step when trying to match bitpool value */
61 #define A2DP_SBC_BITRATE_STEP 5
62
63 /* Readability constants */
64 #define A2DP_SBC_FRAME_HEADER_SIZE_BYTES 4 // A2DP Spec v1.3, 12.4, Table 12.12
65 #define A2DP_SBC_SCALE_FACTOR_BITS 4 // A2DP Spec v1.3, 12.4, Table 12.13
66
67 /* offset */
68 #define A2DP_HDR_SIZE 1
69 #define A2DP_SBC_OFFSET (AVDT_MEDIA_OFFSET + A2DP_SBC_MPL_HDR_LEN)
70
71 using namespace bluetooth;
72
73 typedef struct {
74 uint32_t aa_frame_counter;
75 int32_t aa_feed_counter;
76 int32_t aa_feed_residue;
77 float counter;
78 uint32_t bytes_per_tick; /* pcm bytes read each media task tick */
79 uint64_t last_frame_us;
80 } tA2DP_SBC_FEEDING_STATE;
81
82 typedef struct {
83 uint64_t session_start_us;
84
85 size_t media_read_total_expected_packets;
86 size_t media_read_total_expected_reads_count;
87 size_t media_read_total_expected_read_bytes;
88
89 size_t media_read_total_dropped_packets;
90 size_t media_read_total_actual_reads_count;
91 size_t media_read_total_actual_read_bytes;
92
93 size_t media_read_total_expected_frames;
94 size_t media_read_total_dropped_frames;
95 } a2dp_sbc_encoder_stats_t;
96
97 typedef struct {
98 a2dp_source_read_callback_t read_callback;
99 a2dp_source_enqueue_callback_t enqueue_callback;
100 uint16_t TxAaMtuSize;
101 uint8_t tx_sbc_frames;
102 tA2DP_ENCODER_INIT_PEER_PARAMS peer_params;
103 uint32_t timestamp; /* Timestamp for the A2DP frames */
104 SBC_ENC_PARAMS sbc_encoder_params;
105 tA2DP_FEEDING_PARAMS feeding_params;
106 tA2DP_SBC_FEEDING_STATE feeding_state;
107 int16_t pcmBuffer[SBC_MAX_PCM_BUFFER_SIZE];
108
109 a2dp_sbc_encoder_stats_t stats;
110 } tA2DP_SBC_ENCODER_CB;
111
112 static tA2DP_SBC_ENCODER_CB a2dp_sbc_encoder_cb;
113
114 static void a2dp_sbc_encoder_update(A2dpCodecConfig* a2dp_codec_config, bool* p_restart_input,
115 bool* p_restart_output, bool* p_config_updated);
116 static bool a2dp_sbc_read_feeding(uint32_t* bytes);
117 static void a2dp_sbc_encode_frames(uint8_t nb_frame);
118 static void a2dp_sbc_get_num_frame_iteration(uint8_t* num_of_iterations, uint8_t* num_of_frames,
119 uint64_t timestamp_us);
120 static uint16_t adjust_effective_mtu(const tA2DP_ENCODER_INIT_PEER_PARAMS& peer_params);
121 static uint8_t calculate_max_frames_per_packet(void);
122 static uint16_t a2dp_sbc_source_rate(bool is_peer_edr);
123 static uint32_t a2dp_sbc_frame_length(void);
124
a2dp_sbc_encoder_init(const tA2DP_ENCODER_INIT_PEER_PARAMS * p_peer_params,A2dpCodecConfig * a2dp_codec_config,a2dp_source_read_callback_t read_callback,a2dp_source_enqueue_callback_t enqueue_callback)125 void a2dp_sbc_encoder_init(const tA2DP_ENCODER_INIT_PEER_PARAMS* p_peer_params,
126 A2dpCodecConfig* a2dp_codec_config,
127 a2dp_source_read_callback_t read_callback,
128 a2dp_source_enqueue_callback_t enqueue_callback) {
129 memset(&a2dp_sbc_encoder_cb, 0, sizeof(a2dp_sbc_encoder_cb));
130
131 a2dp_sbc_encoder_cb.stats.session_start_us = bluetooth::common::time_get_os_boottime_us();
132
133 a2dp_sbc_encoder_cb.read_callback = read_callback;
134 a2dp_sbc_encoder_cb.enqueue_callback = enqueue_callback;
135 a2dp_sbc_encoder_cb.peer_params = *p_peer_params;
136 a2dp_sbc_encoder_cb.timestamp = 0;
137
138 // NOTE: Ignore the restart_input / restart_output flags - this initization
139 // happens when the audio session is (re)started.
140 bool restart_input = false;
141 bool restart_output = false;
142 bool config_updated = false;
143 a2dp_sbc_encoder_update(a2dp_codec_config, &restart_input, &restart_output, &config_updated);
144 }
145
146 // Update the A2DP SBC encoder.
