1 //===- PatternMatch.h - Match on the LLVM IR --------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides a simple and efficient mechanism for performing general
10 // tree-based pattern matches on the LLVM IR. The power of these routines is
11 // that it allows you to write concise patterns that are expressive and easy to
12 // understand. The other major advantage of this is that it allows you to
13 // trivially capture/bind elements in the pattern to variables. For example,
14 // you can do something like this:
15 //
16 // Value *Exp = ...
17 // Value *X, *Y; ConstantInt *C1, *C2; // (X & C1) | (Y & C2)
18 // if (match(Exp, m_Or(m_And(m_Value(X), m_ConstantInt(C1)),
19 // m_And(m_Value(Y), m_ConstantInt(C2))))) {
20 // ... Pattern is matched and variables are bound ...
21 // }
22 //
23 // This is primarily useful to things like the instruction combiner, but can
24 // also be useful for static analysis tools or code generators.
25 //
26 //===----------------------------------------------------------------------===//
27
28 #ifndef LLVM_IR_PATTERNMATCH_H
29 #define LLVM_IR_PATTERNMATCH_H
30
31 #include "llvm/ADT/APFloat.h"
32 #include "llvm/ADT/APInt.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/InstrTypes.h"
37 #include "llvm/IR/Instruction.h"
38 #include "llvm/IR/Instructions.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Intrinsics.h"
41 #include "llvm/IR/Operator.h"
42 #include "llvm/IR/Value.h"
43 #include "llvm/Support/Casting.h"
44 #include <cstdint>
45
46 namespace llvm {
47 namespace PatternMatch {
48
match(Val * V,const Pattern & P)49 template <typename Val, typename Pattern> bool match(Val *V, const Pattern &P) {
50 return const_cast<Pattern &>(P).match(V);
51 }
52
match(ArrayRef<int> Mask,const Pattern & P)53 template <typename Pattern> bool match(ArrayRef<int> Mask, const Pattern &P) {
54 return const_cast<Pattern &>(P).match(Mask);
55 }
56
57 template <typename SubPattern_t> struct OneUse_match {
58 SubPattern_t SubPattern;
59
OneUse_matchOneUse_match60 OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {}
61
matchOneUse_match62 template <typename OpTy> bool match(OpTy *V) {
63 return V->hasOneUse() && SubPattern.match(V);
64 }
65 };
66
m_OneUse(const T & SubPattern)67 template <typename T> inline OneUse_match<T> m_OneUse(const T &SubPattern) {
68 return SubPattern;
69 }
70
71 template <typename Class> struct class_match {
matchclass_match72 template <typename ITy> bool match(ITy *V) { return isa<Class>(V); }
73 };
74
75 /// Match an arbitrary value and ignore it.
m_Value()76 inline class_match<Value> m_Value() { return class_match<Value>(); }
77
78 /// Match an arbitrary unary operation and ignore it.
m_UnOp()79 inline class_match<UnaryOperator> m_UnOp() {
80 return class_match<UnaryOperator>();
81 }
82
83 /// Match an arbitrary binary operation and ignore it.
m_BinOp()84 inline class_match<BinaryOperator> m_BinOp() {
85 return class_match<BinaryOperator>();
86 }
87
88 /// Matches any compare instruction and ignore it.
m_Cmp()89 inline class_match<CmpInst> m_Cmp() { return class_match<CmpInst>(); }
90
91 struct undef_match {
checkundef_match92 static bool check(const Value *V) {
93 if (isa<UndefValue>(V))
94 return true;
95
96 const auto *CA = dyn_cast<ConstantAggregate>(V);
97 if (!CA)
98 return false;
99
100 SmallPtrSet<const ConstantAggregate *, 8> Seen;
101 SmallVector<const ConstantAggregate *, 8> Worklist;
102
103 // Either UndefValue, PoisonValue, or an aggregate that only contains
104 // these is accepted by matcher.
105 // CheckValue returns false if CA cannot satisfy this constraint.
106 auto CheckValue = [&](const ConstantAggregate *CA) {
107 for (const Value *Op : CA->operand_values()) {
108 if (isa<UndefValue>(Op))
109 continue;
110
111 const auto *CA = dyn_cast<ConstantAggregate>(Op);
112 if (!CA)
113 return false;
114 if (Seen.insert(CA).second)
115 Worklist.emplace_back(CA);
116 }
117
118 return true;
119 };
120
121 if (!CheckValue(CA))
122 return false;
123
124 while (!Worklist.empty()) {
125 if (!CheckValue(Worklist.pop_back_val()))
126 return false;
127 }
128 return true;
129 }
matchundef_match130 template <typename ITy> bool match(ITy *V) { return check(V); }
131 };
132
133 /// Match an arbitrary undef constant. This matches poison as well.
134 /// If this is an aggregate and contains a non-aggregate element that is
135 /// neither undef nor poison, the aggregate is not matched.
m_Undef()136 inline auto m_Undef() { return undef_match(); }
137
138 /// Match an arbitrary poison constant.
m_Poison()139 inline class_match<PoisonValue> m_Poison() {
140 return class_match<PoisonValue>();
141 }
142
143 /// Match an arbitrary Constant and ignore it.
m_Constant()144 inline class_match<Constant> m_Constant() { return class_match<Constant>(); }
145
146 /// Match an arbitrary ConstantInt and ignore it.
m_ConstantInt()147 inline class_match<ConstantInt> m_ConstantInt() {
148 return class_match<ConstantInt>();
149 }
150
151 /// Match an arbitrary ConstantFP and ignore it.
m_ConstantFP()152 inline class_match<ConstantFP> m_ConstantFP() {
153 return class_match<ConstantFP>();
154 }
155
156 struct constantexpr_match {
matchconstantexpr_match157 template <typename ITy> bool match(ITy *V) {
158 auto *C = dyn_cast<Constant>(V);
159 return C && (isa<ConstantExpr>(C) || C->containsConstantExpression());
160 }
161 };
162
163 /// Match a constant expression or a constant that contains a constant
164 /// expression.
m_ConstantExpr()165 inline constantexpr_match m_ConstantExpr() { return constantexpr_match(); }
166
167 /// Match an arbitrary basic block value and ignore it.
m_BasicBlock()168 inline class_match<BasicBlock> m_BasicBlock() {
169 return class_match<BasicBlock>();
170 }
171
172 /// Inverting matcher
173 template <typename Ty> struct match_unless {
174 Ty M;
175
match_unlessmatch_unless176 match_unless(const Ty &Matcher) : M(Matcher) {}
177
matchmatch_unless178 template <typename ITy> bool match(ITy *V) { return !M.match(V); }
179 };
180
181 /// Match if the inner matcher does *NOT* match.
m_Unless(const Ty & M)182 template <typename Ty> inline match_unless<Ty> m_Unless(const Ty &M) {
183 return match_unless<Ty>(M);
184 }
185
186 /// Matching combinators
187 template <typename LTy, typename RTy> struct match_combine_or {
188 LTy L;
189 RTy R;
190
match_combine_ormatch_combine_or191 match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
192
matchmatch_combine_or193 template <typename ITy> bool match(ITy *V) {
194 if (L.match(V))
195 return true;
196 if (R.match(V))
197 return true;
198 return false;
199 }
200 };
201
202 template <typename LTy, typename RTy> struct match_combine_and {
203 LTy L;
204 RTy R;
205
match_combine_andmatch_combine_and206 match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
207
matchmatch_combine_and208 template <typename ITy> bool match(ITy *V) {
209 if (L.match(V))
210 if (R.match(V))
211 return true;
212 return false;
213 }
214 };
215
216 /// Combine two pattern matchers matching L || R
217 template <typename LTy, typename RTy>
m_CombineOr(const LTy & L,const RTy & R)218 inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) {
219 return match_combine_or<LTy, RTy>(L, R);
220 }
221
222 /// Combine two pattern matchers matching L && R
223 template <typename LTy, typename RTy>
m_CombineAnd(const LTy & L,const RTy & R)224 inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) {
225 return match_combine_and<LTy, RTy>(L, R);
226 }
227
228 struct apint_match {
229 const APInt *&Res;
230 bool AllowUndef;
231
apint_matchapint_match232 apint_match(const APInt *&Res, bool AllowUndef)
233 : Res(Res), AllowUndef(AllowUndef) {}
234
matchapint_match235 template <typename ITy> bool match(ITy *V) {
236 if (auto *CI = dyn_cast<ConstantInt>(V)) {
237 Res = &CI->getValue();
238 return true;
239 }
240 if (V->getType()->isVectorTy())
241 if (const auto *C = dyn_cast<Constant>(V))
242 if (auto *CI =
243 dyn_cast_or_null<ConstantInt>(C->getSplatValue(AllowUndef))) {
244 Res = &CI->getValue();
245 return true;
246 }
247 return false;
248 }
249 };
250 // Either constexpr if or renaming ConstantFP::getValueAPF to
251 // ConstantFP::getValue is needed to do it via single template
252 // function for both apint/apfloat.
253 struct apfloat_match {
254 const APFloat *&Res;
255 bool AllowUndef;
256
apfloat_matchapfloat_match257 apfloat_match(const APFloat *&Res, bool AllowUndef)
258 : Res(Res), AllowUndef(AllowUndef) {}
259
matchapfloat_match260 template <typename ITy> bool match(ITy *V) {
261 if (auto *CI = dyn_cast<ConstantFP>(V)) {
262 Res = &CI->getValueAPF();
263 return true;
264 }
265 if (V->getType()->isVectorTy())
266 if (const auto *C = dyn_cast<Constant>(V))
267 if (auto *CI =
268 dyn_cast_or_null<ConstantFP>(C->getSplatValue(AllowUndef))) {
269 Res = &CI->getValueAPF();
270 return true;
271 }
272 return false;
273 }
274 };
275
276 /// Match a ConstantInt or splatted ConstantVector, binding the
277 /// specified pointer to the contained APInt.
m_APInt(const APInt * & Res)278 inline apint_match m_APInt(const APInt *&Res) {
279 // Forbid undefs by default to maintain previous behavior.
280 return apint_match(Res, /* AllowUndef */ false);
281 }
282
283 /// Match APInt while allowing undefs in splat vector constants.
m_APIntAllowUndef(const APInt * & Res)284 inline apint_match m_APIntAllowUndef(const APInt *&Res) {
285 return apint_match(Res, /* AllowUndef */ true);
286 }
287
288 /// Match APInt while forbidding undefs in splat vector constants.
m_APIntForbidUndef(const APInt * & Res)289 inline apint_match m_APIntForbidUndef(const APInt *&Res) {
290 return apint_match(Res, /* AllowUndef */ false);
291 }
292
293 /// Match a ConstantFP or splatted ConstantVector, binding the
294 /// specified pointer to the contained APFloat.
m_APFloat(const APFloat * & Res)295 inline apfloat_match m_APFloat(const APFloat *&Res) {
296 // Forbid undefs by default to maintain previous behavior.
297 return apfloat_match(Res, /* AllowUndef */ false);
298 }
299
300 /// Match APFloat while allowing undefs in splat vector constants.
m_APFloatAllowUndef(const APFloat * & Res)301 inline apfloat_match m_APFloatAllowUndef(const APFloat *&Res) {
302 return apfloat_match(Res, /* AllowUndef */ true);
303 }
304
305 /// Match APFloat while forbidding undefs in splat vector constants.
m_APFloatForbidUndef(const APFloat * & Res)306 inline apfloat_match m_APFloatForbidUndef(const APFloat *&Res) {
307 return apfloat_match(Res, /* AllowUndef */ false);
308 }
309
310 template <int64_t Val> struct constantint_match {
matchconstantint_match311 template <typename ITy> bool match(ITy *V) {
312 if (const auto *CI = dyn_cast<ConstantInt>(V)) {
313 const APInt &CIV = CI->getValue();
314 if (Val >= 0)
315 return CIV == static_cast<uint64_t>(Val);
316 // If Val is negative, and CI is shorter than it, truncate to the right
317 // number of bits. If it is larger, then we have to sign extend. Just
318 // compare their negated values.
319 return -CIV == -Val;
320 }
321 return false;
322 }
323 };
324
325 /// Match a ConstantInt with a specific value.
m_ConstantInt()326 template <int64_t Val> inline constantint_match<Val> m_ConstantInt() {
327 return constantint_match<Val>();
328 }
329
330 /// This helper class is used to match constant scalars, vector splats,
331 /// and fixed width vectors that satisfy a specified predicate.
332 /// For fixed width vector constants, undefined elements are ignored.
333 template <typename Predicate, typename ConstantVal>
334 struct cstval_pred_ty : public Predicate {
matchcstval_pred_ty335 template <typename ITy> bool match(ITy *V) {
336 if (const auto *CV = dyn_cast<ConstantVal>(V))
337 return this->isValue(CV->getValue());
338 if (const auto *VTy = dyn_cast<VectorType>(V->getType())) {
339 if (const auto *C = dyn_cast<Constant>(V)) {
340 if (const auto *CV = dyn_cast_or_null<ConstantVal>(C->getSplatValue()))
341 return this->isValue(CV->getValue());
342
343 // Number of elements of a scalable vector unknown at compile time
344 auto *FVTy = dyn_cast<FixedVectorType>(VTy);
345 if (!FVTy)
346 return false;
347
348 // Non-splat vector constant: check each element for a match.
349 unsigned NumElts = FVTy->getNumElements();
350 assert(NumElts != 0 && "Constant vector with no elements?");
351 bool HasNonUndefElements = false;
352 for (unsigned i = 0; i != NumElts; ++i) {
353 Constant *Elt = C->getAggregateElement(i);
354 if (!Elt)
355 return false;
356 if (isa<UndefValue>(Elt))
357 continue;
358 auto *CV = dyn_cast<ConstantVal>(Elt);
359 if (!CV || !this->isValue(CV->getValue()))
360 return false;
361 HasNonUndefElements = true;
362 }
363 return HasNonUndefElements;
364 }
365 }
366 return false;
367 }
368 };
369
370 /// specialization of cstval_pred_ty for ConstantInt
371 template <typename Predicate>
372 using cst_pred_ty = cstval_pred_ty<Predicate, ConstantInt>;
373
374 /// specialization of cstval_pred_ty for ConstantFP
375 template <typename Predicate>
376 using cstfp_pred_ty = cstval_pred_ty<Predicate, ConstantFP>;
377
378 /// This helper class is used to match scalar and vector constants that
379 /// satisfy a specified predicate, and bind them to an APInt.
380 template <typename Predicate> struct api_pred_ty : public Predicate {
381 const APInt *&Res;
382
api_pred_tyapi_pred_ty383 api_pred_ty(const APInt *&R) : Res(R) {}
384
matchapi_pred_ty385 template <typename ITy> bool match(ITy *V) {
386 if (const auto *CI = dyn_cast<ConstantInt>(V))
387 if (this->isValue(CI->getValue())) {
388 Res = &CI->getValue();
389 return true;
390 }
391 if (V->getType()->isVectorTy())
392 if (const auto *C = dyn_cast<Constant>(V))
393 if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
394 if (this->isValue(CI->getValue())) {
395 Res = &CI->getValue();
396 return true;
397 }
398
399 return false;
400 }
401 };
402
403 /// This helper class is used to match scalar and vector constants that
404 /// satisfy a specified predicate, and bind them to an APFloat.
405 /// Undefs are allowed in splat vector constants.
