1 //===- SampleProf.h - Sampling profiling format support ---------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains common definitions used in the reading and writing of
10 // sample profile data.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_PROFILEDATA_SAMPLEPROF_H
15 #define LLVM_PROFILEDATA_SAMPLEPROF_H
16
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringExtras.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/IR/Function.h"
22 #include "llvm/IR/GlobalValue.h"
23 #include "llvm/ProfileData/FunctionId.h"
24 #include "llvm/Support/Allocator.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/ErrorOr.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/ProfileData/HashKeyMap.h"
29 #include <algorithm>
30 #include <cstdint>
31 #include <list>
32 #include <map>
33 #include <set>
34 #include <sstream>
35 #include <string>
36 #include <system_error>
37 #include <unordered_map>
38 #include <utility>
39
40 namespace llvm {
41
42 class DILocation;
43 class raw_ostream;
44
45 const std::error_category &sampleprof_category();
46
47 enum class sampleprof_error {
48 success = 0,
49 bad_magic,
50 unsupported_version,
51 too_large,
52 truncated,
53 malformed,
54 unrecognized_format,
55 unsupported_writing_format,
56 truncated_name_table,
57 not_implemented,
58 counter_overflow,
59 ostream_seek_unsupported,
60 uncompress_failed,
61 zlib_unavailable,
62 hash_mismatch
63 };
64
make_error_code(sampleprof_error E)65 inline std::error_code make_error_code(sampleprof_error E) {
66 return std::error_code(static_cast<int>(E), sampleprof_category());
67 }
68
MergeResult(sampleprof_error & Accumulator,sampleprof_error Result)69 inline sampleprof_error MergeResult(sampleprof_error &Accumulator,
70 sampleprof_error Result) {
71 // Prefer first error encountered as later errors may be secondary effects of
72 // the initial problem.
73 if (Accumulator == sampleprof_error::success &&
74 Result != sampleprof_error::success)
75 Accumulator = Result;
76 return Accumulator;
77 }
78
79 } // end namespace llvm
80
81 namespace std {
82
83 template <>
84 struct is_error_code_enum<llvm::sampleprof_error> : std::true_type {};
85
86 } // end namespace std
87
88 namespace llvm {
89 namespace sampleprof {
90
91 enum SampleProfileFormat {
92 SPF_None = 0,
93 SPF_Text = 0x1,
94 SPF_Compact_Binary = 0x2, // Deprecated
95 SPF_GCC = 0x3,
96 SPF_Ext_Binary = 0x4,
97 SPF_Binary = 0xff
98 };
99
100 enum SampleProfileLayout {
101 SPL_None = 0,
102 SPL_Nest = 0x1,
103 SPL_Flat = 0x2,
104 };
105
106 static inline uint64_t SPMagic(SampleProfileFormat Format = SPF_Binary) {
107 return uint64_t('S') << (64 - 8) | uint64_t('P') << (64 - 16) |
108 uint64_t('R') << (64 - 24) | uint64_t('O') << (64 - 32) |
109 uint64_t('F') << (64 - 40) | uint64_t('4') << (64 - 48) |
110 uint64_t('2') << (64 - 56) | uint64_t(Format);
111 }
112
113 static inline uint64_t SPVersion() { return 103; }
114
115 // Section Type used by SampleProfileExtBinaryBaseReader and
116 // SampleProfileExtBinaryBaseWriter. Never change the existing
117 // value of enum. Only append new ones.
118 enum SecType {
119 SecInValid = 0,
120 SecProfSummary = 1,
121 SecNameTable = 2,
122 SecProfileSymbolList = 3,
123 SecFuncOffsetTable = 4,
124 SecFuncMetadata = 5,
125 SecCSNameTable = 6,
126 // marker for the first type of profile.
127 SecFuncProfileFirst = 32,
128 SecLBRProfile = SecFuncProfileFirst
129 };
130
131 static inline std::string getSecName(SecType Type) {
132 switch ((int)Type) { // Avoid -Wcovered-switch-default
133 case SecInValid:
134 return "InvalidSection";
135 case SecProfSummary:
136 return "ProfileSummarySection";
137 case SecNameTable:
138 return "NameTableSection";
139 case SecProfileSymbolList:
140 return "ProfileSymbolListSection";
141 case SecFuncOffsetTable:
142 return "FuncOffsetTableSection";
143 case SecFuncMetadata:
144 return "FunctionMetadata";
145 case SecCSNameTable:
146 return "CSNameTableSection";
147 case SecLBRProfile:
148 return "LBRProfileSection";
149 default:
150 return "UnknownSection";
151 }
152 }
153
154 // Entry type of section header table used by SampleProfileExtBinaryBaseReader
155 // and SampleProfileExtBinaryBaseWriter.
156 struct SecHdrTableEntry {
157 SecType Type;
158 uint64_t Flags;
159 uint64_t Offset;
160 uint64_t Size;
161 // The index indicating the location of the current entry in
162 // SectionHdrLayout table.
163 uint64_t LayoutIndex;
164 };
165
166 // Flags common for all sections are defined here. In SecHdrTableEntry::Flags,
167 // common flags will be saved in the lower 32bits and section specific flags
168 // will be saved in the higher 32 bits.
169 enum class SecCommonFlags : uint32_t {
170 SecFlagInValid = 0,
171 SecFlagCompress = (1 << 0),
172 // Indicate the section contains only profile without context.
173 SecFlagFlat = (1 << 1)
174 };
175
176 // Section specific flags are defined here.
177 // !!!Note: Everytime a new enum class is created here, please add
178 // a new check in verifySecFlag.
179 enum class SecNameTableFlags : uint32_t {
180 SecFlagInValid = 0,
181 SecFlagMD5Name = (1 << 0),
182 // Store MD5 in fixed length instead of ULEB128 so NameTable can be
183 // accessed like an array.
184 SecFlagFixedLengthMD5 = (1 << 1),
185 // Profile contains ".__uniq." suffix name. Compiler shouldn't strip
186 // the suffix when doing profile matching when seeing the flag.
187 SecFlagUniqSuffix = (1 << 2)
188 };
189 enum class SecProfSummaryFlags : uint32_t {
190 SecFlagInValid = 0,
191 /// SecFlagPartial means the profile is for common/shared code.
192 /// The common profile is usually merged from profiles collected
193 /// from running other targets.
194 SecFlagPartial = (1 << 0),
195 /// SecFlagContext means this is context-sensitive flat profile for
196 /// CSSPGO
197 SecFlagFullContext = (1 << 1),
198 /// SecFlagFSDiscriminator means this profile uses flow-sensitive
199 /// discriminators.
200 SecFlagFSDiscriminator = (1 << 2),
201 /// SecFlagIsPreInlined means this profile contains ShouldBeInlined
202 /// contexts thus this is CS preinliner computed.
203 SecFlagIsPreInlined = (1 << 4),
204 };
205
206 enum class SecFuncMetadataFlags : uint32_t {
207 SecFlagInvalid = 0,
208 SecFlagIsProbeBased = (1 << 0),
209 SecFlagHasAttribute = (1 << 1),
210 };
211
212 enum class SecFuncOffsetFlags : uint32_t {
213 SecFlagInvalid = 0,
214 // Store function offsets in an order of contexts. The order ensures that
215 // callee contexts of a given context laid out next to it.
216 SecFlagOrdered = (1 << 0),
217 };
218
219 // Verify section specific flag is used for the correct section.
220 template <class SecFlagType>
221 static inline void verifySecFlag(SecType Type, SecFlagType Flag) {
222 // No verification is needed for common flags.
223 if (std::is_same<SecCommonFlags, SecFlagType>())
224 return;
225
226 // Verification starts here for section specific flag.