147 // |a2dp_codec_config| is the A2DP codec to use for the update.
a2dp_sbc_encoder_update(A2dpCodecConfig * a2dp_codec_config,bool * p_restart_input,bool * p_restart_output,bool * p_config_updated)148 static void a2dp_sbc_encoder_update(A2dpCodecConfig* a2dp_codec_config, bool* p_restart_input,
149 bool* p_restart_output, bool* p_config_updated) {
150 SBC_ENC_PARAMS* p_encoder_params = &a2dp_sbc_encoder_cb.sbc_encoder_params;
151 uint8_t codec_info[AVDT_CODEC_SIZE];
152 uint16_t s16SamplingFreq;
153 int16_t s16BitPool = 0;
154 int16_t s16BitRate;
155 int16_t s16FrameLen;
156 uint8_t protect = 0;
157 int min_bitpool;
158 int max_bitpool;
159
160 *p_restart_input = false;
161 *p_restart_output = false;
162 *p_config_updated = false;
163 if (!a2dp_codec_config->copyOutOtaCodecConfig(codec_info)) {
164 log::error("Cannot update the codec encoder for {}: invalid codec config",
165 a2dp_codec_config->name());
166 return;
167 }
168 const uint8_t* p_codec_info = codec_info;
169 min_bitpool = A2DP_GetMinBitpoolSbc(p_codec_info);
170 max_bitpool = A2DP_GetMaxBitpoolSbc(p_codec_info);
171
172 // The feeding parameters
173 tA2DP_FEEDING_PARAMS* p_feeding_params = &a2dp_sbc_encoder_cb.feeding_params;
174 p_feeding_params->sample_rate = A2DP_GetTrackSampleRateSbc(p_codec_info);
175 p_feeding_params->bits_per_sample = a2dp_codec_config->getAudioBitsPerSample();
176 p_feeding_params->channel_count = A2DP_GetTrackChannelCountSbc(p_codec_info);
177 log::info("sample_rate={} bits_per_sample={} channel_count={}", p_feeding_params->sample_rate,
178 p_feeding_params->bits_per_sample, p_feeding_params->channel_count);
179 a2dp_sbc_feeding_reset();
180
181 // The codec parameters
182 p_encoder_params->s16ChannelMode = A2DP_GetChannelModeCodeSbc(p_codec_info);
183 p_encoder_params->s16NumOfSubBands = A2DP_GetNumberOfSubbandsSbc(p_codec_info);
184 p_encoder_params->s16NumOfBlocks = A2DP_GetNumberOfBlocksSbc(p_codec_info);
185 p_encoder_params->s16AllocationMethod = A2DP_GetAllocationMethodCodeSbc(p_codec_info);
186 p_encoder_params->s16SamplingFreq = A2DP_GetSamplingFrequencyCodeSbc(p_codec_info);
187 p_encoder_params->s16NumOfChannels = A2DP_GetTrackChannelCountSbc(p_codec_info);
188
189 // Reset invalid parameters
190 if (!p_encoder_params->s16NumOfSubBands) {
191 log::warn("SubBands are set to 0, resetting to max ({})", SBC_MAX_NUM_OF_SUBBANDS);
192 p_encoder_params->s16NumOfSubBands = SBC_MAX_NUM_OF_SUBBANDS;
193 }
194 if (!p_encoder_params->s16NumOfBlocks) {
195 log::warn("Blocks are set to 0, resetting to max ({})", SBC_MAX_NUM_OF_BLOCKS);
196 p_encoder_params->s16NumOfBlocks = SBC_MAX_NUM_OF_BLOCKS;
197 }
198 if (!p_encoder_params->s16NumOfChannels) {
199 log::warn("Channels are set to 0, resetting to max ({})", SBC_MAX_NUM_OF_CHANNELS);
200 p_encoder_params->s16NumOfChannels = SBC_MAX_NUM_OF_CHANNELS;
201 }
202
203 if (p_encoder_params->s16SamplingFreq == SBC_sf16000) {
204 s16SamplingFreq = 16000;
205 } else if (p_encoder_params->s16SamplingFreq == SBC_sf32000) {
206 s16SamplingFreq = 32000;
207 } else if (p_encoder_params->s16SamplingFreq == SBC_sf44100) {
208 s16SamplingFreq = 44100;
209 } else {
210 s16SamplingFreq = 48000;
211 }
212
213 // Set the initial target bit rate
214 const tA2DP_ENCODER_INIT_PEER_PARAMS& peer_params = a2dp_sbc_encoder_cb.peer_params;
215 p_encoder_params->u16BitRate = a2dp_sbc_source_rate(peer_params.is_peer_edr);
216
217 a2dp_sbc_encoder_cb.TxAaMtuSize = adjust_effective_mtu(peer_params);
218 log::info("MTU={}, peer_mtu={} min_bitpool={} max_bitpool={}", a2dp_sbc_encoder_cb.TxAaMtuSize,
219 peer_params.peer_mtu, min_bitpool, max_bitpool);
220 log::info(
221 "ChannelMode={}, NumOfSubBands={}, NumOfBlocks={}, AllocationMethod={}, "
222 "BitRate={}, SamplingFreq={} BitPool={}",
223 p_encoder_params->s16ChannelMode, p_encoder_params->s16NumOfSubBands,
224 p_encoder_params->s16NumOfBlocks, p_encoder_params->s16AllocationMethod,
225 p_encoder_params->u16BitRate, s16SamplingFreq, p_encoder_params->s16BitPool);
226
227 do {
228 if ((p_encoder_params->s16ChannelMode == SBC_JOINT_STEREO) ||
229 (p_encoder_params->s16ChannelMode == SBC_STEREO)) {
230 s16BitPool = (int16_t)((p_encoder_params->u16BitRate * p_encoder_params->s16NumOfSubBands *
231 1000 / s16SamplingFreq) -
232 ((32 +
233 (4 * p_encoder_params->s16NumOfSubBands *
234 p_encoder_params->s16NumOfChannels) +
235 ((p_encoder_params->s16ChannelMode - 2) *
236 p_encoder_params->s16NumOfSubBands)) /
237 p_encoder_params->s16NumOfBlocks));
238
239 s16FrameLen =
240 4 +
