1 /*
2 * Copyright 2016 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "async_manager.h"
18
19 #include <fcntl.h>
20 #include <sys/select.h>
21 #include <unistd.h>
22
23 #include <algorithm>
24 #include <atomic>
25 #include <condition_variable>
26 #include <mutex>
27 #include <thread>
28 #include <vector>
29
30 #include "log.h"
31
32 #ifndef TEMP_FAILURE_RETRY
33 /* Used to retry syscalls that can return EINTR. */
34 #define TEMP_FAILURE_RETRY(exp) \
35 ({ \
36 __typeof__(exp) _rc; \
37 do { \
38 _rc = (exp); \
39 } while (_rc == -1 && errno == EINTR); \
40 _rc; \
41 })
42 #endif // TEMP_FAILURE_RETRY
43
44 namespace rootcanal {
45 // Implementation of AsyncManager is divided between two classes, three if
46 // AsyncManager itself is taken into account, but its only responsability
47 // besides being a proxy for the other two classes is to provide a global
48 // synchronization mechanism for callbacks and client code to use.
49
50 // The watching of file descriptors is done through AsyncFdWatcher. Several
51 // objects of this class may coexist simultaneosly as they share no state.
52 // After construction of this objects nothing happens beyond some very simple
53 // member initialization. When the first FD is set up for watching the object
54 // starts a new thread which watches the given (and later provided) FDs using
55 // select() inside a loop. A special FD (a pipe) is also watched which is
56 // used to notify the thread of internal changes on the object state (like
57 // the addition of new FDs to watch on). Every access to internal state is
58 // synchronized using a single internal mutex. The thread is only stopped on
59 // destruction of the object, by modifying a flag, which is the only member
60 // variable accessed without acquiring the lock (because the notification to
61 // the thread is done later by writing to a pipe which means the thread will
62 // be notified regardless of what phase of the loop it is in that moment)
63
64 // The scheduling of asynchronous tasks, periodic or not, is handled by the
65 // AsyncTaskManager class. Like the one for FDs, this class shares no internal
66 // state between different instances so it is safe to use several objects of
67 // this class, also nothing interesting happens upon construction, but only
68 // after a Task has been scheduled and access to internal state is synchronized
69 // using a single internal mutex. When the first task is scheduled a thread
70 // is started which monitors a queue of tasks. The queue is peeked to see
71 // when the next task should be carried out and then the thread performs a
72 // (absolute) timed wait on a condition variable. The wait ends because of a
73 // time out or a notify on the cond var, the former means a task is due
74 // for execution while the later means there has been a change in internal
75 // state, like a task has been scheduled/canceled or the flag to stop has
76 // been set. Setting and querying the stop flag or modifying the task queue
77 // and subsequent notification on the cond var is done atomically (e.g while
78 // holding the lock on the internal mutex) to ensure that the thread never
79 // misses the notification, since notifying a cond var is not persistent as
80 // writing on a pipe (if not done this way, the thread could query the
81 // stopping flag and be put aside by the OS scheduler right after, then the
82 // 'stop thread' procedure could run, setting the flag, notifying a cond
83 // var that no one is waiting on and joining the thread, the thread then
84 // resumes execution believing that it needs to continue and waits on the
85 // cond var possibly forever if there are no tasks scheduled, efectively
86 // causing a deadlock).
87
88 // This number also states the maximum number of scheduled tasks we can handle
89 // at a given time
90 static const uint16_t kMaxTaskId = -1; /* 2^16 - 1, permisible ids are {1..2^16-1}*/
NextAsyncTaskId(const AsyncTaskId id)91 static inline AsyncTaskId NextAsyncTaskId(const AsyncTaskId id) {
92 return (id == kMaxTaskId) ? 1 : id + 1;
93 }
94 // The buffer is only 10 bytes because the expected number of bytes
95 // written on this socket is 1. It is possible that the thread is notified
96 // more than once but highly unlikely, so a buffer of size 10 seems enough
97 // and the reads are performed inside a while just in case it isn't. From
98 // the thread routine's point of view it is the same to have been notified
99 // just once or 100 times so it just tries to consume the entire buffer.
