1 /*
2  * Copyright (C) 2020 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifdef MAINLINE
18 // BTF is incompatible with bpfloaders < v0.10, hence for S (v0.2) we must
19 // ship a different file than for later versions, but we need bpfloader v0.25+
20 // for [email protected] support
21 #define BPFLOADER_MIN_VER BPFLOADER_MAINLINE_T_VERSION
22 #else /* MAINLINE */
23 // The resulting .o needs to load on the Android S bpfloader
24 #define BPFLOADER_MIN_VER BPFLOADER_S_VERSION
25 #define BPFLOADER_MAX_VER BPFLOADER_T_VERSION
26 #endif /* MAINLINE */
27 
28 #include "bpf_net_helpers.h"
29 #include "offload.h"
30 
31 // ----- Tethering Error Counters -----
32 
33 // Note that pre-T devices with Mediatek chipsets may have a kernel bug (bad patch
34 // "[ALPS05162612] bpf: fix ubsan error") making it impossible to write to non-zero
35 // offset of bpf map ARRAYs.  This file (offload.o) loads on S+, but luckily this
36 // array is only written by bpf code, and only read by userspace.
DEFINE_BPF_MAP_RO(tether_error_map,ARRAY,uint32_t,uint32_t,BPF_TETHER_ERR__MAX,AID_NETWORK_STACK)37 DEFINE_BPF_MAP_RO(tether_error_map, ARRAY, uint32_t, uint32_t, BPF_TETHER_ERR__MAX, AID_NETWORK_STACK)
38 
39 #define COUNT_AND_RETURN(counter, ret) do {                     \
40     uint32_t code = BPF_TETHER_ERR_ ## counter;                 \
41     uint32_t *count = bpf_tether_error_map_lookup_elem(&code);  \
42     if (count) __sync_fetch_and_add(count, 1);                  \
43     return ret;                                                 \
44 } while(0)
45 
46 #define TC_DROP(counter) COUNT_AND_RETURN(counter, TC_ACT_SHOT)
47 #define TC_PUNT(counter) COUNT_AND_RETURN(counter, TC_ACT_PIPE)
48 
49 #define XDP_DROP(counter) COUNT_AND_RETURN(counter, XDP_DROP)
50 #define XDP_PUNT(counter) COUNT_AND_RETURN(counter, XDP_PASS)
51 
52 // ----- Tethering Data Stats and Limits -----
53 
54 // Tethering stats, indexed by upstream interface.
55 DEFINE_BPF_MAP_GRW(tether_stats_map, HASH, TetherStatsKey, TetherStatsValue, 16, AID_NETWORK_STACK)
56 
57 // Tethering data limit, indexed by upstream interface.
58 // (tethering allowed when stats[iif].rxBytes + stats[iif].txBytes < limit[iif])
59 DEFINE_BPF_MAP_GRW(tether_limit_map, HASH, TetherLimitKey, TetherLimitValue, 16, AID_NETWORK_STACK)
60 
61 // ----- IPv6 Support -----
62 
63 DEFINE_BPF_MAP_GRW(tether_downstream6_map, HASH, TetherDownstream6Key, Tether6Value, 64,
64                    AID_NETWORK_STACK)
65 
66 DEFINE_BPF_MAP_GRW(tether_downstream64_map, HASH, TetherDownstream64Key, TetherDownstream64Value,
67                    1024, AID_NETWORK_STACK)
68 
69 DEFINE_BPF_MAP_GRW(tether_upstream6_map, HASH, TetherUpstream6Key, Tether6Value, 64,
70                    AID_NETWORK_STACK)
71 
72 static inline __always_inline int do_forward6(struct __sk_buff* skb,
73                                               const struct rawip_bool rawip,
74                                               const struct stream_bool stream,
75                                               __unused const struct kver_uint kver) {
76     const bool is_ethernet = !rawip.rawip;
77 
78     // Must be meta-ethernet IPv6 frame
79     if (skb->protocol != htons(ETH_P_IPV6)) return TC_ACT_PIPE;
80 
81     // Require ethernet dst mac address to be our unicast address.
82     if (is_ethernet && (skb->pkt_type != PACKET_HOST)) return TC_ACT_PIPE;
83 
84     const int l2_header_size = is_ethernet ? sizeof(struct ethhdr) : 0;
85 
86     // Since the program never writes via DPA (direct packet access) auto-pull/unclone logic does
87     // not trigger and thus we need to manually make sure we can read packet headers via DPA.
88     // It has to be done early cause it will invalidate any skb->data/data_end derived pointers.
89     if (bpf_skb_pull_data(skb, l2_header_size + IP6_HLEN)) return TC_ACT_PIPE;
90 
91     void* data = (void*)(long)skb->data;
92     const void* data_end = (void*)(long)skb->data_end;
93     struct ethhdr* eth = is_ethernet ? data : NULL;  // used iff is_ethernet
94     struct ipv6hdr* ip6 = is_ethernet ? (void*)(eth + 1) : data;
95 
96     // Must have (ethernet and) ipv6 header
97     if (data + l2_header_size + sizeof(*ip6) > data_end) return TC_ACT_PIPE;
98 
99     // Ethertype - if present - must be IPv6
100     if (is_ethernet && (eth->h_proto != htons(ETH_P_IPV6))) return TC_ACT_PIPE;
101 
102     // IP version must be 6
103     if (ip6->version != 6) TC_PUNT(INVALID_IPV6_VERSION);
104 
105     // Cannot decrement during forward if already zero or would be zero,
106     // Let the kernel's stack handle these cases and generate appropriate ICMP errors.
107     if (ip6->hop_limit <= 1) TC_PUNT(LOW_TTL);
108 
109     // If hardware offload is running and programming flows based on conntrack entries,
110     // try not to interfere with it.