241 (4 * p_encoder_params->s16NumOfSubBands * p_encoder_params->s16NumOfChannels) / 8 +
242 (((p_encoder_params->s16ChannelMode - 2) * p_encoder_params->s16NumOfSubBands) +
243 (p_encoder_params->s16NumOfBlocks * s16BitPool)) /
244 8;
245
246 s16BitRate = (8 * s16FrameLen * s16SamplingFreq) /
247 (p_encoder_params->s16NumOfSubBands * p_encoder_params->s16NumOfBlocks * 1000);
248
249 if (s16BitRate > p_encoder_params->u16BitRate) {
250 s16BitPool--;
251 }
252
253 if (p_encoder_params->s16NumOfSubBands == 8) {
254 s16BitPool = (s16BitPool > 255) ? 255 : s16BitPool;
255 } else {
256 s16BitPool = (s16BitPool > 128) ? 128 : s16BitPool;
257 }
258 } else {
259 s16BitPool = (int16_t)(((p_encoder_params->s16NumOfSubBands * p_encoder_params->u16BitRate *
260 1000) /
261 (s16SamplingFreq * p_encoder_params->s16NumOfChannels)) -
262 (((32 / p_encoder_params->s16NumOfChannels) +
263 (4 * p_encoder_params->s16NumOfSubBands)) /
264 p_encoder_params->s16NumOfBlocks));
265
266 p_encoder_params->s16BitPool = (s16BitPool > (16 * p_encoder_params->s16NumOfSubBands))
267 ? (16 * p_encoder_params->s16NumOfSubBands)
268 : s16BitPool;
269 }
270
271 if (s16BitPool < 0) {
272 s16BitPool = 0;
273 }
274
275 log::verbose("bitpool candidate: {} ({} kbps)", s16BitPool, p_encoder_params->u16BitRate);
276
277 if (s16BitPool > max_bitpool) {
278 log::verbose("computed bitpool too large ({})", s16BitPool);
279 /* Decrease bitrate */
280 p_encoder_params->u16BitRate -= A2DP_SBC_BITRATE_STEP;
281 /* Record that we have decreased the bitrate */
282 protect |= 1;
283 } else if (s16BitPool < min_bitpool) {
284 log::warn("computed bitpool too small ({})", s16BitPool);
285
286 /* Increase bitrate */
287 uint16_t previous_u16BitRate = p_encoder_params->u16BitRate;
288 p_encoder_params->u16BitRate += A2DP_SBC_BITRATE_STEP;
289 /* Record that we have increased the bitrate */
290 protect |= 2;
291 /* Check over-flow */
292 if (p_encoder_params->u16BitRate < previous_u16BitRate) {
293 protect |= 3;
294 }
295 } else {
296 break;
297 }
298 /* In case we have already increased and decreased the bitrate, just stop */
299 if (protect == 3) {
300 log::error("could not find bitpool in range");
301 break;
302 }
303 } while (true);
304
305 /* Finally update the bitpool in the encoder structure */
306 p_encoder_params->s16BitPool = s16BitPool;
307
308 log::info("final bit rate {}, final bit pool {}", p_encoder_params->u16BitRate,
309 p_encoder_params->s16BitPool);
310
311 /* Reset the SBC encoder */
312 SBC_Encoder_Init(&a2dp_sbc_encoder_cb.sbc_encoder_params);
313 a2dp_sbc_encoder_cb.tx_sbc_frames = calculate_max_frames_per_packet();
314 }
315
a2dp_sbc_encoder_cleanup(void)316 void a2dp_sbc_encoder_cleanup(void) {
317 memset(&a2dp_sbc_encoder_cb, 0, sizeof(a2dp_sbc_encoder_cb));
318 }
319
a2dp_sbc_feeding_reset(void)320 void a2dp_sbc_feeding_reset(void) {
321 /* By default, just clear the entire state */
322 memset(&a2dp_sbc_encoder_cb.feeding_state, 0, sizeof(a2dp_sbc_encoder_cb.feeding_state));
323
324 a2dp_sbc_encoder_cb.feeding_state.bytes_per_tick =
325 (a2dp_sbc_encoder_cb.feeding_params.sample_rate *
326 a2dp_sbc_encoder_cb.feeding_params.bits_per_sample / 8 *
327 a2dp_sbc_encoder_cb.feeding_params.channel_count * A2DP_SBC_ENCODER_INTERVAL_MS) /
328 1000;
329
330 log::info("PCM bytes per tick {}", a2dp_sbc_encoder_cb.feeding_state.bytes_per_tick);
331 }
332
a2dp_sbc_feeding_flush(void)333 void a2dp_sbc_feeding_flush(void) {
334 a2dp_sbc_encoder_cb.feeding_state.counter = 0.0f;
335 a2dp_sbc_encoder_cb.feeding_state.aa_feed_residue = 0;
336 }
337
a2dp_sbc_get_encoder_interval_ms(void)338 uint64_t a2dp_sbc_get_encoder_interval_ms(void) { return A2DP_SBC_ENCODER_INTERVAL_MS; }
339
a2dp_sbc_get_effective_frame_size()340 int a2dp_sbc_get_effective_frame_size() { return a2dp_sbc_encoder_cb.TxAaMtuSize; }
341
a2dp_sbc_send_frames(uint64_t timestamp_us)342 void a2dp_sbc_send_frames(uint64_t timestamp_us) {
343 uint8_t nb_frame = 0;
344 uint8_t nb_iterations = 0;
345
346 a2dp_sbc_get_num_frame_iteration(&nb_iterations, &nb_frame, timestamp_us);
347 log::verbose("Sending {} frames per iteration, {} iterations", nb_frame, nb_iterations);
348 if (nb_frame == 0) {
349 return;
350 }
351
352 for (uint8_t counter = 0; counter < nb_iterations; counter++) {
353 // Transcode frame and enqueue
354 a2dp_sbc_encode_frames(nb_frame);
355 }
356 }
357
358 // Obtains the number of frames to send and number of iterations
359 // to be used. |num_of_iterations| and |num_of_frames| parameters
360 // are used as output param for returning the respective values.