100 // In the cases where an interrupt would cause read to return without
101 // having read everything that was available a new iteration of the thread
102 // loop will bring execution to this point almost immediately, so there is
103 // no need to treat that case.
104 static const int kNotificationBufferSize = 10;
105
106 // Async File Descriptor Watcher Implementation:
107 class AsyncManager::AsyncFdWatcher {
108 public:
WatchFdForNonBlockingReads(int file_descriptor,const ReadCallback & on_read_fd_ready_callback)109 int WatchFdForNonBlockingReads(int file_descriptor,
110 const ReadCallback& on_read_fd_ready_callback) {
111 // add file descriptor and callback
112 {
113 std::unique_lock<std::recursive_mutex> guard(internal_mutex_);
114 watched_shared_fds_[file_descriptor] = on_read_fd_ready_callback;
115 }
116
117 // start the thread if not started yet
118 int started = tryStartThread();
119 if (started != 0) {
120 ERROR("{}: Unable to start thread", __func__);
121 return started;
122 }
123
124 // notify the thread so that it knows of the new FD
125 notifyThread();
126
127 return 0;
128 }
129
StopWatchingFileDescriptor(int file_descriptor)130 void StopWatchingFileDescriptor(int file_descriptor) {
131 std::unique_lock<std::recursive_mutex> guard(internal_mutex_);
132 watched_shared_fds_.erase(file_descriptor);
133 }
134
135 AsyncFdWatcher() = default;
136 AsyncFdWatcher(const AsyncFdWatcher&) = delete;
137 AsyncFdWatcher& operator=(const AsyncFdWatcher&) = delete;
138
139 ~AsyncFdWatcher() = default;
140
stopThread()141 int stopThread() {
142 if (!std::atomic_exchange(&running_, false)) {
143 return 0; // if not running already
144 }
145
146 notifyThread();
147
148 if (std::this_thread::get_id() != thread_.get_id()) {
149 thread_.join();
150 } else {
151 WARNING("{}: Starting thread stop from inside the reading thread itself", __func__);
152 }
153
154 {
155 std::unique_lock<std::recursive_mutex> guard(internal_mutex_);
156 watched_shared_fds_.clear();
157 }
158
159 return 0;
160 }
161
162 private:
163 // Make sure to call this with at least one file descriptor ready to be
164 // watched upon or the thread routine will return immediately
tryStartThread()165 int tryStartThread() {
166 if (std::atomic_exchange(&running_, true)) {
167 return 0; // if already running
168 }
169 // set up the communication channel
170 int pipe_fds[2];
171 if (pipe(pipe_fds)) {
172 ERROR("{}: Unable to establish a communication channel to the reading "
173 "thread",
174 __func__);
175 return -1;
176 }
177 // configure the fds as non blocking.
