1 // Copyright 2022, The Android Open Source Project
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 //! High-level FDT functions.
16
17 use crate::bootargs::BootArgsIterator;
18 use crate::device_assignment::{self, DeviceAssignmentInfo, VmDtbo};
19 use crate::Box;
20 use crate::RebootReason;
21 use alloc::collections::BTreeMap;
22 use alloc::ffi::CString;
23 use alloc::format;
24 use alloc::vec::Vec;
25 use core::cmp::max;
26 use core::cmp::min;
27 use core::ffi::CStr;
28 use core::fmt;
29 use core::mem::size_of;
30 use core::ops::Range;
31 use cstr::cstr;
32 use hypervisor_backends::get_device_assigner;
33 use hypervisor_backends::get_mem_sharer;
34 use libfdt::AddressRange;
35 use libfdt::CellIterator;
36 use libfdt::Fdt;
37 use libfdt::FdtError;
38 use libfdt::FdtNode;
39 use libfdt::FdtNodeMut;
40 use libfdt::Phandle;
41 use log::debug;
42 use log::error;
43 use log::info;
44 use log::warn;
45 use static_assertions::const_assert;
46 use tinyvec::ArrayVec;
47 use vmbase::fdt::pci::PciMemoryFlags;
48 use vmbase::fdt::pci::PciRangeType;
49 use vmbase::fdt::SwiotlbInfo;
50 use vmbase::layout::{crosvm::MEM_START, MAX_VIRT_ADDR};
51 use vmbase::memory::SIZE_4KB;
52 use vmbase::util::RangeExt as _;
53 use zerocopy::AsBytes as _;
54
55 // SAFETY: The template DT is automatically generated through DTC, which should produce valid DTBs.
56 const FDT_TEMPLATE: &Fdt = unsafe { Fdt::unchecked_from_slice(pvmfw_fdt_template::RAW) };
57
58 /// An enumeration of errors that can occur during the FDT validation.
59 #[derive(Clone, Debug)]
60 pub enum FdtValidationError {
61 /// Invalid CPU count.
62 InvalidCpuCount(usize),
63 /// Invalid VCpufreq Range.
64 InvalidVcpufreq(u64, u64),
65 /// Forbidden /avf/untrusted property.
66 ForbiddenUntrustedProp(&'static CStr),
67 }
68
69 impl fmt::Display for FdtValidationError {
fmt(&self, f: &mut fmt::Formatter) -> fmt::Result70 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
71 match self {
72 Self::InvalidCpuCount(num_cpus) => write!(f, "Invalid CPU count: {num_cpus}"),
73 Self::InvalidVcpufreq(addr, size) => {
74 write!(f, "Invalid vcpufreq region: ({addr:#x}, {size:#x})")
75 }
76 Self::ForbiddenUntrustedProp(name) => {
77 write!(f, "Forbidden /avf/untrusted property '{name:?}'")
78 }
79 }
80 }
81 }
82
83 /// Extract from /config the address range containing the pre-loaded kernel. Absence of /config is
84 /// not an error.
read_kernel_range_from(fdt: &Fdt) -> libfdt::Result<Option<Range<usize>>>85 pub fn read_kernel_range_from(fdt: &Fdt) -> libfdt::Result<Option<Range<usize>>> {
86 let addr = cstr!("kernel-address");
87 let size = cstr!("kernel-size");
88
89 if let Some(config) = fdt.node(cstr!("/config"))? {
90 if let (Some(addr), Some(size)) = (config.getprop_u32(addr)?, config.getprop_u32(size)?) {
91 let addr = addr as usize;
92 let size = size as usize;
93
94 return Ok(Some(addr..(addr + size)));
95 }
96 }
97
98 Ok(None)
99 }
100
101 /// Extract from /chosen the address range containing the pre-loaded ramdisk. Absence is not an
102 /// error as there can be initrd-less VM.
read_initrd_range_from(fdt: &Fdt) -> libfdt::Result<Option<Range<usize>>>103 pub fn read_initrd_range_from(fdt: &Fdt) -> libfdt::Result<Option<Range<usize>>> {
104 let start = cstr!("linux,initrd-start");
105 let end = cstr!("linux,initrd-end");
106
107 if let Some(chosen) = fdt.chosen()? {
108 if let (Some(start), Some(end)) = (chosen.getprop_u32(start)?, chosen.getprop_u32(end)?) {
109 return Ok(Some((start as usize)..(end as usize)));
110 }
111 }
112
113 Ok(None)
114 }
115
patch_initrd_range(fdt: &mut Fdt, initrd_range: &Range<usize>) -> libfdt::Result<()>116 fn patch_initrd_range(fdt: &mut Fdt, initrd_range: &Range<usize>) -> libfdt::Result<()> {
117 let start = u32::try_from(initrd_range.start).unwrap();
118 let end = u32::try_from(initrd_range.end).unwrap();
119
120 let mut node = fdt.chosen_mut()?.ok_or(FdtError::NotFound)?;
121 node.setprop(cstr!("linux,initrd-start"), &start.to_be_bytes())?;
122 node.setprop(cstr!("linux,initrd-end"), &end.to_be_bytes())?;
123 Ok(())
124 }
125
read_bootargs_from(fdt: &Fdt) -> libfdt::Result<Option<CString>>126 fn read_bootargs_from(fdt: &Fdt) -> libfdt::Result<Option<CString>> {
127 if let Some(chosen) = fdt.chosen()? {
128 if let Some(bootargs) = chosen.getprop_str(cstr!("bootargs"))? {
129 // We need to copy the string to heap because the original fdt will be invalidated
130 // by the templated DT
131 let copy = CString::new(bootargs.to_bytes()).map_err(|_| FdtError::BadValue)?;
132 return Ok(Some(copy));
133 }
134 }
135 Ok(None)
136 }
137
patch_bootargs(fdt: &mut Fdt, bootargs: &CStr) -> libfdt::Result<()>138 fn patch_bootargs(fdt: &mut Fdt, bootargs: &CStr) -> libfdt::Result<()> {
139 let mut node = fdt.chosen_mut()?.ok_or(FdtError::NotFound)?;
140 // This function is called before the verification is done. So, we just copy the bootargs to
141 // the new FDT unmodified. This will be filtered again in the modify_for_next_stage function
142 // if the VM is not debuggable.
143 node.setprop(cstr!("bootargs"), bootargs.to_bytes_with_nul())
144 }
145
146 /// Reads and validates the memory range in the DT.
147 ///
148 /// Only one memory range is expected with the crosvm setup for now.
read_and_validate_memory_range( fdt: &Fdt, guest_page_size: usize, ) -> Result<Range<usize>, RebootReason>149 fn read_and_validate_memory_range(
150 fdt: &Fdt,
151 guest_page_size: usize,
152 ) -> Result<Range<usize>, RebootReason> {
153 let mut memory = fdt.memory().map_err(|e| {
154 error!("Failed to read memory range from DT: {e}");
155 RebootReason::InvalidFdt
156 })?;
157 let range = memory.next().ok_or_else(|| {
158 error!("The /memory node in the DT contains no range.");
159 RebootReason::InvalidFdt
160 })?;
161 if memory.next().is_some() {
162 warn!(
163 "The /memory node in the DT contains more than one memory range, \
164 while only one is expected."
165 );
166 }
167 let base = range.start;
168 if base != MEM_START {
169 error!("Memory base address {:#x} is not {:#x}", base, MEM_START);
170 return Err(RebootReason::InvalidFdt);
171 }
172
173 let size = range.len();
174 if size % guest_page_size != 0 {
175 error!("Memory size {:#x} is not a multiple of page size {:#x}", size, guest_page_size);
176 return Err(RebootReason::InvalidFdt);
177 }
178
179 if size == 0 {
180 error!("Memory size is 0");
181 return Err(RebootReason::InvalidFdt);
182 }
183 Ok(range)
184 }
185
patch_memory_range(fdt: &mut Fdt, memory_range: &Range<usize>) -> libfdt::Result<()>186 fn patch_memory_range(fdt: &mut Fdt, memory_range: &Range<usize>) -> libfdt::Result<()> {
187 let addr = u64::try_from(MEM_START).unwrap();
188 let size = u64::try_from(memory_range.len()).unwrap();
189 fdt.node_mut(cstr!("/memory"))?
190 .ok_or(FdtError::NotFound)?