406 template <typename Predicate> struct apf_pred_ty : public Predicate {
407 const APFloat *&Res;
408
apf_pred_tyapf_pred_ty409 apf_pred_ty(const APFloat *&R) : Res(R) {}
410
matchapf_pred_ty411 template <typename ITy> bool match(ITy *V) {
412 if (const auto *CI = dyn_cast<ConstantFP>(V))
413 if (this->isValue(CI->getValue())) {
414 Res = &CI->getValue();
415 return true;
416 }
417 if (V->getType()->isVectorTy())
418 if (const auto *C = dyn_cast<Constant>(V))
419 if (auto *CI = dyn_cast_or_null<ConstantFP>(
420 C->getSplatValue(/* AllowUndef */ true)))
421 if (this->isValue(CI->getValue())) {
422 Res = &CI->getValue();
423 return true;
424 }
425
426 return false;
427 }
428 };
429
430 ///////////////////////////////////////////////////////////////////////////////
431 //
432 // Encapsulate constant value queries for use in templated predicate matchers.
433 // This allows checking if constants match using compound predicates and works
434 // with vector constants, possibly with relaxed constraints. For example, ignore
435 // undef values.
436 //
437 ///////////////////////////////////////////////////////////////////////////////
438
439 struct is_any_apint {
isValueis_any_apint440 bool isValue(const APInt &C) { return true; }
441 };
442 /// Match an integer or vector with any integral constant.
443 /// For vectors, this includes constants with undefined elements.
m_AnyIntegralConstant()444 inline cst_pred_ty<is_any_apint> m_AnyIntegralConstant() {
445 return cst_pred_ty<is_any_apint>();
446 }
447
448 struct is_shifted_mask {
isValueis_shifted_mask449 bool isValue(const APInt &C) { return C.isShiftedMask(); }
450 };
451
m_ShiftedMask()452 inline cst_pred_ty<is_shifted_mask> m_ShiftedMask() {
453 return cst_pred_ty<is_shifted_mask>();
454 }
455
456 struct is_all_ones {
isValueis_all_ones457 bool isValue(const APInt &C) { return C.isAllOnes(); }
458 };
459 /// Match an integer or vector with all bits set.
460 /// For vectors, this includes constants with undefined elements.
m_AllOnes()461 inline cst_pred_ty<is_all_ones> m_AllOnes() {
462 return cst_pred_ty<is_all_ones>();
463 }
464
465 struct is_maxsignedvalue {
isValueis_maxsignedvalue466 bool isValue(const APInt &C) { return C.isMaxSignedValue(); }
467 };
468 /// Match an integer or vector with values having all bits except for the high
469 /// bit set (0x7f...).
470 /// For vectors, this includes constants with undefined elements.
m_MaxSignedValue()471 inline cst_pred_ty<is_maxsignedvalue> m_MaxSignedValue() {
472 return cst_pred_ty<is_maxsignedvalue>();
473 }
m_MaxSignedValue(const APInt * & V)474 inline api_pred_ty<is_maxsignedvalue> m_MaxSignedValue(const APInt *&V) {
475 return V;
476 }
477
478 struct is_negative {
isValueis_negative479 bool isValue(const APInt &C) { return C.isNegative(); }
480 };
481 /// Match an integer or vector of negative values.
482 /// For vectors, this includes constants with undefined elements.
m_Negative()483 inline cst_pred_ty<is_negative> m_Negative() {
484 return cst_pred_ty<is_negative>();
485 }
m_Negative(const APInt * & V)486 inline api_pred_ty<is_negative> m_Negative(const APInt *&V) { return V; }
487
488 struct is_nonnegative {
isValueis_nonnegative489 bool isValue(const APInt &C) { return C.isNonNegative(); }
490 };
491 /// Match an integer or vector of non-negative values.
492 /// For vectors, this includes constants with undefined elements.
m_NonNegative()493 inline cst_pred_ty<is_nonnegative> m_NonNegative() {
494 return cst_pred_ty<is_nonnegative>();
495 }
m_NonNegative(const APInt * & V)496 inline api_pred_ty<is_nonnegative> m_NonNegative(const APInt *&V) { return V; }
497
498 struct is_strictlypositive {
isValueis_strictlypositive499 bool isValue(const APInt &C) { return C.isStrictlyPositive(); }
500 };
501 /// Match an integer or vector of strictly positive values.
502 /// For vectors, this includes constants with undefined elements.
m_StrictlyPositive()503 inline cst_pred_ty<is_strictlypositive> m_StrictlyPositive() {
504 return cst_pred_ty<is_strictlypositive>();
505 }
m_StrictlyPositive(const APInt * & V)506 inline api_pred_ty<is_strictlypositive> m_StrictlyPositive(const APInt *&V) {
507 return V;
508 }
509
510 struct is_nonpositive {
isValueis_nonpositive511 bool isValue(const APInt &C) { return C.isNonPositive(); }
512 };
513 /// Match an integer or vector of non-positive values.
514 /// For vectors, this includes constants with undefined elements.
m_NonPositive()515 inline cst_pred_ty<is_nonpositive> m_NonPositive() {
516 return cst_pred_ty<is_nonpositive>();
517 }
m_NonPositive(const APInt * & V)518 inline api_pred_ty<is_nonpositive> m_NonPositive(const APInt *&V) { return V; }
519
520 struct is_one {
isValueis_one521 bool isValue(const APInt &C) { return C.isOne(); }
522 };
523 /// Match an integer 1 or a vector with all elements equal to 1.
524 /// For vectors, this includes constants with undefined elements.
m_One()525 inline cst_pred_ty<is_one> m_One() { return cst_pred_ty<is_one>(); }
526
527 struct is_zero_int {
isValueis_zero_int528 bool isValue(const APInt &C) { return C.isZero(); }
529 };
530 /// Match an integer 0 or a vector with all elements equal to 0.
531 /// For vectors, this includes constants with undefined elements.
m_ZeroInt()532 inline cst_pred_ty<is_zero_int> m_ZeroInt() {
533 return cst_pred_ty<is_zero_int>();
534 }
535
536 struct is_zero {
matchis_zero537 template <typename ITy> bool match(ITy *V) {
538 auto *C = dyn_cast<Constant>(V);
539 // FIXME: this should be able to do something for scalable vectors
540 return C && (C->isNullValue() || cst_pred_ty<is_zero_int>().match(C));
541 }
542 };
543 /// Match any null constant or a vector with all elements equal to 0.
544 /// For vectors, this includes constants with undefined elements.
m_Zero()545 inline is_zero m_Zero() { return is_zero(); }
546
547 struct is_power2 {
isValueis_power2548 bool isValue(const APInt &C) { return C.isPowerOf2(); }
549 };
550 /// Match an integer or vector power-of-2.
551 /// For vectors, this includes constants with undefined elements.
m_Power2()552 inline cst_pred_ty<is_power2> m_Power2() { return cst_pred_ty<is_power2>(); }
m_Power2(const APInt * & V)553 inline api_pred_ty<is_power2> m_Power2(const APInt *&V) { return V; }
554
555 struct is_negated_power2 {
isValueis_negated_power2556 bool isValue(const APInt &C) { return C.isNegatedPowerOf2(); }
557 };
558 /// Match a integer or vector negated power-of-2.
559 /// For vectors, this includes constants with undefined elements.
m_NegatedPower2()560 inline cst_pred_ty<is_negated_power2> m_NegatedPower2() {
561 return cst_pred_ty<is_negated_power2>();
562 }
m_NegatedPower2(const APInt * & V)563 inline api_pred_ty<is_negated_power2> m_NegatedPower2(const APInt *&V) {
564 return V;
565 }
566
567 struct is_power2_or_zero {
isValueis_power2_or_zero568 bool isValue(const APInt &C) { return !C || C.isPowerOf2(); }
569 };
570 /// Match an integer or vector of 0 or power-of-2 values.
571 /// For vectors, this includes constants with undefined elements.
m_Power2OrZero()572 inline cst_pred_ty<is_power2_or_zero> m_Power2OrZero() {
573 return cst_pred_ty<is_power2_or_zero>();
574 }
m_Power2OrZero(const APInt * & V)575 inline api_pred_ty<is_power2_or_zero> m_Power2OrZero(const APInt *&V) {
576 return V;
577 }
578
579 struct is_sign_mask {
isValueis_sign_mask580 bool isValue(const APInt &C) { return C.isSignMask(); }
581 };
582 /// Match an integer or vector with only the sign bit(s) set.
583 /// For vectors, this includes constants with undefined elements.
m_SignMask()584 inline cst_pred_ty<is_sign_mask> m_SignMask() {
585 return cst_pred_ty<is_sign_mask>();
586 }
587
588 struct is_lowbit_mask {
isValueis_lowbit_mask589 bool isValue(const APInt &C) { return C.isMask(); }
590 };
591 /// Match an integer or vector with only the low bit(s) set.
592 /// For vectors, this includes constants with undefined elements.
m_LowBitMask()593 inline cst_pred_ty<is_lowbit_mask> m_LowBitMask() {
594 return cst_pred_ty<is_lowbit_mask>();
595 }
m_LowBitMask(const APInt * & V)596 inline api_pred_ty<is_lowbit_mask> m_LowBitMask(const APInt *&V) { return V; }
597
598 struct icmp_pred_with_threshold {
599 ICmpInst::Predicate Pred;
600 const APInt *Thr;
isValueicmp_pred_with_threshold601 bool isValue(const APInt &C) { return ICmpInst::compare(C, *Thr, Pred); }
602 };
603 /// Match an integer or vector with every element comparing 'pred' (eg/ne/...)
604 /// to Threshold. For vectors, this includes constants with undefined elements.
605 inline cst_pred_ty<icmp_pred_with_threshold>
m_SpecificInt_ICMP(ICmpInst::Predicate Predicate,const APInt & Threshold)606 m_SpecificInt_ICMP(ICmpInst::Predicate Predicate, const APInt &Threshold) {
607 cst_pred_ty<icmp_pred_with_threshold> P;
608 P.Pred = Predicate;
609 P.Thr = &Threshold;
610 return P;
611 }
612
613 struct is_nan {
isValueis_nan614 bool isValue(const APFloat &C) { return C.isNaN(); }
615 };
616 /// Match an arbitrary NaN constant. This includes quiet and signalling nans.
617 /// For vectors, this includes constants with undefined elements.
m_NaN()618 inline cstfp_pred_ty<is_nan> m_NaN() { return cstfp_pred_ty<is_nan>(); }
619
620 struct is_nonnan {
isValueis_nonnan621 bool isValue(const APFloat &C) { return !C.isNaN(); }
622 };
623 /// Match a non-NaN FP constant.
624 /// For vectors, this includes constants with undefined elements.
m_NonNaN()625 inline cstfp_pred_ty<is_nonnan> m_NonNaN() {
626 return cstfp_pred_ty<is_nonnan>();
627 }
628
629 struct is_inf {
isValueis_inf630 bool isValue(const APFloat &C) { return C.isInfinity(); }
631 };
632 /// Match a positive or negative infinity FP constant.
633 /// For vectors, this includes constants with undefined elements.
m_Inf()634 inline cstfp_pred_ty<is_inf> m_Inf() { return cstfp_pred_ty<is_inf>(); }
635
636 struct is_noninf {
isValueis_noninf637 bool isValue(const APFloat &C) { return !C.isInfinity(); }
638 };
639 /// Match a non-infinity FP constant, i.e. finite or NaN.
640 /// For vectors, this includes constants with undefined elements.
m_NonInf()641 inline cstfp_pred_ty<is_noninf> m_NonInf() {
642 return cstfp_pred_ty<is_noninf>();
643 }
644
645 struct is_finite {
isValueis_finite646 bool isValue(const APFloat &C) { return C.isFinite(); }
647 };
648 /// Match a finite FP constant, i.e. not infinity or NaN.
649 /// For vectors, this includes constants with undefined elements.
m_Finite()650 inline cstfp_pred_ty<is_finite> m_Finite() {
651 return cstfp_pred_ty<is_finite>();
652 }
m_Finite(const APFloat * & V)653 inline apf_pred_ty<is_finite> m_Finite(const APFloat *&V) { return V; }
654
655 struct is_finitenonzero {
isValueis_finitenonzero656 bool isValue(const APFloat &C) { return C.isFiniteNonZero(); }
657 };
658 /// Match a finite non-zero FP constant.
659 /// For vectors, this includes constants with undefined elements.
m_FiniteNonZero()660 inline cstfp_pred_ty<is_finitenonzero> m_FiniteNonZero() {
661 return cstfp_pred_ty<is_finitenonzero>();
662 }
m_FiniteNonZero(const APFloat * & V)663 inline apf_pred_ty<is_finitenonzero> m_FiniteNonZero(const APFloat *&V) {
664 return V;
665 }
666
667 struct is_any_zero_fp {
isValueis_any_zero_fp668 bool isValue(const APFloat &C) { return C.isZero(); }
669 };
670 /// Match a floating-point negative zero or positive zero.
671 /// For vectors, this includes constants with undefined elements.
m_AnyZeroFP()672 inline cstfp_pred_ty<is_any_zero_fp> m_AnyZeroFP() {
673 return cstfp_pred_ty<is_any_zero_fp>();
674 }
675
676 struct is_pos_zero_fp {
isValueis_pos_zero_fp677 bool isValue(const APFloat &C) { return C.isPosZero(); }
678 };
679 /// Match a floating-point positive zero.
680 /// For vectors, this includes constants with undefined elements.
m_PosZeroFP()681 inline cstfp_pred_ty<is_pos_zero_fp> m_PosZeroFP() {
682 return cstfp_pred_ty<is_pos_zero_fp>();
683 }
684
685 struct is_neg_zero_fp {
isValueis_neg_zero_fp686 bool isValue(const APFloat &C) { return C.isNegZero(); }
687 };
688 /// Match a floating-point negative zero.
689 /// For vectors, this includes constants with undefined elements.
m_NegZeroFP()690 inline cstfp_pred_ty<is_neg_zero_fp> m_NegZeroFP() {
691 return cstfp_pred_ty<is_neg_zero_fp>();
692 }
693
694 struct is_non_zero_fp {
isValueis_non_zero_fp695 bool isValue(const APFloat &C) { return C.isNonZero(); }
696 };
697 /// Match a floating-point non-zero.
