1 //===- BitstreamWriter.h - Low-level bitstream writer interface -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This header defines the BitstreamWriter class.  This class can be used to
10 // write an arbitrary bitstream, regardless of its contents.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_BITSTREAM_BITSTREAMWRITER_H
15 #define LLVM_BITSTREAM_BITSTREAMWRITER_H
16 
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/Bitstream/BitCodes.h"
21 #include "llvm/Support/Endian.h"
22 #include "llvm/Support/MathExtras.h"
23 #include "llvm/Support/raw_ostream.h"
24 #include <algorithm>
25 #include <optional>
26 #include <vector>
27 
28 namespace llvm {
29 
30 class BitstreamWriter {
31   /// Out - The buffer that keeps unflushed bytes.
32   SmallVectorImpl<char> &Out;
33 
34   /// FS - The file stream that Out flushes to. If FS is nullptr, it does not
35   /// support read or seek, Out cannot be flushed until all data are written.
36   raw_fd_stream *FS;
37 
38   /// FlushThreshold - If FS is valid, this is the threshold (unit B) to flush
39   /// FS.
40   const uint64_t FlushThreshold;
41 
42   /// CurBit - Always between 0 and 31 inclusive, specifies the next bit to use.
43   unsigned CurBit;
44 
45   /// CurValue - The current value. Only bits < CurBit are valid.
46   uint32_t CurValue;
47 
48   /// CurCodeSize - This is the declared size of code values used for the
49   /// current block, in bits.
50   unsigned CurCodeSize;
51 
52   /// BlockInfoCurBID - When emitting a BLOCKINFO_BLOCK, this is the currently
53   /// selected BLOCK ID.
54   unsigned BlockInfoCurBID;
55 
56   /// CurAbbrevs - Abbrevs installed at in this block.
57   std::vector<std::shared_ptr<BitCodeAbbrev>> CurAbbrevs;
58 
59   struct Block {
60     unsigned PrevCodeSize;
61     size_t StartSizeWord;
62     std::vector<std::shared_ptr<BitCodeAbbrev>> PrevAbbrevs;
BlockBlock63     Block(unsigned PCS, size_t SSW) : PrevCodeSize(PCS), StartSizeWord(SSW) {}
64   };
65 
66   /// BlockScope - This tracks the current blocks that we have entered.
67   std::vector<Block> BlockScope;
68 
69   /// BlockInfo - This contains information emitted to BLOCKINFO_BLOCK blocks.
70   /// These describe abbreviations that all blocks of the specified ID inherit.
71   struct BlockInfo {
72     unsigned BlockID;
73     std::vector<std::shared_ptr<BitCodeAbbrev>> Abbrevs;
74   };
75   std::vector<BlockInfo> BlockInfoRecords;
76 
WriteWord(unsigned Value)77   void WriteWord(unsigned Value) {
78     Value =
79         support::endian::byte_swap<uint32_t, llvm::endianness::little>(Value);
80     Out.append(reinterpret_cast<const char *>(&Value),
81                reinterpret_cast<const char *>(&Value + 1));
82   }
83 
GetNumOfFlushedBytes()84   uint64_t GetNumOfFlushedBytes() const { return FS ? FS->tell() : 0; }
85 
GetBufferOffset()86   size_t GetBufferOffset() const { return Out.size() + GetNumOfFlushedBytes(); }
87 
GetWordIndex()88   size_t GetWordIndex() const {
89     size_t Offset = GetBufferOffset();
90     assert((Offset & 3) == 0 && "Not 32-bit aligned");
91     return Offset / 4;
92   }
93 
94   /// If the related file stream supports reading, seeking and writing, flush
95   /// the buffer if its size is above a threshold.
FlushToFile()96   void FlushToFile() {
97     if (!FS)
98       return;
99     if (Out.size() < FlushThreshold)
100       return;
101     FS->write((char *)&Out.front(), Out.size());
102     Out.clear();
103   }
104 
105 public:
106   /// Create a BitstreamWriter that writes to Buffer \p O.
107   ///
108   /// \p FS is the file stream that \p O flushes to incrementally. If \p FS is
109   /// null, \p O does not flush incrementially, but writes to disk at the end.
110   ///
111   /// \p FlushThreshold is the threshold (unit M) to flush \p O if \p FS is
112   /// valid. Flushing only occurs at (sub)block boundaries.
