xref: /aosp_15_r20/prebuilts/android-emulator/linux-x86_64/include/flatbuffers/array.h (revision d870e0501505f2fc9999364ffe386a6b6151adc1)
1 /*
2  * Copyright 2021 Google Inc. All rights reserved.
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *     http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef FLATBUFFERS_ARRAY_H_
18 #define FLATBUFFERS_ARRAY_H_
19 
20 #include "flatbuffers/base.h"
21 #include "flatbuffers/stl_emulation.h"
22 #include "flatbuffers/vector.h"
23 
24 namespace flatbuffers {
25 
26 // This is used as a helper type for accessing arrays.
27 template<typename T, uint16_t length> class Array {
28   // Array<T> can carry only POD data types (scalars or structs).
29   typedef typename flatbuffers::bool_constant<flatbuffers::is_scalar<T>::value>
30       scalar_tag;
31   typedef
32       typename flatbuffers::conditional<scalar_tag::value, T, const T *>::type
33           IndirectHelperType;
34 
35  public:
36   typedef uint16_t size_type;
37   typedef typename IndirectHelper<IndirectHelperType>::return_type return_type;
38   typedef VectorIterator<T, return_type> const_iterator;
39   typedef VectorReverseIterator<const_iterator> const_reverse_iterator;
40 
41   // If T is a LE-scalar or a struct (!scalar_tag::value).
42   static FLATBUFFERS_CONSTEXPR bool is_span_observable =
43       (scalar_tag::value && (FLATBUFFERS_LITTLEENDIAN || sizeof(T) == 1)) ||
44       !scalar_tag::value;
45 
size()46   FLATBUFFERS_CONSTEXPR uint16_t size() const { return length; }
47 
Get(uoffset_t i)48   return_type Get(uoffset_t i) const {
49     FLATBUFFERS_ASSERT(i < size());
50     return IndirectHelper<IndirectHelperType>::Read(Data(), i);
51   }
52 
53   return_type operator[](uoffset_t i) const { return Get(i); }
54 
55   // If this is a Vector of enums, T will be its storage type, not the enum
56   // type. This function makes it convenient to retrieve value with enum
57   // type E.
GetEnum(uoffset_t i)58   template<typename E> E GetEnum(uoffset_t i) const {
59     return static_cast<E>(Get(i));
60   }
61 
begin()62   const_iterator begin() const { return const_iterator(Data(), 0); }
end()63   const_iterator end() const { return const_iterator(Data(), size()); }
64 
rbegin()65   const_reverse_iterator rbegin() const {
66     return const_reverse_iterator(end());
67   }
rend()68   const_reverse_iterator rend() const {
69     return const_reverse_iterator(begin());
70   }
71 
cbegin()72   const_iterator cbegin() const { return begin(); }
cend()73   const_iterator cend() const { return end(); }
74 
crbegin()75   const_reverse_iterator crbegin() const { return rbegin(); }
crend()76   const_reverse_iterator crend() const { return rend(); }
77 
78   // Get a mutable pointer to elements inside this array.
79   // This method used to mutate arrays of structs followed by a @p Mutate
80   // operation. For primitive types use @p Mutate directly.
81   // @warning Assignments and reads to/from the dereferenced pointer are not
82   //  automatically converted to the correct endianness.
83   typename flatbuffers::conditional<scalar_tag::value, void, T *>::type
GetMutablePointer(uoffset_t i)84   GetMutablePointer(uoffset_t i) const {
85     FLATBUFFERS_ASSERT(i < size());
86     return const_cast<T *>(&data()[i]);
87   }
88 
89   // Change elements if you have a non-const pointer to this object.
Mutate(uoffset_t i,const T & val)90   void Mutate(uoffset_t i, const T &val) { MutateImpl(scalar_tag(), i, val); }
91 
92   // The raw data in little endian format. Use with care.
Data()93   const uint8_t *Data() const { return data_; }
94 
Data()95   uint8_t *Data() { return data_; }
96 
97   // Similarly, but typed, much like std::vector::data
data()98   const T *data() const { return reinterpret_cast<const T *>(Data()); }
data()99   T *data() { return reinterpret_cast<T *>(Data()); }
100 
101   // Copy data from a span with endian conversion.
102   // If this Array and the span overlap, the behavior is undefined.
CopyFromSpan(flatbuffers::span<const T,length> src)103   void CopyFromSpan(flatbuffers::span<const T, length> src) {
104     const auto p1 = reinterpret_cast<const uint8_t *>(src.data());
105     const auto p2 = Data();
106     FLATBUFFERS_ASSERT(!(p1 >= p2 && p1 < (p2 + length)) &&
107                        !(p2 >= p1 && p2 < (p1 + length)));
108     (void)p1;
109     (void)p2;
110     CopyFromSpanImpl(flatbuffers::bool_constant<is_span_observable>(), src);
111   }
112 
113  protected:
MutateImpl(flatbuffers::true_type,uoffset_t i,const T & val)114   void MutateImpl(flatbuffers::true_type, uoffset_t i, const T &val) {
115     FLATBUFFERS_ASSERT(i < size());
116     WriteScalar(data() + i, val);
117   }
118 
MutateImpl(flatbuffers::false_type,uoffset_t i,const T & val)119   void MutateImpl(flatbuffers::false_type, uoffset_t i, const T &val) {
120     *(GetMutablePointer(i)) = val;
121   }
122 
CopyFromSpanImpl(flatbuffers::true_type,flatbuffers::span<const T,length> src)123   void CopyFromSpanImpl(flatbuffers::true_type,
124                         flatbuffers::span<const T, length> src) {
125     // Use std::memcpy() instead of std::copy() to avoid performance degradation
126     // due to aliasing if T is char or unsigned char.