698 /// For vectors, this includes constants with undefined elements.
m_NonZeroFP()699 inline cstfp_pred_ty<is_non_zero_fp> m_NonZeroFP() {
700 return cstfp_pred_ty<is_non_zero_fp>();
701 }
702
703 ///////////////////////////////////////////////////////////////////////////////
704
705 template <typename Class> struct bind_ty {
706 Class *&VR;
707
bind_tybind_ty708 bind_ty(Class *&V) : VR(V) {}
709
matchbind_ty710 template <typename ITy> bool match(ITy *V) {
711 if (auto *CV = dyn_cast<Class>(V)) {
712 VR = CV;
713 return true;
714 }
715 return false;
716 }
717 };
718
719 /// Match a value, capturing it if we match.
m_Value(Value * & V)720 inline bind_ty<Value> m_Value(Value *&V) { return V; }
m_Value(const Value * & V)721 inline bind_ty<const Value> m_Value(const Value *&V) { return V; }
722
723 /// Match an instruction, capturing it if we match.
m_Instruction(Instruction * & I)724 inline bind_ty<Instruction> m_Instruction(Instruction *&I) { return I; }
725 /// Match a unary operator, capturing it if we match.
m_UnOp(UnaryOperator * & I)726 inline bind_ty<UnaryOperator> m_UnOp(UnaryOperator *&I) { return I; }
727 /// Match a binary operator, capturing it if we match.
m_BinOp(BinaryOperator * & I)728 inline bind_ty<BinaryOperator> m_BinOp(BinaryOperator *&I) { return I; }
729 /// Match a with overflow intrinsic, capturing it if we match.
m_WithOverflowInst(WithOverflowInst * & I)730 inline bind_ty<WithOverflowInst> m_WithOverflowInst(WithOverflowInst *&I) {
731 return I;
732 }
733 inline bind_ty<const WithOverflowInst>
m_WithOverflowInst(const WithOverflowInst * & I)734 m_WithOverflowInst(const WithOverflowInst *&I) {
735 return I;
736 }
737
738 /// Match a Constant, capturing the value if we match.
m_Constant(Constant * & C)739 inline bind_ty<Constant> m_Constant(Constant *&C) { return C; }
740
741 /// Match a ConstantInt, capturing the value if we match.
m_ConstantInt(ConstantInt * & CI)742 inline bind_ty<ConstantInt> m_ConstantInt(ConstantInt *&CI) { return CI; }
743
744 /// Match a ConstantFP, capturing the value if we match.
m_ConstantFP(ConstantFP * & C)745 inline bind_ty<ConstantFP> m_ConstantFP(ConstantFP *&C) { return C; }
746
747 /// Match a ConstantExpr, capturing the value if we match.
m_ConstantExpr(ConstantExpr * & C)748 inline bind_ty<ConstantExpr> m_ConstantExpr(ConstantExpr *&C) { return C; }
749
750 /// Match a basic block value, capturing it if we match.
m_BasicBlock(BasicBlock * & V)751 inline bind_ty<BasicBlock> m_BasicBlock(BasicBlock *&V) { return V; }
m_BasicBlock(const BasicBlock * & V)752 inline bind_ty<const BasicBlock> m_BasicBlock(const BasicBlock *&V) {
753 return V;
754 }
755
756 /// Match an arbitrary immediate Constant and ignore it.
757 inline match_combine_and<class_match<Constant>,
758 match_unless<constantexpr_match>>
m_ImmConstant()759 m_ImmConstant() {
760 return m_CombineAnd(m_Constant(), m_Unless(m_ConstantExpr()));
761 }
762
763 /// Match an immediate Constant, capturing the value if we match.
764 inline match_combine_and<bind_ty<Constant>,
765 match_unless<constantexpr_match>>
m_ImmConstant(Constant * & C)766 m_ImmConstant(Constant *&C) {
767 return m_CombineAnd(m_Constant(C), m_Unless(m_ConstantExpr()));
768 }
769
770 /// Match a specified Value*.
771 struct specificval_ty {
772 const Value *Val;
773
specificval_tyspecificval_ty774 specificval_ty(const Value *V) : Val(V) {}
775
matchspecificval_ty776 template <typename ITy> bool match(ITy *V) { return V == Val; }
777 };
778
779 /// Match if we have a specific specified value.
m_Specific(const Value * V)780 inline specificval_ty m_Specific(const Value *V) { return V; }
781
782 /// Stores a reference to the Value *, not the Value * itself,
783 /// thus can be used in commutative matchers.
784 template <typename Class> struct deferredval_ty {
785 Class *const &Val;
786
deferredval_tydeferredval_ty787 deferredval_ty(Class *const &V) : Val(V) {}
788
matchdeferredval_ty789 template <typename ITy> bool match(ITy *const V) { return V == Val; }
790 };
791
792 /// Like m_Specific(), but works if the specific value to match is determined
793 /// as part of the same match() expression. For example:
794 /// m_Add(m_Value(X), m_Specific(X)) is incorrect, because m_Specific() will
795 /// bind X before the pattern match starts.
796 /// m_Add(m_Value(X), m_Deferred(X)) is correct, and will check against
797 /// whichever value m_Value(X) populated.
m_Deferred(Value * const & V)798 inline deferredval_ty<Value> m_Deferred(Value *const &V) { return V; }
m_Deferred(const Value * const & V)799 inline deferredval_ty<const Value> m_Deferred(const Value *const &V) {
800 return V;
801 }
802
803 /// Match a specified floating point value or vector of all elements of
804 /// that value.
805 struct specific_fpval {
806 double Val;
807
specific_fpvalspecific_fpval808 specific_fpval(double V) : Val(V) {}
809
matchspecific_fpval810 template <typename ITy> bool match(ITy *V) {
811 if (const auto *CFP = dyn_cast<ConstantFP>(V))
812 return CFP->isExactlyValue(Val);
813 if (V->getType()->isVectorTy())
814 if (const auto *C = dyn_cast<Constant>(V))
815 if (auto *CFP = dyn_cast_or_null<ConstantFP>(C->getSplatValue()))
816 return CFP->isExactlyValue(Val);
817 return false;
818 }
819 };
820
821 /// Match a specific floating point value or vector with all elements
822 /// equal to the value.
m_SpecificFP(double V)823 inline specific_fpval m_SpecificFP(double V) { return specific_fpval(V); }
824
825 /// Match a float 1.0 or vector with all elements equal to 1.0.
m_FPOne()826 inline specific_fpval m_FPOne() { return m_SpecificFP(1.0); }
827
828 struct bind_const_intval_ty {
829 uint64_t &VR;
830
bind_const_intval_tybind_const_intval_ty831 bind_const_intval_ty(uint64_t &V) : VR(V) {}
832
matchbind_const_intval_ty833 template <typename ITy> bool match(ITy *V) {
834 if (const auto *CV = dyn_cast<ConstantInt>(V))
835 if (CV->getValue().ule(UINT64_MAX)) {
836 VR = CV->getZExtValue();
837 return true;
838 }
839 return false;
840 }
841 };
842
843 /// Match a specified integer value or vector of all elements of that
844 /// value.
845 template <bool AllowUndefs> struct specific_intval {
846 APInt Val;
847
specific_intvalspecific_intval848 specific_intval(APInt V) : Val(std::move(V)) {}
849
matchspecific_intval850 template <typename ITy> bool match(ITy *V) {
851 const auto *CI = dyn_cast<ConstantInt>(V);
852 if (!CI && V->getType()->isVectorTy())
853 if (const auto *C = dyn_cast<Constant>(V))
854 CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue(AllowUndefs));
855
856 return CI && APInt::isSameValue(CI->getValue(), Val);
857 }
858 };
859
860 /// Match a specific integer value or vector with all elements equal to
861 /// the value.
m_SpecificInt(APInt V)862 inline specific_intval<false> m_SpecificInt(APInt V) {
863 return specific_intval<false>(std::move(V));
864 }
865
m_SpecificInt(uint64_t V)866 inline specific_intval<false> m_SpecificInt(uint64_t V) {
867 return m_SpecificInt(APInt(64, V));
868 }
869
m_SpecificIntAllowUndef(APInt V)870 inline specific_intval<true> m_SpecificIntAllowUndef(APInt V) {
871 return specific_intval<true>(std::move(V));
872 }
873
m_SpecificIntAllowUndef(uint64_t V)874 inline specific_intval<true> m_SpecificIntAllowUndef(uint64_t V) {
875 return m_SpecificIntAllowUndef(APInt(64, V));
876 }
877
878 /// Match a ConstantInt and bind to its value. This does not match
879 /// ConstantInts wider than 64-bits.
m_ConstantInt(uint64_t & V)880 inline bind_const_intval_ty m_ConstantInt(uint64_t &V) { return V; }
881
882 /// Match a specified basic block value.
883 struct specific_bbval {
884 BasicBlock *Val;
885
specific_bbvalspecific_bbval886 specific_bbval(BasicBlock *Val) : Val(Val) {}
887
matchspecific_bbval888 template <typename ITy> bool match(ITy *V) {
889 const auto *BB = dyn_cast<BasicBlock>(V);
890 return BB && BB == Val;
891 }
892 };
893
894 /// Match a specific basic block value.
m_SpecificBB(BasicBlock * BB)895 inline specific_bbval m_SpecificBB(BasicBlock *BB) {
896 return specific_bbval(BB);
897 }
898
899 /// A commutative-friendly version of m_Specific().
m_Deferred(BasicBlock * const & BB)900 inline deferredval_ty<BasicBlock> m_Deferred(BasicBlock *const &BB) {
901 return BB;
902 }
903 inline deferredval_ty<const BasicBlock>
m_Deferred(const BasicBlock * const & BB)904 m_Deferred(const BasicBlock *const &BB) {
905 return BB;
906 }
907
908 //===----------------------------------------------------------------------===//
909 // Matcher for any binary operator.
910 //
911 template <typename LHS_t, typename RHS_t, bool Commutable = false>
912 struct AnyBinaryOp_match {
913 LHS_t L;
914 RHS_t R;
915
916 // The evaluation order is always stable, regardless of Commutability.
917 // The LHS is always matched first.
AnyBinaryOp_matchAnyBinaryOp_match918 AnyBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
919
matchAnyBinaryOp_match920 template <typename OpTy> bool match(OpTy *V) {
921 if (auto *I = dyn_cast<BinaryOperator>(V))
922 return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
923 (Commutable && L.match(I->getOperand(1)) &&
924 R.match(I->getOperand(0)));
925 return false;
926 }
927 };
928
929 template <typename LHS, typename RHS>
m_BinOp(const LHS & L,const RHS & R)930 inline AnyBinaryOp_match<LHS, RHS> m_BinOp(const LHS &L, const RHS &R) {
931 return AnyBinaryOp_match<LHS, RHS>(L, R);
932 }
933
934 //===----------------------------------------------------------------------===//
935 // Matcher for any unary operator.
936 // TODO fuse unary, binary matcher into n-ary matcher
937 //
938 template <typename OP_t> struct AnyUnaryOp_match {
939 OP_t X;
940
AnyUnaryOp_matchAnyUnaryOp_match941 AnyUnaryOp_match(const OP_t &X) : X(X) {}
942
matchAnyUnaryOp_match943 template <typename OpTy> bool match(OpTy *V) {
944 if (auto *I = dyn_cast<UnaryOperator>(V))
945 return X.match(I->getOperand(0));
946 return false;
947 }
948 };
949
m_UnOp(const OP_t & X)950 template <typename OP_t> inline AnyUnaryOp_match<OP_t> m_UnOp(const OP_t &X) {
951 return AnyUnaryOp_match<OP_t>(X);
952 }
953
954 //===----------------------------------------------------------------------===//
955 // Matchers for specific binary operators.
956 //
957
958 template <typename LHS_t, typename RHS_t, unsigned Opcode,
959 bool Commutable = false>
960 struct BinaryOp_match {
961 LHS_t L;
962 RHS_t R;
963
964 // The evaluation order is always stable, regardless of Commutability.
965 // The LHS is always matched first.
BinaryOp_matchBinaryOp_match966 BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
967
matchBinaryOp_match968 template <typename OpTy> inline bool match(unsigned Opc, OpTy *V) {
969 if (V->getValueID() == Value::InstructionVal + Opc) {
970 auto *I = cast<BinaryOperator>(V);
971 return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
972 (Commutable && L.match(I->getOperand(1)) &&
973 R.match(I->getOperand(0)));
974 }
975 return false;
976 }
977
matchBinaryOp_match978 template <typename OpTy> bool match(OpTy *V) { return match(Opcode, V); }
979 };
980
981 template <typename LHS, typename RHS>
m_Add(const LHS & L,const RHS & R)982 inline BinaryOp_match<LHS, RHS, Instruction::Add> m_Add(const LHS &L,
983 const RHS &R) {
984 return BinaryOp_match<LHS, RHS, Instruction::Add>(L, R);
985 }
986
987 template <typename LHS, typename RHS>
m_FAdd(const LHS & L,const RHS & R)988 inline BinaryOp_match<LHS, RHS, Instruction::FAdd> m_FAdd(const LHS &L,
989 const RHS &R) {
990 return BinaryOp_match<LHS, RHS, Instruction::FAdd>(L, R);
991 }
992
993 template <typename LHS, typename RHS>
m_Sub(const LHS & L,const RHS & R)994 inline BinaryOp_match<LHS, RHS, Instruction::Sub> m_Sub(const LHS &L,
995 const RHS &R) {
996 return BinaryOp_match<LHS, RHS, Instruction::Sub>(L, R);
997 }
998
999 template <typename LHS, typename RHS>
m_FSub(const LHS & L,const RHS & R)1000 inline BinaryOp_match<LHS, RHS, Instruction::FSub> m_FSub(const LHS &L,
1001 const RHS &R) {
1002 return BinaryOp_match<LHS, RHS, Instruction::FSub>(L, R);
1003 }
1004
1005 template <typename Op_t> struct FNeg_match {
1006 Op_t X;
1007
FNeg_matchFNeg_match1008 FNeg_match(const Op_t &Op) : X(Op) {}
matchFNeg_match1009 template <typename OpTy> bool match(OpTy *V) {
1010 auto *FPMO = dyn_cast<FPMathOperator>(V);
1011 if (!FPMO)
1012 return false;
1013
1014 if (FPMO->getOpcode() == Instruction::FNeg)
1015 return X.match(FPMO->getOperand(0));
1016
1017 if (FPMO->getOpcode() == Instruction::FSub) {
1018 if (FPMO->hasNoSignedZeros()) {
1019 // With 'nsz', any zero goes.
1020 if (!cstfp_pred_ty<is_any_zero_fp>().match(FPMO->getOperand(0)))
1021 return false;
1022 } else {
1023 // Without 'nsz', we need fsub -0.0, X exactly.
1024 if (!cstfp_pred_ty<is_neg_zero_fp>().match(FPMO->getOperand(0)))
1025 return false;
1026 }
1027
1028 return X.match(FPMO->getOperand(1));
1029 }
1030
1031 return false;
1032 }
1033 };
1034
1035 /// Match 'fneg X' as 'fsub -0.0, X'.
m_FNeg(const OpTy & X)1036 template <typename OpTy> inline FNeg_match<OpTy> m_FNeg(const OpTy &X) {
1037 return FNeg_match<OpTy>(X);
1038 }
1039
1040 /// Match 'fneg X' as 'fsub +-0.0, X'.