a2dp_sbc_get_num_frame_iteration(uint8_t * num_of_iterations,uint8_t * num_of_frames,uint64_t timestamp_us)361 static void a2dp_sbc_get_num_frame_iteration(uint8_t* num_of_iterations, uint8_t* num_of_frames,
362 uint64_t timestamp_us) {
363 uint8_t nof = 0;
364 uint8_t noi = 1;
365
366 uint32_t projected_nof = 0;
367 uint32_t pcm_bytes_per_frame = a2dp_sbc_encoder_cb.sbc_encoder_params.s16NumOfSubBands *
368 a2dp_sbc_encoder_cb.sbc_encoder_params.s16NumOfBlocks *
369 a2dp_sbc_encoder_cb.feeding_params.channel_count *
370 a2dp_sbc_encoder_cb.feeding_params.bits_per_sample / 8;
371 log::verbose("pcm_bytes_per_frame {}", pcm_bytes_per_frame);
372
373 uint32_t us_this_tick = A2DP_SBC_ENCODER_INTERVAL_MS * 1000;
374 uint64_t now_us = timestamp_us;
375 if (a2dp_sbc_encoder_cb.feeding_state.last_frame_us != 0) {
376 us_this_tick = (now_us - a2dp_sbc_encoder_cb.feeding_state.last_frame_us);
377 }
378 a2dp_sbc_encoder_cb.feeding_state.last_frame_us = now_us;
379
380 a2dp_sbc_encoder_cb.feeding_state.counter +=
381 (float)a2dp_sbc_encoder_cb.feeding_state.bytes_per_tick * (float)us_this_tick /
382 (A2DP_SBC_ENCODER_INTERVAL_MS * 1000);
383
384 /* Calculate the number of frames pending for this media tick */
385 projected_nof = a2dp_sbc_encoder_cb.feeding_state.counter / (float)pcm_bytes_per_frame;
386 // Update the stats
387 a2dp_sbc_encoder_cb.stats.media_read_total_expected_frames += projected_nof;
388
389 if (projected_nof > MAX_PCM_FRAME_NUM_PER_TICK) {
390 log::warn("limiting frames to be sent from {} to {}", projected_nof,
391 MAX_PCM_FRAME_NUM_PER_TICK);
392
393 // Update the stats
394 size_t delta = projected_nof - MAX_PCM_FRAME_NUM_PER_TICK;
395 a2dp_sbc_encoder_cb.stats.media_read_total_dropped_frames += delta;
396
397 projected_nof = MAX_PCM_FRAME_NUM_PER_TICK;
398 }
399
400 log::verbose("frames for available PCM data {}", projected_nof);
401
402 if (a2dp_sbc_encoder_cb.peer_params.is_peer_edr) {
403 if (!a2dp_sbc_encoder_cb.tx_sbc_frames) {
404 log::error("tx_sbc_frames not updated, update from here");
405 a2dp_sbc_encoder_cb.tx_sbc_frames = calculate_max_frames_per_packet();
406 }
407
408 nof = a2dp_sbc_encoder_cb.tx_sbc_frames;
409 if (!nof) {
410 log::error("number of frames not updated, set calculated values");
411 nof = projected_nof;
412 noi = 1;
413 } else {
414 if (nof < projected_nof) {
415 noi = projected_nof / nof; // number of iterations would vary
416 if (noi > A2DP_SBC_MAX_PCM_ITER_NUM_PER_TICK) {
417 log::error("Audio Congestion (iterations:{} > max ({}))", noi,
418 A2DP_SBC_MAX_PCM_ITER_NUM_PER_TICK);
419 noi = A2DP_SBC_MAX_PCM_ITER_NUM_PER_TICK;
420 a2dp_sbc_encoder_cb.feeding_state.counter = noi * nof * (float)pcm_bytes_per_frame;
421 }
422 projected_nof = nof;
423 } else {
424 noi = 1; // number of iterations is 1
425 log::verbose("reducing frames for available PCM data");
426 nof = projected_nof;
427 }
428 }
429 } else {
430 // For BR cases nof will be same as the value retrieved at projected_nof
431 log::verbose("headset BR, number of frames {}", nof);
432 if (projected_nof > MAX_PCM_FRAME_NUM_PER_TICK) {
433 log::error("Audio Congestion (frames: {} > max ({}))", projected_nof,
434 MAX_PCM_FRAME_NUM_PER_TICK);
435
436 // Update the stats
437 size_t delta = projected_nof - MAX_PCM_FRAME_NUM_PER_TICK;
438 a2dp_sbc_encoder_cb.stats.media_read_total_dropped_frames += delta;
439
440 projected_nof = MAX_PCM_FRAME_NUM_PER_TICK;
441 a2dp_sbc_encoder_cb.feeding_state.counter =
442 (float)noi * (float)projected_nof * (float)pcm_bytes_per_frame;
443 }
444 nof = projected_nof;
445 }
446 a2dp_sbc_encoder_cb.feeding_state.counter -= noi * nof * (float)pcm_bytes_per_frame;
447 log::verbose("effective num of frames {}, iterations {}", nof, noi);
448
449 *num_of_frames = nof;