113   BitstreamWriter(SmallVectorImpl<char> &O, raw_fd_stream *FS = nullptr,
114                   uint32_t FlushThreshold = 512)
Out(O)115       : Out(O), FS(FS), FlushThreshold(uint64_t(FlushThreshold) << 20), CurBit(0),
116         CurValue(0), CurCodeSize(2) {}
117 
~BitstreamWriter()118   ~BitstreamWriter() {
119     assert(CurBit == 0 && "Unflushed data remaining");
120     assert(BlockScope.empty() && CurAbbrevs.empty() && "Block imbalance");
121   }
122 
123   /// Retrieve the current position in the stream, in bits.
GetCurrentBitNo()124   uint64_t GetCurrentBitNo() const { return GetBufferOffset() * 8 + CurBit; }
125 
126   /// Retrieve the number of bits currently used to encode an abbrev ID.
GetAbbrevIDWidth()127   unsigned GetAbbrevIDWidth() const { return CurCodeSize; }
128 
129   //===--------------------------------------------------------------------===//
130   // Basic Primitives for emitting bits to the stream.
131   //===--------------------------------------------------------------------===//
132 
133   /// Backpatch a byte in the output at the given bit offset with the specified
134   /// value.
BackpatchByte(uint64_t BitNo,uint8_t NewByte)135   void BackpatchByte(uint64_t BitNo, uint8_t NewByte) {
136     using namespace llvm::support;
137     uint64_t ByteNo = BitNo / 8;
138     uint64_t StartBit = BitNo & 7;
139     uint64_t NumOfFlushedBytes = GetNumOfFlushedBytes();
140 
141     if (ByteNo >= NumOfFlushedBytes) {
142       assert((!endian::readAtBitAlignment<uint8_t, llvm::endianness::little,
143                                           unaligned>(
144                  &Out[ByteNo - NumOfFlushedBytes], StartBit)) &&
145              "Expected to be patching over 0-value placeholders");
146       endian::writeAtBitAlignment<uint8_t, llvm::endianness::little, unaligned>(
147           &Out[ByteNo - NumOfFlushedBytes], NewByte, StartBit);
148       return;
149     }
150 
151     // If the byte offset to backpatch is flushed, use seek to backfill data.
152     // First, save the file position to restore later.
153     uint64_t CurPos = FS->tell();
154 
155     // Copy data to update into Bytes from the file FS and the buffer Out.
156     char Bytes[3]; // Use one more byte to silence a warning from Visual C++.
157     size_t BytesNum = StartBit ? 2 : 1;
158     size_t BytesFromDisk = std::min(static_cast<uint64_t>(BytesNum), NumOfFlushedBytes - ByteNo);
159     size_t BytesFromBuffer = BytesNum - BytesFromDisk;
160 
161     // When unaligned, copy existing data into Bytes from the file FS and the
162     // buffer Out so that it can be updated before writing. For debug builds
163     // read bytes unconditionally in order to check that the existing value is 0
164     // as expected.
165 #ifdef NDEBUG
166     if (StartBit)
167 #endif
168     {
169       FS->seek(ByteNo);
170       ssize_t BytesRead = FS->read(Bytes, BytesFromDisk);
171       (void)BytesRead; // silence warning
172       assert(BytesRead >= 0 && static_cast<size_t>(BytesRead) == BytesFromDisk);
173       for (size_t i = 0; i < BytesFromBuffer; ++i)
174         Bytes[BytesFromDisk + i] = Out[i];
175       assert((!endian::readAtBitAlignment<uint8_t, llvm::endianness::little,
176                                           unaligned>(Bytes, StartBit)) &&
177              "Expected to be patching over 0-value placeholders");
178     }
179 
180     // Update Bytes in terms of bit offset and value.
181     endian::writeAtBitAlignment<uint8_t, llvm::endianness::little, unaligned>(
182         Bytes, NewByte, StartBit);
183 
184     // Copy updated data back to the file FS and the buffer Out.
185     FS->seek(ByteNo);
186     FS->write(Bytes, BytesFromDisk);
187     for (size_t i = 0; i < BytesFromBuffer; ++i)
188       Out[i] = Bytes[BytesFromDisk + i];
189 
190     // Restore the file position.