227 bool IsFlagLegal = false;
228 switch (Type) {
229 case SecNameTable:
230 IsFlagLegal = std::is_same<SecNameTableFlags, SecFlagType>();
231 break;
232 case SecProfSummary:
233 IsFlagLegal = std::is_same<SecProfSummaryFlags, SecFlagType>();
234 break;
235 case SecFuncMetadata:
236 IsFlagLegal = std::is_same<SecFuncMetadataFlags, SecFlagType>();
237 break;
238 default:
239 case SecFuncOffsetTable:
240 IsFlagLegal = std::is_same<SecFuncOffsetFlags, SecFlagType>();
241 break;
242 }
243 if (!IsFlagLegal)
244 llvm_unreachable("Misuse of a flag in an incompatible section");
245 }
246
247 template <class SecFlagType>
248 static inline void addSecFlag(SecHdrTableEntry &Entry, SecFlagType Flag) {
249 verifySecFlag(Entry.Type, Flag);
250 auto FVal = static_cast<uint64_t>(Flag);
251 bool IsCommon = std::is_same<SecCommonFlags, SecFlagType>();
252 Entry.Flags |= IsCommon ? FVal : (FVal << 32);
253 }
254
255 template <class SecFlagType>
256 static inline void removeSecFlag(SecHdrTableEntry &Entry, SecFlagType Flag) {
257 verifySecFlag(Entry.Type, Flag);
258 auto FVal = static_cast<uint64_t>(Flag);
259 bool IsCommon = std::is_same<SecCommonFlags, SecFlagType>();
260 Entry.Flags &= ~(IsCommon ? FVal : (FVal << 32));
261 }
262
263 template <class SecFlagType>
264 static inline bool hasSecFlag(const SecHdrTableEntry &Entry, SecFlagType Flag) {
265 verifySecFlag(Entry.Type, Flag);
266 auto FVal = static_cast<uint64_t>(Flag);
267 bool IsCommon = std::is_same<SecCommonFlags, SecFlagType>();
268 return Entry.Flags & (IsCommon ? FVal : (FVal << 32));
269 }
270
271 /// Represents the relative location of an instruction.
272 ///
273 /// Instruction locations are specified by the line offset from the
274 /// beginning of the function (marked by the line where the function
275 /// header is) and the discriminator value within that line.
276 ///
277 /// The discriminator value is useful to distinguish instructions
278 /// that are on the same line but belong to different basic blocks
279 /// (e.g., the two post-increment instructions in "if (p) x++; else y++;").
280 struct LineLocation {
281 LineLocation(uint32_t L, uint32_t D) : LineOffset(L), Discriminator(D) {}
282
283 void print(raw_ostream &OS) const;
284 void dump() const;
285
286 bool operator<(const LineLocation &O) const {
287 return LineOffset < O.LineOffset ||
288 (LineOffset == O.LineOffset && Discriminator < O.Discriminator);
289 }
290
291 bool operator==(const LineLocation &O) const {
292 return LineOffset == O.LineOffset && Discriminator == O.Discriminator;
293 }
294
295 bool operator!=(const LineLocation &O) const {
296 return LineOffset != O.LineOffset || Discriminator != O.Discriminator;
297 }
298
299 uint64_t getHashCode() const {
300 return ((uint64_t) Discriminator << 32) | LineOffset;
301 }
302
303 uint32_t LineOffset;
304 uint32_t Discriminator;
305 };
306
307 struct LineLocationHash {
308 uint64_t operator()(const LineLocation &Loc) const {
309 return Loc.getHashCode();
310 }
311 };
312
313 raw_ostream &operator<<(raw_ostream &OS, const LineLocation &Loc);
314
315 /// Representation of a single sample record.
316 ///
317 /// A sample record is represented by a positive integer value, which
318 /// indicates how frequently was the associated line location executed.
319 ///
320 /// Additionally, if the associated location contains a function call,
321 /// the record will hold a list of all the possible called targets. For
322 /// direct calls, this will be the exact function being invoked. For
323 /// indirect calls (function pointers, virtual table dispatch), this
324 /// will be a list of one or more functions.
325 class SampleRecord {
326 public:
327 using CallTarget = std::pair<FunctionId, uint64_t>;
328 struct CallTargetComparator {
329 bool operator()(const CallTarget &LHS, const CallTarget &RHS) const {
330 if (LHS.second != RHS.second)
331 return LHS.second > RHS.second;
332
333 return LHS.first < RHS.first;
334 }
335 };
336
337 using SortedCallTargetSet = std::set<CallTarget, CallTargetComparator>;
338 using CallTargetMap = std::unordered_map<FunctionId, uint64_t>;
339 SampleRecord() = default;
340
341 /// Increment the number of samples for this record by \p S.
342 /// Optionally scale sample count \p S by \p Weight.
343 ///
344 /// Sample counts accumulate using saturating arithmetic, to avoid wrapping
345 /// around unsigned integers.
346 sampleprof_error addSamples(uint64_t S, uint64_t Weight = 1) {
347 bool Overflowed;
348 NumSamples = SaturatingMultiplyAdd(S, Weight, NumSamples, &Overflowed);
349 return Overflowed ? sampleprof_error::counter_overflow
350 : sampleprof_error::success;
351 }
352
353 /// Decrease the number of samples for this record by \p S. Return the amout
354 /// of samples actually decreased.
355 uint64_t removeSamples(uint64_t S) {
356 if (S > NumSamples)
357 S = NumSamples;
358 NumSamples -= S;
359 return S;
360 }
361
362 /// Add called function \p F with samples \p S.
363 /// Optionally scale sample count \p S by \p Weight.
364 ///
365 /// Sample counts accumulate using saturating arithmetic, to avoid wrapping
366 /// around unsigned integers.
367 sampleprof_error addCalledTarget(FunctionId F, uint64_t S,
368 uint64_t Weight = 1) {
369 uint64_t &TargetSamples = CallTargets[F];
370 bool Overflowed;
371 TargetSamples =
372 SaturatingMultiplyAdd(S, Weight, TargetSamples, &Overflowed);
373 return Overflowed ? sampleprof_error::counter_overflow
374 : sampleprof_error::success;
375 }
376
377 /// Remove called function from the call target map. Return the target sample
378 /// count of the called function.
379 uint64_t removeCalledTarget(FunctionId F) {
380 uint64_t Count = 0;
381 auto I = CallTargets.find(F);
382 if (I != CallTargets.end()) {
383 Count = I->second;
384 CallTargets.erase(I);
385 }
386 return Count;
387 }
388
389 /// Return true if this sample record contains function calls.
390 bool hasCalls() const { return !CallTargets.empty(); }
391
392 uint64_t getSamples() const { return NumSamples; }
393 const CallTargetMap &getCallTargets() const { return CallTargets; }
394 const SortedCallTargetSet getSortedCallTargets() const {
395 return SortCallTargets(CallTargets);
396 }
397
398 uint64_t getCallTargetSum() const {
399 uint64_t Sum = 0;
400 for (const auto &I : CallTargets)
401 Sum += I.second;
402 return Sum;
403 }
404
405 /// Sort call targets in descending order of call frequency.
406 static const SortedCallTargetSet SortCallTargets(const CallTargetMap &Targets) {
407 SortedCallTargetSet SortedTargets;
408 for (const auto &[Target, Frequency] : Targets) {
409 SortedTargets.emplace(Target, Frequency);
410 }
411 return SortedTargets;
412 }
413
414 /// Prorate call targets by a distribution factor.
415 static const CallTargetMap adjustCallTargets(const CallTargetMap &Targets,
416 float DistributionFactor) {
417 CallTargetMap AdjustedTargets;
418 for (const auto &[Target, Frequency] : Targets) {
419 AdjustedTargets[Target] = Frequency * DistributionFactor;
420 }
421 return AdjustedTargets;
422 }
423
424 /// Merge the samples in \p Other into this record.
425 /// Optionally scale sample counts by \p Weight.