1041 template <typename RHS>
1042 inline BinaryOp_match<cstfp_pred_ty<is_any_zero_fp>, RHS, Instruction::FSub>
m_FNegNSZ(const RHS & X)1043 m_FNegNSZ(const RHS &X) {
1044 return m_FSub(m_AnyZeroFP(), X);
1045 }
1046
1047 template <typename LHS, typename RHS>
m_Mul(const LHS & L,const RHS & R)1048 inline BinaryOp_match<LHS, RHS, Instruction::Mul> m_Mul(const LHS &L,
1049 const RHS &R) {
1050 return BinaryOp_match<LHS, RHS, Instruction::Mul>(L, R);
1051 }
1052
1053 template <typename LHS, typename RHS>
m_FMul(const LHS & L,const RHS & R)1054 inline BinaryOp_match<LHS, RHS, Instruction::FMul> m_FMul(const LHS &L,
1055 const RHS &R) {
1056 return BinaryOp_match<LHS, RHS, Instruction::FMul>(L, R);
1057 }
1058
1059 template <typename LHS, typename RHS>
m_UDiv(const LHS & L,const RHS & R)1060 inline BinaryOp_match<LHS, RHS, Instruction::UDiv> m_UDiv(const LHS &L,
1061 const RHS &R) {
1062 return BinaryOp_match<LHS, RHS, Instruction::UDiv>(L, R);
1063 }
1064
1065 template <typename LHS, typename RHS>
m_SDiv(const LHS & L,const RHS & R)1066 inline BinaryOp_match<LHS, RHS, Instruction::SDiv> m_SDiv(const LHS &L,
1067 const RHS &R) {
1068 return BinaryOp_match<LHS, RHS, Instruction::SDiv>(L, R);
1069 }
1070
1071 template <typename LHS, typename RHS>
m_FDiv(const LHS & L,const RHS & R)1072 inline BinaryOp_match<LHS, RHS, Instruction::FDiv> m_FDiv(const LHS &L,
1073 const RHS &R) {
1074 return BinaryOp_match<LHS, RHS, Instruction::FDiv>(L, R);
1075 }
1076
1077 template <typename LHS, typename RHS>
m_URem(const LHS & L,const RHS & R)1078 inline BinaryOp_match<LHS, RHS, Instruction::URem> m_URem(const LHS &L,
1079 const RHS &R) {
1080 return BinaryOp_match<LHS, RHS, Instruction::URem>(L, R);
1081 }
1082
1083 template <typename LHS, typename RHS>
m_SRem(const LHS & L,const RHS & R)1084 inline BinaryOp_match<LHS, RHS, Instruction::SRem> m_SRem(const LHS &L,
1085 const RHS &R) {
1086 return BinaryOp_match<LHS, RHS, Instruction::SRem>(L, R);
1087 }
1088
1089 template <typename LHS, typename RHS>
m_FRem(const LHS & L,const RHS & R)1090 inline BinaryOp_match<LHS, RHS, Instruction::FRem> m_FRem(const LHS &L,
1091 const RHS &R) {
1092 return BinaryOp_match<LHS, RHS, Instruction::FRem>(L, R);
1093 }
1094
1095 template <typename LHS, typename RHS>
m_And(const LHS & L,const RHS & R)1096 inline BinaryOp_match<LHS, RHS, Instruction::And> m_And(const LHS &L,
1097 const RHS &R) {
1098 return BinaryOp_match<LHS, RHS, Instruction::And>(L, R);
1099 }
1100
1101 template <typename LHS, typename RHS>
m_Or(const LHS & L,const RHS & R)1102 inline BinaryOp_match<LHS, RHS, Instruction::Or> m_Or(const LHS &L,
1103 const RHS &R) {
1104 return BinaryOp_match<LHS, RHS, Instruction::Or>(L, R);
1105 }
1106
1107 template <typename LHS, typename RHS>
m_Xor(const LHS & L,const RHS & R)1108 inline BinaryOp_match<LHS, RHS, Instruction::Xor> m_Xor(const LHS &L,
1109 const RHS &R) {
1110 return BinaryOp_match<LHS, RHS, Instruction::Xor>(L, R);
1111 }
1112
1113 template <typename LHS, typename RHS>
m_Shl(const LHS & L,const RHS & R)1114 inline BinaryOp_match<LHS, RHS, Instruction::Shl> m_Shl(const LHS &L,
1115 const RHS &R) {
1116 return BinaryOp_match<LHS, RHS, Instruction::Shl>(L, R);
1117 }
1118
1119 template <typename LHS, typename RHS>
m_LShr(const LHS & L,const RHS & R)1120 inline BinaryOp_match<LHS, RHS, Instruction::LShr> m_LShr(const LHS &L,
1121 const RHS &R) {
1122 return BinaryOp_match<LHS, RHS, Instruction::LShr>(L, R);
1123 }
1124
1125 template <typename LHS, typename RHS>
m_AShr(const LHS & L,const RHS & R)1126 inline BinaryOp_match<LHS, RHS, Instruction::AShr> m_AShr(const LHS &L,
1127 const RHS &R) {
1128 return BinaryOp_match<LHS, RHS, Instruction::AShr>(L, R);
1129 }
1130
1131 template <typename LHS_t, typename RHS_t, unsigned Opcode,
1132 unsigned WrapFlags = 0>
1133 struct OverflowingBinaryOp_match {
1134 LHS_t L;
1135 RHS_t R;
1136
OverflowingBinaryOp_matchOverflowingBinaryOp_match1137 OverflowingBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS)
1138 : L(LHS), R(RHS) {}
1139
matchOverflowingBinaryOp_match1140 template <typename OpTy> bool match(OpTy *V) {
1141 if (auto *Op = dyn_cast<OverflowingBinaryOperator>(V)) {
1142 if (Op->getOpcode() != Opcode)
1143 return false;
1144 if ((WrapFlags & OverflowingBinaryOperator::NoUnsignedWrap) &&
1145 !Op->hasNoUnsignedWrap())
1146 return false;
1147 if ((WrapFlags & OverflowingBinaryOperator::NoSignedWrap) &&
1148 !Op->hasNoSignedWrap())
1149 return false;
1150 return L.match(Op->getOperand(0)) && R.match(Op->getOperand(1));
1151 }
1152 return false;
1153 }
1154 };
1155
1156 template <typename LHS, typename RHS>
1157 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1158 OverflowingBinaryOperator::NoSignedWrap>
m_NSWAdd(const LHS & L,const RHS & R)1159 m_NSWAdd(const LHS &L, const RHS &R) {
1160 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1161 OverflowingBinaryOperator::NoSignedWrap>(L,
1162 R);
1163 }
1164 template <typename LHS, typename RHS>
1165 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1166 OverflowingBinaryOperator::NoSignedWrap>
m_NSWSub(const LHS & L,const RHS & R)1167 m_NSWSub(const LHS &L, const RHS &R) {
1168 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1169 OverflowingBinaryOperator::NoSignedWrap>(L,
1170 R);
1171 }
1172 template <typename LHS, typename RHS>
1173 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1174 OverflowingBinaryOperator::NoSignedWrap>
m_NSWMul(const LHS & L,const RHS & R)1175 m_NSWMul(const LHS &L, const RHS &R) {
1176 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1177 OverflowingBinaryOperator::NoSignedWrap>(L,
1178 R);
1179 }
1180 template <typename LHS, typename RHS>
1181 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1182 OverflowingBinaryOperator::NoSignedWrap>
m_NSWShl(const LHS & L,const RHS & R)1183 m_NSWShl(const LHS &L, const RHS &R) {
1184 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1185 OverflowingBinaryOperator::NoSignedWrap>(L,
1186 R);
1187 }
1188
1189 template <typename LHS, typename RHS>
1190 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1191 OverflowingBinaryOperator::NoUnsignedWrap>
m_NUWAdd(const LHS & L,const RHS & R)1192 m_NUWAdd(const LHS &L, const RHS &R) {
1193 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1194 OverflowingBinaryOperator::NoUnsignedWrap>(
1195 L, R);
1196 }
1197 template <typename LHS, typename RHS>
1198 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1199 OverflowingBinaryOperator::NoUnsignedWrap>
m_NUWSub(const LHS & L,const RHS & R)1200 m_NUWSub(const LHS &L, const RHS &R) {
1201 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1202 OverflowingBinaryOperator::NoUnsignedWrap>(
1203 L, R);
1204 }
1205 template <typename LHS, typename RHS>
1206 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1207 OverflowingBinaryOperator::NoUnsignedWrap>
m_NUWMul(const LHS & L,const RHS & R)1208 m_NUWMul(const LHS &L, const RHS &R) {
1209 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1210 OverflowingBinaryOperator::NoUnsignedWrap>(
1211 L, R);
1212 }
1213 template <typename LHS, typename RHS>
1214 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1215 OverflowingBinaryOperator::NoUnsignedWrap>
m_NUWShl(const LHS & L,const RHS & R)1216 m_NUWShl(const LHS &L, const RHS &R) {
1217 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1218 OverflowingBinaryOperator::NoUnsignedWrap>(
1219 L, R);
1220 }
1221
1222 template <typename LHS_t, typename RHS_t, bool Commutable = false>
1223 struct SpecificBinaryOp_match
1224 : public BinaryOp_match<LHS_t, RHS_t, 0, Commutable> {
1225 unsigned Opcode;
1226
SpecificBinaryOp_matchSpecificBinaryOp_match1227 SpecificBinaryOp_match(unsigned Opcode, const LHS_t &LHS, const RHS_t &RHS)
1228 : BinaryOp_match<LHS_t, RHS_t, 0, Commutable>(LHS, RHS), Opcode(Opcode) {}
1229
matchSpecificBinaryOp_match1230 template <typename OpTy> bool match(OpTy *V) {
1231 return BinaryOp_match<LHS_t, RHS_t, 0, Commutable>::match(Opcode, V);
1232 }
1233 };
1234
1235 /// Matches a specific opcode.
1236 template <typename LHS, typename RHS>
m_BinOp(unsigned Opcode,const LHS & L,const RHS & R)1237 inline SpecificBinaryOp_match<LHS, RHS> m_BinOp(unsigned Opcode, const LHS &L,
1238 const RHS &R) {
1239 return SpecificBinaryOp_match<LHS, RHS>(Opcode, L, R);
1240 }
1241
1242 template <typename LHS, typename RHS, bool Commutable = false>
1243 struct DisjointOr_match {
1244 LHS L;
1245 RHS R;
1246
DisjointOr_matchDisjointOr_match1247 DisjointOr_match(const LHS &L, const RHS &R) : L(L), R(R) {}
1248
matchDisjointOr_match1249 template <typename OpTy> bool match(OpTy *V) {
1250 if (auto *PDI = dyn_cast<PossiblyDisjointInst>(V)) {
1251 assert(PDI->getOpcode() == Instruction::Or && "Only or can be disjoint");
1252 if (!PDI->isDisjoint())
1253 return false;
1254 return (L.match(PDI->getOperand(0)) && R.match(PDI->getOperand(1))) ||
1255 (Commutable && L.match(PDI->getOperand(1)) &&
1256 R.match(PDI->getOperand(0)));
1257 }
1258 return false;
1259 }
1260 };
1261
1262 template <typename LHS, typename RHS>
m_DisjointOr(const LHS & L,const RHS & R)1263 inline DisjointOr_match<LHS, RHS> m_DisjointOr(const LHS &L, const RHS &R) {
1264 return DisjointOr_match<LHS, RHS>(L, R);
1265 }
1266
1267 template <typename LHS, typename RHS>
m_c_DisjointOr(const LHS & L,const RHS & R)1268 inline DisjointOr_match<LHS, RHS, true> m_c_DisjointOr(const LHS &L,
1269 const RHS &R) {
1270 return DisjointOr_match<LHS, RHS, true>(L, R);
1271 }
1272
1273 /// Match either "and" or "or disjoint".
1274 template <typename LHS, typename RHS>
1275 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Add>,
1276 DisjointOr_match<LHS, RHS>>
m_AddLike(const LHS & L,const RHS & R)1277 m_AddLike(const LHS &L, const RHS &R) {
1278 return m_CombineOr(m_Add(L, R), m_DisjointOr(L, R));
1279 }
1280
1281 //===----------------------------------------------------------------------===//
1282 // Class that matches a group of binary opcodes.
1283 //
1284 template <typename LHS_t, typename RHS_t, typename Predicate>
1285 struct BinOpPred_match : Predicate {
1286 LHS_t L;
1287 RHS_t R;
1288
BinOpPred_matchBinOpPred_match1289 BinOpPred_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
1290
matchBinOpPred_match1291 template <typename OpTy> bool match(OpTy *V) {
1292 if (auto *I = dyn_cast<Instruction>(V))
1293 return this->isOpType(I->getOpcode()) && L.match(I->getOperand(0)) &&
1294 R.match(I->getOperand(1));
1295 return false;
1296 }
1297 };
1298
1299 struct is_shift_op {
isOpTypeis_shift_op1300 bool isOpType(unsigned Opcode) { return Instruction::isShift(Opcode); }
1301 };
1302
1303 struct is_right_shift_op {
isOpTypeis_right_shift_op1304 bool isOpType(unsigned Opcode) {
1305 return Opcode == Instruction::LShr || Opcode == Instruction::AShr;
1306 }
1307 };
1308
1309 struct is_logical_shift_op {
isOpTypeis_logical_shift_op1310 bool isOpType(unsigned Opcode) {
1311 return Opcode == Instruction::LShr || Opcode == Instruction::Shl;
1312 }
1313 };
1314
1315 struct is_bitwiselogic_op {
isOpTypeis_bitwiselogic_op1316 bool isOpType(unsigned Opcode) {
1317 return Instruction::isBitwiseLogicOp(Opcode);
1318 }
1319 };
1320
1321 struct is_idiv_op {
isOpTypeis_idiv_op1322 bool isOpType(unsigned Opcode) {
1323 return Opcode == Instruction::SDiv || Opcode == Instruction::UDiv;
1324 }
1325 };
1326
1327 struct is_irem_op {
isOpTypeis_irem_op1328 bool isOpType(unsigned Opcode) {
1329 return Opcode == Instruction::SRem || Opcode == Instruction::URem;
1330 }
1331 };
1332
1333 /// Matches shift operations.
1334 template <typename LHS, typename RHS>
m_Shift(const LHS & L,const RHS & R)1335 inline BinOpPred_match<LHS, RHS, is_shift_op> m_Shift(const LHS &L,
1336 const RHS &R) {
1337 return BinOpPred_match<LHS, RHS, is_shift_op>(L, R);
1338 }
1339
1340 /// Matches logical shift operations.
1341 template <typename LHS, typename RHS>
m_Shr(const LHS & L,const RHS & R)1342 inline BinOpPred_match<LHS, RHS, is_right_shift_op> m_Shr(const LHS &L,
1343 const RHS &R) {
1344 return BinOpPred_match<LHS, RHS, is_right_shift_op>(L, R);
1345 }
1346
1347 /// Matches logical shift operations.
1348 template <typename LHS, typename RHS>
1349 inline BinOpPred_match<LHS, RHS, is_logical_shift_op>
m_LogicalShift(const LHS & L,const RHS & R)1350 m_LogicalShift(const LHS &L, const RHS &R) {
1351 return BinOpPred_match<LHS, RHS, is_logical_shift_op>(L, R);
1352 }
1353
1354 /// Matches bitwise logic operations.
1355 template <typename LHS, typename RHS>
1356 inline BinOpPred_match<LHS, RHS, is_bitwiselogic_op>
m_BitwiseLogic(const LHS & L,const RHS & R)1357 m_BitwiseLogic(const LHS &L, const RHS &R) {
1358 return BinOpPred_match<LHS, RHS, is_bitwiselogic_op>(L, R);
1359 }
1360
1361 /// Matches integer division operations.
1362 template <typename LHS, typename RHS>
m_IDiv(const LHS & L,const RHS & R)1363 inline BinOpPred_match<LHS, RHS, is_idiv_op> m_IDiv(const LHS &L,
1364 const RHS &R) {
1365 return BinOpPred_match<LHS, RHS, is_idiv_op>(L, R);
1366 }
1367
1368 /// Matches integer remainder operations.
1369 template <typename LHS, typename RHS>
m_IRem(const LHS & L,const RHS & R)1370 inline BinOpPred_match<LHS, RHS, is_irem_op> m_IRem(const LHS &L,
1371 const RHS &R) {
1372 return BinOpPred_match<LHS, RHS, is_irem_op>(L, R);
1373 }
1374
1375 //===----------------------------------------------------------------------===//
1376 // Class that matches exact binary ops.