191 .setprop_inplace(cstr!("reg"), [addr.to_be(), size.to_be()].as_bytes())
192 }
193
194 #[derive(Debug, Default)]
195 struct CpuInfo {
196 opptable_info: Option<ArrayVec<[u64; CpuInfo::MAX_OPPTABLES]>>,
197 cpu_capacity: Option<u32>,
198 }
199
200 impl CpuInfo {
201 const MAX_OPPTABLES: usize = 20;
202 }
203
read_opp_info_from( opp_node: FdtNode, ) -> libfdt::Result<ArrayVec<[u64; CpuInfo::MAX_OPPTABLES]>>204 fn read_opp_info_from(
205 opp_node: FdtNode,
206 ) -> libfdt::Result<ArrayVec<[u64; CpuInfo::MAX_OPPTABLES]>> {
207 let mut table = ArrayVec::new();
208 let mut opp_nodes = opp_node.subnodes()?;
209 for subnode in opp_nodes.by_ref().take(table.capacity()) {
210 let prop = subnode.getprop_u64(cstr!("opp-hz"))?.ok_or(FdtError::NotFound)?;
211 table.push(prop);
212 }
213
214 if opp_nodes.next().is_some() {
215 warn!("OPP table has more than {} entries: discarding extra nodes.", table.capacity());
216 }
217
218 Ok(table)
219 }
220
221 #[derive(Debug, Default)]
222 struct ClusterTopology {
223 // TODO: Support multi-level clusters & threads.
224 cores: [Option<usize>; ClusterTopology::MAX_CORES_PER_CLUSTER],
225 }
226
227 impl ClusterTopology {
228 const MAX_CORES_PER_CLUSTER: usize = 10;
229 }
230
231 #[derive(Debug, Default)]
232 struct CpuTopology {
233 // TODO: Support sockets.
234 clusters: [Option<ClusterTopology>; CpuTopology::MAX_CLUSTERS],
235 }
236
237 impl CpuTopology {
238 const MAX_CLUSTERS: usize = 3;
239 }
240
read_cpu_map_from(fdt: &Fdt) -> libfdt::Result<Option<BTreeMap<Phandle, (usize, usize)>>>241 fn read_cpu_map_from(fdt: &Fdt) -> libfdt::Result<Option<BTreeMap<Phandle, (usize, usize)>>> {
242 let Some(cpu_map) = fdt.node(cstr!("/cpus/cpu-map"))? else {
243 return Ok(None);
244 };
245
246 let mut topology = BTreeMap::new();
247 for n in 0..CpuTopology::MAX_CLUSTERS {
248 let name = CString::new(format!("cluster{n}")).unwrap();
249 let Some(cluster) = cpu_map.subnode(&name)? else {
250 break;
251 };
252 for m in 0..ClusterTopology::MAX_CORES_PER_CLUSTER {
253 let name = CString::new(format!("core{m}")).unwrap();
254 let Some(core) = cluster.subnode(&name)? else {
255 break;
256 };
257 let cpu = core.getprop_u32(cstr!("cpu"))?.ok_or(FdtError::NotFound)?;
258 let prev = topology.insert(cpu.try_into()?, (n, m));
259 if prev.is_some() {
260 return Err(FdtError::BadValue);
261 }
262 }
263 }
264
265 Ok(Some(topology))
266 }
267
read_cpu_info_from( fdt: &Fdt, ) -> libfdt::Result<(ArrayVec<[CpuInfo; DeviceTreeInfo::MAX_CPUS]>, Option<CpuTopology>)>268 fn read_cpu_info_from(
269 fdt: &Fdt,
270 ) -> libfdt::Result<(ArrayVec<[CpuInfo; DeviceTreeInfo::MAX_CPUS]>, Option<CpuTopology>)> {
271 let mut cpus = ArrayVec::new();
272
273 let cpu_map = read_cpu_map_from(fdt)?;
274 let mut topology: CpuTopology = Default::default();
275
276 let mut cpu_nodes = fdt.compatible_nodes(cstr!("arm,armv8"))?;
277 for (idx, cpu) in cpu_nodes.by_ref().take(cpus.capacity()).enumerate() {
278 let cpu_capacity = cpu.getprop_u32(cstr!("capacity-dmips-mhz"))?;
279 let opp_phandle = cpu.getprop_u32(cstr!("operating-points-v2"))?;
280 let opptable_info = if let Some(phandle) = opp_phandle {
281 let phandle = phandle.try_into()?;
282 let node = fdt.node_with_phandle(phandle)?.ok_or(FdtError::NotFound)?;
283 Some(read_opp_info_from(node)?)
284 } else {
285 None
286 };
287 let info = CpuInfo { opptable_info, cpu_capacity };
288 cpus.push(info);
289
290 if let Some(ref cpu_map) = cpu_map {
291 let phandle = cpu.get_phandle()?.ok_or(FdtError::NotFound)?;
292 let (cluster, core_idx) = cpu_map.get(&phandle).ok_or(FdtError::BadValue)?;
293 let cluster = topology.clusters[*cluster].get_or_insert(Default::default());
294 if cluster.cores[*core_idx].is_some() {
295 return Err(FdtError::BadValue);
296 }
297 cluster.cores[*core_idx] = Some(idx);
298 }
299 }
300
301 if cpu_nodes.next().is_some() {
302 warn!("DT has more than {} CPU nodes: discarding extra nodes.", cpus.capacity());
303 }
304
305 Ok((cpus, cpu_map.map(|_| topology)))
306 }
307
validate_cpu_info(cpus: &[CpuInfo]) -> Result<(), FdtValidationError>308 fn validate_cpu_info(cpus: &[CpuInfo]) -> Result<(), FdtValidationError> {
309 if cpus.is_empty() {
310 return Err(FdtValidationError::InvalidCpuCount(0));
311 }
312 Ok(())
313 }
314
read_vcpufreq_info(fdt: &Fdt) -> libfdt::Result<Option<VcpufreqInfo>>315 fn read_vcpufreq_info(fdt: &Fdt) -> libfdt::Result<Option<VcpufreqInfo>> {
316 let mut nodes = fdt.compatible_nodes(cstr!("virtual,android-v-only-cpufreq"))?;
317 let Some(node) = nodes.next() else {
318 return Ok(None);
319 };
320
321 if nodes.next().is_some() {
322 warn!("DT has more than 1 cpufreq node: discarding extra nodes.");
323 }
324
325 let mut regs = node.reg()?.ok_or(FdtError::NotFound)?;
326 let reg = regs.next().ok_or(FdtError::NotFound)?;
327 let size = reg.size.ok_or(FdtError::NotFound)?;
328
329 Ok(Some(VcpufreqInfo { addr: reg.addr, size }))
330 }
331
validate_vcpufreq_info( vcpufreq_info: &VcpufreqInfo, cpus: &[CpuInfo], ) -> Result<(), FdtValidationError>332 fn validate_vcpufreq_info(
333 vcpufreq_info: &VcpufreqInfo,
334 cpus: &[CpuInfo],
335 ) -> Result<(), FdtValidationError> {
336 const VCPUFREQ_BASE_ADDR: u64 = 0x1040000;
337 const VCPUFREQ_SIZE_PER_CPU: u64 = 0x8;
338
339 let base = vcpufreq_info.addr;
340 let size = vcpufreq_info.size;
341 let expected_size = VCPUFREQ_SIZE_PER_CPU * cpus.len() as u64;
342
343 if (base, size) != (VCPUFREQ_BASE_ADDR, expected_size) {
344 return Err(FdtValidationError::InvalidVcpufreq(base, size));
345 }
346
347 Ok(())
348 }
349
patch_opptable( node: FdtNodeMut, opptable: Option<ArrayVec<[u64; CpuInfo::MAX_OPPTABLES]>>, ) -> libfdt::Result<()>350 fn patch_opptable(
351 node: FdtNodeMut,
352 opptable: Option<ArrayVec<[u64; CpuInfo::MAX_OPPTABLES]>>,
353 ) -> libfdt::Result<()> {
354 let oppcompat = cstr!("operating-points-v2");
355 let next = node.next_compatible(oppcompat)?.ok_or(FdtError::NoSpace)?;
356
357 let Some(opptable) = opptable else {
358 return next.nop();
359 };
360
361 let mut next_subnode = next.first_subnode()?;
362
363 for entry in opptable {
364 let mut subnode = next_subnode.ok_or(FdtError::NoSpace)?;
365 subnode.setprop_inplace(cstr!("opp-hz"), &entry.to_be_bytes())?;
366 next_subnode = subnode.next_subnode()?;
367 }
368
369 while let Some(current) = next_subnode {
370 next_subnode = current.delete_and_next_subnode()?;
371 }
372
373 Ok(())
374 }
375
376 // TODO(ptosi): Rework FdtNodeMut and replace this function.