450 *num_of_iterations = noi;
451 }
452
a2dp_sbc_encode_frames(uint8_t nb_frame)453 static void a2dp_sbc_encode_frames(uint8_t nb_frame) {
454 SBC_ENC_PARAMS* p_encoder_params = &a2dp_sbc_encoder_cb.sbc_encoder_params;
455 uint8_t remain_nb_frame = nb_frame;
456 uint16_t blocm_x_subband = p_encoder_params->s16NumOfSubBands * p_encoder_params->s16NumOfBlocks;
457
458 uint8_t last_frame_len = 0;
459
460 while (nb_frame) {
461 BT_HDR* p_buf = (BT_HDR*)osi_malloc(A2DP_SBC_BUFFER_SIZE);
462 uint32_t bytes_read = 0;
463
464 p_buf->offset = A2DP_SBC_OFFSET;
465 p_buf->len = 0;
466 p_buf->layer_specific = 0;
467 a2dp_sbc_encoder_cb.stats.media_read_total_expected_packets++;
468
469 do {
470 /* Fill allocated buffer with 0 */
471 memset(a2dp_sbc_encoder_cb.pcmBuffer, 0,
472 blocm_x_subband * p_encoder_params->s16NumOfChannels);
473 //
474 // Read the PCM data and encode it. If necessary, upsample the data.
475 //
476 uint32_t num_bytes = 0;
477 if (a2dp_sbc_read_feeding(&num_bytes)) {
478 uint8_t* output = (uint8_t*)(p_buf + 1) + p_buf->offset + p_buf->len;
479 int16_t* input = a2dp_sbc_encoder_cb.pcmBuffer;
480 uint16_t output_len = SBC_Encode(p_encoder_params, input, output);
481 last_frame_len = output_len;
482
483 /* Update SBC frame length */
484 p_buf->len += output_len;
485 nb_frame--;
486 p_buf->layer_specific++;
487
488 bytes_read += num_bytes;
489 } else {
490 log::warn("underflow {}, {}", nb_frame, a2dp_sbc_encoder_cb.feeding_state.aa_feed_residue);
491 a2dp_sbc_encoder_cb.feeding_state.counter +=
492 nb_frame * p_encoder_params->s16NumOfSubBands * p_encoder_params->s16NumOfBlocks *
493 a2dp_sbc_encoder_cb.feeding_params.channel_count *
494 a2dp_sbc_encoder_cb.feeding_params.bits_per_sample / 8;
495 /* no more pcm to read */
496 nb_frame = 0;
497 }
498 } while (((p_buf->len + last_frame_len) < a2dp_sbc_encoder_cb.TxAaMtuSize) &&
499 (p_buf->layer_specific < 0x0F) && nb_frame);
500
501 if (p_buf->len) {
502 /*
503 * Timestamp of the media packet header represent the TS of the
504 * first SBC frame, i.e the timestamp before including this frame.
505 */
506 *((uint32_t*)(p_buf + 1)) = a2dp_sbc_encoder_cb.timestamp;
507
508 // Timestamp will wrap over to 0 if stream continues on long enough
509 // (>25H @ 48KHz). The parameters are promoted to 64bit to ensure that
510 // no unsigned overflow is triggered as ubsan is always enabled.
511 a2dp_sbc_encoder_cb.timestamp = ((uint64_t)a2dp_sbc_encoder_cb.timestamp +
512 (p_buf->layer_specific * blocm_x_subband)) &
513 UINT32_MAX;
514
515 uint8_t done_nb_frame = remain_nb_frame - nb_frame;
516 remain_nb_frame = nb_frame;
517 if (!a2dp_sbc_encoder_cb.enqueue_callback(p_buf, done_nb_frame, bytes_read)) {
518 return;
519 }
520 } else {
521 a2dp_sbc_encoder_cb.stats.media_read_total_dropped_packets++;
522 osi_free(p_buf);
523 }
524 }
525 }
526
a2dp_sbc_read_feeding(uint32_t * bytes_read)527 static bool a2dp_sbc_read_feeding(uint32_t* bytes_read) {
528 SBC_ENC_PARAMS* p_encoder_params = &a2dp_sbc_encoder_cb.sbc_encoder_params;
529 uint16_t blocm_x_subband = p_encoder_params->s16NumOfSubBands * p_encoder_params->s16NumOfBlocks;
530 uint32_t read_size;
531 uint32_t sbc_sampling = 48000;
532 uint32_t src_samples;
533 uint16_t bytes_needed = blocm_x_subband * p_encoder_params->s16NumOfChannels *
534 a2dp_sbc_encoder_cb.feeding_params.bits_per_sample / 8;
535 static uint16_t up_sampled_buffer[SBC_MAX_NUM_FRAME * SBC_MAX_NUM_OF_BLOCKS *
536 SBC_MAX_NUM_OF_CHANNELS * SBC_MAX_NUM_OF_SUBBANDS * 2];
537 static uint16_t read_buffer[SBC_MAX_NUM_FRAME * SBC_MAX_NUM_OF_BLOCKS * SBC_MAX_NUM_OF_CHANNELS *
538 SBC_MAX_NUM_OF_SUBBANDS];
539 uint32_t src_size_used;
540 uint32_t dst_size_used;
541 bool fract_needed;
542 int32_t fract_max;
543 int32_t fract_threshold;
544 uint32_t nb_byte_read;