111     if (ip6->nexthdr == IPPROTO_TCP) {
112         // don't need to check return code, as it's effectively checked in the next 'if' below
113         bpf_skb_pull_data(skb, l2_header_size + IP6_HLEN + TCP_HLEN);
114 
115         data = (void*)(long)skb->data;
116         data_end = (void*)(long)skb->data_end;
117         eth = is_ethernet ? data : NULL;  // used iff is_ethernet
118         ip6 = is_ethernet ? (void*)(eth + 1) : data;
119 
120         struct tcphdr* tcph = (void*)(ip6 + 1);
121 
122         // Make sure we can get at the tcp header
123         if (data + l2_header_size + sizeof(*ip6) + sizeof(*tcph) > data_end)
124             TC_PUNT(INVALID_TCP_HEADER);
125 
126         // Do not offload TCP packets with any one of the SYN/FIN/RST flags
127         if (tcph->syn || tcph->fin || tcph->rst) TC_PUNT(TCPV6_CONTROL_PACKET);
128     }
129 
130     // Protect against forwarding packets sourced from ::1 or fe80::/64 or other weirdness.
131     __be32 src32 = ip6->saddr.s6_addr32[0];
132     if (src32 != htonl(0x0064ff9b) &&                        // 64:ff9b:/32 incl. XLAT464 WKP
133         (src32 & htonl(0xe0000000)) != htonl(0x20000000))    // 2000::/3 Global Unicast
134         TC_PUNT(NON_GLOBAL_SRC);
135 
136     // Protect against forwarding packets destined to ::1 or fe80::/64 or other weirdness.
137     __be32 dst32 = ip6->daddr.s6_addr32[0];
138     if (dst32 != htonl(0x0064ff9b) &&                        // 64:ff9b:/32 incl. XLAT464 WKP
139         (dst32 & htonl(0xe0000000)) != htonl(0x20000000))    // 2000::/3 Global Unicast
140         TC_PUNT(NON_GLOBAL_DST);
141 
142     // In the upstream direction do not forward traffic within the same /64 subnet.
143     if (!stream.down && (src32 == dst32) && (ip6->saddr.s6_addr32[1] == ip6->daddr.s6_addr32[1]))
144         TC_PUNT(LOCAL_SRC_DST);
145 
146     TetherDownstream6Key kd = {
147             .iif = skb->ifindex,
148             .neigh6 = ip6->daddr,
149     };
150 
151     TetherUpstream6Key ku = {
152             .iif = skb->ifindex,
153             // Retrieve the first 64 bits of the source IPv6 address in network order
154             .src64 = *(uint64_t*)&(ip6->saddr.s6_addr32[0]),
155     };
156     if (is_ethernet) __builtin_memcpy(stream.down ? kd.dstMac : ku.dstMac, eth->h_dest, ETH_ALEN);
157 
158     Tether6Value* v = stream.down ? bpf_tether_downstream6_map_lookup_elem(&kd)
159                                   : bpf_tether_upstream6_map_lookup_elem(&ku);
160 
161     // If we don't find any offload information then simply let the core stack handle it...
162     if (!v) return TC_ACT_PIPE;
163 
164     uint32_t stat_and_limit_k = stream.down ? skb->ifindex : v->oif;
165 
166     TetherStatsValue* stat_v = bpf_tether_stats_map_lookup_elem(&stat_and_limit_k);
167 
168     // If we don't have anywhere to put stats, then abort...
169     if (!stat_v) TC_PUNT(NO_STATS_ENTRY);
170 
171     uint64_t* limit_v = bpf_tether_limit_map_lookup_elem(&stat_and_limit_k);
172 
173     // If we don't have a limit, then abort...
174     if (!limit_v) TC_PUNT(NO_LIMIT_ENTRY);
175 
176     // Required IPv6 minimum mtu is 1280, below that not clear what we should do, abort...
177     if (v->pmtu < IPV6_MIN_MTU) TC_PUNT(BELOW_IPV6_MTU);
178 
179     // Approximate handling of TCP/IPv6 overhead for incoming LRO/GRO packets: default
180     // outbound path mtu of 1500 is not necessarily correct, but worst case we simply
181     // undercount, which is still better then not accounting for this overhead at all.
182     // Note: this really shouldn't be device/path mtu at all, but rather should be
183     // derived from this particular connection's mss (ie. from gro segment size).
184     // This would require a much newer kernel with newer ebpf accessors.
185     // (This is also blindly assuming 12 bytes of tcp timestamp option in tcp header)
186     uint64_t packets = 1;
187     uint64_t L3_bytes = skb->len - l2_header_size;
188     if (L3_bytes > v->pmtu) {
189         const int tcp6_overhead = sizeof(struct ipv6hdr) + sizeof(struct tcphdr) + 12;
190         const int mss = v->pmtu - tcp6_overhead;
191         const uint64_t payload = L3_bytes - tcp6_overhead;
192         packets = (payload + mss - 1) / mss;
193         L3_bytes = tcp6_overhead * packets + payload;
194     }
195 
196     // Are we past the limit?  If so, then abort...
197     // Note: will not overflow since u64 is 936 years even at 5Gbps.
198     // Do not drop here.  Offload is just that, whenever we fail to handle
199     // a packet we let the core stack deal with things.
200     // (The core stack needs to handle limits correctly anyway,
201     // since we don't offload all traffic in both directions)
202     if (stat_v->rxBytes + stat_v->txBytes + L3_bytes > *limit_v) TC_PUNT(LIMIT_REACHED);
203 
204     if (!is_ethernet) {
205         // Try to inject an ethernet header, and simply return if we fail.
206         // We do this even if TX interface is RAWIP and thus does not need an ethernet header,
207         // because this is easier and the kernel will strip extraneous ethernet header.
208         if (bpf_skb_change_head(skb, sizeof(struct ethhdr), /*flags*/ 0)) {
209             __sync_fetch_and_add(stream.down ? &stat_v->rxErrors : &stat_v->txErrors, 1);
210             TC_PUNT(CHANGE_HEAD_FAILED);
211         }
212 
213         // bpf_skb_change_head() invalidates all pointers - reload them
214         data = (void*)(long)skb->data;
215         data_end = (void*)(long)skb->data_end;
216         eth = data;
217         ip6 = (void*)(eth + 1);
218 
219         // I do not believe this can ever happen, but keep the verifier happy...
220         if (data + sizeof(struct ethhdr) + sizeof(*ip6) > data_end) {
221             __sync_fetch_and_add(stream.down ? &stat_v->rxErrors : &stat_v->txErrors, 1);
222             TC_DROP(TOO_SHORT);
223         }
224     };
225 
226     // At this point we always have an ethernet header - which will get stripped by the
227     // kernel during transmit through a rawip interface.  ie. 'eth' pointer is valid.