get_nth_compatible<'a>( fdt: &'a mut Fdt, n: usize, compat: &CStr, ) -> libfdt::Result<Option<FdtNodeMut<'a>>>377 fn get_nth_compatible<'a>(
378 fdt: &'a mut Fdt,
379 n: usize,
380 compat: &CStr,
381 ) -> libfdt::Result<Option<FdtNodeMut<'a>>> {
382 let mut node = fdt.root_mut().next_compatible(compat)?;
383 for _ in 0..n {
384 node = node.ok_or(FdtError::NoSpace)?.next_compatible(compat)?;
385 }
386 Ok(node)
387 }
388
patch_cpus( fdt: &mut Fdt, cpus: &[CpuInfo], topology: &Option<CpuTopology>, ) -> libfdt::Result<()>389 fn patch_cpus(
390 fdt: &mut Fdt,
391 cpus: &[CpuInfo],
392 topology: &Option<CpuTopology>,
393 ) -> libfdt::Result<()> {
394 const COMPAT: &CStr = cstr!("arm,armv8");
395 let mut cpu_phandles = Vec::new();
396 for (idx, cpu) in cpus.iter().enumerate() {
397 let mut cur = get_nth_compatible(fdt, idx, COMPAT)?.ok_or(FdtError::NoSpace)?;
398 let phandle = cur.as_node().get_phandle()?.unwrap();
399 cpu_phandles.push(phandle);
400 if let Some(cpu_capacity) = cpu.cpu_capacity {
401 cur.setprop_inplace(cstr!("capacity-dmips-mhz"), &cpu_capacity.to_be_bytes())?;
402 }
403 patch_opptable(cur, cpu.opptable_info)?;
404 }
405 let mut next = get_nth_compatible(fdt, cpus.len(), COMPAT)?;
406 while let Some(current) = next {
407 next = current.delete_and_next_compatible(COMPAT)?;
408 }
409
410 if let Some(topology) = topology {
411 for (n, cluster) in topology.clusters.iter().enumerate() {
412 let path = CString::new(format!("/cpus/cpu-map/cluster{n}")).unwrap();
413 let cluster_node = fdt.node_mut(&path)?.unwrap();
414 if let Some(cluster) = cluster {
415 let mut iter = cluster_node.first_subnode()?;
416 for core in cluster.cores {
417 let mut core_node = iter.unwrap();
418 iter = if let Some(core_idx) = core {
419 let phandle = *cpu_phandles.get(core_idx).unwrap();
420 let value = u32::from(phandle).to_be_bytes();
421 core_node.setprop_inplace(cstr!("cpu"), &value)?;
422 core_node.next_subnode()?
423 } else {
424 core_node.delete_and_next_subnode()?
425 };
426 }
427 assert!(iter.is_none());
428 } else {
429 cluster_node.nop()?;
430 }
431 }
432 } else {
433 fdt.node_mut(cstr!("/cpus/cpu-map"))?.unwrap().nop()?;
434 }
435
436 Ok(())
437 }
438
439 /// Reads the /avf/untrusted DT node, which the host can use to pass properties (no subnodes) to
440 /// the guest that don't require being validated by pvmfw.
parse_untrusted_props(fdt: &Fdt) -> libfdt::Result<BTreeMap<CString, Vec<u8>>>441 fn parse_untrusted_props(fdt: &Fdt) -> libfdt::Result<BTreeMap<CString, Vec<u8>>> {
442 let mut props = BTreeMap::new();
443 if let Some(node) = fdt.node(cstr!("/avf/untrusted"))? {
444 for property in node.properties()? {
445 let name = property.name()?;
446 let value = property.value()?;
447 props.insert(CString::from(name), value.to_vec());
448 }
449 if node.subnodes()?.next().is_some() {
450 warn!("Discarding unexpected /avf/untrusted subnodes.");
451 }
452 }
453
454 Ok(props)
455 }
456
457 /// Read candidate properties' names from DT which could be overlaid
parse_vm_ref_dt(fdt: &Fdt) -> libfdt::Result<BTreeMap<CString, Vec<u8>>>458 fn parse_vm_ref_dt(fdt: &Fdt) -> libfdt::Result<BTreeMap<CString, Vec<u8>>> {
459 let mut property_map = BTreeMap::new();
460 if let Some(avf_node) = fdt.node(cstr!("/avf"))? {
461 for property in avf_node.properties()? {
462 let name = property.name()?;
463 let value = property.value()?;
464 property_map.insert(
465 CString::new(name.to_bytes()).map_err(|_| FdtError::BadValue)?,
466 value.to_vec(),
467 );
468 }
469 }
470 Ok(property_map)
471 }
472
validate_untrusted_props(props: &BTreeMap<CString, Vec<u8>>) -> Result<(), FdtValidationError>473 fn validate_untrusted_props(props: &BTreeMap<CString, Vec<u8>>) -> Result<(), FdtValidationError> {
474 const FORBIDDEN_PROPS: &[&CStr] =
475 &[cstr!("compatible"), cstr!("linux,phandle"), cstr!("phandle")];
476
477 for name in FORBIDDEN_PROPS {
478 if props.contains_key(*name) {
479 return Err(FdtValidationError::ForbiddenUntrustedProp(name));
480 }
481 }
482
483 Ok(())
484 }
485
486 /// Overlay VM reference DT into VM DT based on the props_info. Property is overlaid in vm_dt only
487 /// when it exists both in vm_ref_dt and props_info. If the values mismatch, it returns error.
validate_vm_ref_dt( vm_dt: &mut Fdt, vm_ref_dt: &Fdt, props_info: &BTreeMap<CString, Vec<u8>>, ) -> libfdt::Result<()>488 fn validate_vm_ref_dt(
489 vm_dt: &mut Fdt,
490 vm_ref_dt: &Fdt,
491 props_info: &BTreeMap<CString, Vec<u8>>,
492 ) -> libfdt::Result<()> {
493 let root_vm_dt = vm_dt.root_mut();
494 let mut avf_vm_dt = root_vm_dt.add_subnode(cstr!("avf"))?;
495 // TODO(b/318431677): Validate nodes beyond /avf.
496 let avf_node = vm_ref_dt.node(cstr!("/avf"))?.ok_or(FdtError::NotFound)?;
497 for (name, value) in props_info.iter() {
498 if let Some(ref_value) = avf_node.getprop(name)? {
499 if value != ref_value {
500 error!(
501 "Property mismatches while applying overlay VM reference DT. \
502 Name:{:?}, Value from host as hex:{:x?}, Value from VM reference DT as hex:{:x?}",
503 name, value, ref_value
504 );
505 return Err(FdtError::BadValue);
506 }
507 avf_vm_dt.setprop(name, ref_value)?;
508 }
509 }
510 Ok(())
511 }
512
513 #[derive(Debug)]
514 struct PciInfo {
515 ranges: [PciAddrRange; 2],
516 irq_masks: ArrayVec<[PciIrqMask; PciInfo::MAX_IRQS]>,
517 irq_maps: ArrayVec<[PciIrqMap; PciInfo::MAX_IRQS]>,
518 }
519
520 impl PciInfo {
521 const IRQ_MASK_CELLS: usize = 4;
522 const IRQ_MAP_CELLS: usize = 10;
523 const MAX_IRQS: usize = 16;
524 }
525
526 type PciAddrRange = AddressRange<(u32, u64), u64, u64>;
527 type PciIrqMask = [u32; PciInfo::IRQ_MASK_CELLS];
528 type PciIrqMap = [u32; PciInfo::IRQ_MAP_CELLS];
529
530 /// Iterator that takes N cells as a chunk
531 struct CellChunkIterator<'a, const N: usize> {
532 cells: CellIterator<'a>,
533 }
534
535 impl<'a, const N: usize> CellChunkIterator<'a, N> {
new(cells: CellIterator<'a>) -> Self536 fn new(cells: CellIterator<'a>) -> Self {
537 Self { cells }
538 }
539 }
540
541 impl<'a, const N: usize> Iterator for CellChunkIterator<'a, N> {
542 type Item = [u32; N];
next(&mut self) -> Option<Self::Item>543 fn next(&mut self) -> Option<Self::Item> {
544 let mut ret: Self::Item = [0; N];
545 for i in ret.iter_mut() {
546 *i = self.cells.next()?;
547 }
548 Some(ret)
549 }
550 }
551
552 /// Read pci host controller ranges, irq maps, and irq map masks from DT
read_pci_info_from(fdt: &Fdt) -> libfdt::Result<PciInfo>553 fn read_pci_info_from(fdt: &Fdt) -> libfdt::Result<PciInfo> {
554 let node =
555 fdt.compatible_nodes(cstr!("pci-host-cam-generic"))?.next().ok_or(FdtError::NotFound)?;
556
557 let mut ranges = node.ranges::<(u32, u64), u64, u64>()?.ok_or(FdtError::NotFound)?;
558 let range0 = ranges.next().ok_or(FdtError::NotFound)?;
