1//===- Target.td - Target Independent TableGen interface ---*- tablegen -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the target-independent interfaces which should be
10// implemented by each target which is using a TableGen based code generator.
11//
12//===----------------------------------------------------------------------===//
13
14// Include all information about LLVM intrinsics.
15include "llvm/IR/Intrinsics.td"
16
17class Predicate; // Forward def
18
19//===----------------------------------------------------------------------===//
20// Register file description - These classes are used to fill in the target
21// description classes.
22
23class HwMode<string FS, list<Predicate> Ps> {
24  // A string representing subtarget features that turn on this HW mode.
25  // For example, "+feat1,-feat2" will indicate that the mode is active
26  // when "feat1" is enabled and "feat2" is disabled at the same time.
27  // Any other features are not checked.
28  // When multiple modes are used, they should be mutually exclusive,
29  // otherwise the results are unpredictable.
30  string Features = FS;
31
32  // A list of predicates that turn on this HW mode.
33  list<Predicate> Predicates = Ps;
34}
35
36// A special mode recognized by tablegen. This mode is considered active
37// when no other mode is active. For targets that do not use specific hw
38// modes, this is the only mode.
39def DefaultMode : HwMode<"", []>;
40
41// A class used to associate objects with HW modes. It is only intended to
42// be used as a base class, where the derived class should contain a member
43// "Objects", which is a list of the same length as the list of modes.
44// The n-th element on the Objects list will be associated with the n-th
45// element on the Modes list.
46class HwModeSelect<list<HwMode> Ms> {
47  list<HwMode> Modes = Ms;
48}
49
50// A common class that implements a counterpart of ValueType, which is
51// dependent on a HW mode. This class inherits from ValueType itself,
52// which makes it possible to use objects of this class where ValueType
53// objects could be used. This is specifically applicable to selection
54// patterns.
55class ValueTypeByHwMode<list<HwMode> Ms, list<ValueType> Ts>
56    : HwModeSelect<Ms>, ValueType<0, 0> {
57  // The length of this list must be the same as the length of Ms.
58  list<ValueType> Objects = Ts;
59}
60
61// A class that implements a counterpart of PtrValueType, which is
62// dependent on a HW mode. This class inherits from PtrValueType itself,
63// which makes it possible to use objects of this class where PtrValueType
64// or ValueType could be used. This is specifically applicable to selection
65// patterns.
66class PtrValueTypeByHwMode<ValueTypeByHwMode scalar, int addrspace>
67    : HwModeSelect<scalar.Modes>, PtrValueType<ValueType<0, 0>, addrspace> {
68  list<ValueType> Objects = scalar.Objects;
69}
70
71// A class representing the register size, spill size and spill alignment
72// in bits of a register.
73class RegInfo<int RS, int SS, int SA> {
74  int RegSize = RS;         // Register size in bits.
75  int SpillSize = SS;       // Spill slot size in bits.
76  int SpillAlignment = SA;  // Spill slot alignment in bits.
77}
78
79// The register size/alignment information, parameterized by a HW mode.
80class RegInfoByHwMode<list<HwMode> Ms = [], list<RegInfo> Ts = []>
81    : HwModeSelect<Ms> {
82  // The length of this list must be the same as the length of Ms.
83  list<RegInfo> Objects = Ts;
84}
85
86// SubRegIndex - Use instances of SubRegIndex to identify subregisters.
87class SubRegIndex<int size, int offset = 0> {
88  string Namespace = "";
89
90  // Size - Size (in bits) of the sub-registers represented by this index.
91  int Size = size;
92
93  // Offset - Offset of the first bit that is part of this sub-register index.
94  // Set it to -1 if the same index is used to represent sub-registers that can
95  // be at different offsets (for example when using an index to access an
96  // element in a register tuple).
97  int Offset = offset;
98
99  // ComposedOf - A list of two SubRegIndex instances, [A, B].
100  // This indicates that this SubRegIndex is the result of composing A and B.
101  // See ComposedSubRegIndex.
102  list<SubRegIndex> ComposedOf = [];
103
104  // CoveringSubRegIndices - A list of two or more sub-register indexes that
105  // cover this sub-register.
106  //
107  // This field should normally be left blank as TableGen can infer it.
108  //
109  // TableGen automatically detects sub-registers that straddle the registers
110  // in the SubRegs field of a Register definition. For example:
111  //
112  //   Q0    = dsub_0 -> D0, dsub_1 -> D1
113  //   Q1    = dsub_0 -> D2, dsub_1 -> D3
114  //   D1_D2 = dsub_0 -> D1, dsub_1 -> D2
115  //   QQ0   = qsub_0 -> Q0, qsub_1 -> Q1
116  //
117  // TableGen will infer that D1_D2 is a sub-register of QQ0. It will be given
118  // the synthetic index dsub_1_dsub_2 unless some SubRegIndex is defined with
119  // CoveringSubRegIndices = [dsub_1, dsub_2].