426 sampleprof_error merge(const SampleRecord &Other, uint64_t Weight = 1);
427 void print(raw_ostream &OS, unsigned Indent) const;
428 void dump() const;
429
430 bool operator==(const SampleRecord &Other) const {
431 return NumSamples == Other.NumSamples && CallTargets == Other.CallTargets;
432 }
433
434 bool operator!=(const SampleRecord &Other) const {
435 return !(*this == Other);
436 }
437
438 private:
439 uint64_t NumSamples = 0;
440 CallTargetMap CallTargets;
441 };
442
443 raw_ostream &operator<<(raw_ostream &OS, const SampleRecord &Sample);
444
445 // State of context associated with FunctionSamples
446 enum ContextStateMask {
447 UnknownContext = 0x0, // Profile without context
448 RawContext = 0x1, // Full context profile from input profile
449 SyntheticContext = 0x2, // Synthetic context created for context promotion
450 InlinedContext = 0x4, // Profile for context that is inlined into caller
451 MergedContext = 0x8 // Profile for context merged into base profile
452 };
453
454 // Attribute of context associated with FunctionSamples
455 enum ContextAttributeMask {
456 ContextNone = 0x0,
457 ContextWasInlined = 0x1, // Leaf of context was inlined in previous build
458 ContextShouldBeInlined = 0x2, // Leaf of context should be inlined
459 ContextDuplicatedIntoBase =
460 0x4, // Leaf of context is duplicated into the base profile
461 };
462
463 // Represents a context frame with profile function and line location
464 struct SampleContextFrame {
465 FunctionId Func;
466 LineLocation Location;
467
468 SampleContextFrame() : Location(0, 0) {}
469
470 SampleContextFrame(FunctionId Func, LineLocation Location)
471 : Func(Func), Location(Location) {}
472
473 bool operator==(const SampleContextFrame &That) const {
474 return Location == That.Location && Func == That.Func;
475 }
476
477 bool operator!=(const SampleContextFrame &That) const {
478 return !(*this == That);
479 }
480
481 std::string toString(bool OutputLineLocation) const {
482 std::ostringstream OContextStr;
483 OContextStr << Func.str();
484 if (OutputLineLocation) {
485 OContextStr << ":" << Location.LineOffset;
486 if (Location.Discriminator)
487 OContextStr << "." << Location.Discriminator;
488 }
489 return OContextStr.str();
490 }
491
492 uint64_t getHashCode() const {
493 uint64_t NameHash = Func.getHashCode();
494 uint64_t LocId = Location.getHashCode();
495 return NameHash + (LocId << 5) + LocId;
496 }
497 };
498
499 static inline hash_code hash_value(const SampleContextFrame &arg) {
500 return arg.getHashCode();
501 }
502
503 using SampleContextFrameVector = SmallVector<SampleContextFrame, 1>;
504 using SampleContextFrames = ArrayRef<SampleContextFrame>;
505
506 struct SampleContextFrameHash {
507 uint64_t operator()(const SampleContextFrameVector &S) const {
508 return hash_combine_range(S.begin(), S.end());
509 }
510 };
511
512 // Sample context for FunctionSamples. It consists of the calling context,
513 // the function name and context state. Internally sample context is represented
514 // using ArrayRef, which is also the input for constructing a `SampleContext`.
515 // It can accept and represent both full context string as well as context-less
516 // function name.
517 // For a CS profile, a full context vector can look like:
518 // `main:3 _Z5funcAi:1 _Z8funcLeafi`
519 // For a base CS profile without calling context, the context vector should only
520 // contain the leaf frame name.
521 // For a non-CS profile, the context vector should be empty.
522 class SampleContext {
523 public:
524 SampleContext() : State(UnknownContext), Attributes(ContextNone) {}
525
526 SampleContext(StringRef Name)
527 : Func(Name), State(UnknownContext), Attributes(ContextNone) {
528 assert(!Name.empty() && "Name is empty");
529 }
530
531 SampleContext(FunctionId Func)
532 : Func(Func), State(UnknownContext), Attributes(ContextNone) {}
533
534 SampleContext(SampleContextFrames Context,
535 ContextStateMask CState = RawContext)
536 : Attributes(ContextNone) {
537 assert(!Context.empty() && "Context is empty");
538 setContext(Context, CState);
539 }
540
541 // Give a context string, decode and populate internal states like
542 // Function name, Calling context and context state. Example of input
543 // `ContextStr`: `[main:3 @ _Z5funcAi:1 @ _Z8funcLeafi]`
544 SampleContext(StringRef ContextStr,
545 std::list<SampleContextFrameVector> &CSNameTable,
546 ContextStateMask CState = RawContext)
547 : Attributes(ContextNone) {
548 assert(!ContextStr.empty());
549 // Note that `[]` wrapped input indicates a full context string, otherwise
550 // it's treated as context-less function name only.
551 bool HasContext = ContextStr.starts_with("[");
552 if (!HasContext) {
553 State = UnknownContext;
554 Func = FunctionId(ContextStr);
555 } else {
556 CSNameTable.emplace_back();
557 SampleContextFrameVector &Context = CSNameTable.back();
558 createCtxVectorFromStr(ContextStr, Context);
559 setContext(Context, CState);
560 }
561 }
562
563 /// Create a context vector from a given context string and save it in
564 /// `Context`.
565 static void createCtxVectorFromStr(StringRef ContextStr,
566 SampleContextFrameVector &Context) {
567 // Remove encapsulating '[' and ']' if any
568 ContextStr = ContextStr.substr(1, ContextStr.size() - 2);
569 StringRef ContextRemain = ContextStr;
570 StringRef ChildContext;
571 FunctionId Callee;
572 while (!ContextRemain.empty()) {
573 auto ContextSplit = ContextRemain.split(" @ ");
574 ChildContext = ContextSplit.first;
575 ContextRemain = ContextSplit.second;
576 LineLocation CallSiteLoc(0, 0);
577 decodeContextString(ChildContext, Callee, CallSiteLoc);
578 Context.emplace_back(Callee, CallSiteLoc);
579 }
580 }
581
582 // Decode context string for a frame to get function name and location.
583 // `ContextStr` is in the form of `FuncName:StartLine.Discriminator`.
584 static void decodeContextString(StringRef ContextStr,
585 FunctionId &Func,
586 LineLocation &LineLoc) {
587 // Get function name
588 auto EntrySplit = ContextStr.split(':');
589 Func = FunctionId(EntrySplit.first);
590
591 LineLoc = {0, 0};
592 if (!EntrySplit.second.empty()) {
593 // Get line offset, use signed int for getAsInteger so string will
594 // be parsed as signed.
595 int LineOffset = 0;
596 auto LocSplit = EntrySplit.second.split('.');
597 LocSplit.first.getAsInteger(10, LineOffset);
598 LineLoc.LineOffset = LineOffset;
599
600 // Get discriminator
601 if (!LocSplit.second.empty())
602 LocSplit.second.getAsInteger(10, LineLoc.Discriminator);
603 }
604 }
605
606 operator SampleContextFrames() const { return FullContext; }
607 bool hasAttribute(ContextAttributeMask A) { return Attributes & (uint32_t)A; }
608 void setAttribute(ContextAttributeMask A) { Attributes |= (uint32_t)A; }
609 uint32_t getAllAttributes() { return Attributes; }
610 void setAllAttributes(uint32_t A) { Attributes = A; }
611 bool hasState(ContextStateMask S) { return State & (uint32_t)S; }
612 void setState(ContextStateMask S) { State |= (uint32_t)S; }
613 void clearState(ContextStateMask S) { State &= (uint32_t)~S; }
614 bool hasContext() const { return State != UnknownContext; }
615 bool isBaseContext() const { return FullContext.size() == 1; }
616 FunctionId getFunction() const { return Func; }
617 SampleContextFrames getContextFrames() const { return FullContext; }
618
619 static std::string getContextString(SampleContextFrames Context,
620 bool IncludeLeafLineLocation = false) {
621 std::ostringstream OContextStr;
622 for (uint32_t I = 0; I < Context.size(); I++) {
623 if (OContextStr.str().size()) {
624 OContextStr << " @ ";
625 }
626 OContextStr << Context[I].toString(I != Context.size() - 1 ||
627 IncludeLeafLineLocation);
628 }
629 return OContextStr.str();
630 }
631
632 std::string toString() const {
633 if (!hasContext())
634 return Func.str();
635 return getContextString(FullContext, false);
636 }
637
638 uint64_t getHashCode() const {
639 if (hasContext())
640 return hash_value(getContextFrames());
641 return getFunction().getHashCode();
642 }
643
644 /// Set the name of the function and clear the current context.