559 let range1 = ranges.next().ok_or(FdtError::NotFound)?;
560
561 let irq_masks = node.getprop_cells(cstr!("interrupt-map-mask"))?.ok_or(FdtError::NotFound)?;
562 let mut chunks = CellChunkIterator::<{ PciInfo::IRQ_MASK_CELLS }>::new(irq_masks);
563 let irq_masks = (&mut chunks).take(PciInfo::MAX_IRQS).collect();
564
565 if chunks.next().is_some() {
566 warn!("Input DT has more than {} PCI entries!", PciInfo::MAX_IRQS);
567 return Err(FdtError::NoSpace);
568 }
569
570 let irq_maps = node.getprop_cells(cstr!("interrupt-map"))?.ok_or(FdtError::NotFound)?;
571 let mut chunks = CellChunkIterator::<{ PciInfo::IRQ_MAP_CELLS }>::new(irq_maps);
572 let irq_maps = (&mut chunks).take(PciInfo::MAX_IRQS).collect();
573
574 if chunks.next().is_some() {
575 warn!("Input DT has more than {} PCI entries!", PciInfo::MAX_IRQS);
576 return Err(FdtError::NoSpace);
577 }
578
579 Ok(PciInfo { ranges: [range0, range1], irq_masks, irq_maps })
580 }
581
validate_pci_info(pci_info: &PciInfo, memory_range: &Range<usize>) -> Result<(), RebootReason>582 fn validate_pci_info(pci_info: &PciInfo, memory_range: &Range<usize>) -> Result<(), RebootReason> {
583 for range in pci_info.ranges.iter() {
584 validate_pci_addr_range(range, memory_range)?;
585 }
586 for irq_mask in pci_info.irq_masks.iter() {
587 validate_pci_irq_mask(irq_mask)?;
588 }
589 for (idx, irq_map) in pci_info.irq_maps.iter().enumerate() {
590 validate_pci_irq_map(irq_map, idx)?;
591 }
592 Ok(())
593 }
594
validate_pci_addr_range( range: &PciAddrRange, memory_range: &Range<usize>, ) -> Result<(), RebootReason>595 fn validate_pci_addr_range(
596 range: &PciAddrRange,
597 memory_range: &Range<usize>,
598 ) -> Result<(), RebootReason> {
599 let mem_flags = PciMemoryFlags(range.addr.0);
600 let range_type = mem_flags.range_type();
601 let bus_addr = range.addr.1;
602 let cpu_addr = range.parent_addr;
603 let size = range.size;
604
605 if range_type != PciRangeType::Memory64 {
606 error!("Invalid range type {:?} for bus address {:#x} in PCI node", range_type, bus_addr);
607 return Err(RebootReason::InvalidFdt);
608 }
609 // Enforce ID bus-to-cpu mappings, as used by crosvm.
610 if bus_addr != cpu_addr {
611 error!("PCI bus address: {:#x} is different from CPU address: {:#x}", bus_addr, cpu_addr);
612 return Err(RebootReason::InvalidFdt);
613 }
614
615 let Some(bus_end) = bus_addr.checked_add(size) else {
616 error!("PCI address range size {:#x} overflows", size);
617 return Err(RebootReason::InvalidFdt);
618 };
619 if bus_end > MAX_VIRT_ADDR.try_into().unwrap() {
620 error!("PCI address end {:#x} is outside of translatable range", bus_end);
621 return Err(RebootReason::InvalidFdt);
622 }
623
624 let memory_start = memory_range.start.try_into().unwrap();
625 let memory_end = memory_range.end.try_into().unwrap();
626
627 if max(bus_addr, memory_start) < min(bus_end, memory_end) {
628 error!(
629 "PCI address range {:#x}-{:#x} overlaps with main memory range {:#x}-{:#x}",
630 bus_addr, bus_end, memory_start, memory_end
631 );
632 return Err(RebootReason::InvalidFdt);
633 }
634
635 Ok(())
636 }
637
validate_pci_irq_mask(irq_mask: &PciIrqMask) -> Result<(), RebootReason>638 fn validate_pci_irq_mask(irq_mask: &PciIrqMask) -> Result<(), RebootReason> {
639 const IRQ_MASK_ADDR_HI: u32 = 0xf800;
640 const IRQ_MASK_ADDR_ME: u32 = 0x0;
641 const IRQ_MASK_ADDR_LO: u32 = 0x0;
642 const IRQ_MASK_ANY_IRQ: u32 = 0x7;
643 const EXPECTED: PciIrqMask =
644 [IRQ_MASK_ADDR_HI, IRQ_MASK_ADDR_ME, IRQ_MASK_ADDR_LO, IRQ_MASK_ANY_IRQ];
645 if *irq_mask != EXPECTED {
646 error!("Invalid PCI irq mask {:#?}", irq_mask);
647 return Err(RebootReason::InvalidFdt);
648 }
649 Ok(())
650 }
651
validate_pci_irq_map(irq_map: &PciIrqMap, idx: usize) -> Result<(), RebootReason>652 fn validate_pci_irq_map(irq_map: &PciIrqMap, idx: usize) -> Result<(), RebootReason> {
653 const PCI_DEVICE_IDX: usize = 11;
654 const PCI_IRQ_ADDR_ME: u32 = 0;
655 const PCI_IRQ_ADDR_LO: u32 = 0;
656 const PCI_IRQ_INTC: u32 = 1;
657 const AARCH64_IRQ_BASE: u32 = 4; // from external/crosvm/aarch64/src/lib.rs
658 const GIC_SPI: u32 = 0;
659 const IRQ_TYPE_LEVEL_HIGH: u32 = 4;
660
661 let pci_addr = (irq_map[0], irq_map[1], irq_map[2]);
662 let pci_irq_number = irq_map[3];
663 let _controller_phandle = irq_map[4]; // skipped.
664 let gic_addr = (irq_map[5], irq_map[6]); // address-cells is <2> for GIC
665 // interrupt-cells is <3> for GIC
666 let gic_peripheral_interrupt_type = irq_map[7];
667 let gic_irq_number = irq_map[8];
668 let gic_irq_type = irq_map[9];
669
670 let phys_hi: u32 = (0x1 << PCI_DEVICE_IDX) * (idx + 1) as u32;
671 let expected_pci_addr = (phys_hi, PCI_IRQ_ADDR_ME, PCI_IRQ_ADDR_LO);
672
673 if pci_addr != expected_pci_addr {
674 error!("PCI device address {:#x} {:#x} {:#x} in interrupt-map is different from expected address \
675 {:#x} {:#x} {:#x}",
676 pci_addr.0, pci_addr.1, pci_addr.2, expected_pci_addr.0, expected_pci_addr.1, expected_pci_addr.2);
677 return Err(RebootReason::InvalidFdt);
678 }
679
680 if pci_irq_number != PCI_IRQ_INTC {
681 error!(
682 "PCI INT# {:#x} in interrupt-map is different from expected value {:#x}",
683 pci_irq_number, PCI_IRQ_INTC
684 );
685 return Err(RebootReason::InvalidFdt);
686 }
687
688 if gic_addr != (0, 0) {
689 error!(
690 "GIC address {:#x} {:#x} in interrupt-map is different from expected address \
691 {:#x} {:#x}",
692 gic_addr.0, gic_addr.1, 0, 0
693 );
694 return Err(RebootReason::InvalidFdt);
695 }
696
697 if gic_peripheral_interrupt_type != GIC_SPI {
698 error!("GIC peripheral interrupt type {:#x} in interrupt-map is different from expected value \
699 {:#x}", gic_peripheral_interrupt_type, GIC_SPI);
700 return Err(RebootReason::InvalidFdt);
701 }
702
703 let irq_nr: u32 = AARCH64_IRQ_BASE + (idx as u32);
704 if gic_irq_number != irq_nr {
705 error!(
706 "GIC irq number {:#x} in interrupt-map is unexpected. Expected {:#x}",
707 gic_irq_number, irq_nr
708 );
709 return Err(RebootReason::InvalidFdt);
710 }
711
712 if gic_irq_type != IRQ_TYPE_LEVEL_HIGH {
713 error!(
714 "IRQ type in {:#x} is invalid. Must be LEVEL_HIGH {:#x}",
715 gic_irq_type, IRQ_TYPE_LEVEL_HIGH
716 );
717 return Err(RebootReason::InvalidFdt);
718 }
719 Ok(())
720 }
721
patch_pci_info(fdt: &mut Fdt, pci_info: &PciInfo) -> libfdt::Result<()>722 fn patch_pci_info(fdt: &mut Fdt, pci_info: &PciInfo) -> libfdt::Result<()> {
723 let mut node =
724 fdt.root_mut().next_compatible(cstr!("pci-host-cam-generic"))?.ok_or(FdtError::NotFound)?;
725
726 let irq_masks_size = pci_info.irq_masks.len() * size_of::<PciIrqMask>();
727 node.trimprop(cstr!("interrupt-map-mask"), irq_masks_size)?;
728
729 let irq_maps_size = pci_info.irq_maps.len() * size_of::<PciIrqMap>();