191     FS->seek(CurPos);
192   }
193 
BackpatchHalfWord(uint64_t BitNo,uint16_t Val)194   void BackpatchHalfWord(uint64_t BitNo, uint16_t Val) {
195     BackpatchByte(BitNo, (uint8_t)Val);
196     BackpatchByte(BitNo + 8, (uint8_t)(Val >> 8));
197   }
198 
BackpatchWord(uint64_t BitNo,unsigned Val)199   void BackpatchWord(uint64_t BitNo, unsigned Val) {
200     BackpatchHalfWord(BitNo, (uint16_t)Val);
201     BackpatchHalfWord(BitNo + 16, (uint16_t)(Val >> 16));
202   }
203 
BackpatchWord64(uint64_t BitNo,uint64_t Val)204   void BackpatchWord64(uint64_t BitNo, uint64_t Val) {
205     BackpatchWord(BitNo, (uint32_t)Val);
206     BackpatchWord(BitNo + 32, (uint32_t)(Val >> 32));
207   }
208 
Emit(uint32_t Val,unsigned NumBits)209   void Emit(uint32_t Val, unsigned NumBits) {
210     assert(NumBits && NumBits <= 32 && "Invalid value size!");
211     assert((Val & ~(~0U >> (32-NumBits))) == 0 && "High bits set!");
212     CurValue |= Val << CurBit;
213     if (CurBit + NumBits < 32) {
214       CurBit += NumBits;
215       return;
216     }
217 
218     // Add the current word.
219     WriteWord(CurValue);
220 
221     if (CurBit)
222       CurValue = Val >> (32-CurBit);
223     else
224       CurValue = 0;
225     CurBit = (CurBit+NumBits) & 31;
226   }
227 
FlushToWord()228   void FlushToWord() {
229     if (CurBit) {
230       WriteWord(CurValue);
231       CurBit = 0;
232       CurValue = 0;
233     }
234   }
235 
EmitVBR(uint32_t Val,unsigned NumBits)236   void EmitVBR(uint32_t Val, unsigned NumBits) {
237     assert(NumBits <= 32 && "Too many bits to emit!");
238     uint32_t Threshold = 1U << (NumBits-1);
239 
240     // Emit the bits with VBR encoding, NumBits-1 bits at a time.
241     while (Val >= Threshold) {
242       Emit((Val & ((1 << (NumBits-1))-1)) | (1 << (NumBits-1)), NumBits);
243       Val >>= NumBits-1;
244     }
245 
246     Emit(Val, NumBits);
247   }
248 
EmitVBR64(uint64_t Val,unsigned NumBits)249   void EmitVBR64(uint64_t Val, unsigned NumBits) {
250     assert(NumBits <= 32 && "Too many bits to emit!");
251     if ((uint32_t)Val == Val)
252       return EmitVBR((uint32_t)Val, NumBits);
253 
254     uint32_t Threshold = 1U << (NumBits-1);
255 
256     // Emit the bits with VBR encoding, NumBits-1 bits at a time.
257     while (Val >= Threshold) {
258       Emit(((uint32_t)Val & ((1 << (NumBits - 1)) - 1)) | (1 << (NumBits - 1)),
259            NumBits);
260       Val >>= NumBits-1;
261     }
262 
263     Emit((uint32_t)Val, NumBits);
264   }
265 
266   /// EmitCode - Emit the specified code.
EmitCode(unsigned Val)267   void EmitCode(unsigned Val) {
268     Emit(Val, CurCodeSize);
269   }
270 
271   //===--------------------------------------------------------------------===//
272   // Block Manipulation
273   //===--------------------------------------------------------------------===//
274 
275   /// getBlockInfo - If there is block info for the specified ID, return it,
276   /// otherwise return null.
getBlockInfo(unsigned BlockID)277   BlockInfo *getBlockInfo(unsigned BlockID) {
278     // Common case, the most recent entry matches BlockID.