645 void setFunction(FunctionId newFunction) {
646 Func = newFunction;
647 FullContext = SampleContextFrames();
648 State = UnknownContext;
649 }
650
651 void setContext(SampleContextFrames Context,
652 ContextStateMask CState = RawContext) {
653 assert(CState != UnknownContext);
654 FullContext = Context;
655 Func = Context.back().Func;
656 State = CState;
657 }
658
659 bool operator==(const SampleContext &That) const {
660 return State == That.State && Func == That.Func &&
661 FullContext == That.FullContext;
662 }
663
664 bool operator!=(const SampleContext &That) const { return !(*this == That); }
665
666 bool operator<(const SampleContext &That) const {
667 if (State != That.State)
668 return State < That.State;
669
670 if (!hasContext()) {
671 return Func < That.Func;
672 }
673
674 uint64_t I = 0;
675 while (I < std::min(FullContext.size(), That.FullContext.size())) {
676 auto &Context1 = FullContext[I];
677 auto &Context2 = That.FullContext[I];
678 auto V = Context1.Func.compare(Context2.Func);
679 if (V)
680 return V < 0;
681 if (Context1.Location != Context2.Location)
682 return Context1.Location < Context2.Location;
683 I++;
684 }
685
686 return FullContext.size() < That.FullContext.size();
687 }
688
689 struct Hash {
690 uint64_t operator()(const SampleContext &Context) const {
691 return Context.getHashCode();
692 }
693 };
694
695 bool IsPrefixOf(const SampleContext &That) const {
696 auto ThisContext = FullContext;
697 auto ThatContext = That.FullContext;
698 if (ThatContext.size() < ThisContext.size())
699 return false;
700 ThatContext = ThatContext.take_front(ThisContext.size());
701 // Compare Leaf frame first
702 if (ThisContext.back().Func != ThatContext.back().Func)
703 return false;
704 // Compare leading context
705 return ThisContext.drop_back() == ThatContext.drop_back();
706 }
707
708 private:
709 // The function associated with this context. If CS profile, this is the leaf
710 // function.
711 FunctionId Func;
712 // Full context including calling context and leaf function name
713 SampleContextFrames FullContext;
714 // State of the associated sample profile
715 uint32_t State;
716 // Attribute of the associated sample profile
717 uint32_t Attributes;
718 };
719
720 static inline hash_code hash_value(const SampleContext &Context) {
721 return Context.getHashCode();
722 }
723
724 inline raw_ostream &operator<<(raw_ostream &OS, const SampleContext &Context) {
725 return OS << Context.toString();
726 }
727
728 class FunctionSamples;
729 class SampleProfileReaderItaniumRemapper;
730
731 using BodySampleMap = std::map<LineLocation, SampleRecord>;
732 // NOTE: Using a StringMap here makes parsed profiles consume around 17% more
733 // memory, which is *very* significant for large profiles.
734 using FunctionSamplesMap = std::map<FunctionId, FunctionSamples>;
735 using CallsiteSampleMap = std::map<LineLocation, FunctionSamplesMap>;
736 using LocToLocMap =
737 std::unordered_map<LineLocation, LineLocation, LineLocationHash>;
738
739 /// Representation of the samples collected for a function.
740 ///
741 /// This data structure contains all the collected samples for the body
742 /// of a function. Each sample corresponds to a LineLocation instance
743 /// within the body of the function.
744 class FunctionSamples {
745 public:
746 FunctionSamples() = default;
747
748 void print(raw_ostream &OS = dbgs(), unsigned Indent = 0) const;
749 void dump() const;
750
751 sampleprof_error addTotalSamples(uint64_t Num, uint64_t Weight = 1) {
752 bool Overflowed;
753 TotalSamples =
754 SaturatingMultiplyAdd(Num, Weight, TotalSamples, &Overflowed);
755 return Overflowed ? sampleprof_error::counter_overflow
756 : sampleprof_error::success;
757 }
758
759 void removeTotalSamples(uint64_t Num) {
760 if (TotalSamples < Num)
761 TotalSamples = 0;
762 else
763 TotalSamples -= Num;
764 }
765
766 void setTotalSamples(uint64_t Num) { TotalSamples = Num; }
767
768 void setHeadSamples(uint64_t Num) { TotalHeadSamples = Num; }
769
770 sampleprof_error addHeadSamples(uint64_t Num, uint64_t Weight = 1) {
771 bool Overflowed;
772 TotalHeadSamples =
773 SaturatingMultiplyAdd(Num, Weight, TotalHeadSamples, &Overflowed);
774 return Overflowed ? sampleprof_error::counter_overflow
775 : sampleprof_error::success;
776 }
777
778 sampleprof_error addBodySamples(uint32_t LineOffset, uint32_t Discriminator,
779 uint64_t Num, uint64_t Weight = 1) {
780 return BodySamples[LineLocation(LineOffset, Discriminator)].addSamples(
781 Num, Weight);
782 }
783
784 sampleprof_error addCalledTargetSamples(uint32_t LineOffset,
785 uint32_t Discriminator,
786 FunctionId Func,
787 uint64_t Num,
788 uint64_t Weight = 1) {
789 return BodySamples[LineLocation(LineOffset, Discriminator)].addCalledTarget(
790 Func, Num, Weight);
791 }
792
793 sampleprof_error addSampleRecord(LineLocation Location,
794 const SampleRecord &SampleRecord,
795 uint64_t Weight = 1) {
796 return BodySamples[Location].merge(SampleRecord, Weight);
797 }
798
799 // Remove a call target and decrease the body sample correspondingly. Return
800 // the number of body samples actually decreased.
801 uint64_t removeCalledTargetAndBodySample(uint32_t LineOffset,
802 uint32_t Discriminator,
803 FunctionId Func) {
804 uint64_t Count = 0;
805 auto I = BodySamples.find(LineLocation(LineOffset, Discriminator));
806 if (I != BodySamples.end()) {
807 Count = I->second.removeCalledTarget(Func);
808 Count = I->second.removeSamples(Count);
809 if (!I->second.getSamples())
810 BodySamples.erase(I);
811 }
812 return Count;
813 }
814
815 // Remove all call site samples for inlinees. This is needed when flattening
816 // a nested profile.
817 void removeAllCallsiteSamples() {
818 CallsiteSamples.clear();
819 }
820
821 // Accumulate all call target samples to update the body samples.
822 void updateCallsiteSamples() {
823 for (auto &I : BodySamples) {
824 uint64_t TargetSamples = I.second.getCallTargetSum();
825 // It's possible that the body sample count can be greater than the call
826 // target sum. E.g, if some call targets are external targets, they won't
827 // be considered valid call targets, but the body sample count which is
828 // from lbr ranges can actually include them.
829 if (TargetSamples > I.second.getSamples())
830 I.second.addSamples(TargetSamples - I.second.getSamples());
831 }
832 }
833
834 // Accumulate all body samples to set total samples.
835 void updateTotalSamples() {
836 setTotalSamples(0);
837 for (const auto &I : BodySamples)
838 addTotalSamples(I.second.getSamples());
839
840 for (auto &I : CallsiteSamples) {
841 for (auto &CS : I.second) {
842 CS.second.updateTotalSamples();
843 addTotalSamples(CS.second.getTotalSamples());
844 }
845 }
846 }
847
848 // Set current context and all callee contexts to be synthetic.
849 void SetContextSynthetic() {
850 Context.setState(SyntheticContext);
851 for (auto &I : CallsiteSamples) {
852 for (auto &CS : I.second) {
853 CS.second.SetContextSynthetic();
854 }
855 }
856 }
857
858 // Query the stale profile matching results and remap the location.
859 const LineLocation &mapIRLocToProfileLoc(const LineLocation &IRLoc) const {
860 // There is no remapping if the profile is not stale or the matching gives
861 // the same location.