545
546 /* Get the SBC sampling rate */
547 switch (p_encoder_params->s16SamplingFreq) {
548 case SBC_sf48000:
549 sbc_sampling = 48000;
550 break;
551 case SBC_sf44100:
552 sbc_sampling = 44100;
553 break;
554 case SBC_sf32000:
555 sbc_sampling = 32000;
556 break;
557 case SBC_sf16000:
558 sbc_sampling = 16000;
559 break;
560 }
561
562 a2dp_sbc_encoder_cb.stats.media_read_total_expected_reads_count++;
563 if (sbc_sampling == a2dp_sbc_encoder_cb.feeding_params.sample_rate) {
564 read_size = bytes_needed - a2dp_sbc_encoder_cb.feeding_state.aa_feed_residue;
565 a2dp_sbc_encoder_cb.stats.media_read_total_expected_read_bytes += read_size;
566 nb_byte_read = a2dp_sbc_encoder_cb.read_callback(
567 ((uint8_t*)a2dp_sbc_encoder_cb.pcmBuffer) +
568 a2dp_sbc_encoder_cb.feeding_state.aa_feed_residue,
569 read_size);
570 a2dp_sbc_encoder_cb.stats.media_read_total_actual_read_bytes += nb_byte_read;
571
572 *bytes_read = nb_byte_read;
573 if (nb_byte_read != read_size) {
574 a2dp_sbc_encoder_cb.feeding_state.aa_feed_residue += nb_byte_read;
575 return false;
576 }
577 a2dp_sbc_encoder_cb.stats.media_read_total_actual_reads_count++;
578 a2dp_sbc_encoder_cb.feeding_state.aa_feed_residue = 0;
579 return true;
580 }
581
582 /*
583 * Some Feeding PCM frequencies require to split the number of sample
584 * to read.
585 * E.g 128 / 6 = 21.3333 => read 22 and 21 and 21 => max = 2; threshold = 0
586 */
587 fract_needed = false; /* Default */
588 switch (a2dp_sbc_encoder_cb.feeding_params.sample_rate) {
589 case 32000:
590 case 8000:
591 fract_needed = true;
592 fract_max = 2; /* 0, 1 and 2 */
593 fract_threshold = 0; /* Add one for the first */
594 break;
595 case 16000:
596 fract_needed = true;
597 fract_max = 2; /* 0, 1 and 2 */
598 fract_threshold = 1; /* Add one for the first two frames*/
599 break;
600 }
601
602 /* Compute number of sample to read from source */
603 src_samples = blocm_x_subband;
604 src_samples *= a2dp_sbc_encoder_cb.feeding_params.sample_rate;
605 src_samples /= sbc_sampling;
606
607 /* The previous division may have a remainder not null */
608 if (fract_needed) {
609 if (a2dp_sbc_encoder_cb.feeding_state.aa_feed_counter <= fract_threshold) {
610 src_samples++; /* for every read before threshold add one sample */
611 }
612
613 /* do nothing if counter >= threshold */
614 a2dp_sbc_encoder_cb.feeding_state.aa_feed_counter++; /* one more read */
615 if (a2dp_sbc_encoder_cb.feeding_state.aa_feed_counter > fract_max) {
616 a2dp_sbc_encoder_cb.feeding_state.aa_feed_counter = 0;
617 }
618 }
619
620 /* Compute number of bytes to read from source */
621 read_size = src_samples;
622 read_size *= a2dp_sbc_encoder_cb.feeding_params.channel_count;
623 read_size *= (a2dp_sbc_encoder_cb.feeding_params.bits_per_sample / 8);
624 a2dp_sbc_encoder_cb.stats.media_read_total_expected_read_bytes += read_size;
625
626 /* Read Data from UIPC channel */
627 nb_byte_read = a2dp_sbc_encoder_cb.read_callback((uint8_t*)read_buffer, read_size);
628 a2dp_sbc_encoder_cb.stats.media_read_total_actual_read_bytes += nb_byte_read;
629
630 if (nb_byte_read < read_size) {
631 if (nb_byte_read == 0) {
632 return false;
633 }
634
635 /* Fill the unfilled part of the read buffer with silence (0) */
636 memset(((uint8_t*)read_buffer) + nb_byte_read, 0, read_size - nb_byte_read);
637 nb_byte_read = read_size;
638 }
639 a2dp_sbc_encoder_cb.stats.media_read_total_actual_reads_count++;
640
641 /* Initialize PCM up-sampling engine */
642 a2dp_sbc_init_up_sample(a2dp_sbc_encoder_cb.feeding_params.sample_rate, sbc_sampling,
643 a2dp_sbc_encoder_cb.feeding_params.bits_per_sample,
644 a2dp_sbc_encoder_cb.feeding_params.channel_count);
645
646 /*
647 * Re-sample the read buffer.
648 * The output PCM buffer will be stereo, 16 bit per sample.
