1 /*
2 * Copyright 2021 Google Inc. All rights reserved.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #ifndef FLATBUFFERS_ARRAY_H_
18 #define FLATBUFFERS_ARRAY_H_
19
20 #include "flatbuffers/base.h"
21 #include "flatbuffers/stl_emulation.h"
22 #include "flatbuffers/vector.h"
23
24 namespace flatbuffers {
25
26 // This is used as a helper type for accessing arrays.
27 template<typename T, uint16_t length> class Array {
28 // Array<T> can carry only POD data types (scalars or structs).
29 typedef typename flatbuffers::bool_constant<flatbuffers::is_scalar<T>::value>
30 scalar_tag;
31 typedef
32 typename flatbuffers::conditional<scalar_tag::value, T, const T *>::type
33 IndirectHelperType;
34
35 public:
36 typedef uint16_t size_type;
37 typedef typename IndirectHelper<IndirectHelperType>::return_type return_type;
38 typedef VectorIterator<T, return_type> const_iterator;
39 typedef VectorReverseIterator<const_iterator> const_reverse_iterator;
40
41 // If T is a LE-scalar or a struct (!scalar_tag::value).
42 static FLATBUFFERS_CONSTEXPR bool is_span_observable =
43 (scalar_tag::value && (FLATBUFFERS_LITTLEENDIAN || sizeof(T) == 1)) ||
44 !scalar_tag::value;
45
size()46 FLATBUFFERS_CONSTEXPR uint16_t size() const { return length; }
47
Get(uoffset_t i)48 return_type Get(uoffset_t i) const {
49 FLATBUFFERS_ASSERT(i < size());
50 return IndirectHelper<IndirectHelperType>::Read(Data(), i);
51 }
52
53 return_type operator[](uoffset_t i) const { return Get(i); }
54
55 // If this is a Vector of enums, T will be its storage type, not the enum
56 // type. This function makes it convenient to retrieve value with enum
57 // type E.
GetEnum(uoffset_t i)58 template<typename E> E GetEnum(uoffset_t i) const {
59 return static_cast<E>(Get(i));
60 }
61
begin()62 const_iterator begin() const { return const_iterator(Data(), 0); }
end()63 const_iterator end() const { return const_iterator(Data(), size()); }
64
rbegin()65 const_reverse_iterator rbegin() const {
66 return const_reverse_iterator(end());
67 }
rend()68 const_reverse_iterator rend() const {
69 return const_reverse_iterator(begin());
70 }
71
cbegin()72 const_iterator cbegin() const { return begin(); }
cend()73 const_iterator cend() const { return end(); }
74
crbegin()75 const_reverse_iterator crbegin() const { return rbegin(); }
crend()76 const_reverse_iterator crend() const { return rend(); }
77
78 // Get a mutable pointer to elements inside this array.
79 // This method used to mutate arrays of structs followed by a @p Mutate
80 // operation. For primitive types use @p Mutate directly.
81 // @warning Assignments and reads to/from the dereferenced pointer are not
82 // automatically converted to the correct endianness.
83 typename flatbuffers::conditional<scalar_tag::value, void, T *>::type
GetMutablePointer(uoffset_t i)84 GetMutablePointer(uoffset_t i) const {
85 FLATBUFFERS_ASSERT(i < size());
86 return const_cast<T *>(&data()[i]);
87 }
88
89 // Change elements if you have a non-const pointer to this object.
Mutate(uoffset_t i,const T & val)90 void Mutate(uoffset_t i, const T &val) { MutateImpl(scalar_tag(), i, val); }
91
92 // The raw data in little endian format. Use with care.
Data()93 const uint8_t *Data() const { return data_; }
94
Data()95 uint8_t *Data() { return data_; }
96
97 // Similarly, but typed, much like std::vector::data
data()98 const T *data() const { return reinterpret_cast<const T *>(Data()); }
data()99 T *data() { return reinterpret_cast<T *>(Data()); }
100
101 // Copy data from a span with endian conversion.
102 // If this Array and the span overlap, the behavior is undefined.
CopyFromSpan(flatbuffers::span<const T,length> src)103 void CopyFromSpan(flatbuffers::span<const T, length> src) {
104 const auto p1 = reinterpret_cast<const uint8_t *>(src.data());
105 const auto p2 = Data();
106 FLATBUFFERS_ASSERT(!(p1 >= p2 && p1 < (p2 + length)) &&
107 !(p2 >= p1 && p2 < (p1 + length)));
108 (void)p1;
109 (void)p2;
110 CopyFromSpanImpl(flatbuffers::bool_constant<is_span_observable>(), src);
111 }
112
113 protected:
MutateImpl(flatbuffers::true_type,uoffset_t i,const T & val)114 void MutateImpl(flatbuffers::true_type, uoffset_t i, const T &val) {
115 FLATBUFFERS_ASSERT(i < size());
116 WriteScalar(data() + i, val);
117 }
118
MutateImpl(flatbuffers::false_type,uoffset_t i,const T & val)119 void MutateImpl(flatbuffers::false_type, uoffset_t i, const T &val) {
120 *(GetMutablePointer(i)) = val;
121 }
122
CopyFromSpanImpl(flatbuffers::true_type,flatbuffers::span<const T,length> src)123 void CopyFromSpanImpl(flatbuffers::true_type,
124 flatbuffers::span<const T, length> src) {
125 // Use std::memcpy() instead of std::copy() to avoid performance degradation
126 // due to aliasing if T is char or unsigned char.