862 if (!IRToProfileLocationMap)
863 return IRLoc;
864 const auto &ProfileLoc = IRToProfileLocationMap->find(IRLoc);
865 if (ProfileLoc != IRToProfileLocationMap->end())
866 return ProfileLoc->second;
867 else
868 return IRLoc;
869 }
870
871 /// Return the number of samples collected at the given location.
872 /// Each location is specified by \p LineOffset and \p Discriminator.
873 /// If the location is not found in profile, return error.
874 ErrorOr<uint64_t> findSamplesAt(uint32_t LineOffset,
875 uint32_t Discriminator) const {
876 const auto &ret = BodySamples.find(
877 mapIRLocToProfileLoc(LineLocation(LineOffset, Discriminator)));
878 if (ret == BodySamples.end())
879 return std::error_code();
880 return ret->second.getSamples();
881 }
882
883 /// Returns the call target map collected at a given location.
884 /// Each location is specified by \p LineOffset and \p Discriminator.
885 /// If the location is not found in profile, return error.
886 ErrorOr<const SampleRecord::CallTargetMap &>
887 findCallTargetMapAt(uint32_t LineOffset, uint32_t Discriminator) const {
888 const auto &ret = BodySamples.find(
889 mapIRLocToProfileLoc(LineLocation(LineOffset, Discriminator)));
890 if (ret == BodySamples.end())
891 return std::error_code();
892 return ret->second.getCallTargets();
893 }
894
895 /// Returns the call target map collected at a given location specified by \p
896 /// CallSite. If the location is not found in profile, return error.
897 ErrorOr<const SampleRecord::CallTargetMap &>
898 findCallTargetMapAt(const LineLocation &CallSite) const {
899 const auto &Ret = BodySamples.find(mapIRLocToProfileLoc(CallSite));
900 if (Ret == BodySamples.end())
901 return std::error_code();
902 return Ret->second.getCallTargets();
903 }
904
905 /// Return the function samples at the given callsite location.
906 FunctionSamplesMap &functionSamplesAt(const LineLocation &Loc) {
907 return CallsiteSamples[mapIRLocToProfileLoc(Loc)];
908 }
909
910 /// Returns the FunctionSamplesMap at the given \p Loc.
911 const FunctionSamplesMap *
912 findFunctionSamplesMapAt(const LineLocation &Loc) const {
913 auto iter = CallsiteSamples.find(mapIRLocToProfileLoc(Loc));
914 if (iter == CallsiteSamples.end())
915 return nullptr;
916 return &iter->second;
917 }
918
919 /// Returns a pointer to FunctionSamples at the given callsite location
920 /// \p Loc with callee \p CalleeName. If no callsite can be found, relax
921 /// the restriction to return the FunctionSamples at callsite location
922 /// \p Loc with the maximum total sample count. If \p Remapper is not
923 /// nullptr, use \p Remapper to find FunctionSamples with equivalent name
924 /// as \p CalleeName.
925 const FunctionSamples *
926 findFunctionSamplesAt(const LineLocation &Loc, StringRef CalleeName,
927 SampleProfileReaderItaniumRemapper *Remapper) const;
928
929 bool empty() const { return TotalSamples == 0; }
930
931 /// Return the total number of samples collected inside the function.
932 uint64_t getTotalSamples() const { return TotalSamples; }
933
934 /// For top-level functions, return the total number of branch samples that
935 /// have the function as the branch target (or 0 otherwise). This is the raw
936 /// data fetched from the profile. This should be equivalent to the sample of
937 /// the first instruction of the symbol. But as we directly get this info for
938 /// raw profile without referring to potentially inaccurate debug info, this
939 /// gives more accurate profile data and is preferred for standalone symbols.
940 uint64_t getHeadSamples() const { return TotalHeadSamples; }
941
942 /// Return an estimate of the sample count of the function entry basic block.
943 /// The function can be either a standalone symbol or an inlined function.
944 /// For Context-Sensitive profiles, this will prefer returning the head
945 /// samples (i.e. getHeadSamples()), if non-zero. Otherwise it estimates from
946 /// the function body's samples or callsite samples.
947 uint64_t getHeadSamplesEstimate() const {
948 if (FunctionSamples::ProfileIsCS && getHeadSamples()) {
949 // For CS profile, if we already have more accurate head samples
950 // counted by branch sample from caller, use them as entry samples.
951 return getHeadSamples();
952 }
953 uint64_t Count = 0;
954 // Use either BodySamples or CallsiteSamples which ever has the smaller
955 // lineno.
956 if (!BodySamples.empty() &&
957 (CallsiteSamples.empty() ||
958 BodySamples.begin()->first < CallsiteSamples.begin()->first))
959 Count = BodySamples.begin()->second.getSamples();
960 else if (!CallsiteSamples.empty()) {
961 // An indirect callsite may be promoted to several inlined direct calls.
962 // We need to get the sum of them.
963 for (const auto &N_FS : CallsiteSamples.begin()->second)
964 Count += N_FS.second.getHeadSamplesEstimate();
965 }
966 // Return at least 1 if total sample is not 0.
967 return Count ? Count : TotalSamples > 0;
968 }
969
970 /// Return all the samples collected in the body of the function.
971 const BodySampleMap &getBodySamples() const { return BodySamples; }
972
973 /// Return all the callsite samples collected in the body of the function.
974 const CallsiteSampleMap &getCallsiteSamples() const {
975 return CallsiteSamples;
976 }
977
978 /// Return the maximum of sample counts in a function body. When SkipCallSite
979 /// is false, which is the default, the return count includes samples in the
980 /// inlined functions. When SkipCallSite is true, the return count only
981 /// considers the body samples.
982 uint64_t getMaxCountInside(bool SkipCallSite = false) const {
983 uint64_t MaxCount = 0;
984 for (const auto &L : getBodySamples())
985 MaxCount = std::max(MaxCount, L.second.getSamples());
986 if (SkipCallSite)
987 return MaxCount;
988 for (const auto &C : getCallsiteSamples())
989 for (const FunctionSamplesMap::value_type &F : C.second)
990 MaxCount = std::max(MaxCount, F.second.getMaxCountInside());
991 return MaxCount;
992 }
993
994 /// Merge the samples in \p Other into this one.
995 /// Optionally scale samples by \p Weight.
996 sampleprof_error merge(const FunctionSamples &Other, uint64_t Weight = 1) {
997 sampleprof_error Result = sampleprof_error::success;
998 if (!GUIDToFuncNameMap)
999 GUIDToFuncNameMap = Other.GUIDToFuncNameMap;
1000 if (Context.getFunction().empty())
1001 Context = Other.getContext();
1002 if (FunctionHash == 0) {
1003 // Set the function hash code for the target profile.
1004 FunctionHash = Other.getFunctionHash();
1005 } else if (FunctionHash != Other.getFunctionHash()) {
1006 // The two profiles coming with different valid hash codes indicates
1007 // either:
1008 // 1. They are same-named static functions from different compilation
1009 // units (without using -unique-internal-linkage-names), or
1010 // 2. They are really the same function but from different compilations.
1011 // Let's bail out in either case for now, which means one profile is
1012 // dropped.
1013 return sampleprof_error::hash_mismatch;
1014 }
1015
1016 MergeResult(Result, addTotalSamples(Other.getTotalSamples(), Weight));
1017 MergeResult(Result, addHeadSamples(Other.getHeadSamples(), Weight));
1018 for (const auto &I : Other.getBodySamples()) {
1019 const LineLocation &Loc = I.first;
1020 const SampleRecord &Rec = I.second;
1021 MergeResult(Result, BodySamples[Loc].merge(Rec, Weight));
1022 }
1023 for (const auto &I : Other.getCallsiteSamples()) {
1024 const LineLocation &Loc = I.first;
1025 FunctionSamplesMap &FSMap = functionSamplesAt(Loc);
1026 for (const auto &Rec : I.second)
1027 MergeResult(Result, FSMap[Rec.first].merge(Rec.second, Weight));
1028 }
1029 return Result;
1030 }
1031
1032 /// Recursively traverses all children, if the total sample count of the
1033 /// corresponding function is no less than \p Threshold, add its corresponding
1034 /// GUID to \p S. Also traverse the BodySamples to add hot CallTarget's GUID
1035 /// to \p S.