228     // Additionally note that 'is_ethernet' and 'l2_header_size' are no longer correct.
229 
230     // CHECKSUM_COMPLETE is a 16-bit one's complement sum,
231     // thus corrections for it need to be done in 16-byte chunks at even offsets.
232     // IPv6 nexthdr is at offset 6, while hop limit is at offset 7
233     uint8_t old_hl = ip6->hop_limit;
234     --ip6->hop_limit;
235     uint8_t new_hl = ip6->hop_limit;
236 
237     // bpf_csum_update() always succeeds if the skb is CHECKSUM_COMPLETE and returns an error
238     // (-ENOTSUPP) if it isn't.
239     bpf_csum_update(skb, 0xFFFF - ntohs(old_hl) + ntohs(new_hl));
240 
241     __sync_fetch_and_add(stream.down ? &stat_v->rxPackets : &stat_v->txPackets, packets);
242     __sync_fetch_and_add(stream.down ? &stat_v->rxBytes : &stat_v->txBytes, L3_bytes);
243 
244     // Overwrite any mac header with the new one
245     // For a rawip tx interface it will simply be a bunch of zeroes and later stripped.
246     *eth = v->macHeader;
247 
248     // Redirect to forwarded interface.
249     //
250     // Note that bpf_redirect() cannot fail unless you pass invalid flags.
251     // The redirect actually happens after the ebpf program has already terminated,
252     // and can fail for example for mtu reasons at that point in time, but there's nothing
253     // we can do about it here.
254     return bpf_redirect(v->oif, 0 /* this is effectively BPF_F_EGRESS */);
255 }
256 
257 DEFINE_BPF_PROG("schedcls/tether_downstream6_ether", AID_ROOT, AID_NETWORK_STACK,
258                 sched_cls_tether_downstream6_ether)
259 (struct __sk_buff* skb) {
260     return do_forward6(skb, ETHER, DOWNSTREAM, KVER_NONE);
261 }
262 
263 DEFINE_BPF_PROG("schedcls/tether_upstream6_ether", AID_ROOT, AID_NETWORK_STACK,
264                 sched_cls_tether_upstream6_ether)
265 (struct __sk_buff* skb) {
266     return do_forward6(skb, ETHER, UPSTREAM, KVER_NONE);
267 }
268 
269 // Note: section names must be unique to prevent programs from appending to each other,
270 // so instead the bpf loader will strip everything past the final $ symbol when actually
271 // pinning the program into the filesystem.
272 //
273 // bpf_skb_change_head() is only present on 4.14+ and 2 trivial kernel patches are needed:
274 //   ANDROID: net: bpf: Allow TC programs to call BPF_FUNC_skb_change_head
275 //   ANDROID: net: bpf: permit redirect from ingress L3 to egress L2 devices at near max mtu
276 // (the first of those has already been upstreamed)
277 //
278 // These were added to 4.14+ Android Common Kernel in R (including the original release of ACK 5.4)
279 // and there is a test in kernel/tests/net/test/bpf_test.py testSkbChangeHead()
280 // and in system/netd/tests/binder_test.cpp NetdBinderTest TetherOffloadForwarding.
281 //
282 // Hence, these mandatory (must load successfully) implementations for 4.14+ kernels:
283 DEFINE_BPF_PROG_KVER("schedcls/tether_downstream6_rawip$4_14", AID_ROOT, AID_NETWORK_STACK,
284                      sched_cls_tether_downstream6_rawip_4_14, KVER_4_14)
285 (struct __sk_buff* skb) {
286     return do_forward6(skb, RAWIP, DOWNSTREAM, KVER_4_14);
287 }
288 
289 DEFINE_BPF_PROG_KVER("schedcls/tether_upstream6_rawip$4_14", AID_ROOT, AID_NETWORK_STACK,
290                      sched_cls_tether_upstream6_rawip_4_14, KVER_4_14)
291 (struct __sk_buff* skb) {
292     return do_forward6(skb, RAWIP, UPSTREAM, KVER_4_14);
293 }
294 
295 // and define no-op stubs for pre-4.14 kernels.
296 DEFINE_BPF_PROG_KVER_RANGE("schedcls/tether_downstream6_rawip$stub", AID_ROOT, AID_NETWORK_STACK,
297                            sched_cls_tether_downstream6_rawip_stub, KVER_NONE, KVER_4_14)
298 (__unused struct __sk_buff* skb) {
299     return TC_ACT_PIPE;
300 }
301 
302 DEFINE_BPF_PROG_KVER_RANGE("schedcls/tether_upstream6_rawip$stub", AID_ROOT, AID_NETWORK_STACK,
303                            sched_cls_tether_upstream6_rawip_stub, KVER_NONE, KVER_4_14)
304 (__unused struct __sk_buff* skb) {
305     return TC_ACT_PIPE;
306 }
307 
308 // ----- IPv4 Support -----
309 
310 DEFINE_BPF_MAP_GRW(tether_downstream4_map, HASH, Tether4Key, Tether4Value, 1024, AID_NETWORK_STACK)
311 
312 DEFINE_BPF_MAP_GRW(tether_upstream4_map, HASH, Tether4Key, Tether4Value, 1024, AID_NETWORK_STACK)
313 
do_forward4_bottom(struct __sk_buff * skb,const int l2_header_size,void * data,const void * data_end,struct ethhdr * eth,struct iphdr * ip,const struct rawip_bool rawip,const struct stream_bool stream,const struct updatetime_bool updatetime,const bool is_tcp,__unused const struct kver_uint kver)314 static inline __always_inline int do_forward4_bottom(struct __sk_buff* skb,
315         const int l2_header_size, void* data, const void* data_end,
316         struct ethhdr* eth, struct iphdr* ip, const struct rawip_bool rawip,
317         const struct stream_bool stream, const struct updatetime_bool updatetime,
318         const bool is_tcp, __unused const struct kver_uint kver) {
319     const bool is_ethernet = !rawip.rawip;
320     struct tcphdr* tcph = is_tcp ? (void*)(ip + 1) : NULL;
321     struct udphdr* udph = is_tcp ? NULL : (void*)(ip + 1);
322 
323     if (is_tcp) {
324         // Make sure we can get at the tcp header
325         if (data + l2_header_size + sizeof(*ip) + sizeof(*tcph) > data_end)
326             TC_PUNT(SHORT_TCP_HEADER);
327 
328         // If hardware offload is running and programming flows based on conntrack entries, try not
329         // to interfere with it, so do not offload TCP packets with any one of the SYN/FIN/RST flags
330         if (tcph->syn || tcph->fin || tcph->rst) TC_PUNT(TCPV4_CONTROL_PACKET);
331     } else { // UDP
332         // Make sure we can get at the udp header
333         if (data + l2_header_size + sizeof(*ip) + sizeof(*udph) > data_end)
334             TC_PUNT(SHORT_UDP_HEADER);
335 
336         // Skip handling of CHECKSUM_COMPLETE packets with udp checksum zero due to need for
337         // additional updating of skb->csum (this could be fixed up manually with more effort).