1377 //
1378 template <typename SubPattern_t> struct Exact_match {
1379 SubPattern_t SubPattern;
1380
Exact_matchExact_match1381 Exact_match(const SubPattern_t &SP) : SubPattern(SP) {}
1382
matchExact_match1383 template <typename OpTy> bool match(OpTy *V) {
1384 if (auto *PEO = dyn_cast<PossiblyExactOperator>(V))
1385 return PEO->isExact() && SubPattern.match(V);
1386 return false;
1387 }
1388 };
1389
m_Exact(const T & SubPattern)1390 template <typename T> inline Exact_match<T> m_Exact(const T &SubPattern) {
1391 return SubPattern;
1392 }
1393
1394 //===----------------------------------------------------------------------===//
1395 // Matchers for CmpInst classes
1396 //
1397
1398 template <typename LHS_t, typename RHS_t, typename Class, typename PredicateTy,
1399 bool Commutable = false>
1400 struct CmpClass_match {
1401 PredicateTy &Predicate;
1402 LHS_t L;
1403 RHS_t R;
1404
1405 // The evaluation order is always stable, regardless of Commutability.
1406 // The LHS is always matched first.
CmpClass_matchCmpClass_match1407 CmpClass_match(PredicateTy &Pred, const LHS_t &LHS, const RHS_t &RHS)
1408 : Predicate(Pred), L(LHS), R(RHS) {}
1409
matchCmpClass_match1410 template <typename OpTy> bool match(OpTy *V) {
1411 if (auto *I = dyn_cast<Class>(V)) {
1412 if (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) {
1413 Predicate = I->getPredicate();
1414 return true;
1415 } else if (Commutable && L.match(I->getOperand(1)) &&
1416 R.match(I->getOperand(0))) {
1417 Predicate = I->getSwappedPredicate();
1418 return true;
1419 }
1420 }
1421 return false;
1422 }
1423 };
1424
1425 template <typename LHS, typename RHS>
1426 inline CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>
m_Cmp(CmpInst::Predicate & Pred,const LHS & L,const RHS & R)1427 m_Cmp(CmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1428 return CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>(Pred, L, R);
1429 }
1430
1431 template <typename LHS, typename RHS>
1432 inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>
m_ICmp(ICmpInst::Predicate & Pred,const LHS & L,const RHS & R)1433 m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1434 return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>(Pred, L, R);
1435 }
1436
1437 template <typename LHS, typename RHS>
1438 inline CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>
m_FCmp(FCmpInst::Predicate & Pred,const LHS & L,const RHS & R)1439 m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1440 return CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>(Pred, L, R);
1441 }
1442
1443 //===----------------------------------------------------------------------===//
1444 // Matchers for instructions with a given opcode and number of operands.
1445 //
1446
1447 /// Matches instructions with Opcode and three operands.
1448 template <typename T0, unsigned Opcode> struct OneOps_match {
1449 T0 Op1;
1450
OneOps_matchOneOps_match1451 OneOps_match(const T0 &Op1) : Op1(Op1) {}
1452
matchOneOps_match1453 template <typename OpTy> bool match(OpTy *V) {
1454 if (V->getValueID() == Value::InstructionVal + Opcode) {
1455 auto *I = cast<Instruction>(V);
1456 return Op1.match(I->getOperand(0));
1457 }
1458 return false;
1459 }
1460 };
1461
1462 /// Matches instructions with Opcode and three operands.
1463 template <typename T0, typename T1, unsigned Opcode> struct TwoOps_match {
1464 T0 Op1;
1465 T1 Op2;
1466
TwoOps_matchTwoOps_match1467 TwoOps_match(const T0 &Op1, const T1 &Op2) : Op1(Op1), Op2(Op2) {}
1468
matchTwoOps_match1469 template <typename OpTy> bool match(OpTy *V) {
1470 if (V->getValueID() == Value::InstructionVal + Opcode) {
1471 auto *I = cast<Instruction>(V);
1472 return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1));
1473 }
1474 return false;
1475 }
1476 };
1477
1478 /// Matches instructions with Opcode and three operands.
1479 template <typename T0, typename T1, typename T2, unsigned Opcode>
1480 struct ThreeOps_match {
1481 T0 Op1;
1482 T1 Op2;
1483 T2 Op3;
1484
ThreeOps_matchThreeOps_match1485 ThreeOps_match(const T0 &Op1, const T1 &Op2, const T2 &Op3)
1486 : Op1(Op1), Op2(Op2), Op3(Op3) {}
1487
matchThreeOps_match1488 template <typename OpTy> bool match(OpTy *V) {
1489 if (V->getValueID() == Value::InstructionVal + Opcode) {
1490 auto *I = cast<Instruction>(V);
1491 return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) &&
1492 Op3.match(I->getOperand(2));
1493 }
1494 return false;
1495 }
1496 };
1497
1498 /// Matches SelectInst.
1499 template <typename Cond, typename LHS, typename RHS>
1500 inline ThreeOps_match<Cond, LHS, RHS, Instruction::Select>
m_Select(const Cond & C,const LHS & L,const RHS & R)1501 m_Select(const Cond &C, const LHS &L, const RHS &R) {
1502 return ThreeOps_match<Cond, LHS, RHS, Instruction::Select>(C, L, R);
1503 }
1504
1505 /// This matches a select of two constants, e.g.:
1506 /// m_SelectCst<-1, 0>(m_Value(V))
1507 template <int64_t L, int64_t R, typename Cond>
1508 inline ThreeOps_match<Cond, constantint_match<L>, constantint_match<R>,
1509 Instruction::Select>
m_SelectCst(const Cond & C)1510 m_SelectCst(const Cond &C) {
1511 return m_Select(C, m_ConstantInt<L>(), m_ConstantInt<R>());
1512 }
1513
1514 /// Matches FreezeInst.
1515 template <typename OpTy>
m_Freeze(const OpTy & Op)1516 inline OneOps_match<OpTy, Instruction::Freeze> m_Freeze(const OpTy &Op) {
1517 return OneOps_match<OpTy, Instruction::Freeze>(Op);
1518 }
1519
1520 /// Matches InsertElementInst.
1521 template <typename Val_t, typename Elt_t, typename Idx_t>
1522 inline ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement>
m_InsertElt(const Val_t & Val,const Elt_t & Elt,const Idx_t & Idx)1523 m_InsertElt(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx) {
1524 return ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement>(
1525 Val, Elt, Idx);
1526 }
1527
1528 /// Matches ExtractElementInst.
1529 template <typename Val_t, typename Idx_t>
1530 inline TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement>
m_ExtractElt(const Val_t & Val,const Idx_t & Idx)1531 m_ExtractElt(const Val_t &Val, const Idx_t &Idx) {
1532 return TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement>(Val, Idx);
1533 }
1534
1535 /// Matches shuffle.
1536 template <typename T0, typename T1, typename T2> struct Shuffle_match {
1537 T0 Op1;
1538 T1 Op2;
1539 T2 Mask;
1540
Shuffle_matchShuffle_match1541 Shuffle_match(const T0 &Op1, const T1 &Op2, const T2 &Mask)
1542 : Op1(Op1), Op2(Op2), Mask(Mask) {}
1543
matchShuffle_match1544 template <typename OpTy> bool match(OpTy *V) {
1545 if (auto *I = dyn_cast<ShuffleVectorInst>(V)) {
1546 return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) &&
1547 Mask.match(I->getShuffleMask());
1548 }
1549 return false;
1550 }
1551 };
1552
1553 struct m_Mask {
1554 ArrayRef<int> &MaskRef;
m_Maskm_Mask1555 m_Mask(ArrayRef<int> &MaskRef) : MaskRef(MaskRef) {}
matchm_Mask1556 bool match(ArrayRef<int> Mask) {
1557 MaskRef = Mask;
1558 return true;
1559 }
1560 };
1561
1562 struct m_ZeroMask {
matchm_ZeroMask1563 bool match(ArrayRef<int> Mask) {
1564 return all_of(Mask, [](int Elem) { return Elem == 0 || Elem == -1; });
1565 }
1566 };
1567
1568 struct m_SpecificMask {
1569 ArrayRef<int> &MaskRef;
m_SpecificMaskm_SpecificMask1570 m_SpecificMask(ArrayRef<int> &MaskRef) : MaskRef(MaskRef) {}
matchm_SpecificMask1571 bool match(ArrayRef<int> Mask) { return MaskRef == Mask; }
1572 };
1573
1574 struct m_SplatOrUndefMask {
1575 int &SplatIndex;
m_SplatOrUndefMaskm_SplatOrUndefMask1576 m_SplatOrUndefMask(int &SplatIndex) : SplatIndex(SplatIndex) {}
matchm_SplatOrUndefMask1577 bool match(ArrayRef<int> Mask) {
1578 const auto *First = find_if(Mask, [](int Elem) { return Elem != -1; });
1579 if (First == Mask.end())
1580 return false;
1581 SplatIndex = *First;
1582 return all_of(Mask,
1583 [First](int Elem) { return Elem == *First || Elem == -1; });
1584 }
1585 };
1586
1587 /// Matches ShuffleVectorInst independently of mask value.
1588 template <typename V1_t, typename V2_t>
1589 inline TwoOps_match<V1_t, V2_t, Instruction::ShuffleVector>
m_Shuffle(const V1_t & v1,const V2_t & v2)1590 m_Shuffle(const V1_t &v1, const V2_t &v2) {
1591 return TwoOps_match<V1_t, V2_t, Instruction::ShuffleVector>(v1, v2);
1592 }
1593
1594 template <typename V1_t, typename V2_t, typename Mask_t>
1595 inline Shuffle_match<V1_t, V2_t, Mask_t>
m_Shuffle(const V1_t & v1,const V2_t & v2,const Mask_t & mask)1596 m_Shuffle(const V1_t &v1, const V2_t &v2, const Mask_t &mask) {
1597 return Shuffle_match<V1_t, V2_t, Mask_t>(v1, v2, mask);
1598 }
1599
1600 /// Matches LoadInst.
1601 template <typename OpTy>
m_Load(const OpTy & Op)1602 inline OneOps_match<OpTy, Instruction::Load> m_Load(const OpTy &Op) {
1603 return OneOps_match<OpTy, Instruction::Load>(Op);
1604 }
1605
1606 /// Matches StoreInst.
1607 template <typename ValueOpTy, typename PointerOpTy>
1608 inline TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store>
m_Store(const ValueOpTy & ValueOp,const PointerOpTy & PointerOp)1609 m_Store(const ValueOpTy &ValueOp, const PointerOpTy &PointerOp) {
1610 return TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store>(ValueOp,
1611 PointerOp);
1612 }
1613
1614 //===----------------------------------------------------------------------===//
1615 // Matchers for CastInst classes
1616 //
1617
1618 template <typename Op_t, unsigned Opcode> struct CastOperator_match {
1619 Op_t Op;
1620
CastOperator_matchCastOperator_match1621 CastOperator_match(const Op_t &OpMatch) : Op(OpMatch) {}
1622
matchCastOperator_match1623 template <typename OpTy> bool match(OpTy *V) {
1624 if (auto *O = dyn_cast<Operator>(V))
1625 return O->getOpcode() == Opcode && Op.match(O->getOperand(0));
1626 return false;
1627 }
1628 };
1629
1630 template <typename Op_t, unsigned Opcode> struct CastInst_match {
1631 Op_t Op;
1632
CastInst_matchCastInst_match1633 CastInst_match(const Op_t &OpMatch) : Op(OpMatch) {}
1634
matchCastInst_match1635 template <typename OpTy> bool match(OpTy *V) {
1636 if (auto *I = dyn_cast<Instruction>(V))
1637 return I->getOpcode() == Opcode && Op.match(I->getOperand(0));
1638 return false;
1639 }
1640 };
1641
1642 template <typename Op_t> struct PtrToIntSameSize_match {
1643 const DataLayout &DL;
1644 Op_t Op;
1645
PtrToIntSameSize_matchPtrToIntSameSize_match1646 PtrToIntSameSize_match(const DataLayout &DL, const Op_t &OpMatch)
1647 : DL(DL), Op(OpMatch) {}
1648
matchPtrToIntSameSize_match1649 template <typename OpTy> bool match(OpTy *V) {
1650 if (auto *O = dyn_cast<Operator>(V))
1651 return O->getOpcode() == Instruction::PtrToInt &&
1652 DL.getTypeSizeInBits(O->getType()) ==
1653 DL.getTypeSizeInBits(O->getOperand(0)->getType()) &&
1654 Op.match(O->getOperand(0));
1655 return false;
1656 }
1657 };
1658
1659 template <typename Op_t> struct NNegZExt_match {
1660 Op_t Op;
1661
NNegZExt_matchNNegZExt_match1662 NNegZExt_match(const Op_t &OpMatch) : Op(OpMatch) {}
1663
matchNNegZExt_match1664 template <typename OpTy> bool match(OpTy *V) {
1665 if (auto *I = dyn_cast<Instruction>(V))
1666 return I->getOpcode() == Instruction::ZExt && I->hasNonNeg() &&
1667 Op.match(I->getOperand(0));
1668 return false;
1669 }
1670 };
1671
1672 /// Matches BitCast.
1673 template <typename OpTy>
1674 inline CastOperator_match<OpTy, Instruction::BitCast>
m_BitCast(const OpTy & Op)1675 m_BitCast(const OpTy &Op) {
1676 return CastOperator_match<OpTy, Instruction::BitCast>(Op);
1677 }
1678
1679 /// Matches PtrToInt.
1680 template <typename OpTy>
1681 inline CastOperator_match<OpTy, Instruction::PtrToInt>
m_PtrToInt(const OpTy & Op)1682 m_PtrToInt(const OpTy &Op) {
1683 return CastOperator_match<OpTy, Instruction::PtrToInt>(Op);
1684 }
1685
1686 template <typename OpTy>
m_PtrToIntSameSize(const DataLayout & DL,const OpTy & Op)1687 inline PtrToIntSameSize_match<OpTy> m_PtrToIntSameSize(const DataLayout &DL,
1688 const OpTy &Op) {
1689 return PtrToIntSameSize_match<OpTy>(DL, Op);
1690 }
1691
1692 /// Matches IntToPtr.
1693 template <typename OpTy>
1694 inline CastOperator_match<OpTy, Instruction::IntToPtr>
m_IntToPtr(const OpTy & Op)1695 m_IntToPtr(const OpTy &Op) {
1696 return CastOperator_match<OpTy, Instruction::IntToPtr>(Op);
1697 }
1698
1699 /// Matches Trunc.
1700 template <typename OpTy>
m_Trunc(const OpTy & Op)1701 inline CastOperator_match<OpTy, Instruction::Trunc> m_Trunc(const OpTy &Op) {
1702 return CastOperator_match<OpTy, Instruction::Trunc>(Op);
1703 }
1704
1705 template <typename OpTy>
1706 inline match_combine_or<CastOperator_match<OpTy, Instruction::Trunc>, OpTy>
m_TruncOrSelf(const OpTy & Op)1707 m_TruncOrSelf(const OpTy &Op) {
1708 return m_CombineOr(m_Trunc(Op), Op);
1709 }
1710
1711 /// Matches SExt.
1712 template <typename OpTy>
m_SExt(const OpTy & Op)1713 inline CastInst_match<OpTy, Instruction::SExt> m_SExt(const OpTy &Op) {
1714 return CastInst_match<OpTy, Instruction::SExt>(Op);
1715 }
1716
1717 /// Matches ZExt.