127     // The size is known at compile time, so memcpy would be inlined.
128     std::memcpy(data(), src.data(), length * sizeof(T));
129   }
130 
131   // Copy data from flatbuffers::span with endian conversion.
CopyFromSpanImpl(flatbuffers::false_type,flatbuffers::span<const T,length> src)132   void CopyFromSpanImpl(flatbuffers::false_type,
133                         flatbuffers::span<const T, length> src) {
134     for (size_type k = 0; k < length; k++) { Mutate(k, src[k]); }
135   }
136 
137   // This class is only used to access pre-existing data. Don't ever
138   // try to construct these manually.
139   // 'constexpr' allows us to use 'size()' at compile time.
140   // @note Must not use 'FLATBUFFERS_CONSTEXPR' here, as const is not allowed on
141   //  a constructor.
142 #if defined(__cpp_constexpr)
143   constexpr Array();
144 #else
145   Array();
146 #endif
147 
148   uint8_t data_[length * sizeof(T)];
149 
150  private:
151   // This class is a pointer. Copying will therefore create an invalid object.
152   // Private and unimplemented copy constructor.
153   Array(const Array &);
154   Array &operator=(const Array &);
155 };
156 
157 // Specialization for Array[struct] with access using Offset<void> pointer.
158 // This specialization used by idl_gen_text.cpp.
159 template<typename T, uint16_t length> class Array<Offset<T>, length> {
160   static_assert(flatbuffers::is_same<T, void>::value, "unexpected type T");
161 
162  public:
163   typedef const void *return_type;
164 
Data()165   const uint8_t *Data() const { return data_; }
166 
167   // Make idl_gen_text.cpp::PrintContainer happy.
168   return_type operator[](uoffset_t) const {
169     FLATBUFFERS_ASSERT(false);
170     return nullptr;
171   }
172 
173  private:
174   // This class is only used to access pre-existing data.
175   Array();
176   Array(const Array &);
177   Array &operator=(const Array &);
178 
179   uint8_t data_[1];
180 };
181 
182 template<class U, uint16_t N>
make_span(Array<U,N> & arr)183 FLATBUFFERS_CONSTEXPR_CPP11 flatbuffers::span<U, N> make_span(Array<U, N> &arr)
184     FLATBUFFERS_NOEXCEPT {
185   static_assert(
186       Array<U, N>::is_span_observable,
187       "wrong type U, only plain struct, LE-scalar, or byte types are allowed");
188   return span<U, N>(arr.data(), N);
189 }
190 
191 template<class U, uint16_t N>
make_span(const Array<U,N> & arr)192 FLATBUFFERS_CONSTEXPR_CPP11 flatbuffers::span<const U, N> make_span(
193     const Array<U, N> &arr) FLATBUFFERS_NOEXCEPT {
194   static_assert(
195       Array<U, N>::is_span_observable,
196       "wrong type U, only plain struct, LE-scalar, or byte types are allowed");
197   return span<const U, N>(arr.data(), N);
198 }
199 
200 template<class U, uint16_t N>
201 FLATBUFFERS_CONSTEXPR_CPP11 flatbuffers::span<uint8_t, sizeof(U) * N>
make_bytes_span(Array<U,N> & arr)202 make_bytes_span(Array<U, N> &arr) FLATBUFFERS_NOEXCEPT {
203   static_assert(Array<U, N>::is_span_observable,
204                 "internal error, Array<T> might hold only scalars or structs");
205   return span<uint8_t, sizeof(U) * N>(arr.Data(), sizeof(U) * N);
206 }
207 
208 template<class U, uint16_t N>
209 FLATBUFFERS_CONSTEXPR_CPP11 flatbuffers::span<const uint8_t, sizeof(U) * N>
make_bytes_span(const Array<U,N> & arr)210 make_bytes_span(const Array<U, N> &arr) FLATBUFFERS_NOEXCEPT {
211   static_assert(Array<U, N>::is_span_observable,
212                 "internal error, Array<T> might hold only scalars or structs");
213   return span<const uint8_t, sizeof(U) * N>(arr.Data(), sizeof(U) * N);
214 }
215 
216 // Cast a raw T[length] to a raw flatbuffers::Array<T, length>
217 // without endian conversion. Use with care.
218 // TODO: move these Cast-methods to `internal` namespace.
219 template<typename T, uint16_t length>
CastToArray(T (& arr)[length])220 Array<T, length> &CastToArray(T (&arr)[length]) {
221   return *reinterpret_cast<Array<T, length> *>(arr);
222 }
223 
224 template<typename T, uint16_t length>
CastToArray(const T (& arr)[length])225 const Array<T, length> &CastToArray(const T (&arr)[length]) {
226   return *reinterpret_cast<const Array<T, length> *>(arr);
227 }
228 
229 template<typename E, typename T, uint16_t length>
CastToArrayOfEnum(T (& arr)[length])230 Array<E, length> &CastToArrayOfEnum(T (&arr)[length]) {
231   static_assert(sizeof(E) == sizeof(T), "invalid enum type E");
232   return *reinterpret_cast<Array<E, length> *>(arr);
233 }
234 
235 template<typename E, typename T, uint16_t length>
CastToArrayOfEnum(const T (& arr)[length])236 const Array<E, length> &CastToArrayOfEnum(const T (&arr)[length]) {
237   static_assert(sizeof(E) == sizeof(T), "invalid enum type E");
238   return *reinterpret_cast<const Array<E, length> *>(arr);
239 }
240 
241 }  // namespace flatbuffers
242 
243 #endif  // FLATBUFFERS_ARRAY_H_
244