178 if (fcntl(pipe_fds[0], F_SETFL, O_NONBLOCK) || fcntl(pipe_fds[1], F_SETFL, O_NONBLOCK)) {
179 ERROR("{}: Unable to configure the communication channel to the reading "
180 "thread",
181 __func__);
182 return -1;
183 }
184
185 notification_listen_fd_ = pipe_fds[0];
186 notification_write_fd_ = pipe_fds[1];
187
188 thread_ = std::thread([this]() { ThreadRoutine(); });
189 if (!thread_.joinable()) {
190 ERROR("{}: Unable to start reading thread", __func__);
191 return -1;
192 }
193 return 0;
194 }
195
notifyThread() const196 int notifyThread() const {
197 char buffer = '0';
198 if (TEMP_FAILURE_RETRY(write(notification_write_fd_, &buffer, 1)) < 0) {
199 ERROR("{}: Unable to send message to reading thread", __func__);
200 return -1;
201 }
202 return 0;
203 }
204
setUpFileDescriptorSet(fd_set & read_fds)205 int setUpFileDescriptorSet(fd_set& read_fds) {
206 // add comm channel to the set
207 FD_SET(notification_listen_fd_, &read_fds);
208 int nfds = notification_listen_fd_;
209
210 // add watched FDs to the set
211 {
212 std::unique_lock<std::recursive_mutex> guard(internal_mutex_);
213 for (auto& fdp : watched_shared_fds_) {
214 FD_SET(fdp.first, &read_fds);
215 nfds = std::max(fdp.first, nfds);
216 }
217 }
218 return nfds;
219 }
220
221 // check the comm channel and read everything there
consumeThreadNotifications(fd_set & read_fds) const222 bool consumeThreadNotifications(fd_set& read_fds) const {
223 if (FD_ISSET(notification_listen_fd_, &read_fds)) {
224 char buffer[kNotificationBufferSize];
225 while (TEMP_FAILURE_RETRY(read(notification_listen_fd_, buffer, kNotificationBufferSize)) ==
226 kNotificationBufferSize) {
227 }
228 return true;
229 }
230 return false;
231 }
232
233 // check all file descriptors and call callbacks if necesary
runAppropriateCallbacks(fd_set & read_fds)234 void runAppropriateCallbacks(fd_set& read_fds) {
235 std::vector<decltype(watched_shared_fds_)::value_type> fds;
236 std::unique_lock<std::recursive_mutex> guard(internal_mutex_);
237 for (auto& fdc : watched_shared_fds_) {
238 if (FD_ISSET(fdc.first, &read_fds)) {
239 fds.push_back(fdc);
240 }
241 }
242 for (auto& p : fds) {
243 p.second(p.first);
244 }
245 }
246
ThreadRoutine()247 void ThreadRoutine() {
248 while (running_) {
249 fd_set read_fds;
250 FD_ZERO(&read_fds);
251 int nfds = setUpFileDescriptorSet(read_fds);
252
253 // wait until there is data available to read on some FD
254 int retval = select(nfds + 1, &read_fds, NULL, NULL, NULL);
255 if (retval <= 0) { // there was some error or a timeout
256 ERROR("{}: There was an error while waiting for data on the file "
257 "descriptors: {}",
258 __func__, strerror(errno));
259 continue;
260 }
261
262 consumeThreadNotifications(read_fds);
263
264 // Do not read if there was a call to stop running
265 if (!running_) {
266 break;
267 }
268
269 runAppropriateCallbacks(read_fds);
270 }
271 }
272
273 std::atomic_bool running_{false};
274 std::thread thread_;
275 std::recursive_mutex internal_mutex_;
276
277 std::map<int, ReadCallback> watched_shared_fds_;
278
279 // A pair of FD to send information to the reading thread
280 int notification_listen_fd_{};
281 int notification_write_fd_{};
282 };
283
284 // Async task manager implementation
285 class AsyncManager::AsyncTaskManager {
286 public:
GetNextUserId()287 AsyncUserId GetNextUserId() { return lastUserId_++; }
288
ExecAsync(AsyncUserId user_id,std::chrono::milliseconds delay,const TaskCallback & callback)289 AsyncTaskId ExecAsync(AsyncUserId user_id, std::chrono::milliseconds delay,
290 const TaskCallback& callback) {
291 return scheduleTask(
292 std::make_shared<Task>(std::chrono::steady_clock::now() + delay, callback, user_id));
293 }
294
ExecAsyncPeriodically(AsyncUserId user_id,std::chrono::milliseconds delay,std::chrono::milliseconds period,const TaskCallback & callback)295 AsyncTaskId ExecAsyncPeriodically(AsyncUserId user_id, std::chrono::milliseconds delay,