1718 template <typename OpTy>
m_ZExt(const OpTy & Op)1719 inline CastInst_match<OpTy, Instruction::ZExt> m_ZExt(const OpTy &Op) {
1720 return CastInst_match<OpTy, Instruction::ZExt>(Op);
1721 }
1722
1723 template <typename OpTy>
m_NNegZExt(const OpTy & Op)1724 inline NNegZExt_match<OpTy> m_NNegZExt(const OpTy &Op) {
1725 return NNegZExt_match<OpTy>(Op);
1726 }
1727
1728 template <typename OpTy>
1729 inline match_combine_or<CastInst_match<OpTy, Instruction::ZExt>, OpTy>
m_ZExtOrSelf(const OpTy & Op)1730 m_ZExtOrSelf(const OpTy &Op) {
1731 return m_CombineOr(m_ZExt(Op), Op);
1732 }
1733
1734 template <typename OpTy>
1735 inline match_combine_or<CastInst_match<OpTy, Instruction::SExt>, OpTy>
m_SExtOrSelf(const OpTy & Op)1736 m_SExtOrSelf(const OpTy &Op) {
1737 return m_CombineOr(m_SExt(Op), Op);
1738 }
1739
1740 /// Match either "sext" or "zext nneg".
1741 template <typename OpTy>
1742 inline match_combine_or<CastInst_match<OpTy, Instruction::SExt>,
1743 NNegZExt_match<OpTy>>
m_SExtLike(const OpTy & Op)1744 m_SExtLike(const OpTy &Op) {
1745 return m_CombineOr(m_SExt(Op), m_NNegZExt(Op));
1746 }
1747
1748 template <typename OpTy>
1749 inline match_combine_or<CastInst_match<OpTy, Instruction::ZExt>,
1750 CastInst_match<OpTy, Instruction::SExt>>
m_ZExtOrSExt(const OpTy & Op)1751 m_ZExtOrSExt(const OpTy &Op) {
1752 return m_CombineOr(m_ZExt(Op), m_SExt(Op));
1753 }
1754
1755 template <typename OpTy>
1756 inline match_combine_or<
1757 match_combine_or<CastInst_match<OpTy, Instruction::ZExt>,
1758 CastInst_match<OpTy, Instruction::SExt>>,
1759 OpTy>
m_ZExtOrSExtOrSelf(const OpTy & Op)1760 m_ZExtOrSExtOrSelf(const OpTy &Op) {
1761 return m_CombineOr(m_ZExtOrSExt(Op), Op);
1762 }
1763
1764 template <typename OpTy>
m_UIToFP(const OpTy & Op)1765 inline CastInst_match<OpTy, Instruction::UIToFP> m_UIToFP(const OpTy &Op) {
1766 return CastInst_match<OpTy, Instruction::UIToFP>(Op);
1767 }
1768
1769 template <typename OpTy>
m_SIToFP(const OpTy & Op)1770 inline CastInst_match<OpTy, Instruction::SIToFP> m_SIToFP(const OpTy &Op) {
1771 return CastInst_match<OpTy, Instruction::SIToFP>(Op);
1772 }
1773
1774 template <typename OpTy>
m_FPToUI(const OpTy & Op)1775 inline CastInst_match<OpTy, Instruction::FPToUI> m_FPToUI(const OpTy &Op) {
1776 return CastInst_match<OpTy, Instruction::FPToUI>(Op);
1777 }
1778
1779 template <typename OpTy>
m_FPToSI(const OpTy & Op)1780 inline CastInst_match<OpTy, Instruction::FPToSI> m_FPToSI(const OpTy &Op) {
1781 return CastInst_match<OpTy, Instruction::FPToSI>(Op);
1782 }
1783
1784 template <typename OpTy>
1785 inline CastInst_match<OpTy, Instruction::FPTrunc>
m_FPTrunc(const OpTy & Op)1786 m_FPTrunc(const OpTy &Op) {
1787 return CastInst_match<OpTy, Instruction::FPTrunc>(Op);
1788 }
1789
1790 template <typename OpTy>
m_FPExt(const OpTy & Op)1791 inline CastInst_match<OpTy, Instruction::FPExt> m_FPExt(const OpTy &Op) {
1792 return CastInst_match<OpTy, Instruction::FPExt>(Op);
1793 }
1794
1795 //===----------------------------------------------------------------------===//
1796 // Matchers for control flow.
1797 //
1798
1799 struct br_match {
1800 BasicBlock *&Succ;
1801
br_matchbr_match1802 br_match(BasicBlock *&Succ) : Succ(Succ) {}
1803
matchbr_match1804 template <typename OpTy> bool match(OpTy *V) {
1805 if (auto *BI = dyn_cast<BranchInst>(V))
1806 if (BI->isUnconditional()) {
1807 Succ = BI->getSuccessor(0);
1808 return true;
1809 }
1810 return false;
1811 }
1812 };
1813
m_UnconditionalBr(BasicBlock * & Succ)1814 inline br_match m_UnconditionalBr(BasicBlock *&Succ) { return br_match(Succ); }
1815
1816 template <typename Cond_t, typename TrueBlock_t, typename FalseBlock_t>
1817 struct brc_match {
1818 Cond_t Cond;
1819 TrueBlock_t T;
1820 FalseBlock_t F;
1821
brc_matchbrc_match1822 brc_match(const Cond_t &C, const TrueBlock_t &t, const FalseBlock_t &f)
1823 : Cond(C), T(t), F(f) {}
1824
matchbrc_match1825 template <typename OpTy> bool match(OpTy *V) {
1826 if (auto *BI = dyn_cast<BranchInst>(V))
1827 if (BI->isConditional() && Cond.match(BI->getCondition()))
1828 return T.match(BI->getSuccessor(0)) && F.match(BI->getSuccessor(1));
1829 return false;
1830 }
1831 };
1832
1833 template <typename Cond_t>
1834 inline brc_match<Cond_t, bind_ty<BasicBlock>, bind_ty<BasicBlock>>
m_Br(const Cond_t & C,BasicBlock * & T,BasicBlock * & F)1835 m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F) {
1836 return brc_match<Cond_t, bind_ty<BasicBlock>, bind_ty<BasicBlock>>(
1837 C, m_BasicBlock(T), m_BasicBlock(F));
1838 }
1839
1840 template <typename Cond_t, typename TrueBlock_t, typename FalseBlock_t>
1841 inline brc_match<Cond_t, TrueBlock_t, FalseBlock_t>
m_Br(const Cond_t & C,const TrueBlock_t & T,const FalseBlock_t & F)1842 m_Br(const Cond_t &C, const TrueBlock_t &T, const FalseBlock_t &F) {
1843 return brc_match<Cond_t, TrueBlock_t, FalseBlock_t>(C, T, F);
1844 }
1845
1846 //===----------------------------------------------------------------------===//
1847 // Matchers for max/min idioms, eg: "select (sgt x, y), x, y" -> smax(x,y).
1848 //
1849
1850 template <typename CmpInst_t, typename LHS_t, typename RHS_t, typename Pred_t,
1851 bool Commutable = false>
1852 struct MaxMin_match {
1853 using PredType = Pred_t;
1854 LHS_t L;
1855 RHS_t R;
1856
1857 // The evaluation order is always stable, regardless of Commutability.
1858 // The LHS is always matched first.
MaxMin_matchMaxMin_match1859 MaxMin_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
1860
matchMaxMin_match1861 template <typename OpTy> bool match(OpTy *V) {
1862 if (auto *II = dyn_cast<IntrinsicInst>(V)) {
1863 Intrinsic::ID IID = II->getIntrinsicID();
1864 if ((IID == Intrinsic::smax && Pred_t::match(ICmpInst::ICMP_SGT)) ||
1865 (IID == Intrinsic::smin && Pred_t::match(ICmpInst::ICMP_SLT)) ||
1866 (IID == Intrinsic::umax && Pred_t::match(ICmpInst::ICMP_UGT)) ||
1867 (IID == Intrinsic::umin && Pred_t::match(ICmpInst::ICMP_ULT))) {
1868 Value *LHS = II->getOperand(0), *RHS = II->getOperand(1);
1869 return (L.match(LHS) && R.match(RHS)) ||
1870 (Commutable && L.match(RHS) && R.match(LHS));
1871 }
1872 }
1873 // Look for "(x pred y) ? x : y" or "(x pred y) ? y : x".
1874 auto *SI = dyn_cast<SelectInst>(V);
1875 if (!SI)
1876 return false;
1877 auto *Cmp = dyn_cast<CmpInst_t>(SI->getCondition());
1878 if (!Cmp)
1879 return false;
1880 // At this point we have a select conditioned on a comparison. Check that
1881 // it is the values returned by the select that are being compared.
1882 auto *TrueVal = SI->getTrueValue();
1883 auto *FalseVal = SI->getFalseValue();
1884 auto *LHS = Cmp->getOperand(0);
1885 auto *RHS = Cmp->getOperand(1);
1886 if ((TrueVal != LHS || FalseVal != RHS) &&
1887 (TrueVal != RHS || FalseVal != LHS))
1888 return false;
1889 typename CmpInst_t::Predicate Pred =
1890 LHS == TrueVal ? Cmp->getPredicate() : Cmp->getInversePredicate();
1891 // Does "(x pred y) ? x : y" represent the desired max/min operation?
1892 if (!Pred_t::match(Pred))
1893 return false;
1894 // It does! Bind the operands.
1895 return (L.match(LHS) && R.match(RHS)) ||
1896 (Commutable && L.match(RHS) && R.match(LHS));
1897 }
1898 };
1899
1900 /// Helper class for identifying signed max predicates.
1901 struct smax_pred_ty {
matchsmax_pred_ty1902 static bool match(ICmpInst::Predicate Pred) {
1903 return Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE;
1904 }
1905 };
1906
1907 /// Helper class for identifying signed min predicates.
1908 struct smin_pred_ty {
matchsmin_pred_ty1909 static bool match(ICmpInst::Predicate Pred) {
1910 return Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE;
1911 }
1912 };
1913
1914 /// Helper class for identifying unsigned max predicates.
1915 struct umax_pred_ty {
matchumax_pred_ty1916 static bool match(ICmpInst::Predicate Pred) {
1917 return Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE;
1918 }
1919 };
1920
1921 /// Helper class for identifying unsigned min predicates.
1922 struct umin_pred_ty {
matchumin_pred_ty1923 static bool match(ICmpInst::Predicate Pred) {
1924 return Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_ULE;
1925 }
1926 };
1927
1928 /// Helper class for identifying ordered max predicates.
1929 struct ofmax_pred_ty {
matchofmax_pred_ty1930 static bool match(FCmpInst::Predicate Pred) {
1931 return Pred == CmpInst::FCMP_OGT || Pred == CmpInst::FCMP_OGE;
1932 }
1933 };
1934
1935 /// Helper class for identifying ordered min predicates.
1936 struct ofmin_pred_ty {
matchofmin_pred_ty1937 static bool match(FCmpInst::Predicate Pred) {
1938 return Pred == CmpInst::FCMP_OLT || Pred == CmpInst::FCMP_OLE;
1939 }
1940 };
1941
1942 /// Helper class for identifying unordered max predicates.
1943 struct ufmax_pred_ty {
matchufmax_pred_ty1944 static bool match(FCmpInst::Predicate Pred) {
1945 return Pred == CmpInst::FCMP_UGT || Pred == CmpInst::FCMP_UGE;
1946 }
1947 };
1948
1949 /// Helper class for identifying unordered min predicates.
1950 struct ufmin_pred_ty {
matchufmin_pred_ty1951 static bool match(FCmpInst::Predicate Pred) {
1952 return Pred == CmpInst::FCMP_ULT || Pred == CmpInst::FCMP_ULE;
1953 }
1954 };
1955
1956 template <typename LHS, typename RHS>
m_SMax(const LHS & L,const RHS & R)1957 inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty> m_SMax(const LHS &L,
1958 const RHS &R) {
1959 return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>(L, R);
1960 }
1961
1962 template <typename LHS, typename RHS>
m_SMin(const LHS & L,const RHS & R)1963 inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty> m_SMin(const LHS &L,
1964 const RHS &R) {
1965 return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>(L, R);
1966 }
1967
1968 template <typename LHS, typename RHS>
m_UMax(const LHS & L,const RHS & R)1969 inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty> m_UMax(const LHS &L,
1970 const RHS &R) {
1971 return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>(L, R);
1972 }
1973
1974 template <typename LHS, typename RHS>
m_UMin(const LHS & L,const RHS & R)1975 inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty> m_UMin(const LHS &L,
1976 const RHS &R) {
1977 return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>(L, R);
1978 }
1979
1980 template <typename LHS, typename RHS>
1981 inline match_combine_or<
1982 match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>,
1983 MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>>,
1984 match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>,
1985 MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>>>
m_MaxOrMin(const LHS & L,const RHS & R)1986 m_MaxOrMin(const LHS &L, const RHS &R) {
1987 return m_CombineOr(m_CombineOr(m_SMax(L, R), m_SMin(L, R)),
1988 m_CombineOr(m_UMax(L, R), m_UMin(L, R)));
1989 }
1990
1991 /// Match an 'ordered' floating point maximum function.
1992 /// Floating point has one special value 'NaN'. Therefore, there is no total
1993 /// order. However, if we can ignore the 'NaN' value (for example, because of a
1994 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
1995 /// semantics. In the presence of 'NaN' we have to preserve the original
1996 /// select(fcmp(ogt/ge, L, R), L, R) semantics matched by this predicate.
1997 ///
1998 /// max(L, R) iff L and R are not NaN
1999 /// m_OrdFMax(L, R) = R iff L or R are NaN
2000 template <typename LHS, typename RHS>
m_OrdFMax(const LHS & L,const RHS & R)2001 inline MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty> m_OrdFMax(const LHS &L,
2002 const RHS &R) {
2003 return MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty>(L, R);
2004 }
2005
2006 /// Match an 'ordered' floating point minimum function.
2007 /// Floating point has one special value 'NaN'. Therefore, there is no total
2008 /// order. However, if we can ignore the 'NaN' value (for example, because of a
2009 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
2010 /// semantics. In the presence of 'NaN' we have to preserve the original
2011 /// select(fcmp(olt/le, L, R), L, R) semantics matched by this predicate.
2012 ///
2013 /// min(L, R) iff L and R are not NaN
2014 /// m_OrdFMin(L, R) = R iff L or R are NaN
2015 template <typename LHS, typename RHS>
m_OrdFMin(const LHS & L,const RHS & R)2016 inline MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty> m_OrdFMin(const LHS &L,
2017 const RHS &R) {
2018 return MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty>(L, R);
2019 }
2020
2021 /// Match an 'unordered' floating point maximum function.
2022 /// Floating point has one special value 'NaN'. Therefore, there is no total
2023 /// order. However, if we can ignore the 'NaN' value (for example, because of a
2024 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
2025 /// semantics. In the presence of 'NaN' we have to preserve the original
2026 /// select(fcmp(ugt/ge, L, R), L, R) semantics matched by this predicate.
2027 ///
2028 /// max(L, R) iff L and R are not NaN
2029 /// m_UnordFMax(L, R) = L iff L or R are NaN
2030 template <typename LHS, typename RHS>
2031 inline MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>
m_UnordFMax(const LHS & L,const RHS & R)2032 m_UnordFMax(const LHS &L, const RHS &R) {
2033 return MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>(L, R);
2034 }
2035
2036 /// Match an 'unordered' floating point minimum function.