730 node.trimprop(cstr!("interrupt-map"), irq_maps_size)?;
731
732 node.setprop_inplace(
733 cstr!("ranges"),
734 [pci_info.ranges[0].to_cells(), pci_info.ranges[1].to_cells()].as_flattened(),
735 )
736 }
737
738 #[derive(Default, Debug)]
739 struct SerialInfo {
740 addrs: ArrayVec<[u64; Self::MAX_SERIALS]>,
741 }
742
743 impl SerialInfo {
744 const MAX_SERIALS: usize = 4;
745 }
746
read_serial_info_from(fdt: &Fdt) -> libfdt::Result<SerialInfo>747 fn read_serial_info_from(fdt: &Fdt) -> libfdt::Result<SerialInfo> {
748 let mut addrs = ArrayVec::new();
749
750 let mut serial_nodes = fdt.compatible_nodes(cstr!("ns16550a"))?;
751 for node in serial_nodes.by_ref().take(addrs.capacity()) {
752 let reg = node.first_reg()?;
753 addrs.push(reg.addr);
754 }
755 if serial_nodes.next().is_some() {
756 warn!("DT has more than {} UART nodes: discarding extra nodes.", addrs.capacity());
757 }
758
759 Ok(SerialInfo { addrs })
760 }
761
762 #[derive(Default, Debug, PartialEq)]
763 struct WdtInfo {
764 addr: u64,
765 size: u64,
766 irq: [u32; WdtInfo::IRQ_CELLS],
767 }
768
769 impl WdtInfo {
770 const IRQ_CELLS: usize = 3;
771 const IRQ_NR: u32 = 0xf;
772 const ADDR: u64 = 0x3000;
773 const SIZE: u64 = 0x1000;
774 const GIC_PPI: u32 = 1;
775 const IRQ_TYPE_EDGE_RISING: u32 = 1;
776 const GIC_FDT_IRQ_PPI_CPU_SHIFT: u32 = 8;
777 // TODO(b/350498812): Rework this for >8 vCPUs.
778 const GIC_FDT_IRQ_PPI_CPU_MASK: u32 = 0xff << Self::GIC_FDT_IRQ_PPI_CPU_SHIFT;
779
get_expected(num_cpus: usize) -> Self780 const fn get_expected(num_cpus: usize) -> Self {
781 Self {
782 addr: Self::ADDR,
783 size: Self::SIZE,
784 irq: [
785 Self::GIC_PPI,
786 Self::IRQ_NR,
787 ((((1 << num_cpus) - 1) << Self::GIC_FDT_IRQ_PPI_CPU_SHIFT)
788 & Self::GIC_FDT_IRQ_PPI_CPU_MASK)
789 | Self::IRQ_TYPE_EDGE_RISING,
790 ],
791 }
792 }
793 }
794
read_wdt_info_from(fdt: &Fdt) -> libfdt::Result<WdtInfo>795 fn read_wdt_info_from(fdt: &Fdt) -> libfdt::Result<WdtInfo> {
796 let mut node_iter = fdt.compatible_nodes(cstr!("qemu,vcpu-stall-detector"))?;
797 let node = node_iter.next().ok_or(FdtError::NotFound)?;
798 let mut ranges = node.reg()?.ok_or(FdtError::NotFound)?;
799
800 let reg = ranges.next().ok_or(FdtError::NotFound)?;
801 let size = reg.size.ok_or(FdtError::NotFound)?;
802 if ranges.next().is_some() {
803 warn!("Discarding extra vmwdt <reg> entries.");
804 }
805
806 let interrupts = node.getprop_cells(cstr!("interrupts"))?.ok_or(FdtError::NotFound)?;
807 let mut chunks = CellChunkIterator::<{ WdtInfo::IRQ_CELLS }>::new(interrupts);
808 let irq = chunks.next().ok_or(FdtError::NotFound)?;
809
810 if chunks.next().is_some() {
811 warn!("Discarding extra vmwdt <interrupts> entries.");
812 }
813
814 Ok(WdtInfo { addr: reg.addr, size, irq })
815 }
816
validate_wdt_info(wdt: &WdtInfo, num_cpus: usize) -> Result<(), RebootReason>817 fn validate_wdt_info(wdt: &WdtInfo, num_cpus: usize) -> Result<(), RebootReason> {
818 if *wdt != WdtInfo::get_expected(num_cpus) {
819 error!("Invalid watchdog timer: {wdt:?}");
820 return Err(RebootReason::InvalidFdt);
821 }
822
823 Ok(())
824 }
825
patch_wdt_info(fdt: &mut Fdt, num_cpus: usize) -> libfdt::Result<()>826 fn patch_wdt_info(fdt: &mut Fdt, num_cpus: usize) -> libfdt::Result<()> {
827 let mut interrupts = WdtInfo::get_expected(num_cpus).irq;
828 for v in interrupts.iter_mut() {
829 *v = v.to_be();
830 }
831
832 let mut node = fdt
833 .root_mut()
834 .next_compatible(cstr!("qemu,vcpu-stall-detector"))?
835 .ok_or(libfdt::FdtError::NotFound)?;
836 node.setprop_inplace(cstr!("interrupts"), interrupts.as_bytes())?;
837 Ok(())
838 }
839
840 /// Patch the DT by deleting the ns16550a compatible nodes whose address are unknown
patch_serial_info(fdt: &mut Fdt, serial_info: &SerialInfo) -> libfdt::Result<()>841 fn patch_serial_info(fdt: &mut Fdt, serial_info: &SerialInfo) -> libfdt::Result<()> {
842 let name = cstr!("ns16550a");
843 let mut next = fdt.root_mut().next_compatible(name);
844 while let Some(current) = next? {
845 let reg =
846 current.as_node().reg()?.ok_or(FdtError::NotFound)?.next().ok_or(FdtError::NotFound)?;
847 next = if !serial_info.addrs.contains(®.addr) {
848 current.delete_and_next_compatible(name)
849 } else {
850 current.next_compatible(name)
851 }
852 }
853 Ok(())
854 }
855
validate_swiotlb_info( swiotlb_info: &SwiotlbInfo, memory: &Range<usize>, guest_page_size: usize, ) -> Result<(), RebootReason>856 fn validate_swiotlb_info(
857 swiotlb_info: &SwiotlbInfo,
858 memory: &Range<usize>,
859 guest_page_size: usize,
860 ) -> Result<(), RebootReason> {
861 let size = swiotlb_info.size;
862 let align = swiotlb_info.align;
863
864 if size == 0 || (size % guest_page_size) != 0 {
865 error!("Invalid swiotlb size {:#x}", size);
866 return Err(RebootReason::InvalidFdt);
867 }
868
869 if let Some(align) = align.filter(|&a| a % guest_page_size != 0) {
870 error!("Invalid swiotlb alignment {:#x}", align);
871 return Err(RebootReason::InvalidFdt);
872 }
873
874 if let Some(addr) = swiotlb_info.addr {
875 if addr.checked_add(size).is_none() {
876 error!("Invalid swiotlb range: addr:{addr:#x} size:{size:#x}");
877 return Err(RebootReason::InvalidFdt);
878 }
879 }
880 if let Some(range) = swiotlb_info.fixed_range() {
881 if !range.is_within(memory) {
882 error!("swiotlb range {range:#x?} not part of memory range {memory:#x?}");
883 return Err(RebootReason::InvalidFdt);
884 }
885 }
886
887 Ok(())
888 }
889
patch_swiotlb_info(fdt: &mut Fdt, swiotlb_info: &SwiotlbInfo) -> libfdt::Result<()>890 fn patch_swiotlb_info(fdt: &mut Fdt, swiotlb_info: &SwiotlbInfo) -> libfdt::Result<()> {
891 let mut node =
892 fdt.root_mut().next_compatible(cstr!("restricted-dma-pool"))?.ok_or(FdtError::NotFound)?;
893
894 if let Some(range) = swiotlb_info.fixed_range() {
895 node.setprop_addrrange_inplace(
896 cstr!("reg"),
897 range.start.try_into().unwrap(),
898 range.len().try_into().unwrap(),
899 )?;
900 node.nop_property(cstr!("size"))?;
901 node.nop_property(cstr!("alignment"))?;
902 } else {
903 node.nop_property(cstr!("reg"))?;
904 node.setprop_inplace(cstr!("size"), &swiotlb_info.size.to_be_bytes())?;
905 node.setprop_inplace(cstr!("alignment"), &swiotlb_info.align.unwrap().to_be_bytes())?;
906 }
907
908 Ok(())
909 }
910
patch_gic(fdt: &mut Fdt, num_cpus: usize) -> libfdt::Result<()>911 fn patch_gic(fdt: &mut Fdt, num_cpus: usize) -> libfdt::Result<()> {
912 let node = fdt.compatible_nodes(cstr!("arm,gic-v3"))?.next().ok_or(FdtError::NotFound)?;
913 let mut ranges = node.reg()?.ok_or(FdtError::NotFound)?;
914 let range0 = ranges.next().ok_or(FdtError::NotFound)?;
915 let mut range1 = ranges.next().ok_or(FdtError::NotFound)?;
916
917 let addr = range0.addr;
918 // `read_cpu_info_from()` guarantees that we have at most MAX_CPUS.