1036 void findInlinedFunctions(DenseSet<GlobalValue::GUID> &S,
1037 const HashKeyMap<std::unordered_map, FunctionId,
1038 Function *> &SymbolMap,
1039 uint64_t Threshold) const {
1040 if (TotalSamples <= Threshold)
1041 return;
1042 auto isDeclaration = [](const Function *F) {
1043 return !F || F->isDeclaration();
1044 };
1045 if (isDeclaration(SymbolMap.lookup(getFunction()))) {
1046 // Add to the import list only when it's defined out of module.
1047 S.insert(getGUID());
1048 }
1049 // Import hot CallTargets, which may not be available in IR because full
1050 // profile annotation cannot be done until backend compilation in ThinLTO.
1051 for (const auto &BS : BodySamples)
1052 for (const auto &TS : BS.second.getCallTargets())
1053 if (TS.second > Threshold) {
1054 const Function *Callee = SymbolMap.lookup(TS.first);
1055 if (isDeclaration(Callee))
1056 S.insert(TS.first.getHashCode());
1057 }
1058 for (const auto &CS : CallsiteSamples)
1059 for (const auto &NameFS : CS.second)
1060 NameFS.second.findInlinedFunctions(S, SymbolMap, Threshold);
1061 }
1062
1063 /// Set the name of the function.
1064 void setFunction(FunctionId newFunction) {
1065 Context.setFunction(newFunction);
1066 }
1067
1068 /// Return the function name.
1069 FunctionId getFunction() const { return Context.getFunction(); }
1070
1071 /// Return the original function name.
1072 StringRef getFuncName() const { return getFuncName(getFunction()); }
1073
1074 void setFunctionHash(uint64_t Hash) { FunctionHash = Hash; }
1075
1076 uint64_t getFunctionHash() const { return FunctionHash; }
1077
1078 void setIRToProfileLocationMap(const LocToLocMap *LTLM) {
1079 assert(IRToProfileLocationMap == nullptr && "this should be set only once");
1080 IRToProfileLocationMap = LTLM;
1081 }
1082
1083 /// Return the canonical name for a function, taking into account
1084 /// suffix elision policy attributes.
1085 static StringRef getCanonicalFnName(const Function &F) {
1086 auto AttrName = "sample-profile-suffix-elision-policy";
1087 auto Attr = F.getFnAttribute(AttrName).getValueAsString();
1088 return getCanonicalFnName(F.getName(), Attr);
1089 }
1090
1091 /// Name suffixes which canonicalization should handle to avoid
1092 /// profile mismatch.
1093 static constexpr const char *LLVMSuffix = ".llvm.";
1094 static constexpr const char *PartSuffix = ".part.";
1095 static constexpr const char *UniqSuffix = ".__uniq.";
1096
1097 static StringRef getCanonicalFnName(StringRef FnName,
1098 StringRef Attr = "selected") {
1099 // Note the sequence of the suffixes in the knownSuffixes array matters.
1100 // If suffix "A" is appended after the suffix "B", "A" should be in front
1101 // of "B" in knownSuffixes.
1102 const char *knownSuffixes[] = {LLVMSuffix, PartSuffix, UniqSuffix};
1103 if (Attr == "" || Attr == "all") {
1104 return FnName.split('.').first;
1105 } else if (Attr == "selected") {
1106 StringRef Cand(FnName);
1107 for (const auto &Suf : knownSuffixes) {
1108 StringRef Suffix(Suf);
1109 // If the profile contains ".__uniq." suffix, don't strip the
1110 // suffix for names in the IR.
1111 if (Suffix == UniqSuffix && FunctionSamples::HasUniqSuffix)
1112 continue;
1113 auto It = Cand.rfind(Suffix);
1114 if (It == StringRef::npos)
1115 continue;
1116 auto Dit = Cand.rfind('.');
1117 if (Dit == It + Suffix.size() - 1)
1118 Cand = Cand.substr(0, It);
1119 }
1120 return Cand;
1121 } else if (Attr == "none") {
1122 return FnName;
1123 } else {
1124 assert(false && "internal error: unknown suffix elision policy");
1125 }
1126 return FnName;
1127 }
1128
1129 /// Translate \p Func into its original name.
1130 /// When profile doesn't use MD5, \p Func needs no translation.
1131 /// When profile uses MD5, \p Func in current FunctionSamples
1132 /// is actually GUID of the original function name. getFuncName will
1133 /// translate \p Func in current FunctionSamples into its original name
1134 /// by looking up in the function map GUIDToFuncNameMap.
1135 /// If the original name doesn't exist in the map, return empty StringRef.
1136 StringRef getFuncName(FunctionId Func) const {
1137 if (!UseMD5)
1138 return Func.stringRef();
1139
1140 assert(GUIDToFuncNameMap && "GUIDToFuncNameMap needs to be populated first");
1141 return GUIDToFuncNameMap->lookup(Func.getHashCode());
1142 }
1143
1144 /// Returns the line offset to the start line of the subprogram.
1145 /// We assume that a single function will not exceed 65535 LOC.
1146 static unsigned getOffset(const DILocation *DIL);
1147
1148 /// Returns a unique call site identifier for a given debug location of a call
1149 /// instruction. This is wrapper of two scenarios, the probe-based profile and
1150 /// regular profile, to hide implementation details from the sample loader and
1151 /// the context tracker.
1152 static LineLocation getCallSiteIdentifier(const DILocation *DIL,
1153 bool ProfileIsFS = false);
1154
1155 /// Returns a unique hash code for a combination of a callsite location and
1156 /// the callee function name.
1157 /// Guarantee MD5 and non-MD5 representation of the same function results in
1158 /// the same hash.
1159 static uint64_t getCallSiteHash(FunctionId Callee,
1160 const LineLocation &Callsite) {
1161 return SampleContextFrame(Callee, Callsite).getHashCode();
1162 }
1163
1164 /// Get the FunctionSamples of the inline instance where DIL originates
1165 /// from.
1166 ///
1167 /// The FunctionSamples of the instruction (Machine or IR) associated to
1168 /// \p DIL is the inlined instance in which that instruction is coming from.
1169 /// We traverse the inline stack of that instruction, and match it with the
1170 /// tree nodes in the profile.
1171 ///
1172 /// \returns the FunctionSamples pointer to the inlined instance.
1173 /// If \p Remapper is not nullptr, it will be used to find matching
1174 /// FunctionSamples with not exactly the same but equivalent name.
1175 const FunctionSamples *findFunctionSamples(
1176 const DILocation *DIL,
1177 SampleProfileReaderItaniumRemapper *Remapper = nullptr) const;
1178
1179 static bool ProfileIsProbeBased;
1180
1181 static bool ProfileIsCS;
1182
1183 static bool ProfileIsPreInlined;
1184
1185 SampleContext &getContext() const { return Context; }
1186
1187 void setContext(const SampleContext &FContext) { Context = FContext; }
1188
1189 /// Whether the profile uses MD5 to represent string.
1190 static bool UseMD5;
1191
1192 /// Whether the profile contains any ".__uniq." suffix in a name.
1193 static bool HasUniqSuffix;
1194
1195 /// If this profile uses flow sensitive discriminators.
1196 static bool ProfileIsFS;
1197
1198 /// GUIDToFuncNameMap saves the mapping from GUID to the symbol name, for
1199 /// all the function symbols defined or declared in current module.
1200 DenseMap<uint64_t, StringRef> *GUIDToFuncNameMap = nullptr;
1201
1202 /// Return the GUID of the context's name. If the context is already using
1203 /// MD5, don't hash it again.