649 */
650 dst_size_used = a2dp_sbc_up_sample(
651 (uint8_t*)read_buffer,
652 (uint8_t*)up_sampled_buffer + a2dp_sbc_encoder_cb.feeding_state.aa_feed_residue,
653 nb_byte_read,
654 sizeof(up_sampled_buffer) - a2dp_sbc_encoder_cb.feeding_state.aa_feed_residue,
655 &src_size_used);
656
657 /* update the residue */
658 a2dp_sbc_encoder_cb.feeding_state.aa_feed_residue += dst_size_used;
659
660 /* only copy the pcm sample when we have up-sampled enough PCM */
661 if (a2dp_sbc_encoder_cb.feeding_state.aa_feed_residue < bytes_needed) {
662 return false;
663 }
664
665 /* Copy the output pcm samples in SBC encoding buffer */
666 memcpy((uint8_t*)a2dp_sbc_encoder_cb.pcmBuffer, (uint8_t*)up_sampled_buffer, bytes_needed);
667 /* update the residue */
668 a2dp_sbc_encoder_cb.feeding_state.aa_feed_residue -= bytes_needed;
669
670 if (a2dp_sbc_encoder_cb.feeding_state.aa_feed_residue != 0) {
671 memcpy((uint8_t*)up_sampled_buffer, (uint8_t*)up_sampled_buffer + bytes_needed,
672 a2dp_sbc_encoder_cb.feeding_state.aa_feed_residue);
673 }
674 return true;
675 }
676
adjust_effective_mtu(const tA2DP_ENCODER_INIT_PEER_PARAMS & peer_params)677 static uint16_t adjust_effective_mtu(const tA2DP_ENCODER_INIT_PEER_PARAMS& peer_params) {
678 uint16_t mtu_size = A2DP_SBC_BUFFER_SIZE - A2DP_SBC_OFFSET - sizeof(BT_HDR);
679 if (mtu_size > peer_params.peer_mtu) {
680 mtu_size = peer_params.peer_mtu;
681 }
682 log::verbose("original AVDTP MTU size: {}", mtu_size);
683 if (peer_params.is_peer_edr && !peer_params.peer_supports_3mbps) {
684 // This condition would be satisfied only if the remote device is
685 // EDR and supports only 2 Mbps, but the effective AVDTP MTU size
686 // exceeds the 2DH5 packet size.
687 log::verbose("The remote device is EDR but does not support 3 Mbps");
688 if (mtu_size > MAX_2MBPS_AVDTP_MTU) {
689 log::warn("Restricting AVDTP MTU size from {} to {}", mtu_size, MAX_2MBPS_AVDTP_MTU);
690 mtu_size = MAX_2MBPS_AVDTP_MTU;
691 }
692 }
693 return mtu_size;
694 }
695
calculate_max_frames_per_packet(void)696 static uint8_t calculate_max_frames_per_packet(void) {
697 SBC_ENC_PARAMS* p_encoder_params = &a2dp_sbc_encoder_cb.sbc_encoder_params;
698 uint16_t result = 0;
699 uint32_t frame_len;
700
701 a2dp_sbc_encoder_cb.TxAaMtuSize = adjust_effective_mtu(a2dp_sbc_encoder_cb.peer_params);
702 const uint16_t& effective_mtu_size = a2dp_sbc_encoder_cb.TxAaMtuSize;
703
704 if (!p_encoder_params->s16NumOfSubBands) {
705 log::error("SubBands are set to 0, resetting to {}", SBC_MAX_NUM_OF_SUBBANDS);
706 p_encoder_params->s16NumOfSubBands = SBC_MAX_NUM_OF_SUBBANDS;
707 }
708 if (!p_encoder_params->s16NumOfBlocks) {
709 log::error("Blocks are set to 0, resetting to {}", SBC_MAX_NUM_OF_BLOCKS);
710 p_encoder_params->s16NumOfBlocks = SBC_MAX_NUM_OF_BLOCKS;
711 }
712 if (!p_encoder_params->s16NumOfChannels) {
713 log::error("Channels are set to 0, resetting to {}", SBC_MAX_NUM_OF_CHANNELS);
714 p_encoder_params->s16NumOfChannels = SBC_MAX_NUM_OF_CHANNELS;
715 }
716
717 frame_len = a2dp_sbc_frame_length();
718
719 log::verbose("Effective Tx MTU to be considered: {}", effective_mtu_size);
720
721 switch (p_encoder_params->s16SamplingFreq) {
722 case SBC_sf44100:
723 if (frame_len == 0) {
724 log::error("Calculating frame length, resetting it to default {}",
725 A2DP_SBC_MAX_HQ_FRAME_SIZE_44_1);
726 frame_len = A2DP_SBC_MAX_HQ_FRAME_SIZE_44_1;
727 }
728 result = (effective_mtu_size - A2DP_HDR_SIZE) / frame_len;
729 log::verbose("Max number of SBC frames: {}", result);
730 break;
731
732 case SBC_sf48000:
733 if (frame_len == 0) {
734 log::error("Calculating frame length, resetting it to default {}",
735 A2DP_SBC_MAX_HQ_FRAME_SIZE_48);
736 frame_len = A2DP_SBC_MAX_HQ_FRAME_SIZE_48;
737 }
738 result = (effective_mtu_size - A2DP_HDR_SIZE) / frame_len;
739 log::verbose("Max number of SBC frames: {}", result);
740 break;
741
742 default:
743 log::error("Max number of SBC frames: {}", result);
744 break;
745 }
746 return result;
747 }
748
a2dp_sbc_source_rate(bool is_peer_edr)749 static uint16_t a2dp_sbc_source_rate(bool is_peer_edr) {