919 const_assert!(DeviceTreeInfo::gic_patched_size(DeviceTreeInfo::MAX_CPUS).is_some());
920 let size = u64::try_from(DeviceTreeInfo::gic_patched_size(num_cpus).unwrap()).unwrap();
921
922 // range1 is just below range0
923 range1.addr = addr - size;
924 range1.size = Some(size);
925
926 let (addr0, size0) = range0.to_cells();
927 let (addr1, size1) = range1.to_cells();
928 let value = [addr0, size0.unwrap(), addr1, size1.unwrap()];
929
930 let mut node =
931 fdt.root_mut().next_compatible(cstr!("arm,gic-v3"))?.ok_or(FdtError::NotFound)?;
932 node.setprop_inplace(cstr!("reg"), value.as_flattened())
933 }
934
patch_timer(fdt: &mut Fdt, num_cpus: usize) -> libfdt::Result<()>935 fn patch_timer(fdt: &mut Fdt, num_cpus: usize) -> libfdt::Result<()> {
936 const NUM_INTERRUPTS: usize = 4;
937 const CELLS_PER_INTERRUPT: usize = 3;
938 let node = fdt.compatible_nodes(cstr!("arm,armv8-timer"))?.next().ok_or(FdtError::NotFound)?;
939 let interrupts = node.getprop_cells(cstr!("interrupts"))?.ok_or(FdtError::NotFound)?;
940 let mut value: ArrayVec<[u32; NUM_INTERRUPTS * CELLS_PER_INTERRUPT]> =
941 interrupts.take(NUM_INTERRUPTS * CELLS_PER_INTERRUPT).collect();
942
943 let num_cpus: u32 = num_cpus.try_into().unwrap();
944 // TODO(b/350498812): Rework this for >8 vCPUs.
945 let cpu_mask: u32 = (((0x1 << num_cpus) - 1) & 0xff) << 8;
946
947 for v in value.iter_mut().skip(2).step_by(CELLS_PER_INTERRUPT) {
948 *v |= cpu_mask;
949 }
950 for v in value.iter_mut() {
951 *v = v.to_be();
952 }
953
954 let value = value.into_inner();
955
956 let mut node =
957 fdt.root_mut().next_compatible(cstr!("arm,armv8-timer"))?.ok_or(FdtError::NotFound)?;
958 node.setprop_inplace(cstr!("interrupts"), value.as_bytes())
959 }
960
patch_untrusted_props(fdt: &mut Fdt, props: &BTreeMap<CString, Vec<u8>>) -> libfdt::Result<()>961 fn patch_untrusted_props(fdt: &mut Fdt, props: &BTreeMap<CString, Vec<u8>>) -> libfdt::Result<()> {
962 let avf_node = if let Some(node) = fdt.node_mut(cstr!("/avf"))? {
963 node
964 } else {
965 fdt.root_mut().add_subnode(cstr!("avf"))?
966 };
967
968 // The node shouldn't already be present; if it is, return the error.
969 let mut node = avf_node.add_subnode(cstr!("untrusted"))?;
970
971 for (name, value) in props {
972 node.setprop(name, value)?;
973 }
974
975 Ok(())
976 }
977
978 #[derive(Debug)]
979 struct VcpufreqInfo {
980 addr: u64,
981 size: u64,
982 }
983
patch_vcpufreq(fdt: &mut Fdt, vcpufreq_info: &Option<VcpufreqInfo>) -> libfdt::Result<()>984 fn patch_vcpufreq(fdt: &mut Fdt, vcpufreq_info: &Option<VcpufreqInfo>) -> libfdt::Result<()> {
985 let mut node = fdt.node_mut(cstr!("/cpufreq"))?.unwrap();
986 if let Some(info) = vcpufreq_info {
987 node.setprop_addrrange_inplace(cstr!("reg"), info.addr, info.size)
988 } else {
989 node.nop()
990 }
991 }
992
993 #[derive(Debug)]
994 pub struct DeviceTreeInfo {
995 pub initrd_range: Option<Range<usize>>,
996 pub memory_range: Range<usize>,
997 bootargs: Option<CString>,
998 cpus: ArrayVec<[CpuInfo; DeviceTreeInfo::MAX_CPUS]>,
999 cpu_topology: Option<CpuTopology>,
1000 pci_info: PciInfo,
1001 serial_info: SerialInfo,
1002 pub swiotlb_info: SwiotlbInfo,
1003 device_assignment: Option<DeviceAssignmentInfo>,
1004 untrusted_props: BTreeMap<CString, Vec<u8>>,
1005 vm_ref_dt_props_info: BTreeMap<CString, Vec<u8>>,
1006 vcpufreq_info: Option<VcpufreqInfo>,
1007 }
1008
1009 impl DeviceTreeInfo {
1010 const MAX_CPUS: usize = 16;
1011
gic_patched_size(num_cpus: usize) -> Option<usize>1012 const fn gic_patched_size(num_cpus: usize) -> Option<usize> {
1013 const GIC_REDIST_SIZE_PER_CPU: usize = 32 * SIZE_4KB;
1014
1015 GIC_REDIST_SIZE_PER_CPU.checked_mul(num_cpus)
1016 }
1017 }
1018
sanitize_device_tree( fdt: &mut Fdt, vm_dtbo: Option<&mut [u8]>, vm_ref_dt: Option<&[u8]>, guest_page_size: usize, ) -> Result<DeviceTreeInfo, RebootReason>1019 pub fn sanitize_device_tree(
1020 fdt: &mut Fdt,
1021 vm_dtbo: Option<&mut [u8]>,
1022 vm_ref_dt: Option<&[u8]>,
1023 guest_page_size: usize,
1024 ) -> Result<DeviceTreeInfo, RebootReason> {
1025 let vm_dtbo = match vm_dtbo {
1026 Some(vm_dtbo) => Some(VmDtbo::from_mut_slice(vm_dtbo).map_err(|e| {
1027 error!("Failed to load VM DTBO: {e}");
1028 RebootReason::InvalidFdt
1029 })?),
1030 None => None,
1031 };
1032
1033 let info = parse_device_tree(fdt, vm_dtbo.as_deref(), guest_page_size)?;
1034
1035 fdt.clone_from(FDT_TEMPLATE).map_err(|e| {
1036 error!("Failed to instantiate FDT from the template DT: {e}");
1037 RebootReason::InvalidFdt
1038 })?;
1039
1040 fdt.unpack().map_err(|e| {
1041 error!("Failed to unpack DT for patching: {e}");
1042 RebootReason::InvalidFdt
1043 })?;
1044
1045 if let Some(device_assignment_info) = &info.device_assignment {
1046 let vm_dtbo = vm_dtbo.unwrap();
1047 device_assignment_info.filter(vm_dtbo).map_err(|e| {
1048 error!("Failed to filter VM DTBO: {e}");
1049 RebootReason::InvalidFdt
1050 })?;
1051 // SAFETY: Damaged VM DTBO isn't used in this API after this unsafe block.
1052 // VM DTBO can't be reused in any way as Fdt nor VmDtbo outside of this API because
1053 // it can only be instantiated after validation.