338         //
339         // Note that the in-kernel implementation of 'int64_t bpf_csum_update(skb, u32 csum)' is:
340         //   if (skb->ip_summed == CHECKSUM_COMPLETE)
341         //     return (skb->csum = csum_add(skb->csum, csum));
342         //   else
343         //     return -ENOTSUPP;
344         //
345         // So this will punt any CHECKSUM_COMPLETE packet with a zero UDP checksum,
346         // and leave all other packets unaffected (since it just at most adds zero to skb->csum).
347         //
348         // In practice this should almost never trigger because most nics do not generate
349         // CHECKSUM_COMPLETE packets on receive - especially so for nics/drivers on a phone.
350         //
351         // Additionally since we're forwarding, in most cases the value of the skb->csum field
352         // shouldn't matter (it's not used by physical nic egress).
353         //
354         // It only matters if we're ingressing through a CHECKSUM_COMPLETE capable nic
355         // and egressing through a virtual interface looping back to the kernel itself
356         // (ie. something like veth) where the CHECKSUM_COMPLETE/skb->csum can get reused
357         // on ingress.
358         //
359         // If we were in the kernel we'd simply probably call
360         //   void skb_checksum_complete_unset(struct sk_buff *skb) {
361         //     if (skb->ip_summed == CHECKSUM_COMPLETE) skb->ip_summed = CHECKSUM_NONE;
362         //   }
363         // here instead.  Perhaps there should be a bpf helper for that?
364         if (!udph->check && (bpf_csum_update(skb, 0) >= 0)) TC_PUNT(UDP_CSUM_ZERO);
365     }
366 
367     Tether4Key k = {
368             .iif = skb->ifindex,
369             .l4Proto = ip->protocol,
370             .src4.s_addr = ip->saddr,
371             .dst4.s_addr = ip->daddr,
372             .srcPort = is_tcp ? tcph->source : udph->source,
373             .dstPort = is_tcp ? tcph->dest : udph->dest,
374     };
375     if (is_ethernet) __builtin_memcpy(k.dstMac, eth->h_dest, ETH_ALEN);
376 
377     Tether4Value* v = stream.down ? bpf_tether_downstream4_map_lookup_elem(&k)
378                                   : bpf_tether_upstream4_map_lookup_elem(&k);
379 
380     // If we don't find any offload information then simply let the core stack handle it...
381     if (!v) return TC_ACT_PIPE;
382 
383     uint32_t stat_and_limit_k = stream.down ? skb->ifindex : v->oif;
384 
385     TetherStatsValue* stat_v = bpf_tether_stats_map_lookup_elem(&stat_and_limit_k);
386 
387     // If we don't have anywhere to put stats, then abort...
388     if (!stat_v) TC_PUNT(NO_STATS_ENTRY);
389 
390     uint64_t* limit_v = bpf_tether_limit_map_lookup_elem(&stat_and_limit_k);
391 
392     // If we don't have a limit, then abort...
393     if (!limit_v) TC_PUNT(NO_LIMIT_ENTRY);
394 
395     // Required IPv4 minimum mtu is 68, below that not clear what we should do, abort...
396     if (v->pmtu < 68) TC_PUNT(BELOW_IPV4_MTU);
397 
398     // Approximate handling of TCP/IPv4 overhead for incoming LRO/GRO packets: default
399     // outbound path mtu of 1500 is not necessarily correct, but worst case we simply
400     // undercount, which is still better then not accounting for this overhead at all.
401     // Note: this really shouldn't be device/path mtu at all, but rather should be
402     // derived from this particular connection's mss (ie. from gro segment size).
403     // This would require a much newer kernel with newer ebpf accessors.
404     // (This is also blindly assuming 12 bytes of tcp timestamp option in tcp header)
405     uint64_t packets = 1;
406     uint64_t L3_bytes = skb->len - l2_header_size;
407     if (L3_bytes > v->pmtu) {
408         const int tcp4_overhead = sizeof(struct iphdr) + sizeof(struct tcphdr) + 12;
409         const int mss = v->pmtu - tcp4_overhead;
410         const uint64_t payload = L3_bytes - tcp4_overhead;
411         packets = (payload + mss - 1) / mss;
412         L3_bytes = tcp4_overhead * packets + payload;
413     }
414 
415     // Are we past the limit?  If so, then abort...
416     // Note: will not overflow since u64 is 936 years even at 5Gbps.
417     // Do not drop here.  Offload is just that, whenever we fail to handle
418     // a packet we let the core stack deal with things.
419     // (The core stack needs to handle limits correctly anyway,
420     // since we don't offload all traffic in both directions)
421     if (stat_v->rxBytes + stat_v->txBytes + L3_bytes > *limit_v) TC_PUNT(LIMIT_REACHED);
422 
423     if (!is_ethernet) {
424         // Try to inject an ethernet header, and simply return if we fail.
425         // We do this even if TX interface is RAWIP and thus does not need an ethernet header,
426         // because this is easier and the kernel will strip extraneous ethernet header.
427         if (bpf_skb_change_head(skb, sizeof(struct ethhdr), /*flags*/ 0)) {
428             __sync_fetch_and_add(stream.down ? &stat_v->rxErrors : &stat_v->txErrors, 1);
429             TC_PUNT(CHANGE_HEAD_FAILED);
430         }
431 
432         // bpf_skb_change_head() invalidates all pointers - reload them
433         data = (void*)(long)skb->data;
434         data_end = (void*)(long)skb->data_end;
435         eth = data;
436         ip = (void*)(eth + 1);
437         tcph = is_tcp ? (void*)(ip + 1) : NULL;
438         udph = is_tcp ? NULL : (void*)(ip + 1);
439 
440         // I do not believe this can ever happen, but keep the verifier happy...