279     if (!BlockInfoRecords.empty() && BlockInfoRecords.back().BlockID == BlockID)
280       return &BlockInfoRecords.back();
281 
282     for (BlockInfo &BI : BlockInfoRecords)
283       if (BI.BlockID == BlockID)
284         return &BI;
285     return nullptr;
286   }
287 
EnterSubblock(unsigned BlockID,unsigned CodeLen)288   void EnterSubblock(unsigned BlockID, unsigned CodeLen) {
289     // Block header:
290     //    [ENTER_SUBBLOCK, blockid, newcodelen, <align4bytes>, blocklen]
291     EmitCode(bitc::ENTER_SUBBLOCK);
292     EmitVBR(BlockID, bitc::BlockIDWidth);
293     EmitVBR(CodeLen, bitc::CodeLenWidth);
294     FlushToWord();
295 
296     size_t BlockSizeWordIndex = GetWordIndex();
297     unsigned OldCodeSize = CurCodeSize;
298 
299     // Emit a placeholder, which will be replaced when the block is popped.
300     Emit(0, bitc::BlockSizeWidth);
301 
302     CurCodeSize = CodeLen;
303 
304     // Push the outer block's abbrev set onto the stack, start out with an
305     // empty abbrev set.
306     BlockScope.emplace_back(OldCodeSize, BlockSizeWordIndex);
307     BlockScope.back().PrevAbbrevs.swap(CurAbbrevs);
308 
309     // If there is a blockinfo for this BlockID, add all the predefined abbrevs
310     // to the abbrev list.
311     if (BlockInfo *Info = getBlockInfo(BlockID))
312       append_range(CurAbbrevs, Info->Abbrevs);
313   }
314 
ExitBlock()315   void ExitBlock() {
316     assert(!BlockScope.empty() && "Block scope imbalance!");
317     const Block &B = BlockScope.back();
318 
319     // Block tail:
320     //    [END_BLOCK, <align4bytes>]
321     EmitCode(bitc::END_BLOCK);
322     FlushToWord();
323 
324     // Compute the size of the block, in words, not counting the size field.
325     size_t SizeInWords = GetWordIndex() - B.StartSizeWord - 1;
326     uint64_t BitNo = uint64_t(B.StartSizeWord) * 32;
327 
328     // Update the block size field in the header of this sub-block.
329     BackpatchWord(BitNo, SizeInWords);
330 
331     // Restore the inner block's code size and abbrev table.
332     CurCodeSize = B.PrevCodeSize;
333     CurAbbrevs = std::move(B.PrevAbbrevs);
334     BlockScope.pop_back();
335     FlushToFile();
336   }
337 
338   //===--------------------------------------------------------------------===//
339   // Record Emission
340   //===--------------------------------------------------------------------===//
341 
342 private:
343   /// EmitAbbreviatedLiteral - Emit a literal value according to its abbrev
344   /// record.  This is a no-op, since the abbrev specifies the literal to use.
345   template<typename uintty>
EmitAbbreviatedLiteral(const BitCodeAbbrevOp & Op,uintty V)346   void EmitAbbreviatedLiteral(const BitCodeAbbrevOp &Op, uintty V) {
347     assert(Op.isLiteral() && "Not a literal");
348     // If the abbrev specifies the literal value to use, don't emit
349     // anything.
350     assert(V == Op.getLiteralValue() &&
351            "Invalid abbrev for record!");
352   }
353 
354   /// EmitAbbreviatedField - Emit a single scalar field value with the specified
355   /// encoding.
356   template<typename uintty>
EmitAbbreviatedField(const BitCodeAbbrevOp & Op,uintty V)357   void EmitAbbreviatedField(const BitCodeAbbrevOp &Op, uintty V) {
358     assert(!Op.isLiteral() && "Literals should use EmitAbbreviatedLiteral!");
359 
360     // Encode the value as we are commanded.
361     switch (Op.getEncoding()) {
362     default: llvm_unreachable("Unknown encoding!");
363     case BitCodeAbbrevOp::Fixed:
364       if (Op.getEncodingData())
365         Emit((unsigned)V, (unsigned)Op.getEncodingData());
366       break;
367     case BitCodeAbbrevOp::VBR:
368       if (Op.getEncodingData())
369         EmitVBR64(V, (unsigned)Op.getEncodingData());
370       break;
371     case BitCodeAbbrevOp::Char6:
372       Emit(BitCodeAbbrevOp::EncodeChar6((char)V), 6);
373       break;
374     }
375   }
376 
377   /// EmitRecordWithAbbrevImpl - This is the core implementation of the record
378   /// emission code.  If BlobData is non-null, then it specifies an array of
379   /// data that should be emitted as part of the Blob or Array operand that is
380   /// known to exist at the end of the record. If Code is specified, then
381   /// it is the record code to emit before the Vals, which must not contain
382   /// the code.