1054 unsafe {
1055 fdt.apply_overlay(vm_dtbo.as_mut()).map_err(|e| {
1056 error!("Failed to apply filtered VM DTBO: {e}");
1057 RebootReason::InvalidFdt
1058 })?;
1059 }
1060 }
1061
1062 if let Some(vm_ref_dt) = vm_ref_dt {
1063 let vm_ref_dt = Fdt::from_slice(vm_ref_dt).map_err(|e| {
1064 error!("Failed to load VM reference DT: {e}");
1065 RebootReason::InvalidFdt
1066 })?;
1067
1068 validate_vm_ref_dt(fdt, vm_ref_dt, &info.vm_ref_dt_props_info).map_err(|e| {
1069 error!("Failed to apply VM reference DT: {e}");
1070 RebootReason::InvalidFdt
1071 })?;
1072 }
1073
1074 patch_device_tree(fdt, &info)?;
1075
1076 // TODO(b/317201360): Ensure no overlapping in <reg> among devices
1077
1078 fdt.pack().map_err(|e| {
1079 error!("Failed to unpack DT after patching: {e}");
1080 RebootReason::InvalidFdt
1081 })?;
1082
1083 Ok(info)
1084 }
1085
parse_device_tree( fdt: &Fdt, vm_dtbo: Option<&VmDtbo>, guest_page_size: usize, ) -> Result<DeviceTreeInfo, RebootReason>1086 fn parse_device_tree(
1087 fdt: &Fdt,
1088 vm_dtbo: Option<&VmDtbo>,
1089 guest_page_size: usize,
1090 ) -> Result<DeviceTreeInfo, RebootReason> {
1091 let initrd_range = read_initrd_range_from(fdt).map_err(|e| {
1092 error!("Failed to read initrd range from DT: {e}");
1093 RebootReason::InvalidFdt
1094 })?;
1095
1096 let memory_range = read_and_validate_memory_range(fdt, guest_page_size)?;
1097
1098 let bootargs = read_bootargs_from(fdt).map_err(|e| {
1099 error!("Failed to read bootargs from DT: {e}");
1100 RebootReason::InvalidFdt
1101 })?;
1102
1103 let (cpus, cpu_topology) = read_cpu_info_from(fdt).map_err(|e| {
1104 error!("Failed to read CPU info from DT: {e}");
1105 RebootReason::InvalidFdt
1106 })?;
1107 validate_cpu_info(&cpus).map_err(|e| {
1108 error!("Failed to validate CPU info from DT: {e}");
1109 RebootReason::InvalidFdt
1110 })?;
1111
1112 let vcpufreq_info = read_vcpufreq_info(fdt).map_err(|e| {
1113 error!("Failed to read vcpufreq info from DT: {e}");
1114 RebootReason::InvalidFdt
1115 })?;
1116 if let Some(ref info) = vcpufreq_info {
1117 validate_vcpufreq_info(info, &cpus).map_err(|e| {
1118 error!("Failed to validate vcpufreq info from DT: {e}");
1119 RebootReason::InvalidFdt
1120 })?;
1121 }
1122
1123 let pci_info = read_pci_info_from(fdt).map_err(|e| {
1124 error!("Failed to read pci info from DT: {e}");
1125 RebootReason::InvalidFdt
1126 })?;
1127 validate_pci_info(&pci_info, &memory_range)?;
1128
1129 let wdt_info = read_wdt_info_from(fdt).map_err(|e| {
1130 error!("Failed to read vCPU stall detector info from DT: {e}");
1131 RebootReason::InvalidFdt
1132 })?;
1133 validate_wdt_info(&wdt_info, cpus.len())?;
1134
1135 let serial_info = read_serial_info_from(fdt).map_err(|e| {
1136 error!("Failed to read serial info from DT: {e}");
1137 RebootReason::InvalidFdt
1138 })?;
1139
1140 let swiotlb_info = SwiotlbInfo::new_from_fdt(fdt)
1141 .map_err(|e| {
1142 error!("Failed to read swiotlb info from DT: {e}");
1143 RebootReason::InvalidFdt
1144 })?
1145 .ok_or_else(|| {
1146 error!("Swiotlb info missing from DT");
1147 RebootReason::InvalidFdt
1148 })?;
1149 validate_swiotlb_info(&swiotlb_info, &memory_range, guest_page_size)?;
1150
1151 let device_assignment = match vm_dtbo {
1152 Some(vm_dtbo) => {
1153 if let Some(hypervisor) = get_device_assigner() {
1154 // TODO(ptosi): Cache the (single?) granule once, in vmbase.
1155 let granule = get_mem_sharer()
1156 .ok_or_else(|| {
1157 error!("No MEM_SHARE found during device assignment validation");
1158 RebootReason::InternalError
1159 })?
1160 .granule()
1161 .map_err(|e| {
1162 error!("Failed to get granule for device assignment validation: {e}");
1163 RebootReason::InternalError
1164 })?;
1165 DeviceAssignmentInfo::parse(fdt, vm_dtbo, hypervisor, granule).map_err(|e| {
1166 error!("Failed to parse device assignment from DT and VM DTBO: {e}");
1167 RebootReason::InvalidFdt
1168 })?
1169 } else {
1170 warn!(
1171 "Device assignment is ignored because device assigning hypervisor is missing"
1172 );
1173 None
1174 }
1175 }
1176 None => None,
1177 };
1178
1179 let untrusted_props = parse_untrusted_props(fdt).map_err(|e| {
1180 error!("Failed to read untrusted properties: {e}");
1181 RebootReason::InvalidFdt
1182 })?;
1183 validate_untrusted_props(&untrusted_props).map_err(|e| {
1184 error!("Failed to validate untrusted properties: {e}");
1185 RebootReason::InvalidFdt
1186 })?;
1187
1188 let vm_ref_dt_props_info = parse_vm_ref_dt(fdt).map_err(|e| {
1189 error!("Failed to read names of properties under /avf from DT: {e}");
1190 RebootReason::InvalidFdt
1191 })?;
1192
1193 Ok(DeviceTreeInfo {
1194 initrd_range,
1195 memory_range,
1196 bootargs,
1197 cpus,
1198 cpu_topology,
1199 pci_info,
1200 serial_info,
1201 swiotlb_info,
1202 device_assignment,
1203 untrusted_props,
1204 vm_ref_dt_props_info,
1205 vcpufreq_info,
1206 })
1207 }
1208
patch_device_tree(fdt: &mut Fdt, info: &DeviceTreeInfo) -> Result<(), RebootReason>1209 fn patch_device_tree(fdt: &mut Fdt, info: &DeviceTreeInfo) -> Result<(), RebootReason> {
1210 if let Some(initrd_range) = &info.initrd_range {
1211 patch_initrd_range(fdt, initrd_range).map_err(|e| {
1212 error!("Failed to patch initrd range to DT: {e}");
1213 RebootReason::InvalidFdt
1214 })?;
1215 }
1216 patch_memory_range(fdt, &info.memory_range).map_err(|e| {
1217 error!("Failed to patch memory range to DT: {e}");
1218 RebootReason::InvalidFdt
1219 })?;
1220 if let Some(bootargs) = &info.bootargs {
1221 patch_bootargs(fdt, bootargs.as_c_str()).map_err(|e| {
1222 error!("Failed to patch bootargs to DT: {e}");
1223 RebootReason::InvalidFdt
1224 })?;
1225 }
1226 patch_cpus(fdt, &info.cpus, &info.cpu_topology).map_err(|e| {
1227 error!("Failed to patch cpus to DT: {e}");
1228 RebootReason::InvalidFdt
1229 })?;
1230 patch_vcpufreq(fdt, &info.vcpufreq_info).map_err(|e| {
1231 error!("Failed to patch vcpufreq info to DT: {e}");
1232 RebootReason::InvalidFdt
1233 })?;
1234 patch_pci_info(fdt, &info.pci_info).map_err(|e| {
1235 error!("Failed to patch pci info to DT: {e}");
1236 RebootReason::InvalidFdt
1237 })?;
1238 patch_wdt_info(fdt, info.cpus.len()).map_err(|e| {
1239 error!("Failed to patch wdt info to DT: {e}");
1240 RebootReason::InvalidFdt
1241 })?;
1242 patch_serial_info(fdt, &info.serial_info).map_err(|e| {
1243 error!("Failed to patch serial info to DT: {e}");
1244 RebootReason::InvalidFdt
1245 })?;
1246 patch_swiotlb_info(fdt, &info.swiotlb_info).map_err(|e| {
1247 error!("Failed to patch swiotlb info to DT: {e}");
1248 RebootReason::InvalidFdt
1249 })?;
1250 patch_gic(fdt, info.cpus.len()).map_err(|e| {
1251 error!("Failed to patch gic info to DT: {e}");
1252 RebootReason::InvalidFdt
1253 })?;
1254 patch_timer(fdt, info.cpus.len()).map_err(|e| {
1255 error!("Failed to patch timer info to DT: {e}");
1256 RebootReason::InvalidFdt
1257 })?;
1258 if let Some(device_assignment) = &info.device_assignment {
1259 // Note: We patch values after VM DTBO is overlaid because patch may require more space
1260 // then VM DTBO's underlying slice is allocated.