441         if (data + sizeof(struct ethhdr) + sizeof(*ip) + (is_tcp ? sizeof(*tcph) : sizeof(*udph)) > data_end) {
442             __sync_fetch_and_add(stream.down ? &stat_v->rxErrors : &stat_v->txErrors, 1);
443             TC_DROP(TOO_SHORT);
444         }
445     };
446 
447     // At this point we always have an ethernet header - which will get stripped by the
448     // kernel during transmit through a rawip interface.  ie. 'eth' pointer is valid.
449     // Additionally note that 'is_ethernet' and 'l2_header_size' are no longer correct.
450 
451     // Overwrite any mac header with the new one
452     // For a rawip tx interface it will simply be a bunch of zeroes and later stripped.
453     *eth = v->macHeader;
454 
455     // Decrement the IPv4 TTL, we already know it's greater than 1.
456     // u8 TTL field is followed by u8 protocol to make a u16 for ipv4 header checksum update.
457     // Since we're keeping the ipv4 checksum valid (which means the checksum of the entire
458     // ipv4 header remains 0), the overall checksum of the entire packet does not change.
459     const int sz2 = sizeof(__be16);
460     const __be16 old_ttl_proto = *(__be16 *)&ip->ttl;
461     const __be16 new_ttl_proto = old_ttl_proto - htons(0x0100);
462     bpf_l3_csum_replace(skb, ETH_IP4_OFFSET(check), old_ttl_proto, new_ttl_proto, sz2);
463     bpf_skb_store_bytes(skb, ETH_IP4_OFFSET(ttl), &new_ttl_proto, sz2, 0);
464 
465     const int l4_offs_csum = is_tcp ? ETH_IP4_TCP_OFFSET(check) : ETH_IP4_UDP_OFFSET(check);
466     const int sz4 = sizeof(__be32);
467     // UDP 0 is special and stored as FFFF (this flag also causes a csum of 0 to be unmodified)
468     const int l4_flags = is_tcp ? 0 : BPF_F_MARK_MANGLED_0;
469     const __be32 old_daddr = k.dst4.s_addr;
470     const __be32 old_saddr = k.src4.s_addr;
471     const __be32 new_daddr = v->dst46.s6_addr32[3];
472     const __be32 new_saddr = v->src46.s6_addr32[3];
473 
474     bpf_l4_csum_replace(skb, l4_offs_csum, old_daddr, new_daddr, sz4 | BPF_F_PSEUDO_HDR | l4_flags);
475     bpf_l3_csum_replace(skb, ETH_IP4_OFFSET(check), old_daddr, new_daddr, sz4);
476     bpf_skb_store_bytes(skb, ETH_IP4_OFFSET(daddr), &new_daddr, sz4, 0);
477 
478     bpf_l4_csum_replace(skb, l4_offs_csum, old_saddr, new_saddr, sz4 | BPF_F_PSEUDO_HDR | l4_flags);
479     bpf_l3_csum_replace(skb, ETH_IP4_OFFSET(check), old_saddr, new_saddr, sz4);
480     bpf_skb_store_bytes(skb, ETH_IP4_OFFSET(saddr), &new_saddr, sz4, 0);
481 
482     // The offsets for TCP and UDP ports: source (u16 @ L4 offset 0) & dest (u16 @ L4 offset 2) are
483     // actually the same, so the compiler should just optimize them both down to a constant.
484     bpf_l4_csum_replace(skb, l4_offs_csum, k.srcPort, v->srcPort, sz2 | l4_flags);
485     bpf_skb_store_bytes(skb, is_tcp ? ETH_IP4_TCP_OFFSET(source) : ETH_IP4_UDP_OFFSET(source),
486                         &v->srcPort, sz2, 0);
487 
488     bpf_l4_csum_replace(skb, l4_offs_csum, k.dstPort, v->dstPort, sz2 | l4_flags);
489     bpf_skb_store_bytes(skb, is_tcp ? ETH_IP4_TCP_OFFSET(dest) : ETH_IP4_UDP_OFFSET(dest),
490                         &v->dstPort, sz2, 0);
491 
492     // This requires the bpf_ktime_get_boot_ns() helper which was added in 5.8,
493     // and backported to all Android Common Kernel 4.14+ trees.
494     if (updatetime.updatetime) v->last_used = bpf_ktime_get_boot_ns();
495 
496     __sync_fetch_and_add(stream.down ? &stat_v->rxPackets : &stat_v->txPackets, packets);
497     __sync_fetch_and_add(stream.down ? &stat_v->rxBytes : &stat_v->txBytes, L3_bytes);
498 
499     // Redirect to forwarded interface.
500     //
501     // Note that bpf_redirect() cannot fail unless you pass invalid flags.
502     // The redirect actually happens after the ebpf program has already terminated,
503     // and can fail for example for mtu reasons at that point in time, but there's nothing
504     // we can do about it here.
505     return bpf_redirect(v->oif, 0 /* this is effectively BPF_F_EGRESS */);
506 }
507 
do_forward4(struct __sk_buff * skb,const struct rawip_bool rawip,const struct stream_bool stream,const struct updatetime_bool updatetime,const struct kver_uint kver)508 static inline __always_inline int do_forward4(struct __sk_buff* skb,
509                                               const struct rawip_bool rawip,
510                                               const struct stream_bool stream,
511                                               const struct updatetime_bool updatetime,
512                                               const struct kver_uint kver) {
513     const bool is_ethernet = !rawip.rawip;
514 
515     // Require ethernet dst mac address to be our unicast address.
516     if (is_ethernet && (skb->pkt_type != PACKET_HOST)) return TC_ACT_PIPE;
517 
518     // Must be meta-ethernet IPv4 frame
519     if (skb->protocol != htons(ETH_P_IP)) return TC_ACT_PIPE;
520 
521     const int l2_header_size = is_ethernet ? sizeof(struct ethhdr) : 0;
522 
523     // Since the program never writes via DPA (direct packet access) auto-pull/unclone logic does
524     // not trigger and thus we need to manually make sure we can read packet headers via DPA.
525     // Note: this is a blind best effort pull, which may fail or pull less - this doesn't matter.