296 std::chrono::milliseconds period,
297 const TaskCallback& callback) {
298 return scheduleTask(std::make_shared<Task>(std::chrono::steady_clock::now() + delay, period,
299 callback, user_id));
300 }
301
CancelAsyncTask(AsyncTaskId async_task_id)302 bool CancelAsyncTask(AsyncTaskId async_task_id) {
303 // remove task from queue (and task id association) while holding lock
304 std::unique_lock<std::mutex> guard(internal_mutex_);
305 return cancel_task_with_lock_held(async_task_id);
306 }
307
CancelAsyncTasksFromUser(AsyncUserId user_id)308 bool CancelAsyncTasksFromUser(AsyncUserId user_id) {
309 // remove task from queue (and task id association) while holding lock
310 std::unique_lock<std::mutex> guard(internal_mutex_);
311 if (tasks_by_user_id_.count(user_id) == 0) {
312 return false;
313 }
314 for (auto task : tasks_by_user_id_[user_id]) {
315 cancel_task_with_lock_held(task);
316 }
317 tasks_by_user_id_.erase(user_id);
318 return true;
319 }
320
Synchronize(const CriticalCallback & critical)321 void Synchronize(const CriticalCallback& critical) {
322 std::unique_lock<std::mutex> guard(synchronization_mutex_);
323 critical();
324 }
325
326 AsyncTaskManager() = default;
327 AsyncTaskManager(const AsyncTaskManager&) = delete;
328 AsyncTaskManager& operator=(const AsyncTaskManager&) = delete;
329
330 ~AsyncTaskManager() = default;
331
stopThread()332 int stopThread() {
333 {
334 std::unique_lock<std::mutex> guard(internal_mutex_);
335 tasks_by_id_.clear();
336 task_queue_.clear();
337 if (!running_) {
338 return 0;
339 }
340 running_ = false;
341 // notify the thread
342 internal_cond_var_.notify_one();
343 } // release the lock before joining a thread that is likely waiting for it
344 if (std::this_thread::get_id() != thread_.get_id()) {
345 thread_.join();
346 } else {
347 WARNING("{}: Starting thread stop from inside the task thread itself", __func__);
348 }
349 return 0;
350 }
351
352 private:
353 // Holds the data for each task
354 class Task {
355 public:
Task(std::chrono::steady_clock::time_point time,std::chrono::milliseconds period,const TaskCallback & callback,AsyncUserId user)356 Task(std::chrono::steady_clock::time_point time, std::chrono::milliseconds period,
357 const TaskCallback& callback, AsyncUserId user)
358 : time(time),
359 periodic(true),
360 period(period),
361 callback(callback),
362 task_id(kInvalidTaskId),
363 user_id(user) {}
Task(std::chrono::steady_clock::time_point time,const TaskCallback & callback,AsyncUserId user)364 Task(std::chrono::steady_clock::time_point time, const TaskCallback& callback, AsyncUserId user)
365 : time(time), periodic(false), callback(callback), task_id(kInvalidTaskId), user_id(user) {}
366
367 // Operators needed to be in a collection
operator <(const Task & another) const368 bool operator<(const Task& another) const {
369 return std::make_pair(time, task_id) < std::make_pair(another.time, another.task_id);
370 }
371
isPeriodic() const372 bool isPeriodic() const { return periodic; }
373
374 // These fields should no longer be public if the class ever becomes
375 // public or gets more complex
376 std::chrono::steady_clock::time_point time;
377 bool periodic;
378 std::chrono::milliseconds period{};
379 std::mutex in_callback; // Taken when the callback is active
380 TaskCallback callback;
381 AsyncTaskId task_id;
382 AsyncUserId user_id;
383 };
384
385 // A comparator class to put shared pointers to tasks in an ordered set
386 struct task_p_comparator {
operator ()rootcanal::AsyncManager::AsyncTaskManager::task_p_comparator387 bool operator()(const std::shared_ptr<Task>& t1, const std::shared_ptr<Task>& t2) const {
388 return *t1 < *t2;
389 }
390 };
391
cancel_task_with_lock_held(AsyncTaskId async_task_id)392 bool cancel_task_with_lock_held(AsyncTaskId async_task_id) {
393 if (tasks_by_id_.count(async_task_id) == 0) {
394 return false;
395 }
396
397 // Now make sure we are not running this task.