750 uint16_t rate = A2DP_SBC_DEFAULT_BITRATE;
751
752 /* restrict bitrate if a2dp link is non-edr */
753 if (!is_peer_edr) {
754 rate = A2DP_SBC_NON_EDR_MAX_RATE;
755 log::verbose("non-edr a2dp sink detected, restrict rate to {}", rate);
756 }
757
758 return rate;
759 }
760
a2dp_sbc_frame_length(void)761 static uint32_t a2dp_sbc_frame_length(void) {
762 SBC_ENC_PARAMS* p_encoder_params = &a2dp_sbc_encoder_cb.sbc_encoder_params;
763 uint32_t frame_len = 0;
764
765 log::verbose(
766 "channel mode: {}, sub-band: {}, number of block: {}, bitpool: {}, "
767 "sampling frequency: {}, num channels: {}",
768 p_encoder_params->s16ChannelMode, p_encoder_params->s16NumOfSubBands,
769 p_encoder_params->s16NumOfBlocks, p_encoder_params->s16BitPool,
770 p_encoder_params->s16SamplingFreq, p_encoder_params->s16NumOfChannels);
771
772 switch (p_encoder_params->s16ChannelMode) {
773 case SBC_MONO:
774 FALLTHROUGH_INTENDED; /* FALLTHROUGH */
775 case SBC_DUAL:
776 frame_len = A2DP_SBC_FRAME_HEADER_SIZE_BYTES +
777 ((uint32_t)(A2DP_SBC_SCALE_FACTOR_BITS * p_encoder_params->s16NumOfSubBands *
778 p_encoder_params->s16NumOfChannels) /
779 CHAR_BIT) +
780 ((uint32_t)(p_encoder_params->s16NumOfBlocks *
781 p_encoder_params->s16NumOfChannels * p_encoder_params->s16BitPool) /
782 CHAR_BIT);
783 break;
784 case SBC_STEREO:
785 frame_len = A2DP_SBC_FRAME_HEADER_SIZE_BYTES +
786 ((uint32_t)(A2DP_SBC_SCALE_FACTOR_BITS * p_encoder_params->s16NumOfSubBands *
787 p_encoder_params->s16NumOfChannels) /
788 CHAR_BIT) +
789 ((uint32_t)(p_encoder_params->s16NumOfBlocks * p_encoder_params->s16BitPool) /
790 CHAR_BIT);
791 break;
792 case SBC_JOINT_STEREO:
793 frame_len = A2DP_SBC_FRAME_HEADER_SIZE_BYTES +
794 ((uint32_t)(A2DP_SBC_SCALE_FACTOR_BITS * p_encoder_params->s16NumOfSubBands *
795 p_encoder_params->s16NumOfChannels) /
796 CHAR_BIT) +
797 ((uint32_t)(p_encoder_params->s16NumOfSubBands +
798 (p_encoder_params->s16NumOfBlocks * p_encoder_params->s16BitPool)) /
799 CHAR_BIT);
800 break;
801 default:
802 log::verbose("Invalid channel number: {}", p_encoder_params->s16ChannelMode);
803 break;
804 }
805 log::verbose("calculated frame length: {}", frame_len);
806 return frame_len;
807 }
808
a2dp_sbc_get_bitrate()809 uint32_t a2dp_sbc_get_bitrate() {
810 SBC_ENC_PARAMS* p_encoder_params = &a2dp_sbc_encoder_cb.sbc_encoder_params;
811 log::info("bit rate {}", p_encoder_params->u16BitRate);
812 return p_encoder_params->u16BitRate * 1000;
813 }
814
debug_codec_dump(int fd)815 void A2dpCodecConfigSbcSource::debug_codec_dump(int fd) {
816 a2dp_sbc_encoder_stats_t* stats = &a2dp_sbc_encoder_cb.stats;
817
818 A2dpCodecConfig::debug_codec_dump(fd);
819
820 uint8_t codec_info[AVDT_CODEC_SIZE];
821 if (copyOutOtaCodecConfig(codec_info)) {
822 dprintf(fd, " SBC Block length : %d\n",
823 A2DP_GetNumberOfBlocksSbc(codec_info));
824 dprintf(fd, " SBC Number of subbands : %d\n",
825 A2DP_GetNumberOfSubbandsSbc(codec_info));
826 dprintf(fd, " SBC Allocation method : %d\n",
827 A2DP_GetAllocationMethodCodeSbc(codec_info));
828 dprintf(fd, " SBC Bitpool (min/max) : %d / %d\n",
829 A2DP_GetMinBitpoolSbc(codec_info), A2DP_GetMaxBitpoolSbc(codec_info));
830 }
831
832 dprintf(fd, " Encoder interval (ms): %" PRIu64 "\n", a2dp_sbc_get_encoder_interval_ms());
833 dprintf(fd, " Effective MTU: %d\n", a2dp_sbc_get_effective_frame_size());
834 dprintf(fd,
835 " Packet counts (expected/dropped) : %zu / "
836 "%zu\n",
837 stats->media_read_total_expected_packets, stats->media_read_total_dropped_packets);
838
839 dprintf(fd,
840 " PCM read counts (expected/actual) : %zu / "
841 "%zu\n",
842 stats->media_read_total_expected_reads_count, stats->media_read_total_actual_reads_count);
843
844 dprintf(fd,
845 " PCM read bytes (expected/actual) : %zu / "
846 "%zu\n",
847 stats->media_read_total_expected_read_bytes, stats->media_read_total_actual_read_bytes);
848
849 dprintf(fd,
850 " Frames counts (expected/dropped) : %zu / "
851 "%zu\n",
852 stats->media_read_total_expected_frames, stats->media_read_total_dropped_frames);
853 }
854