526     // It has to be done early cause it will invalidate any skb->data/data_end derived pointers.
527     try_make_writable(skb, l2_header_size + IP4_HLEN + TCP_HLEN);
528 
529     void* data = (void*)(long)skb->data;
530     const void* data_end = (void*)(long)skb->data_end;
531     struct ethhdr* eth = is_ethernet ? data : NULL;  // used iff is_ethernet
532     struct iphdr* ip = is_ethernet ? (void*)(eth + 1) : data;
533 
534     // Must have (ethernet and) ipv4 header
535     if (data + l2_header_size + sizeof(*ip) > data_end) return TC_ACT_PIPE;
536 
537     // Ethertype - if present - must be IPv4
538     if (is_ethernet && (eth->h_proto != htons(ETH_P_IP))) return TC_ACT_PIPE;
539 
540     // IP version must be 4
541     if (ip->version != 4) TC_PUNT(INVALID_IPV4_VERSION);
542 
543     // We cannot handle IP options, just standard 20 byte == 5 dword minimal IPv4 header
544     if (ip->ihl != 5) TC_PUNT(HAS_IP_OPTIONS);
545 
546     // Calculate the IPv4 one's complement checksum of the IPv4 header.
547     __wsum sum4 = 0;
548     for (unsigned i = 0; i < sizeof(*ip) / sizeof(__u16); ++i) {
549         sum4 += ((__u16*)ip)[i];
550     }
551     // Note that sum4 is guaranteed to be non-zero by virtue of ip4->version == 4
552     sum4 = (sum4 & 0xFFFF) + (sum4 >> 16);  // collapse u32 into range 1 .. 0x1FFFE
553     sum4 = (sum4 & 0xFFFF) + (sum4 >> 16);  // collapse any potential carry into u16
554     // for a correct checksum we should get *a* zero, but sum4 must be positive, ie 0xFFFF
555     if (sum4 != 0xFFFF) TC_PUNT(CHECKSUM);
556 
557     // Minimum IPv4 total length is the size of the header
558     if (ntohs(ip->tot_len) < sizeof(*ip)) TC_PUNT(TRUNCATED_IPV4);
559 
560     // We are incapable of dealing with IPv4 fragments
561     if (ip->frag_off & ~htons(IP_DF)) TC_PUNT(IS_IP_FRAG);
562 
563     // Cannot decrement during forward if already zero or would be zero,
564     // Let the kernel's stack handle these cases and generate appropriate ICMP errors.
565     if (ip->ttl <= 1) TC_PUNT(LOW_TTL);
566 
567     // If we cannot update the 'last_used' field due to lack of bpf_ktime_get_boot_ns() helper,
568     // then it is not safe to offload UDP due to the small conntrack timeouts, as such,
569     // in such a situation we can only support TCP.  This also has the added nice benefit of
570     // using a separate error counter, and thus making it obvious which version of the program
571     // is loaded.
572     if (!updatetime.updatetime && ip->protocol != IPPROTO_TCP) TC_PUNT(NON_TCP);
573 
574     // We do not support offloading anything besides IPv4 TCP and UDP, due to need for NAT,
575     // but no need to check this if !updatetime due to check immediately above.
576     if (updatetime.updatetime && (ip->protocol != IPPROTO_TCP) && (ip->protocol != IPPROTO_UDP))
577         TC_PUNT(NON_TCP_UDP);
578 
579     // We want to make sure that the compiler will, in the !updatetime case, entirely optimize
580     // out all the non-tcp logic.  Also note that at this point is_udp === !is_tcp.
581     const bool is_tcp = !updatetime.updatetime || (ip->protocol == IPPROTO_TCP);
582 
583     // This is a bit of a hack to make things easier on the bpf verifier.
584     // (In particular I believe the Linux 4.14 kernel's verifier can get confused later on about
585     // what offsets into the packet are valid and can spuriously reject the program, this is
586     // because it fails to realize that is_tcp && !is_tcp is impossible)
587     //
588     // For both TCP & UDP we'll need to read and modify the src/dst ports, which so happen to
589     // always be in the first 4 bytes of the L4 header.  Additionally for UDP we'll need access
590     // to the checksum field which is in bytes 7 and 8.  While for TCP we'll need to read the
591     // TCP flags (at offset 13) and access to the checksum field (2 bytes at offset 16).
592     // As such we *always* need access to at least 8 bytes.
593     if (data + l2_header_size + sizeof(*ip) + 8 > data_end) TC_PUNT(SHORT_L4_HEADER);
594 
595     // We're forcing the compiler to emit two copies of the following code, optimized
596     // separately for is_tcp being true or false.  This simplifies the resulting bpf
597     // byte code sufficiently that the 4.14 bpf verifier is able to keep track of things.
598     // Without this (updatetime == true) case would fail to bpf verify on 4.14 even
599     // if the underlying requisite kernel support (bpf_ktime_get_boot_ns) was backported.