398 // 2 cases:
399 // - This is called from thread_, this means a running
400 // scheduled task is actually unregistering. All bets are off.
401 // - Another thread is calling us, let's make sure the task is not active.
402 if (thread_.get_id() != std::this_thread::get_id()) {
403 auto task = tasks_by_id_[async_task_id];
404 const std::lock_guard<std::mutex> lock(task->in_callback);
405 task_queue_.erase(task);
406 tasks_by_id_.erase(async_task_id);
407 } else {
408 task_queue_.erase(tasks_by_id_[async_task_id]);
409 tasks_by_id_.erase(async_task_id);
410 }
411
412 return true;
413 }
414
scheduleTask(const std::shared_ptr<Task> & task)415 AsyncTaskId scheduleTask(const std::shared_ptr<Task>& task) {
416 {
417 std::unique_lock<std::mutex> guard(internal_mutex_);
418 // no more room for new tasks, we need a larger type for IDs
419 if (tasks_by_id_.size() == kMaxTaskId) { // TODO potentially type unsafe
420 return kInvalidTaskId;
421 }
422 do {
423 lastTaskId_ = NextAsyncTaskId(lastTaskId_);
424 } while (isTaskIdInUse(lastTaskId_));
425 task->task_id = lastTaskId_;
426 // add task to the queue and map
427 tasks_by_id_[lastTaskId_] = task;
428 tasks_by_user_id_[task->user_id].insert(task->task_id);
429 task_queue_.insert(task);
430 }
431 // start thread if necessary
432 int started = tryStartThread();
433 if (started != 0) {
434 ERROR("{}: Unable to start thread", __func__);
435 return kInvalidTaskId;
436 }
437 // notify the thread so that it knows of the new task
438 internal_cond_var_.notify_one();
439 // return task id
440 return task->task_id;
441 }
442
isTaskIdInUse(const AsyncTaskId & task_id) const443 bool isTaskIdInUse(const AsyncTaskId& task_id) const { return tasks_by_id_.count(task_id) != 0; }
444
tryStartThread()445 int tryStartThread() {
446 // need the lock because of the running flag and the cond var
447 std::unique_lock<std::mutex> guard(internal_mutex_);
448 // check that the thread is not yet running
449 if (running_) {
450 return 0;
451 }
452 // start the thread
453 running_ = true;
454 thread_ = std::thread([this]() { ThreadRoutine(); });
455 if (!thread_.joinable()) {
456 ERROR("{}: Unable to start task thread", __func__);
457 return -1;
458 }
459 return 0;
460 }
461
ThreadRoutine()462 void ThreadRoutine() {
463 while (running_) {
464 TaskCallback callback;
465 std::shared_ptr<Task> task_p;
466 bool run_it = false;
467 {
468 std::unique_lock<std::mutex> guard(internal_mutex_);
469 if (!task_queue_.empty()) {
470 task_p = *(task_queue_.begin());
471 if (task_p->time < std::chrono::steady_clock::now()) {
472 run_it = true;
473 callback = task_p->callback;
474 task_queue_.erase(task_p); // need to remove and add again if
475 // periodic to update order
476 if (task_p->isPeriodic()) {
477 task_p->time += task_p->period;
478 task_queue_.insert(task_p);
479 } else {
480 tasks_by_user_id_[task_p->user_id].erase(task_p->task_id);
481 tasks_by_id_.erase(task_p->task_id);
482 }
483 }
484 }
485 }
486 if (run_it) {
487 const std::lock_guard<std::mutex> lock(task_p->in_callback);
488 Synchronize(callback);
489 }
490 {
491 std::unique_lock<std::mutex> guard(internal_mutex_);
492 // check for termination right before waiting
493 if (!running_) {
494 break;
495 }
496 // wait until time for the next task (if any)
497 if (!task_queue_.empty()) {
498 // Make a copy of the time_point because wait_until takes a reference
499 // to it and may read it after waiting, by which time the task may
500 // have been freed (e.g. via CancelAsyncTask).