120  list<SubRegIndex> CoveringSubRegIndices = [];
121}
122
123// ComposedSubRegIndex - A sub-register that is the result of composing A and B.
124// Offset is set to the sum of A and B's Offsets. Size is set to B's Size.
125class ComposedSubRegIndex<SubRegIndex A, SubRegIndex B>
126  : SubRegIndex<B.Size, !cond(!eq(A.Offset, -1): -1,
127                              !eq(B.Offset, -1): -1,
128                              true:              !add(A.Offset, B.Offset))> {
129  // See SubRegIndex.
130  let ComposedOf = [A, B];
131}
132
133// RegAltNameIndex - The alternate name set to use for register operands of
134// this register class when printing.
135class RegAltNameIndex {
136  string Namespace = "";
137
138  // A set to be used if the name for a register is not defined in this set.
139  // This allows creating name sets with only a few alternative names.
140  RegAltNameIndex FallbackRegAltNameIndex = ?;
141}
142def NoRegAltName : RegAltNameIndex;
143
144// Register - You should define one instance of this class for each register
145// in the target machine.  String n will become the "name" of the register.
146class Register<string n, list<string> altNames = []> {
147  string Namespace = "";
148  string AsmName = n;
149  list<string> AltNames = altNames;
150
151  // Aliases - A list of registers that this register overlaps with.  A read or
152  // modification of this register can potentially read or modify the aliased
153  // registers.
154  list<Register> Aliases = [];
155
156  // SubRegs - A list of registers that are parts of this register. Note these
157  // are "immediate" sub-registers and the registers within the list do not
158  // themselves overlap. e.g. For X86, EAX's SubRegs list contains only [AX],
159  // not [AX, AH, AL].
160  list<Register> SubRegs = [];
161
162  // SubRegIndices - For each register in SubRegs, specify the SubRegIndex used
163  // to address it. Sub-sub-register indices are automatically inherited from
164  // SubRegs.
165  list<SubRegIndex> SubRegIndices = [];
166
167  // RegAltNameIndices - The alternate name indices which are valid for this
168  // register.
169  list<RegAltNameIndex> RegAltNameIndices = [];
170
171  // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
172  // These values can be determined by locating the <target>.h file in the
173  // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES.  The
174  // order of these names correspond to the enumeration used by gcc.  A value of
175  // -1 indicates that the gcc number is undefined and -2 that register number
176  // is invalid for this mode/flavour.
177  list<int> DwarfNumbers = [];
178
179  // CostPerUse - Additional cost of instructions using this register compared
180  // to other registers in its class. The register allocator will try to
181  // minimize the number of instructions using a register with a CostPerUse.
182  // This is used by the ARC target, by the ARM Thumb and x86-64 targets, where
183  // some registers require larger instruction encodings, by the RISC-V target,
184  // where some registers preclude using some C instructions. By making it a
185  // list, targets can have multiple cost models associated with each register
186  // and can choose one specific cost model per Machine Function by overriding
187  // TargetRegisterInfo::getRegisterCostTableIndex. Every target register will
188  // finally have an equal number of cost values which is the max of costPerUse
189  // values specified. Any mismatch in the cost values for a register will be
190  // filled with zeros. Restricted the cost type to uint8_t in the
191  // generated table. It will considerably reduce the table size.
192  list<int> CostPerUse = [0];
193
194  // CoveredBySubRegs - When this bit is set, the value of this register is
195  // completely determined by the value of its sub-registers.  For example, the
196  // x86 register AX is covered by its sub-registers AL and AH, but EAX is not
197  // covered by its sub-register AX.
198  bit CoveredBySubRegs = false;
199
200  // HWEncoding - The target specific hardware encoding for this register.
201  bits<16> HWEncoding = 0;
202
203  bit isArtificial = false;
204
205  // isConstant - This register always holds a constant value (e.g. the zero
206  // register in architectures such as MIPS)
207  bit isConstant = false;
208
209  /// PositionOrder - Indicate tablegen to place the newly added register at a later
210  /// position to avoid iterations on them on unsupported target.
211  int PositionOrder = 0;
212}
213
214// RegisterWithSubRegs - This can be used to define instances of Register which
215// need to specify sub-registers.
216// List "subregs" specifies which registers are sub-registers to this one. This
217// is used to populate the SubRegs and AliasSet fields of TargetRegisterDesc.
218// This allows the code generator to be careful not to put two values with
219// overlapping live ranges into registers which alias.