383   template <typename uintty>
EmitRecordWithAbbrevImpl(unsigned Abbrev,ArrayRef<uintty> Vals,StringRef Blob,std::optional<unsigned> Code)384   void EmitRecordWithAbbrevImpl(unsigned Abbrev, ArrayRef<uintty> Vals,
385                                 StringRef Blob, std::optional<unsigned> Code) {
386     const char *BlobData = Blob.data();
387     unsigned BlobLen = (unsigned) Blob.size();
388     unsigned AbbrevNo = Abbrev-bitc::FIRST_APPLICATION_ABBREV;
389     assert(AbbrevNo < CurAbbrevs.size() && "Invalid abbrev #!");
390     const BitCodeAbbrev *Abbv = CurAbbrevs[AbbrevNo].get();
391 
392     EmitCode(Abbrev);
393 
394     unsigned i = 0, e = static_cast<unsigned>(Abbv->getNumOperandInfos());
395     if (Code) {
396       assert(e && "Expected non-empty abbreviation");
397       const BitCodeAbbrevOp &Op = Abbv->getOperandInfo(i++);
398 
399       if (Op.isLiteral())
400         EmitAbbreviatedLiteral(Op, *Code);
401       else {
402         assert(Op.getEncoding() != BitCodeAbbrevOp::Array &&
403                Op.getEncoding() != BitCodeAbbrevOp::Blob &&
404                "Expected literal or scalar");
405         EmitAbbreviatedField(Op, *Code);
406       }
407     }
408 
409     unsigned RecordIdx = 0;
410     for (; i != e; ++i) {
411       const BitCodeAbbrevOp &Op = Abbv->getOperandInfo(i);
412       if (Op.isLiteral()) {
413         assert(RecordIdx < Vals.size() && "Invalid abbrev/record");
414         EmitAbbreviatedLiteral(Op, Vals[RecordIdx]);
415         ++RecordIdx;
416       } else if (Op.getEncoding() == BitCodeAbbrevOp::Array) {
417         // Array case.
418         assert(i + 2 == e && "array op not second to last?");
419         const BitCodeAbbrevOp &EltEnc = Abbv->getOperandInfo(++i);
420 
421         // If this record has blob data, emit it, otherwise we must have record
422         // entries to encode this way.
423         if (BlobData) {
424           assert(RecordIdx == Vals.size() &&
425                  "Blob data and record entries specified for array!");
426           // Emit a vbr6 to indicate the number of elements present.
427           EmitVBR(static_cast<uint32_t>(BlobLen), 6);
428 
429           // Emit each field.
430           for (unsigned i = 0; i != BlobLen; ++i)
431             EmitAbbreviatedField(EltEnc, (unsigned char)BlobData[i]);
432 
433           // Know that blob data is consumed for assertion below.
434           BlobData = nullptr;
435         } else {
436           // Emit a vbr6 to indicate the number of elements present.
437           EmitVBR(static_cast<uint32_t>(Vals.size()-RecordIdx), 6);
438 
439           // Emit each field.
440           for (unsigned e = Vals.size(); RecordIdx != e; ++RecordIdx)
441             EmitAbbreviatedField(EltEnc, Vals[RecordIdx]);
442         }
443       } else if (Op.getEncoding() == BitCodeAbbrevOp::Blob) {
444         // If this record has blob data, emit it, otherwise we must have record
445         // entries to encode this way.
446 
447         if (BlobData) {
448           assert(RecordIdx == Vals.size() &&
449                  "Blob data and record entries specified for blob operand!");
450 
451           assert(Blob.data() == BlobData && "BlobData got moved");
452           assert(Blob.size() == BlobLen && "BlobLen got changed");
453           emitBlob(Blob);
454           BlobData = nullptr;
455         } else {
456           emitBlob(Vals.slice(RecordIdx));
457         }
458       } else {  // Single scalar field.
459         assert(RecordIdx < Vals.size() && "Invalid abbrev/record");
460         EmitAbbreviatedField(Op, Vals[RecordIdx]);
461         ++RecordIdx;
462       }
463     }
464     assert(RecordIdx == Vals.size() && "Not all record operands emitted!");
465     assert(BlobData == nullptr &&
466            "Blob data specified for record that doesn't use it!");
467   }
468 
469 public:
470   /// Emit a blob, including flushing before and tail-padding.