501 std::chrono::steady_clock::time_point time = (*task_queue_.begin())->time;
502 internal_cond_var_.wait_until(guard, time);
503 } else {
504 internal_cond_var_.wait(guard);
505 }
506 }
507 }
508 }
509
510 bool running_ = false;
511 std::thread thread_;
512 std::mutex internal_mutex_;
513 std::mutex synchronization_mutex_;
514 std::condition_variable internal_cond_var_;
515
516 AsyncTaskId lastTaskId_ = kInvalidTaskId;
517 AsyncUserId lastUserId_{1};
518 std::map<AsyncTaskId, std::shared_ptr<Task>> tasks_by_id_;
519 std::map<AsyncUserId, std::set<AsyncTaskId>> tasks_by_user_id_;
520 std::set<std::shared_ptr<Task>, task_p_comparator> task_queue_;
521 };
522
523 // Async Manager Implementation:
AsyncManager()524 AsyncManager::AsyncManager()
525 : fdWatcher_p_(new AsyncFdWatcher()), taskManager_p_(new AsyncTaskManager()) {}
526
~AsyncManager()527 AsyncManager::~AsyncManager() {
528 // Make sure the threads are stopped before destroying the object.
529 // The threads need to be stopped here and not in each internal class'
530 // destructor because unique_ptr's reset() first assigns nullptr to the
531 // pointer and only then calls the destructor, so any callback running
532 // on these threads would dereference a null pointer if they called a member
533 // function of this class.
534 fdWatcher_p_->stopThread();
535 taskManager_p_->stopThread();
536 }
537
WatchFdForNonBlockingReads(int file_descriptor,const ReadCallback & on_read_fd_ready_callback)538 int AsyncManager::WatchFdForNonBlockingReads(int file_descriptor,
539 const ReadCallback& on_read_fd_ready_callback) {
540 return fdWatcher_p_->WatchFdForNonBlockingReads(file_descriptor, on_read_fd_ready_callback);
541 }
542
StopWatchingFileDescriptor(int file_descriptor)543 void AsyncManager::StopWatchingFileDescriptor(int file_descriptor) {
544 fdWatcher_p_->StopWatchingFileDescriptor(file_descriptor);
545 }
546
GetNextUserId()547 AsyncUserId AsyncManager::GetNextUserId() { return taskManager_p_->GetNextUserId(); }
548
ExecAsync(AsyncUserId user_id,std::chrono::milliseconds delay,const TaskCallback & callback)549 AsyncTaskId AsyncManager::ExecAsync(AsyncUserId user_id, std::chrono::milliseconds delay,
550 const TaskCallback& callback) {
551 return taskManager_p_->ExecAsync(user_id, delay, callback);
552 }
553
ExecAsyncPeriodically(AsyncUserId user_id,std::chrono::milliseconds delay,std::chrono::milliseconds period,const TaskCallback & callback)554 AsyncTaskId AsyncManager::ExecAsyncPeriodically(AsyncUserId user_id,
555 std::chrono::milliseconds delay,
556 std::chrono::milliseconds period,
557 const TaskCallback& callback) {
558 return taskManager_p_->ExecAsyncPeriodically(user_id, delay, period, callback);
559 }
560
CancelAsyncTask(AsyncTaskId async_task_id)561 bool AsyncManager::CancelAsyncTask(AsyncTaskId async_task_id) {
562 return taskManager_p_->CancelAsyncTask(async_task_id);
563 }
564
CancelAsyncTasksFromUser(rootcanal::AsyncUserId user_id)565 bool AsyncManager::CancelAsyncTasksFromUser(rootcanal::AsyncUserId user_id) {
566 return taskManager_p_->CancelAsyncTasksFromUser(user_id);
567 }
568
Synchronize(const CriticalCallback & critical)569 void AsyncManager::Synchronize(const CriticalCallback& critical) {
570 taskManager_p_->Synchronize(critical);
571 }
572 } // namespace rootcanal
573