1204 uint64_t getGUID() const {
1205 return getFunction().getHashCode();
1206 }
1207
1208 // Find all the names in the current FunctionSamples including names in
1209 // all the inline instances and names of call targets.
1210 void findAllNames(DenseSet<FunctionId> &NameSet) const;
1211
1212 bool operator==(const FunctionSamples &Other) const {
1213 return (GUIDToFuncNameMap == Other.GUIDToFuncNameMap ||
1214 (GUIDToFuncNameMap && Other.GUIDToFuncNameMap &&
1215 *GUIDToFuncNameMap == *Other.GUIDToFuncNameMap)) &&
1216 FunctionHash == Other.FunctionHash && Context == Other.Context &&
1217 TotalSamples == Other.TotalSamples &&
1218 TotalHeadSamples == Other.TotalHeadSamples &&
1219 BodySamples == Other.BodySamples &&
1220 CallsiteSamples == Other.CallsiteSamples;
1221 }
1222
1223 bool operator!=(const FunctionSamples &Other) const {
1224 return !(*this == Other);
1225 }
1226
1227 private:
1228 /// CFG hash value for the function.
1229 uint64_t FunctionHash = 0;
1230
1231 /// Calling context for function profile
1232 mutable SampleContext Context;
1233
1234 /// Total number of samples collected inside this function.
1235 ///
1236 /// Samples are cumulative, they include all the samples collected
1237 /// inside this function and all its inlined callees.
1238 uint64_t TotalSamples = 0;
1239
1240 /// Total number of samples collected at the head of the function.
1241 /// This is an approximation of the number of calls made to this function
1242 /// at runtime.
1243 uint64_t TotalHeadSamples = 0;
1244
1245 /// Map instruction locations to collected samples.
1246 ///
1247 /// Each entry in this map contains the number of samples
1248 /// collected at the corresponding line offset. All line locations
1249 /// are an offset from the start of the function.
1250 BodySampleMap BodySamples;
1251
1252 /// Map call sites to collected samples for the called function.
1253 ///
1254 /// Each entry in this map corresponds to all the samples
1255 /// collected for the inlined function call at the given
1256 /// location. For example, given:
1257 ///
1258 /// void foo() {
1259 /// 1 bar();
1260 /// ...
1261 /// 8 baz();
1262 /// }
1263 ///
1264 /// If the bar() and baz() calls were inlined inside foo(), this
1265 /// map will contain two entries. One for all the samples collected
1266 /// in the call to bar() at line offset 1, the other for all the samples
1267 /// collected in the call to baz() at line offset 8.
1268 CallsiteSampleMap CallsiteSamples;
1269
1270 /// IR to profile location map generated by stale profile matching.
1271 ///
1272 /// Each entry is a mapping from the location on current build to the matched
1273 /// location in the "stale" profile. For example:
1274 /// Profiled source code:
1275 /// void foo() {
1276 /// 1 bar();
1277 /// }
1278 ///
1279 /// Current source code:
1280 /// void foo() {
1281 /// 1 // Code change
1282 /// 2 bar();
1283 /// }
1284 /// Supposing the stale profile matching algorithm generated the mapping [2 ->
1285 /// 1], the profile query using the location of bar on the IR which is 2 will
1286 /// be remapped to 1 and find the location of bar in the profile.
1287 const LocToLocMap *IRToProfileLocationMap = nullptr;
1288 };
1289
1290 /// Get the proper representation of a string according to whether the
1291 /// current Format uses MD5 to represent the string.
1292 static inline FunctionId getRepInFormat(StringRef Name) {
1293 if (Name.empty() || !FunctionSamples::UseMD5)
1294 return FunctionId(Name);
1295 return FunctionId(Function::getGUID(Name));
1296 }
1297
1298 raw_ostream &operator<<(raw_ostream &OS, const FunctionSamples &FS);
1299
1300 /// This class provides operator overloads to the map container using MD5 as the
1301 /// key type, so that existing code can still work in most cases using
1302 /// SampleContext as key.
1303 /// Note: when populating container, make sure to assign the SampleContext to
1304 /// the mapped value immediately because the key no longer holds it.
1305 class SampleProfileMap
1306 : public HashKeyMap<std::unordered_map, SampleContext, FunctionSamples> {
1307 public:
1308 // Convenience method because this is being used in many places. Set the
1309 // FunctionSamples' context if its newly inserted.
1310 mapped_type &Create(const SampleContext &Ctx) {
1311 auto Ret = try_emplace(Ctx, FunctionSamples());
1312 if (Ret.second)
1313 Ret.first->second.setContext(Ctx);
1314 return Ret.first->second;
1315 }
1316
1317 iterator find(const SampleContext &Ctx) {
1318 return HashKeyMap<std::unordered_map, SampleContext, FunctionSamples>::find(
1319 Ctx);
1320 }
1321
1322 const_iterator find(const SampleContext &Ctx) const {
1323 return HashKeyMap<std::unordered_map, SampleContext, FunctionSamples>::find(
1324 Ctx);
1325 }
1326
1327 size_t erase(const SampleContext &Ctx) {
1328 return HashKeyMap<std::unordered_map, SampleContext, FunctionSamples>::
1329 erase(Ctx);
1330 }
1331
1332 size_t erase(const key_type &Key) { return base_type::erase(Key); }
1333 };
1334
1335 using NameFunctionSamples = std::pair<hash_code, const FunctionSamples *>;
1336
1337 void sortFuncProfiles(const SampleProfileMap &ProfileMap,
1338 std::vector<NameFunctionSamples> &SortedProfiles);
1339
1340 /// Sort a LocationT->SampleT map by LocationT.
1341 ///
1342 /// It produces a sorted list of <LocationT, SampleT> records by ascending
1343 /// order of LocationT.
1344 template <class LocationT, class SampleT> class SampleSorter {
1345 public:
1346 using SamplesWithLoc = std::pair<const LocationT, SampleT>;
1347 using SamplesWithLocList = SmallVector<const SamplesWithLoc *, 20>;
1348
1349 SampleSorter(const std::map<LocationT, SampleT> &Samples) {
1350 for (const auto &I : Samples)
1351 V.push_back(&I);
1352 llvm::stable_sort(V, [](const SamplesWithLoc *A, const SamplesWithLoc *B) {
1353 return A->first < B->first;
1354 });
1355 }
1356
1357 const SamplesWithLocList &get() const { return V; }
1358
1359 private:
1360 SamplesWithLocList V;
1361 };
1362
1363 /// SampleContextTrimmer impelements helper functions to trim, merge cold
1364 /// context profiles. It also supports context profile canonicalization to make
1365 /// sure ProfileMap's key is consistent with FunctionSample's name/context.
1366 class SampleContextTrimmer {
1367 public:
1368 SampleContextTrimmer(SampleProfileMap &Profiles) : ProfileMap(Profiles){};
1369 // Trim and merge cold context profile when requested. TrimBaseProfileOnly
1370 // should only be effective when TrimColdContext is true. On top of
1371 // TrimColdContext, TrimBaseProfileOnly can be used to specify to trim all
1372 // cold profiles or only cold base profiles. Trimming base profiles only is
1373 // mainly to honor the preinliner decsion. Note that when MergeColdContext is
1374 // true, preinliner decsion is not honored anyway so TrimBaseProfileOnly will
1375 // be ignored.
1376 void trimAndMergeColdContextProfiles(uint64_t ColdCountThreshold,
1377 bool TrimColdContext,
1378 bool MergeColdContext,
1379 uint32_t ColdContextFrameLength,
1380 bool TrimBaseProfileOnly);
1381
1382 private:
1383 SampleProfileMap &ProfileMap;
1384 };
1385
1386 /// Helper class for profile conversion.
1387 ///
1388 /// It supports full context-sensitive profile to nested profile conversion,
1389 /// nested profile to flatten profile conversion, etc.
1390 class ProfileConverter {
1391 public:
1392 ProfileConverter(SampleProfileMap &Profiles);
1393 // Convert a full context-sensitive flat sample profile into a nested sample
1394 // profile.