471   template <class UIntTy>
472   void emitBlob(ArrayRef<UIntTy> Bytes, bool ShouldEmitSize = true) {
473     // Emit a vbr6 to indicate the number of elements present.
474     if (ShouldEmitSize)
475       EmitVBR(static_cast<uint32_t>(Bytes.size()), 6);
476 
477     // Flush to a 32-bit alignment boundary.
478     FlushToWord();
479 
480     // Emit literal bytes.
481     assert(llvm::all_of(Bytes, [](UIntTy B) { return isUInt<8>(B); }));
482     Out.append(Bytes.begin(), Bytes.end());
483 
484     // Align end to 32-bits.
485     while (GetBufferOffset() & 3)
486       Out.push_back(0);
487   }
488   void emitBlob(StringRef Bytes, bool ShouldEmitSize = true) {
489     emitBlob(ArrayRef((const uint8_t *)Bytes.data(), Bytes.size()),
490              ShouldEmitSize);
491   }
492 
493   /// EmitRecord - Emit the specified record to the stream, using an abbrev if
494   /// we have one to compress the output.
495   template <typename Container>
496   void EmitRecord(unsigned Code, const Container &Vals, unsigned Abbrev = 0) {
497     if (!Abbrev) {
498       // If we don't have an abbrev to use, emit this in its fully unabbreviated
499       // form.
500       auto Count = static_cast<uint32_t>(std::size(Vals));
501       EmitCode(bitc::UNABBREV_RECORD);
502       EmitVBR(Code, 6);
503       EmitVBR(Count, 6);
504       for (unsigned i = 0, e = Count; i != e; ++i)
505         EmitVBR64(Vals[i], 6);
506       return;
507     }
508 
509     EmitRecordWithAbbrevImpl(Abbrev, ArrayRef(Vals), StringRef(), Code);
510   }
511 
512   /// EmitRecordWithAbbrev - Emit a record with the specified abbreviation.
513   /// Unlike EmitRecord, the code for the record should be included in Vals as
514   /// the first entry.
515   template <typename Container>
EmitRecordWithAbbrev(unsigned Abbrev,const Container & Vals)516   void EmitRecordWithAbbrev(unsigned Abbrev, const Container &Vals) {
517     EmitRecordWithAbbrevImpl(Abbrev, ArrayRef(Vals), StringRef(), std::nullopt);
518   }
519 
520   /// EmitRecordWithBlob - Emit the specified record to the stream, using an
521   /// abbrev that includes a blob at the end.  The blob data to emit is
522   /// specified by the pointer and length specified at the end.  In contrast to
523   /// EmitRecord, this routine expects that the first entry in Vals is the code
524   /// of the record.
525   template <typename Container>
EmitRecordWithBlob(unsigned Abbrev,const Container & Vals,StringRef Blob)526   void EmitRecordWithBlob(unsigned Abbrev, const Container &Vals,
527                           StringRef Blob) {
528     EmitRecordWithAbbrevImpl(Abbrev, ArrayRef(Vals), Blob, std::nullopt);
529   }
530   template <typename Container>
EmitRecordWithBlob(unsigned Abbrev,const Container & Vals,const char * BlobData,unsigned BlobLen)531   void EmitRecordWithBlob(unsigned Abbrev, const Container &Vals,
532                           const char *BlobData, unsigned BlobLen) {
533     return EmitRecordWithAbbrevImpl(Abbrev, ArrayRef(Vals),
534                                     StringRef(BlobData, BlobLen), std::nullopt);
535   }
536 
537   /// EmitRecordWithArray - Just like EmitRecordWithBlob, works with records
538   /// that end with an array.
539   template <typename Container>
EmitRecordWithArray(unsigned Abbrev,const Container & Vals,StringRef Array)540   void EmitRecordWithArray(unsigned Abbrev, const Container &Vals,
541                            StringRef Array) {
542     EmitRecordWithAbbrevImpl(Abbrev, ArrayRef(Vals), Array, std::nullopt);
543   }
544   template <typename Container>
EmitRecordWithArray(unsigned Abbrev,const Container & Vals,const char * ArrayData,unsigned ArrayLen)545   void EmitRecordWithArray(unsigned Abbrev, const Container &Vals,
546                            const char *ArrayData, unsigned ArrayLen) {
547     return EmitRecordWithAbbrevImpl(
548         Abbrev, ArrayRef(Vals), StringRef(ArrayData, ArrayLen), std::nullopt);
549   }
550 
551   //===--------------------------------------------------------------------===//
552   // Abbrev Emission
553   //===--------------------------------------------------------------------===//
554 
555 private:
556   // Emit the abbreviation as a DEFINE_ABBREV record.