1261 device_assignment.patch(fdt).map_err(|e| {
1262 error!("Failed to patch device assignment info to DT: {e}");
1263 RebootReason::InvalidFdt
1264 })?;
1265 } else {
1266 device_assignment::clean(fdt).map_err(|e| {
1267 error!("Failed to clean pre-polulated DT nodes for device assignment: {e}");
1268 RebootReason::InvalidFdt
1269 })?;
1270 }
1271 patch_untrusted_props(fdt, &info.untrusted_props).map_err(|e| {
1272 error!("Failed to patch untrusted properties: {e}");
1273 RebootReason::InvalidFdt
1274 })?;
1275
1276 Ok(())
1277 }
1278
1279 /// Modifies the input DT according to the fields of the configuration.
modify_for_next_stage( fdt: &mut Fdt, bcc: &[u8], new_instance: bool, strict_boot: bool, debug_policy: Option<&[u8]>, debuggable: bool, kaslr_seed: u64, ) -> libfdt::Result<()>1280 pub fn modify_for_next_stage(
1281 fdt: &mut Fdt,
1282 bcc: &[u8],
1283 new_instance: bool,
1284 strict_boot: bool,
1285 debug_policy: Option<&[u8]>,
1286 debuggable: bool,
1287 kaslr_seed: u64,
1288 ) -> libfdt::Result<()> {
1289 if let Some(debug_policy) = debug_policy {
1290 let backup = Vec::from(fdt.as_slice());
1291 fdt.unpack()?;
1292 let backup_fdt = Fdt::from_slice(backup.as_slice()).unwrap();
1293 if apply_debug_policy(fdt, backup_fdt, debug_policy)? {
1294 info!("Debug policy applied.");
1295 } else {
1296 // apply_debug_policy restored fdt to backup_fdt so unpack it again.
1297 fdt.unpack()?;
1298 }
1299 } else {
1300 info!("No debug policy found.");
1301 fdt.unpack()?;
1302 }
1303
1304 patch_dice_node(fdt, bcc.as_ptr() as usize, bcc.len())?;
1305
1306 if let Some(mut chosen) = fdt.chosen_mut()? {
1307 empty_or_delete_prop(&mut chosen, cstr!("avf,strict-boot"), strict_boot)?;
1308 empty_or_delete_prop(&mut chosen, cstr!("avf,new-instance"), new_instance)?;
1309 chosen.setprop_inplace(cstr!("kaslr-seed"), &kaslr_seed.to_be_bytes())?;
1310 };
1311 if !debuggable {
1312 if let Some(bootargs) = read_bootargs_from(fdt)? {
1313 filter_out_dangerous_bootargs(fdt, &bootargs)?;
1314 }
1315 }
1316
1317 fdt.pack()?;
1318
1319 Ok(())
1320 }
1321
1322 /// Patch the "google,open-dice"-compatible reserved-memory node to point to the bcc range
patch_dice_node(fdt: &mut Fdt, addr: usize, size: usize) -> libfdt::Result<()>1323 fn patch_dice_node(fdt: &mut Fdt, addr: usize, size: usize) -> libfdt::Result<()> {
1324 // We reject DTs with missing reserved-memory node as validation should have checked that the
1325 // "swiotlb" subnode (compatible = "restricted-dma-pool") was present.
1326 let node = fdt.node_mut(cstr!("/reserved-memory"))?.ok_or(libfdt::FdtError::NotFound)?;
1327
1328 let mut node = node.next_compatible(cstr!("google,open-dice"))?.ok_or(FdtError::NotFound)?;
1329
1330 let addr: u64 = addr.try_into().unwrap();
1331 let size: u64 = size.try_into().unwrap();
1332 node.setprop_inplace(cstr!("reg"), [addr.to_be_bytes(), size.to_be_bytes()].as_flattened())
1333 }
1334
empty_or_delete_prop( fdt_node: &mut FdtNodeMut, prop_name: &CStr, keep_prop: bool, ) -> libfdt::Result<()>1335 fn empty_or_delete_prop(
1336 fdt_node: &mut FdtNodeMut,
1337 prop_name: &CStr,
1338 keep_prop: bool,
1339 ) -> libfdt::Result<()> {
1340 if keep_prop {
1341 fdt_node.setprop_empty(prop_name)
1342 } else {
1343 fdt_node
1344 .delprop(prop_name)
1345 .or_else(|e| if e == FdtError::NotFound { Ok(()) } else { Err(e) })
1346 }
1347 }
1348
1349 /// Apply the debug policy overlay to the guest DT.
1350 ///
1351 /// Returns Ok(true) on success, Ok(false) on recovered failure and Err(_) on corruption of the DT.
apply_debug_policy( fdt: &mut Fdt, backup_fdt: &Fdt, debug_policy: &[u8], ) -> libfdt::Result<bool>1352 fn apply_debug_policy(
1353 fdt: &mut Fdt,
1354 backup_fdt: &Fdt,
1355 debug_policy: &[u8],
1356 ) -> libfdt::Result<bool> {
1357 let mut debug_policy = Vec::from(debug_policy);
1358 let overlay = match Fdt::from_mut_slice(debug_policy.as_mut_slice()) {
1359 Ok(overlay) => overlay,
1360 Err(e) => {
1361 warn!("Corrupted debug policy found: {e}. Not applying.");
1362 return Ok(false);
1363 }
1364 };
1365
1366 // SAFETY: on failure, the corrupted DT is restored using the backup.
1367 if let Err(e) = unsafe { fdt.apply_overlay(overlay) } {
1368 warn!("Failed to apply debug policy: {e}. Recovering...");
1369 fdt.clone_from(backup_fdt)?;
1370 // A successful restoration is considered success because an invalid debug policy
1371 // shouldn't DOS the pvmfw
1372 Ok(false)
1373 } else {
1374 Ok(true)
1375 }
1376 }
1377
has_common_debug_policy(fdt: &Fdt, debug_feature_name: &CStr) -> libfdt::Result<bool>1378 fn has_common_debug_policy(fdt: &Fdt, debug_feature_name: &CStr) -> libfdt::Result<bool> {
1379 if let Some(node) = fdt.node(cstr!("/avf/guest/common"))? {
1380 if let Some(value) = node.getprop_u32(debug_feature_name)? {
1381 return Ok(value == 1);
1382 }
1383 }
1384 Ok(false) // if the policy doesn't exist or not 1, don't enable the debug feature
1385 }
1386
filter_out_dangerous_bootargs(fdt: &mut Fdt, bootargs: &CStr) -> libfdt::Result<()>1387 fn filter_out_dangerous_bootargs(fdt: &mut Fdt, bootargs: &CStr) -> libfdt::Result<()> {
1388 let has_crashkernel = has_common_debug_policy(fdt, cstr!("ramdump"))?;
1389 let has_console = has_common_debug_policy(fdt, cstr!("log"))?;
1390
1391 let accepted: &[(&str, Box<dyn Fn(Option<&str>) -> bool>)] = &[
1392 ("panic", Box::new(|v| if let Some(v) = v { v == "=-1" } else { false })),
1393 ("crashkernel", Box::new(|_| has_crashkernel)),
1394 ("console", Box::new(|_| has_console)),
1395 ];
1396
1397 // parse and filter out unwanted
1398 let mut filtered = Vec::new();
1399 for arg in BootArgsIterator::new(bootargs).map_err(|e| {
1400 info!("Invalid bootarg: {e}");
1401 FdtError::BadValue
1402 })? {
1403 match accepted.iter().find(|&t| t.0 == arg.name()) {
1404 Some((_, pred)) if pred(arg.value()) => filtered.push(arg),
1405 _ => debug!("Rejected bootarg {}", arg.as_ref()),
1406 }
1407 }
1408
1409 // flatten into a new C-string
1410 let mut new_bootargs = Vec::new();
1411 for (i, arg) in filtered.iter().enumerate() {
1412 if i != 0 {
1413 new_bootargs.push(b' '); // separator
1414 }
1415 new_bootargs.extend_from_slice(arg.as_ref().as_bytes());
1416 }
1417 new_bootargs.push(b'\0');
1418
1419 let mut node = fdt.chosen_mut()?.ok_or(FdtError::NotFound)?;
1420 node.setprop(cstr!("bootargs"), new_bootargs.as_slice())
1421 }
1422