1395 void convertCSProfiles();
1396 struct FrameNode {
1397 FrameNode(FunctionId FName = FunctionId(),
1398 FunctionSamples *FSamples = nullptr,
1399 LineLocation CallLoc = {0, 0})
1400 : FuncName(FName), FuncSamples(FSamples), CallSiteLoc(CallLoc){};
1401
1402 // Map line+discriminator location to child frame
1403 std::map<uint64_t, FrameNode> AllChildFrames;
1404 // Function name for current frame
1405 FunctionId FuncName;
1406 // Function Samples for current frame
1407 FunctionSamples *FuncSamples;
1408 // Callsite location in parent context
1409 LineLocation CallSiteLoc;
1410
1411 FrameNode *getOrCreateChildFrame(const LineLocation &CallSite,
1412 FunctionId CalleeName);
1413 };
1414
1415 static void flattenProfile(SampleProfileMap &ProfileMap,
1416 bool ProfileIsCS = false) {
1417 SampleProfileMap TmpProfiles;
1418 flattenProfile(ProfileMap, TmpProfiles, ProfileIsCS);
1419 ProfileMap = std::move(TmpProfiles);
1420 }
1421
1422 static void flattenProfile(const SampleProfileMap &InputProfiles,
1423 SampleProfileMap &OutputProfiles,
1424 bool ProfileIsCS = false) {
1425 if (ProfileIsCS) {
1426 for (const auto &I : InputProfiles) {
1427 // Retain the profile name and clear the full context for each function
1428 // profile.
1429 FunctionSamples &FS = OutputProfiles.Create(I.second.getFunction());
1430 FS.merge(I.second);
1431 }
1432 } else {
1433 for (const auto &I : InputProfiles)
1434 flattenNestedProfile(OutputProfiles, I.second);
1435 }
1436 }
1437
1438 private:
1439 static void flattenNestedProfile(SampleProfileMap &OutputProfiles,
1440 const FunctionSamples &FS) {
1441 // To retain the context, checksum, attributes of the original profile, make
1442 // a copy of it if no profile is found.
1443 SampleContext &Context = FS.getContext();
1444 auto Ret = OutputProfiles.try_emplace(Context, FS);
1445 FunctionSamples &Profile = Ret.first->second;
1446 if (Ret.second) {
1447 // Clear nested inlinees' samples for the flattened copy. These inlinees
1448 // will have their own top-level entries after flattening.
1449 Profile.removeAllCallsiteSamples();
1450 // We recompute TotalSamples later, so here set to zero.
1451 Profile.setTotalSamples(0);
1452 } else {
1453 for (const auto &[LineLocation, SampleRecord] : FS.getBodySamples()) {
1454 Profile.addSampleRecord(LineLocation, SampleRecord);
1455 }
1456 }
1457
1458 assert(Profile.getCallsiteSamples().empty() &&
1459 "There should be no inlinees' profiles after flattening.");
1460
1461 // TotalSamples might not be equal to the sum of all samples from
1462 // BodySamples and CallsiteSamples. So here we use "TotalSamples =
1463 // Original_TotalSamples - All_of_Callsite_TotalSamples +
1464 // All_of_Callsite_HeadSamples" to compute the new TotalSamples.
1465 uint64_t TotalSamples = FS.getTotalSamples();
1466
1467 for (const auto &I : FS.getCallsiteSamples()) {
1468 for (const auto &Callee : I.second) {
1469 const auto &CalleeProfile = Callee.second;
1470 // Add body sample.
1471 Profile.addBodySamples(I.first.LineOffset, I.first.Discriminator,
1472 CalleeProfile.getHeadSamplesEstimate());
1473 // Add callsite sample.
1474 Profile.addCalledTargetSamples(
1475 I.first.LineOffset, I.first.Discriminator,
1476 CalleeProfile.getFunction(),
1477 CalleeProfile.getHeadSamplesEstimate());
1478 // Update total samples.
1479 TotalSamples = TotalSamples >= CalleeProfile.getTotalSamples()
1480 ? TotalSamples - CalleeProfile.getTotalSamples()
1481 : 0;
1482 TotalSamples += CalleeProfile.getHeadSamplesEstimate();
1483 // Recursively convert callee profile.
1484 flattenNestedProfile(OutputProfiles, CalleeProfile);
1485 }
1486 }
1487 Profile.addTotalSamples(TotalSamples);
1488
1489 Profile.setHeadSamples(Profile.getHeadSamplesEstimate());
1490 }
1491
1492 // Nest all children profiles into the profile of Node.
1493 void convertCSProfiles(FrameNode &Node);
1494 FrameNode *getOrCreateContextPath(const SampleContext &Context);
1495
1496 SampleProfileMap &ProfileMap;
1497 FrameNode RootFrame;
1498 };
1499
1500 /// ProfileSymbolList records the list of function symbols shown up
1501 /// in the binary used to generate the profile. It is useful to
1502 /// to discriminate a function being so cold as not to shown up
1503 /// in the profile and a function newly added.
1504 class ProfileSymbolList {
1505 public:
1506 /// copy indicates whether we need to copy the underlying memory
1507 /// for the input Name.
1508 void add(StringRef Name, bool copy = false) {
1509 if (!copy) {
1510 Syms.insert(Name);
1511 return;
1512 }
1513 Syms.insert(Name.copy(Allocator));
1514 }
1515
1516 bool contains(StringRef Name) { return Syms.count(Name); }
1517
1518 void merge(const ProfileSymbolList &List) {
1519 for (auto Sym : List.Syms)
1520 add(Sym, true);
1521 }
1522
1523 unsigned size() { return Syms.size(); }
1524
1525 void setToCompress(bool TC) { ToCompress = TC; }
1526 bool toCompress() { return ToCompress; }
1527
1528 std::error_code read(const uint8_t *Data, uint64_t ListSize);
1529 std::error_code write(raw_ostream &OS);
1530 void dump(raw_ostream &OS = dbgs()) const;
1531
1532 private:
1533 // Determine whether or not to compress the symbol list when
1534 // writing it into profile. The variable is unused when the symbol
1535 // list is read from an existing profile.
1536 bool ToCompress = false;
1537 DenseSet<StringRef> Syms;
1538 BumpPtrAllocator Allocator;
1539 };
1540
1541 } // end namespace sampleprof
1542
1543 using namespace sampleprof;
1544 // Provide DenseMapInfo for SampleContext.
1545 template <> struct DenseMapInfo<SampleContext> {
1546 static inline SampleContext getEmptyKey() { return SampleContext(); }
1547
1548 static inline SampleContext getTombstoneKey() {
1549 return SampleContext(FunctionId(~1ULL));
1550 }
1551
1552 static unsigned getHashValue(const SampleContext &Val) {
1553 return Val.getHashCode();
1554 }
1555
1556 static bool isEqual(const SampleContext &LHS, const SampleContext &RHS) {
1557 return LHS == RHS;
1558 }
1559 };
1560
1561 // Prepend "__uniq" before the hash for tools like profilers to understand
1562 // that this symbol is of internal linkage type. The "__uniq" is the
1563 // pre-determined prefix that is used to tell tools that this symbol was
1564 // created with -funique-internal-linkage-symbols and the tools can strip or
1565 // keep the prefix as needed.
1566 inline std::string getUniqueInternalLinkagePostfix(const StringRef &FName) {
1567 llvm::MD5 Md5;
1568 Md5.update(FName);
1569 llvm::MD5::MD5Result R;
1570 Md5.final(R);
1571 SmallString<32> Str;
1572 llvm::MD5::stringifyResult(R, Str);
1573 // Convert MD5hash to Decimal. Demangler suffixes can either contain
1574 // numbers or characters but not both.
1575 llvm::APInt IntHash(128, Str.str(), 16);
1576 return toString(IntHash, /* Radix = */ 10, /* Signed = */ false)
1577 .insert(0, FunctionSamples::UniqSuffix);
1578 }
1579
1580 } // end namespace llvm
1581
1582 #endif // LLVM_PROFILEDATA_SAMPLEPROF_H
1583