2037 /// Floating point has one special value 'NaN'. Therefore, there is no total
2038 /// order. However, if we can ignore the 'NaN' value (for example, because of a
2039 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
2040 /// semantics. In the presence of 'NaN' we have to preserve the original
2041 /// select(fcmp(ult/le, L, R), L, R) semantics matched by this predicate.
2042 ///
2043 /// min(L, R) iff L and R are not NaN
2044 /// m_UnordFMin(L, R) = L iff L or R are NaN
2045 template <typename LHS, typename RHS>
2046 inline MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>
m_UnordFMin(const LHS & L,const RHS & R)2047 m_UnordFMin(const LHS &L, const RHS &R) {
2048 return MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>(L, R);
2049 }
2050
2051 //===----------------------------------------------------------------------===//
2052 // Matchers for overflow check patterns: e.g. (a + b) u< a, (a ^ -1) <u b
2053 // Note that S might be matched to other instructions than AddInst.
2054 //
2055
2056 template <typename LHS_t, typename RHS_t, typename Sum_t>
2057 struct UAddWithOverflow_match {
2058 LHS_t L;
2059 RHS_t R;
2060 Sum_t S;
2061
UAddWithOverflow_matchUAddWithOverflow_match2062 UAddWithOverflow_match(const LHS_t &L, const RHS_t &R, const Sum_t &S)
2063 : L(L), R(R), S(S) {}
2064
matchUAddWithOverflow_match2065 template <typename OpTy> bool match(OpTy *V) {
2066 Value *ICmpLHS, *ICmpRHS;
2067 ICmpInst::Predicate Pred;
2068 if (!m_ICmp(Pred, m_Value(ICmpLHS), m_Value(ICmpRHS)).match(V))
2069 return false;
2070
2071 Value *AddLHS, *AddRHS;
2072 auto AddExpr = m_Add(m_Value(AddLHS), m_Value(AddRHS));
2073
2074 // (a + b) u< a, (a + b) u< b
2075 if (Pred == ICmpInst::ICMP_ULT)
2076 if (AddExpr.match(ICmpLHS) && (ICmpRHS == AddLHS || ICmpRHS == AddRHS))
2077 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
2078
2079 // a >u (a + b), b >u (a + b)
2080 if (Pred == ICmpInst::ICMP_UGT)
2081 if (AddExpr.match(ICmpRHS) && (ICmpLHS == AddLHS || ICmpLHS == AddRHS))
2082 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
2083
2084 Value *Op1;
2085 auto XorExpr = m_OneUse(m_Xor(m_Value(Op1), m_AllOnes()));
2086 // (a ^ -1) <u b
2087 if (Pred == ICmpInst::ICMP_ULT) {
2088 if (XorExpr.match(ICmpLHS))
2089 return L.match(Op1) && R.match(ICmpRHS) && S.match(ICmpLHS);
2090 }
2091 // b > u (a ^ -1)
2092 if (Pred == ICmpInst::ICMP_UGT) {
2093 if (XorExpr.match(ICmpRHS))
2094 return L.match(Op1) && R.match(ICmpLHS) && S.match(ICmpRHS);
2095 }
2096
2097 // Match special-case for increment-by-1.
2098 if (Pred == ICmpInst::ICMP_EQ) {
2099 // (a + 1) == 0
2100 // (1 + a) == 0
2101 if (AddExpr.match(ICmpLHS) && m_ZeroInt().match(ICmpRHS) &&
2102 (m_One().match(AddLHS) || m_One().match(AddRHS)))
2103 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
2104 // 0 == (a + 1)
2105 // 0 == (1 + a)
2106 if (m_ZeroInt().match(ICmpLHS) && AddExpr.match(ICmpRHS) &&
2107 (m_One().match(AddLHS) || m_One().match(AddRHS)))
2108 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
2109 }
2110
2111 return false;
2112 }
2113 };
2114
2115 /// Match an icmp instruction checking for unsigned overflow on addition.
2116 ///
2117 /// S is matched to the addition whose result is being checked for overflow, and
2118 /// L and R are matched to the LHS and RHS of S.
2119 template <typename LHS_t, typename RHS_t, typename Sum_t>
2120 UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>
m_UAddWithOverflow(const LHS_t & L,const RHS_t & R,const Sum_t & S)2121 m_UAddWithOverflow(const LHS_t &L, const RHS_t &R, const Sum_t &S) {
2122 return UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>(L, R, S);
2123 }
2124
2125 template <typename Opnd_t> struct Argument_match {
2126 unsigned OpI;
2127 Opnd_t Val;
2128
Argument_matchArgument_match2129 Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) {}
2130
matchArgument_match2131 template <typename OpTy> bool match(OpTy *V) {
2132 // FIXME: Should likely be switched to use `CallBase`.
2133 if (const auto *CI = dyn_cast<CallInst>(V))
2134 return Val.match(CI->getArgOperand(OpI));
2135 return false;
2136 }
2137 };
2138
2139 /// Match an argument.
2140 template <unsigned OpI, typename Opnd_t>
m_Argument(const Opnd_t & Op)2141 inline Argument_match<Opnd_t> m_Argument(const Opnd_t &Op) {
2142 return Argument_match<Opnd_t>(OpI, Op);
2143 }
2144
2145 /// Intrinsic matchers.
2146 struct IntrinsicID_match {
2147 unsigned ID;
2148
IntrinsicID_matchIntrinsicID_match2149 IntrinsicID_match(Intrinsic::ID IntrID) : ID(IntrID) {}
2150
matchIntrinsicID_match2151 template <typename OpTy> bool match(OpTy *V) {
2152 if (const auto *CI = dyn_cast<CallInst>(V))
2153 if (const auto *F = CI->getCalledFunction())
2154 return F->getIntrinsicID() == ID;
2155 return false;
2156 }
2157 };
2158
2159 /// Intrinsic matches are combinations of ID matchers, and argument
2160 /// matchers. Higher arity matcher are defined recursively in terms of and-ing
2161 /// them with lower arity matchers. Here's some convenient typedefs for up to
2162 /// several arguments, and more can be added as needed
2163 template <typename T0 = void, typename T1 = void, typename T2 = void,
2164 typename T3 = void, typename T4 = void, typename T5 = void,
2165 typename T6 = void, typename T7 = void, typename T8 = void,
2166 typename T9 = void, typename T10 = void>
2167 struct m_Intrinsic_Ty;
2168 template <typename T0> struct m_Intrinsic_Ty<T0> {
2169 using Ty = match_combine_and<IntrinsicID_match, Argument_match<T0>>;
2170 };
2171 template <typename T0, typename T1> struct m_Intrinsic_Ty<T0, T1> {
2172 using Ty =
2173 match_combine_and<typename m_Intrinsic_Ty<T0>::Ty, Argument_match<T1>>;
2174 };
2175 template <typename T0, typename T1, typename T2>
2176 struct m_Intrinsic_Ty<T0, T1, T2> {
2177 using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1>::Ty,
2178 Argument_match<T2>>;
2179 };
2180 template <typename T0, typename T1, typename T2, typename T3>
2181 struct m_Intrinsic_Ty<T0, T1, T2, T3> {
2182 using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2>::Ty,
2183 Argument_match<T3>>;
2184 };
2185
2186 template <typename T0, typename T1, typename T2, typename T3, typename T4>
2187 struct m_Intrinsic_Ty<T0, T1, T2, T3, T4> {
2188 using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty,
2189 Argument_match<T4>>;
2190 };
2191
2192 template <typename T0, typename T1, typename T2, typename T3, typename T4,
2193 typename T5>
2194 struct m_Intrinsic_Ty<T0, T1, T2, T3, T4, T5> {
2195 using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2, T3, T4>::Ty,
2196 Argument_match<T5>>;
2197 };
2198
2199 /// Match intrinsic calls like this:
2200 /// m_Intrinsic<Intrinsic::fabs>(m_Value(X))
2201 template <Intrinsic::ID IntrID> inline IntrinsicID_match m_Intrinsic() {
2202 return IntrinsicID_match(IntrID);
2203 }
2204
2205 /// Matches MaskedLoad Intrinsic.
2206 template <typename Opnd0, typename Opnd1, typename Opnd2, typename Opnd3>
2207 inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2, Opnd3>::Ty
2208 m_MaskedLoad(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2,
2209 const Opnd3 &Op3) {
2210 return m_Intrinsic<Intrinsic::masked_load>(Op0, Op1, Op2, Op3);
2211 }
2212
2213 /// Matches MaskedGather Intrinsic.
2214 template <typename Opnd0, typename Opnd1, typename Opnd2, typename Opnd3>
2215 inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2, Opnd3>::Ty
2216 m_MaskedGather(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2,
2217 const Opnd3 &Op3) {
2218 return m_Intrinsic<Intrinsic::masked_gather>(Op0, Op1, Op2, Op3);
2219 }
2220
2221 template <Intrinsic::ID IntrID, typename T0>
2222 inline typename m_Intrinsic_Ty<T0>::Ty m_Intrinsic(const T0 &Op0) {
2223 return m_CombineAnd(m_Intrinsic<IntrID>(), m_Argument<0>(Op0));
2224 }
2225
2226 template <Intrinsic::ID IntrID, typename T0, typename T1>
2227 inline typename m_Intrinsic_Ty<T0, T1>::Ty m_Intrinsic(const T0 &Op0,
2228 const T1 &Op1) {
2229 return m_CombineAnd(m_Intrinsic<IntrID>(Op0), m_Argument<1>(Op1));
2230 }
2231
2232 template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2>
2233 inline typename m_Intrinsic_Ty<T0, T1, T2>::Ty
2234 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) {
2235 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1), m_Argument<2>(Op2));
2236 }
2237
2238 template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
2239 typename T3>
2240 inline typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty
2241 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) {
2242 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2), m_Argument<3>(Op3));
2243 }
2244
2245 template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
2246 typename T3, typename T4>
2247 inline typename m_Intrinsic_Ty<T0, T1, T2, T3, T4>::Ty
2248 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3,
2249 const T4 &Op4) {
2250 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2, Op3),
2251 m_Argument<4>(Op4));
2252 }
2253
2254 template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
2255 typename T3, typename T4, typename T5>
2256 inline typename m_Intrinsic_Ty<T0, T1, T2, T3, T4, T5>::Ty
2257 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3,
2258 const T4 &Op4, const T5 &Op5) {
2259 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2, Op3, Op4),
2260 m_Argument<5>(Op5));
2261 }
2262
2263 // Helper intrinsic matching specializations.
2264 template <typename Opnd0>
2265 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BitReverse(const Opnd0 &Op0) {
2266 return m_Intrinsic<Intrinsic::bitreverse>(Op0);
2267 }
2268
2269 template <typename Opnd0>
2270 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BSwap(const Opnd0 &Op0) {
2271 return m_Intrinsic<Intrinsic::bswap>(Op0);
2272 }
2273
2274 template <typename Opnd0>
2275 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FAbs(const Opnd0 &Op0) {
2276 return m_Intrinsic<Intrinsic::fabs>(Op0);
2277 }
2278
2279 template <typename Opnd0>
2280 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FCanonicalize(const Opnd0 &Op0) {
2281 return m_Intrinsic<Intrinsic::canonicalize>(Op0);
2282 }
2283
2284 template <typename Opnd0, typename Opnd1>
2285 inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMin(const Opnd0 &Op0,
2286 const Opnd1 &Op1) {
2287 return m_Intrinsic<Intrinsic::minnum>(Op0, Op1);
2288 }
2289
2290 template <typename Opnd0, typename Opnd1>
2291 inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMax(const Opnd0 &Op0,
2292 const Opnd1 &Op1) {
2293 return m_Intrinsic<Intrinsic::maxnum>(Op0, Op1);
2294 }
2295
2296 template <typename Opnd0, typename Opnd1, typename Opnd2>
2297 inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2>::Ty
2298 m_FShl(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2) {
2299 return m_Intrinsic<Intrinsic::fshl>(Op0, Op1, Op2);
2300 }
2301
2302 template <typename Opnd0, typename Opnd1, typename Opnd2>
2303 inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2>::Ty
2304 m_FShr(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2) {
2305 return m_Intrinsic<Intrinsic::fshr>(Op0, Op1, Op2);
2306 }
2307
2308 template <typename Opnd0>
2309 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_Sqrt(const Opnd0 &Op0) {
2310 return m_Intrinsic<Intrinsic::sqrt>(Op0);
2311 }
2312
2313 template <typename Opnd0, typename Opnd1>
2314 inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_CopySign(const Opnd0 &Op0,
2315 const Opnd1 &Op1) {
2316 return m_Intrinsic<Intrinsic::copysign>(Op0, Op1);
2317 }
2318
2319 template <typename Opnd0>
2320 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_VecReverse(const Opnd0 &Op0) {
2321 return m_Intrinsic<Intrinsic::experimental_vector_reverse>(Op0);
2322 }
2323
2324 //===----------------------------------------------------------------------===//
2325 // Matchers for two-operands operators with the operators in either order
2326 //
2327
2328 /// Matches a BinaryOperator with LHS and RHS in either order.
2329 template <typename LHS, typename RHS>
2330 inline AnyBinaryOp_match<LHS, RHS, true> m_c_BinOp(const LHS &L, const RHS &R) {
2331 return AnyBinaryOp_match<LHS, RHS, true>(L, R);
2332 }
2333
2334 /// Matches an ICmp with a predicate over LHS and RHS in either order.
2335 /// Swaps the predicate if operands are commuted.
2336 template <typename LHS, typename RHS>
2337 inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>
2338 m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
2339 return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>(Pred, L,
2340 R);
2341 }
2342
2343 /// Matches a specific opcode with LHS and RHS in either order.
2344 template <typename LHS, typename RHS>
2345 inline SpecificBinaryOp_match<LHS, RHS, true>
2346 m_c_BinOp(unsigned Opcode, const LHS &L, const RHS &R) {
2347 return SpecificBinaryOp_match<LHS, RHS, true>(Opcode, L, R);
2348 }
2349
2350 /// Matches a Add with LHS and RHS in either order.
2351 template <typename LHS, typename RHS>
2352 inline BinaryOp_match<LHS, RHS, Instruction::Add, true> m_c_Add(const LHS &L,
2353 const RHS &R) {
2354 return BinaryOp_match<LHS, RHS, Instruction::Add, true>(L, R);
2355 }
2356
2357 /// Matches a Mul with LHS and RHS in either order.
2358 template <typename LHS, typename RHS>
2359 inline BinaryOp_match<LHS, RHS, Instruction::Mul, true> m_c_Mul(const LHS &L,
2360 const RHS &R) {
2361 return BinaryOp_match<LHS, RHS, Instruction::Mul, true>(L, R);
2362 }
2363
2364 /// Matches an And with LHS and RHS in either order.
2365 template <typename LHS, typename RHS>
2366 inline BinaryOp_match<LHS, RHS, Instruction::And, true> m_c_And(const LHS &L,
2367 const RHS &R) {
2368 return BinaryOp_match<LHS, RHS, Instruction::And, true>(L, R);
2369 }
2370
2371 /// Matches an Or with LHS and RHS in either order.
2372 template <typename LHS, typename RHS>
2373 inline BinaryOp_match<LHS, RHS, Instruction::Or, true> m_c_Or(const LHS &L,
2374 const RHS &R) {
2375 return BinaryOp_match<LHS, RHS, Instruction::Or, true>(L, R);
2376 }
2377
2378 /// Matches an Xor with LHS and RHS in either order.