600     if (is_tcp) {
601       return do_forward4_bottom(skb, l2_header_size, data, data_end, eth, ip,
602                                 rawip, stream, updatetime, /* is_tcp */ true, kver);
603     } else {
604       return do_forward4_bottom(skb, l2_header_size, data, data_end, eth, ip,
605                                 rawip, stream, updatetime, /* is_tcp */ false, kver);
606     }
607 }
608 
609 // Full featured (required) implementations for 5.8+ kernels (these are S+ by definition)
610 
611 DEFINE_BPF_PROG_KVER("schedcls/tether_downstream4_rawip$5_8", AID_ROOT, AID_NETWORK_STACK,
612                      sched_cls_tether_downstream4_rawip_5_8, KVER_5_8)
613 (struct __sk_buff* skb) {
614     return do_forward4(skb, RAWIP, DOWNSTREAM, UPDATETIME, KVER_5_8);
615 }
616 
617 DEFINE_BPF_PROG_KVER("schedcls/tether_upstream4_rawip$5_8", AID_ROOT, AID_NETWORK_STACK,
618                      sched_cls_tether_upstream4_rawip_5_8, KVER_5_8)
619 (struct __sk_buff* skb) {
620     return do_forward4(skb, RAWIP, UPSTREAM, UPDATETIME, KVER_5_8);
621 }
622 
623 DEFINE_BPF_PROG_KVER("schedcls/tether_downstream4_ether$5_8", AID_ROOT, AID_NETWORK_STACK,
624                      sched_cls_tether_downstream4_ether_5_8, KVER_5_8)
625 (struct __sk_buff* skb) {
626     return do_forward4(skb, ETHER, DOWNSTREAM, UPDATETIME, KVER_5_8);
627 }
628 
629 DEFINE_BPF_PROG_KVER("schedcls/tether_upstream4_ether$5_8", AID_ROOT, AID_NETWORK_STACK,
630                      sched_cls_tether_upstream4_ether_5_8, KVER_5_8)
631 (struct __sk_buff* skb) {
632     return do_forward4(skb, ETHER, UPSTREAM, UPDATETIME, KVER_5_8);
633 }
634 
635 // Full featured (optional) implementations for 4.14-S, 4.19-S & 5.4-S kernels
636 // (optional, because we need to be able to fallback for 4.14/4.19/5.4 pre-S kernels)
637 
638 DEFINE_OPTIONAL_BPF_PROG_KVER_RANGE("schedcls/tether_downstream4_rawip$opt",
639                                     AID_ROOT, AID_NETWORK_STACK,
640                                     sched_cls_tether_downstream4_rawip_opt,
641                                     KVER_4_14, KVER_5_8)
642 (struct __sk_buff* skb) {
643     return do_forward4(skb, RAWIP, DOWNSTREAM, UPDATETIME, KVER_4_14);
644 }
645 
646 DEFINE_OPTIONAL_BPF_PROG_KVER_RANGE("schedcls/tether_upstream4_rawip$opt",
647                                     AID_ROOT, AID_NETWORK_STACK,
648                                     sched_cls_tether_upstream4_rawip_opt,
649                                     KVER_4_14, KVER_5_8)
650 (struct __sk_buff* skb) {
651     return do_forward4(skb, RAWIP, UPSTREAM, UPDATETIME, KVER_4_14);
652 }
653 
654 DEFINE_OPTIONAL_BPF_PROG_KVER_RANGE("schedcls/tether_downstream4_ether$opt",
655                                     AID_ROOT, AID_NETWORK_STACK,
656                                     sched_cls_tether_downstream4_ether_opt,
657                                     KVER_4_14, KVER_5_8)
658 (struct __sk_buff* skb) {
659     return do_forward4(skb, ETHER, DOWNSTREAM, UPDATETIME, KVER_4_14);
660 }
661 
662 DEFINE_OPTIONAL_BPF_PROG_KVER_RANGE("schedcls/tether_upstream4_ether$opt",
663                                     AID_ROOT, AID_NETWORK_STACK,
664                                     sched_cls_tether_upstream4_ether_opt,
665                                     KVER_4_14, KVER_5_8)
666 (struct __sk_buff* skb) {
667     return do_forward4(skb, ETHER, UPSTREAM, UPDATETIME, KVER_4_14);
668 }
669 
670 // Partial (TCP-only: will not update 'last_used' field) implementations for 4.14+ kernels.
671 // These will be loaded only if the above optional ones failed (loading of *these* must succeed
672 // for 5.4+, since that is always an R patched kernel).
673 //
674 // [Note: as a result TCP connections will not have their conntrack timeout refreshed, however,
675 // since /proc/sys/net/netfilter/nf_conntrack_tcp_timeout_established defaults to 432000 (seconds),
676 // this in practice means they'll break only after 5 days.  This seems an acceptable trade-off.
677 //
678 // Additionally kernel/tests change "net-test: add bpf_ktime_get_ns / bpf_ktime_get_boot_ns tests"
679 // which enforces and documents the required kernel cherrypicks will make it pretty unlikely that
680 // many devices upgrading to S will end up relying on these fallback programs.
681 
682 // RAWIP: Required for 5.4-R kernels -- which always support bpf_skb_change_head().
683 
684 DEFINE_BPF_PROG_KVER_RANGE("schedcls/tether_downstream4_rawip$5_4", AID_ROOT, AID_NETWORK_STACK,
685                            sched_cls_tether_downstream4_rawip_5_4, KVER_5_4, KVER_5_8)
686 (struct __sk_buff* skb) {
687     return do_forward4(skb, RAWIP, DOWNSTREAM, NO_UPDATETIME, KVER_5_4);
688 }
689 
690 DEFINE_BPF_PROG_KVER_RANGE("schedcls/tether_upstream4_rawip$5_4", AID_ROOT, AID_NETWORK_STACK,
691                            sched_cls_tether_upstream4_rawip_5_4, KVER_5_4, KVER_5_8)
692 (struct __sk_buff* skb) {
693     return do_forward4(skb, RAWIP, UPSTREAM, NO_UPDATETIME, KVER_5_4);
694 }
695 
696 // RAWIP: Optional for 4.14/4.19 (R) kernels -- which support bpf_skb_change_head().
697 // [Note: fallback for 4.14/4.19 (P/Q) kernels is below in stub section]
698 
699 DEFINE_OPTIONAL_BPF_PROG_KVER_RANGE("schedcls/tether_downstream4_rawip$4_14",
700                                     AID_ROOT, AID_NETWORK_STACK,
701                                     sched_cls_tether_downstream4_rawip_4_14,
702                                     KVER_4_14, KVER_5_4)
703 (struct __sk_buff* skb) {
704     return do_forward4(skb, RAWIP, DOWNSTREAM, NO_UPDATETIME, KVER_4_14);
705 }
706 
707 DEFINE_OPTIONAL_BPF_PROG_KVER_RANGE("schedcls/tether_upstream4_rawip$4_14",
708                                     AID_ROOT, AID_NETWORK_STACK,
709                                     sched_cls_tether_upstream4_rawip_4_14,
710                                     KVER_4_14, KVER_5_4)
711 (struct __sk_buff* skb) {
712     return do_forward4(skb, RAWIP, UPSTREAM, NO_UPDATETIME, KVER_4_14);
713 }
714 
715 // ETHER: Required for 4.14-Q/R, 4.19-Q/R & 5.4-R kernels.