127 // The size is known at compile time, so memcpy would be inlined.
128 std::memcpy(data(), src.data(), length * sizeof(T));
129 }
130
131 // Copy data from flatbuffers::span with endian conversion.
CopyFromSpanImpl(flatbuffers::false_type,flatbuffers::span<const T,length> src)132 void CopyFromSpanImpl(flatbuffers::false_type,
133 flatbuffers::span<const T, length> src) {
134 for (size_type k = 0; k < length; k++) { Mutate(k, src[k]); }
135 }
136
137 // This class is only used to access pre-existing data. Don't ever
138 // try to construct these manually.
139 // 'constexpr' allows us to use 'size()' at compile time.
140 // @note Must not use 'FLATBUFFERS_CONSTEXPR' here, as const is not allowed on
141 // a constructor.
142 #if defined(__cpp_constexpr)
143 constexpr Array();
144 #else
145 Array();
146 #endif
147
148 uint8_t data_[length * sizeof(T)];
149
150 private:
151 // This class is a pointer. Copying will therefore create an invalid object.
152 // Private and unimplemented copy constructor.
153 Array(const Array &);
154 Array &operator=(const Array &);
155 };
156
157 // Specialization for Array[struct] with access using Offset<void> pointer.
158 // This specialization used by idl_gen_text.cpp.
159 template<typename T, uint16_t length> class Array<Offset<T>, length> {
160 static_assert(flatbuffers::is_same<T, void>::value, "unexpected type T");
161
162 public:
163 typedef const void *return_type;
164
Data()165 const uint8_t *Data() const { return data_; }
166
167 // Make idl_gen_text.cpp::PrintContainer happy.
168 return_type operator[](uoffset_t) const {
169 FLATBUFFERS_ASSERT(false);
170 return nullptr;
171 }
172
173 private:
174 // This class is only used to access pre-existing data.
175 Array();
176 Array(const Array &);
177 Array &operator=(const Array &);
178
179 uint8_t data_[1];
180 };
181
182 template<class U, uint16_t N>
make_span(Array<U,N> & arr)183 FLATBUFFERS_CONSTEXPR_CPP11 flatbuffers::span<U, N> make_span(Array<U, N> &arr)
184 FLATBUFFERS_NOEXCEPT {
185 static_assert(
186 Array<U, N>::is_span_observable,
187 "wrong type U, only plain struct, LE-scalar, or byte types are allowed");
188 return span<U, N>(arr.data(), N);
189 }
190
191 template<class U, uint16_t N>
make_span(const Array<U,N> & arr)192 FLATBUFFERS_CONSTEXPR_CPP11 flatbuffers::span<const U, N> make_span(
193 const Array<U, N> &arr) FLATBUFFERS_NOEXCEPT {
194 static_assert(
195 Array<U, N>::is_span_observable,
196 "wrong type U, only plain struct, LE-scalar, or byte types are allowed");
197 return span<const U, N>(arr.data(), N);
198 }
199
200 template<class U, uint16_t N>
201 FLATBUFFERS_CONSTEXPR_CPP11 flatbuffers::span<uint8_t, sizeof(U) * N>
make_bytes_span(Array<U,N> & arr)202 make_bytes_span(Array<U, N> &arr) FLATBUFFERS_NOEXCEPT {
203 static_assert(Array<U, N>::is_span_observable,
204 "internal error, Array<T> might hold only scalars or structs");
205 return span<uint8_t, sizeof(U) * N>(arr.Data(), sizeof(U) * N);
206 }
207
208 template<class U, uint16_t N>
209 FLATBUFFERS_CONSTEXPR_CPP11 flatbuffers::span<const uint8_t, sizeof(U) * N>
make_bytes_span(const Array<U,N> & arr)210 make_bytes_span(const Array<U, N> &arr) FLATBUFFERS_NOEXCEPT {
211 static_assert(Array<U, N>::is_span_observable,
212 "internal error, Array<T> might hold only scalars or structs");
213 return span<const uint8_t, sizeof(U) * N>(arr.Data(), sizeof(U) * N);
214 }
215
216 // Cast a raw T[length] to a raw flatbuffers::Array<T, length>
217 // without endian conversion. Use with care.
218 // TODO: move these Cast-methods to `internal` namespace.
219 template<typename T, uint16_t length>
CastToArray(T (& arr)[length])220 Array<T, length> &CastToArray(T (&arr)[length]) {
221 return *reinterpret_cast<Array<T, length> *>(arr);
222 }
223
224 template<typename T, uint16_t length>
CastToArray(const T (& arr)[length])225 const Array<T, length> &CastToArray(const T (&arr)[length]) {
226 return *reinterpret_cast<const Array<T, length> *>(arr);
227 }
228
229 template<typename E, typename T, uint16_t length>
CastToArrayOfEnum(T (& arr)[length])230 Array<E, length> &CastToArrayOfEnum(T (&arr)[length]) {
231 static_assert(sizeof(E) == sizeof(T), "invalid enum type E");
232 return *reinterpret_cast<Array<E, length> *>(arr);
233 }
234
235 template<typename E, typename T, uint16_t length>
CastToArrayOfEnum(const T (& arr)[length])236 const Array<E, length> &CastToArrayOfEnum(const T (&arr)[length]) {
237 static_assert(sizeof(E) == sizeof(T), "invalid enum type E");
238 return *reinterpret_cast<const Array<E, length> *>(arr);
239 }
240
241 } // namespace flatbuffers
242
243 #endif // FLATBUFFERS_ARRAY_H_
244