EncodeAbbrev(const BitCodeAbbrev & Abbv)557   void EncodeAbbrev(const BitCodeAbbrev &Abbv) {
558     EmitCode(bitc::DEFINE_ABBREV);
559     EmitVBR(Abbv.getNumOperandInfos(), 5);
560     for (unsigned i = 0, e = static_cast<unsigned>(Abbv.getNumOperandInfos());
561          i != e; ++i) {
562       const BitCodeAbbrevOp &Op = Abbv.getOperandInfo(i);
563       Emit(Op.isLiteral(), 1);
564       if (Op.isLiteral()) {
565         EmitVBR64(Op.getLiteralValue(), 8);
566       } else {
567         Emit(Op.getEncoding(), 3);
568         if (Op.hasEncodingData())
569           EmitVBR64(Op.getEncodingData(), 5);
570       }
571     }
572   }
573 public:
574 
575   /// Emits the abbreviation \p Abbv to the stream.
EmitAbbrev(std::shared_ptr<BitCodeAbbrev> Abbv)576   unsigned EmitAbbrev(std::shared_ptr<BitCodeAbbrev> Abbv) {
577     EncodeAbbrev(*Abbv);
578     CurAbbrevs.push_back(std::move(Abbv));
579     return static_cast<unsigned>(CurAbbrevs.size())-1 +
580       bitc::FIRST_APPLICATION_ABBREV;
581   }
582 
583   //===--------------------------------------------------------------------===//
584   // BlockInfo Block Emission
585   //===--------------------------------------------------------------------===//
586 
587   /// EnterBlockInfoBlock - Start emitting the BLOCKINFO_BLOCK.
EnterBlockInfoBlock()588   void EnterBlockInfoBlock() {
589     EnterSubblock(bitc::BLOCKINFO_BLOCK_ID, 2);
590     BlockInfoCurBID = ~0U;
591     BlockInfoRecords.clear();
592   }
593 private:
594   /// SwitchToBlockID - If we aren't already talking about the specified block
595   /// ID, emit a BLOCKINFO_CODE_SETBID record.
SwitchToBlockID(unsigned BlockID)596   void SwitchToBlockID(unsigned BlockID) {
597     if (BlockInfoCurBID == BlockID) return;
598     SmallVector<unsigned, 2> V;
599     V.push_back(BlockID);
600     EmitRecord(bitc::BLOCKINFO_CODE_SETBID, V);
601     BlockInfoCurBID = BlockID;
602   }
603 
getOrCreateBlockInfo(unsigned BlockID)604   BlockInfo &getOrCreateBlockInfo(unsigned BlockID) {
605     if (BlockInfo *BI = getBlockInfo(BlockID))
606       return *BI;
607 
608     // Otherwise, add a new record.
609     BlockInfoRecords.emplace_back();
610     BlockInfoRecords.back().BlockID = BlockID;
611     return BlockInfoRecords.back();
612   }
613 
614 public:
615 
616   /// EmitBlockInfoAbbrev - Emit a DEFINE_ABBREV record for the specified
617   /// BlockID.
EmitBlockInfoAbbrev(unsigned BlockID,std::shared_ptr<BitCodeAbbrev> Abbv)618   unsigned EmitBlockInfoAbbrev(unsigned BlockID, std::shared_ptr<BitCodeAbbrev> Abbv) {
619     SwitchToBlockID(BlockID);
620     EncodeAbbrev(*Abbv);
621 
622     // Add the abbrev to the specified block record.
623     BlockInfo &Info = getOrCreateBlockInfo(BlockID);
624     Info.Abbrevs.push_back(std::move(Abbv));
625 
626     return Info.Abbrevs.size()-1+bitc::FIRST_APPLICATION_ABBREV;
627   }
628 };
629 
630 
631 } // End llvm namespace
632 
633 #endif
634