2379 template <typename LHS, typename RHS>
2380 inline BinaryOp_match<LHS, RHS, Instruction::Xor, true> m_c_Xor(const LHS &L,
2381 const RHS &R) {
2382 return BinaryOp_match<LHS, RHS, Instruction::Xor, true>(L, R);
2383 }
2384
2385 /// Matches a 'Neg' as 'sub 0, V'.
2386 template <typename ValTy>
2387 inline BinaryOp_match<cst_pred_ty<is_zero_int>, ValTy, Instruction::Sub>
2388 m_Neg(const ValTy &V) {
2389 return m_Sub(m_ZeroInt(), V);
2390 }
2391
2392 /// Matches a 'Neg' as 'sub nsw 0, V'.
2393 template <typename ValTy>
2394 inline OverflowingBinaryOp_match<cst_pred_ty<is_zero_int>, ValTy,
2395 Instruction::Sub,
2396 OverflowingBinaryOperator::NoSignedWrap>
2397 m_NSWNeg(const ValTy &V) {
2398 return m_NSWSub(m_ZeroInt(), V);
2399 }
2400
2401 /// Matches a 'Not' as 'xor V, -1' or 'xor -1, V'.
2402 /// NOTE: we first match the 'Not' (by matching '-1'),
2403 /// and only then match the inner matcher!
2404 template <typename ValTy>
2405 inline BinaryOp_match<cst_pred_ty<is_all_ones>, ValTy, Instruction::Xor, true>
2406 m_Not(const ValTy &V) {
2407 return m_c_Xor(m_AllOnes(), V);
2408 }
2409
2410 template <typename ValTy> struct NotForbidUndef_match {
2411 ValTy Val;
2412 NotForbidUndef_match(const ValTy &V) : Val(V) {}
2413
2414 template <typename OpTy> bool match(OpTy *V) {
2415 // We do not use m_c_Xor because that could match an arbitrary APInt that is
2416 // not -1 as C and then fail to match the other operand if it is -1.
2417 // This code should still work even when both operands are constants.
2418 Value *X;
2419 const APInt *C;
2420 if (m_Xor(m_Value(X), m_APIntForbidUndef(C)).match(V) && C->isAllOnes())
2421 return Val.match(X);
2422 if (m_Xor(m_APIntForbidUndef(C), m_Value(X)).match(V) && C->isAllOnes())
2423 return Val.match(X);
2424 return false;
2425 }
2426 };
2427
2428 /// Matches a bitwise 'not' as 'xor V, -1' or 'xor -1, V'. For vectors, the
2429 /// constant value must be composed of only -1 scalar elements.
2430 template <typename ValTy>
2431 inline NotForbidUndef_match<ValTy> m_NotForbidUndef(const ValTy &V) {
2432 return NotForbidUndef_match<ValTy>(V);
2433 }
2434
2435 /// Matches an SMin with LHS and RHS in either order.
2436 template <typename LHS, typename RHS>
2437 inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>
2438 m_c_SMin(const LHS &L, const RHS &R) {
2439 return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>(L, R);
2440 }
2441 /// Matches an SMax with LHS and RHS in either order.
2442 template <typename LHS, typename RHS>
2443 inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>
2444 m_c_SMax(const LHS &L, const RHS &R) {
2445 return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>(L, R);
2446 }
2447 /// Matches a UMin with LHS and RHS in either order.
2448 template <typename LHS, typename RHS>
2449 inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>
2450 m_c_UMin(const LHS &L, const RHS &R) {
2451 return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>(L, R);
2452 }
2453 /// Matches a UMax with LHS and RHS in either order.
2454 template <typename LHS, typename RHS>
2455 inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>
2456 m_c_UMax(const LHS &L, const RHS &R) {
2457 return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>(L, R);
2458 }
2459
2460 template <typename LHS, typename RHS>
2461 inline match_combine_or<
2462 match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>,
2463 MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>>,
2464 match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>,
2465 MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>>>
2466 m_c_MaxOrMin(const LHS &L, const RHS &R) {
2467 return m_CombineOr(m_CombineOr(m_c_SMax(L, R), m_c_SMin(L, R)),
2468 m_CombineOr(m_c_UMax(L, R), m_c_UMin(L, R)));
2469 }
2470
2471 template <Intrinsic::ID IntrID, typename T0, typename T1>
2472 inline match_combine_or<typename m_Intrinsic_Ty<T0, T1>::Ty,
2473 typename m_Intrinsic_Ty<T1, T0>::Ty>
2474 m_c_Intrinsic(const T0 &Op0, const T1 &Op1) {
2475 return m_CombineOr(m_Intrinsic<IntrID>(Op0, Op1),
2476 m_Intrinsic<IntrID>(Op1, Op0));
2477 }
2478
2479 /// Matches FAdd with LHS and RHS in either order.
2480 template <typename LHS, typename RHS>
2481 inline BinaryOp_match<LHS, RHS, Instruction::FAdd, true>
2482 m_c_FAdd(const LHS &L, const RHS &R) {
2483 return BinaryOp_match<LHS, RHS, Instruction::FAdd, true>(L, R);
2484 }
2485
2486 /// Matches FMul with LHS and RHS in either order.
2487 template <typename LHS, typename RHS>
2488 inline BinaryOp_match<LHS, RHS, Instruction::FMul, true>
2489 m_c_FMul(const LHS &L, const RHS &R) {
2490 return BinaryOp_match<LHS, RHS, Instruction::FMul, true>(L, R);
2491 }
2492
2493 template <typename Opnd_t> struct Signum_match {
2494 Opnd_t Val;
2495 Signum_match(const Opnd_t &V) : Val(V) {}
2496
2497 template <typename OpTy> bool match(OpTy *V) {
2498 unsigned TypeSize = V->getType()->getScalarSizeInBits();
2499 if (TypeSize == 0)
2500 return false;
2501
2502 unsigned ShiftWidth = TypeSize - 1;
2503 Value *OpL = nullptr, *OpR = nullptr;
2504
2505 // This is the representation of signum we match:
2506 //
2507 // signum(x) == (x >> 63) | (-x >>u 63)
2508 //
2509 // An i1 value is its own signum, so it's correct to match
2510 //
2511 // signum(x) == (x >> 0) | (-x >>u 0)
2512 //
2513 // for i1 values.
2514
2515 auto LHS = m_AShr(m_Value(OpL), m_SpecificInt(ShiftWidth));
2516 auto RHS = m_LShr(m_Neg(m_Value(OpR)), m_SpecificInt(ShiftWidth));
2517 auto Signum = m_Or(LHS, RHS);
2518
2519 return Signum.match(V) && OpL == OpR && Val.match(OpL);
2520 }
2521 };
2522
2523 /// Matches a signum pattern.
2524 ///
2525 /// signum(x) =
2526 /// x > 0 -> 1
2527 /// x == 0 -> 0
2528 /// x < 0 -> -1
2529 template <typename Val_t> inline Signum_match<Val_t> m_Signum(const Val_t &V) {
2530 return Signum_match<Val_t>(V);
2531 }
2532
2533 template <int Ind, typename Opnd_t> struct ExtractValue_match {
2534 Opnd_t Val;
2535 ExtractValue_match(const Opnd_t &V) : Val(V) {}
2536
2537 template <typename OpTy> bool match(OpTy *V) {
2538 if (auto *I = dyn_cast<ExtractValueInst>(V)) {
2539 // If Ind is -1, don't inspect indices
2540 if (Ind != -1 &&
2541 !(I->getNumIndices() == 1 && I->getIndices()[0] == (unsigned)Ind))
2542 return false;
2543 return Val.match(I->getAggregateOperand());
2544 }
2545 return false;
2546 }
2547 };
2548
2549 /// Match a single index ExtractValue instruction.
2550 /// For example m_ExtractValue<1>(...)
2551 template <int Ind, typename Val_t>
2552 inline ExtractValue_match<Ind, Val_t> m_ExtractValue(const Val_t &V) {
2553 return ExtractValue_match<Ind, Val_t>(V);
2554 }
2555
2556 /// Match an ExtractValue instruction with any index.
2557 /// For example m_ExtractValue(...)
2558 template <typename Val_t>
2559 inline ExtractValue_match<-1, Val_t> m_ExtractValue(const Val_t &V) {
2560 return ExtractValue_match<-1, Val_t>(V);
2561 }
2562
2563 /// Matcher for a single index InsertValue instruction.
2564 template <int Ind, typename T0, typename T1> struct InsertValue_match {
2565 T0 Op0;
2566 T1 Op1;
2567
2568 InsertValue_match(const T0 &Op0, const T1 &Op1) : Op0(Op0), Op1(Op1) {}
2569
2570 template <typename OpTy> bool match(OpTy *V) {
2571 if (auto *I = dyn_cast<InsertValueInst>(V)) {
2572 return Op0.match(I->getOperand(0)) && Op1.match(I->getOperand(1)) &&
2573 I->getNumIndices() == 1 && Ind == I->getIndices()[0];
2574 }
2575 return false;
2576 }
2577 };
2578
2579 /// Matches a single index InsertValue instruction.
2580 template <int Ind, typename Val_t, typename Elt_t>
2581 inline InsertValue_match<Ind, Val_t, Elt_t> m_InsertValue(const Val_t &Val,
2582 const Elt_t &Elt) {
2583 return InsertValue_match<Ind, Val_t, Elt_t>(Val, Elt);
2584 }
2585
2586 /// Matches patterns for `vscale`. This can either be a call to `llvm.vscale` or
2587 /// the constant expression
2588 /// `ptrtoint(gep <vscale x 1 x i8>, <vscale x 1 x i8>* null, i32 1>`
2589 /// under the right conditions determined by DataLayout.
2590 struct VScaleVal_match {
2591 template <typename ITy> bool match(ITy *V) {
2592 if (m_Intrinsic<Intrinsic::vscale>().match(V))
2593 return true;
2594
2595 Value *Ptr;
2596 if (m_PtrToInt(m_Value(Ptr)).match(V)) {
2597 if (auto *GEP = dyn_cast<GEPOperator>(Ptr)) {
2598 auto *DerefTy =
2599 dyn_cast<ScalableVectorType>(GEP->getSourceElementType());
2600 if (GEP->getNumIndices() == 1 && DerefTy &&
2601 DerefTy->getElementType()->isIntegerTy(8) &&
2602 m_Zero().match(GEP->getPointerOperand()) &&
2603 m_SpecificInt(1).match(GEP->idx_begin()->get()))
2604 return true;
2605 }
2606 }
2607
2608 return false;
2609 }
2610 };
2611
2612 inline VScaleVal_match m_VScale() {
2613 return VScaleVal_match();
2614 }
2615
2616 template <typename LHS, typename RHS, unsigned Opcode, bool Commutable = false>
2617 struct LogicalOp_match {
2618 LHS L;
2619 RHS R;
2620
2621 LogicalOp_match(const LHS &L, const RHS &R) : L(L), R(R) {}
2622
2623 template <typename T> bool match(T *V) {
2624 auto *I = dyn_cast<Instruction>(V);
2625 if (!I || !I->getType()->isIntOrIntVectorTy(1))
2626 return false;
2627
2628 if (I->getOpcode() == Opcode) {
2629 auto *Op0 = I->getOperand(0);
2630 auto *Op1 = I->getOperand(1);
2631 return (L.match(Op0) && R.match(Op1)) ||
2632 (Commutable && L.match(Op1) && R.match(Op0));
2633 }
2634
2635 if (auto *Select = dyn_cast<SelectInst>(I)) {
2636 auto *Cond = Select->getCondition();
2637 auto *TVal = Select->getTrueValue();
2638 auto *FVal = Select->getFalseValue();
2639
2640 // Don't match a scalar select of bool vectors.
2641 // Transforms expect a single type for operands if this matches.
2642 if (Cond->getType() != Select->getType())
2643 return false;
2644
2645 if (Opcode == Instruction::And) {
2646 auto *C = dyn_cast<Constant>(FVal);
2647 if (C && C->isNullValue())
2648 return (L.match(Cond) && R.match(TVal)) ||
2649 (Commutable && L.match(TVal) && R.match(Cond));
2650 } else {
2651 assert(Opcode == Instruction::Or);
2652 auto *C = dyn_cast<Constant>(TVal);
2653 if (C && C->isOneValue())
2654 return (L.match(Cond) && R.match(FVal)) ||
2655 (Commutable && L.match(FVal) && R.match(Cond));
2656 }
2657 }
2658
2659 return false;
2660 }
2661 };
2662
2663 /// Matches L && R either in the form of L & R or L ? R : false.
2664 /// Note that the latter form is poison-blocking.
2665 template <typename LHS, typename RHS>
2666 inline LogicalOp_match<LHS, RHS, Instruction::And> m_LogicalAnd(const LHS &L,
2667 const RHS &R) {
2668 return LogicalOp_match<LHS, RHS, Instruction::And>(L, R);
2669 }
2670
2671 /// Matches L && R where L and R are arbitrary values.
2672 inline auto m_LogicalAnd() { return m_LogicalAnd(m_Value(), m_Value()); }
2673
2674 /// Matches L && R with LHS and RHS in either order.
2675 template <typename LHS, typename RHS>
2676 inline LogicalOp_match<LHS, RHS, Instruction::And, true>
2677 m_c_LogicalAnd(const LHS &L, const RHS &R) {
2678 return LogicalOp_match<LHS, RHS, Instruction::And, true>(L, R);
2679 }
2680
2681 /// Matches L || R either in the form of L | R or L ? true : R.
2682 /// Note that the latter form is poison-blocking.
2683 template <typename LHS, typename RHS>
2684 inline LogicalOp_match<LHS, RHS, Instruction::Or> m_LogicalOr(const LHS &L,
2685 const RHS &R) {
2686 return LogicalOp_match<LHS, RHS, Instruction::Or>(L, R);
2687 }
2688
2689 /// Matches L || R where L and R are arbitrary values.
2690 inline auto m_LogicalOr() { return m_LogicalOr(m_Value(), m_Value()); }
2691
2692 /// Matches L || R with LHS and RHS in either order.
2693 template <typename LHS, typename RHS>
2694 inline LogicalOp_match<LHS, RHS, Instruction::Or, true>
2695 m_c_LogicalOr(const LHS &L, const RHS &R) {
2696 return LogicalOp_match<LHS, RHS, Instruction::Or, true>(L, R);
2697 }
2698
2699 /// Matches either L && R or L || R,
2700 /// either one being in the either binary or logical form.
2701 /// Note that the latter form is poison-blocking.
2702 template <typename LHS, typename RHS, bool Commutable = false>
2703 inline auto m_LogicalOp(const LHS &L, const RHS &R) {
2704 return m_CombineOr(
2705 LogicalOp_match<LHS, RHS, Instruction::And, Commutable>(L, R),
2706 LogicalOp_match<LHS, RHS, Instruction::Or, Commutable>(L, R));
2707 }
2708
2709 /// Matches either L && R or L || R where L and R are arbitrary values.
2710 inline auto m_LogicalOp() { return m_LogicalOp(m_Value(), m_Value()); }
2711
2712 /// Matches either L && R or L || R with LHS and RHS in either order.
2713 template <typename LHS, typename RHS>
2714 inline auto m_c_LogicalOp(const LHS &L, const RHS &R) {
2715 return m_LogicalOp<LHS, RHS, /*Commutable=*/true>(L, R);
2716 }
2717
2718 } // end namespace PatternMatch
2719 } // end namespace llvm
2720
2721 #endif // LLVM_IR_PATTERNMATCH_H
2722