716 
717 DEFINE_BPF_PROG_KVER_RANGE("schedcls/tether_downstream4_ether$4_14", AID_ROOT, AID_NETWORK_STACK,
718                            sched_cls_tether_downstream4_ether_4_14, KVER_4_14, KVER_5_8)
719 (struct __sk_buff* skb) {
720     return do_forward4(skb, ETHER, DOWNSTREAM, NO_UPDATETIME, KVER_4_14);
721 }
722 
723 DEFINE_BPF_PROG_KVER_RANGE("schedcls/tether_upstream4_ether$4_14", AID_ROOT, AID_NETWORK_STACK,
724                            sched_cls_tether_upstream4_ether_4_14, KVER_4_14, KVER_5_8)
725 (struct __sk_buff* skb) {
726     return do_forward4(skb, ETHER, UPSTREAM, NO_UPDATETIME, KVER_4_14);
727 }
728 
729 // Placeholder (no-op) implementations for older Q kernels
730 
731 // RAWIP: 4.9-P/Q, 4.14-P/Q & 4.19-Q kernels -- without bpf_skb_change_head() for tc programs
732 
733 DEFINE_BPF_PROG_KVER_RANGE("schedcls/tether_downstream4_rawip$stub", AID_ROOT, AID_NETWORK_STACK,
734                            sched_cls_tether_downstream4_rawip_stub, KVER_NONE, KVER_5_4)
735 (__unused struct __sk_buff* skb) {
736     return TC_ACT_PIPE;
737 }
738 
739 DEFINE_BPF_PROG_KVER_RANGE("schedcls/tether_upstream4_rawip$stub", AID_ROOT, AID_NETWORK_STACK,
740                            sched_cls_tether_upstream4_rawip_stub, KVER_NONE, KVER_5_4)
741 (__unused struct __sk_buff* skb) {
742     return TC_ACT_PIPE;
743 }
744 
745 // ETHER: 4.9-P/Q kernel
746 
747 DEFINE_BPF_PROG_KVER_RANGE("schedcls/tether_downstream4_ether$stub", AID_ROOT, AID_NETWORK_STACK,
748                            sched_cls_tether_downstream4_ether_stub, KVER_NONE, KVER_4_14)
749 (__unused struct __sk_buff* skb) {
750     return TC_ACT_PIPE;
751 }
752 
753 DEFINE_BPF_PROG_KVER_RANGE("schedcls/tether_upstream4_ether$stub", AID_ROOT, AID_NETWORK_STACK,
754                            sched_cls_tether_upstream4_ether_stub, KVER_NONE, KVER_4_14)
755 (__unused struct __sk_buff* skb) {
756     return TC_ACT_PIPE;
757 }
758 
759 // ----- XDP Support -----
760 
761 DEFINE_BPF_MAP_GRW(tether_dev_map, DEVMAP_HASH, uint32_t, uint32_t, 64, AID_NETWORK_STACK)
762 
do_xdp_forward6(__unused struct xdp_md * ctx,__unused const struct rawip_bool rawip,__unused const struct stream_bool stream)763 static inline __always_inline int do_xdp_forward6(__unused struct xdp_md *ctx,
764         __unused const struct rawip_bool rawip, __unused const struct stream_bool stream) {
765     return XDP_PASS;
766 }
767 
do_xdp_forward4(__unused struct xdp_md * ctx,__unused const struct rawip_bool rawip,__unused const struct stream_bool stream)768 static inline __always_inline int do_xdp_forward4(__unused struct xdp_md *ctx,
769         __unused const struct rawip_bool rawip, __unused const struct stream_bool stream) {
770     return XDP_PASS;
771 }
772 
do_xdp_forward_ether(struct xdp_md * ctx,const struct stream_bool stream)773 static inline __always_inline int do_xdp_forward_ether(struct xdp_md *ctx,
774                                                        const struct stream_bool stream) {
775     const void* data = (void*)(long)ctx->data;
776     const void* data_end = (void*)(long)ctx->data_end;
777     const struct ethhdr* eth = data;
778 
779     // Make sure we actually have an ethernet header
780     if ((void*)(eth + 1) > data_end) return XDP_PASS;
781 
782     if (eth->h_proto == htons(ETH_P_IPV6))
783         return do_xdp_forward6(ctx, ETHER, stream);
784     if (eth->h_proto == htons(ETH_P_IP))
785         return do_xdp_forward4(ctx, ETHER, stream);
786 
787     // Anything else we don't know how to handle...
788     return XDP_PASS;
789 }
790 
do_xdp_forward_rawip(struct xdp_md * ctx,const struct stream_bool stream)791 static inline __always_inline int do_xdp_forward_rawip(struct xdp_md *ctx,
792                                                        const struct stream_bool stream) {
793     const void* data = (void*)(long)ctx->data;
794     const void* data_end = (void*)(long)ctx->data_end;
795 
796     // The top nibble of both IPv4 and IPv6 headers is the IP version.
797     if (data_end - data < 1) return XDP_PASS;
798     const uint8_t v = (*(uint8_t*)data) >> 4;
799 
800     if (v == 6) return do_xdp_forward6(ctx, RAWIP, stream);
801     if (v == 4) return do_xdp_forward4(ctx, RAWIP, stream);
802 
803     // Anything else we don't know how to handle...
804     return XDP_PASS;
805 }
806 
807 #define DEFINE_XDP_PROG(str, func) \
808     DEFINE_BPF_PROG_KVER(str, AID_ROOT, AID_NETWORK_STACK, func, KVER_5_9)(struct xdp_md *ctx)
809 
810 DEFINE_XDP_PROG("xdp/tether_downstream_ether",
811                  xdp_tether_downstream_ether) {
812     return do_xdp_forward_ether(ctx, DOWNSTREAM);
813 }
814 
815 DEFINE_XDP_PROG("xdp/tether_downstream_rawip",
816                  xdp_tether_downstream_rawip) {
817     return do_xdp_forward_rawip(ctx, DOWNSTREAM);
818 }
819 
820 DEFINE_XDP_PROG("xdp/tether_upstream_ether",
821                  xdp_tether_upstream_ether) {
822     return do_xdp_forward_ether(ctx, UPSTREAM);
823 }
824 
825 DEFINE_XDP_PROG("xdp/tether_upstream_rawip",
826                  xdp_tether_upstream_rawip) {
827     return do_xdp_forward_rawip(ctx, UPSTREAM);
828 }
829 
830 LICENSE("Apache 2.0");
831 CRITICAL("Connectivity (Tethering)");
832