220class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> {
221  let SubRegs = subregs;
222}
223
224// DAGOperand - An empty base class that unifies RegisterClass's and other forms
225// of Operand's that are legal as type qualifiers in DAG patterns.  This should
226// only ever be used for defining multiclasses that are polymorphic over both
227// RegisterClass's and other Operand's.
228class DAGOperand {
229  string OperandNamespace = "MCOI";
230  string DecoderMethod = "";
231}
232
233// RegisterClass - Now that all of the registers are defined, and aliases
234// between registers are defined, specify which registers belong to which
235// register classes.  This also defines the default allocation order of
236// registers by register allocators.
237//
238class RegisterClass<string namespace, list<ValueType> regTypes, int alignment,
239                    dag regList, RegAltNameIndex idx = NoRegAltName>
240  : DAGOperand {
241  string Namespace = namespace;
242
243  // The register size/alignment information, parameterized by a HW mode.
244  RegInfoByHwMode RegInfos;
245
246  // RegType - Specify the list ValueType of the registers in this register
247  // class.  Note that all registers in a register class must have the same
248  // ValueTypes.  This is a list because some targets permit storing different
249  // types in same register, for example vector values with 128-bit total size,
250  // but different count/size of items, like SSE on x86.
251  //
252  list<ValueType> RegTypes = regTypes;
253
254  // Size - Specify the spill size in bits of the registers.  A default value of
255  // zero lets tablegen pick an appropriate size.
256  int Size = 0;
257
258  // Alignment - Specify the alignment required of the registers when they are
259  // stored or loaded to memory.
260  //
261  int Alignment = alignment;
262
263  // CopyCost - This value is used to specify the cost of copying a value
264  // between two registers in this register class. The default value is one
265  // meaning it takes a single instruction to perform the copying. A negative
266  // value means copying is extremely expensive or impossible.
267  int CopyCost = 1;
268
269  // MemberList - Specify which registers are in this class.  If the
270  // allocation_order_* method are not specified, this also defines the order of
271  // allocation used by the register allocator.
272  //
273  dag MemberList = regList;
274
275  // AltNameIndex - The alternate register name to use when printing operands
276  // of this register class. Every register in the register class must have
277  // a valid alternate name for the given index.
278  RegAltNameIndex altNameIndex = idx;
279
280  // isAllocatable - Specify that the register class can be used for virtual
281  // registers and register allocation.  Some register classes are only used to
282  // model instruction operand constraints, and should have isAllocatable = 0.
283  bit isAllocatable = true;
284
285  // AltOrders - List of alternative allocation orders. The default order is
286  // MemberList itself, and that is good enough for most targets since the
287  // register allocators automatically remove reserved registers and move
288  // callee-saved registers to the end.
289  list<dag> AltOrders = [];
290
291  // AltOrderSelect - The body of a function that selects the allocation order
292  // to use in a given machine function. The code will be inserted in a
293  // function like this:
294  //
295  //   static inline unsigned f(const MachineFunction &MF) { ... }
296  //
297  // The function should return 0 to select the default order defined by
298  // MemberList, 1 to select the first AltOrders entry and so on.
299  code AltOrderSelect = [{}];
300
301  // Specify allocation priority for register allocators using a greedy
302  // heuristic. Classes with higher priority values are assigned first. This is
303  // useful as it is sometimes beneficial to assign registers to highly
304  // constrained classes first. The value has to be in the range [0,31].
305  int AllocationPriority = 0;
306
307  // Force register class to use greedy's global heuristic for all
308  // registers in this class. This should more aggressively try to
309  // avoid spilling in pathological cases.
310  bit GlobalPriority = false;
311
312  // Generate register pressure set for this register class and any class
313  // synthesized from it. Set to 0 to inhibit unneeded pressure sets.
314  bit GeneratePressureSet = true;
315
316  // Weight override for register pressure calculation. This is the value
317  // TargetRegisterClass::getRegClassWeight() will return. The weight is in
318  // units of pressure for this register class. If unset tablegen will
319  // calculate a weight based on a number of register units in this register
320  // class registers. The weight is per register.
321  int Weight = ?;
322
323  // The diagnostic type to present when referencing this operand in a match
324  // failure error message. If this is empty, the default Match_InvalidOperand
325  // diagnostic type will be used. If this is "<name>", a Match_<name> enum
326  // value will be generated and used for this operand type. The target
327  // assembly parser is responsible for converting this into a user-facing
328  // diagnostic message.
329  string DiagnosticType = "";
330
331  // A diagnostic message to emit when an invalid value is provided for this
332  // register class when it is being used as an assembly operand. If this is
333  // non-empty, an anonymous diagnostic type enum value will be generated, and
334  // the assembly matcher will provide a function to map from diagnostic types
335  // to message strings.
336  string DiagnosticString = "";
337
338  // Target-specific flags. This becomes the TSFlags field in TargetRegisterClass.
339  bits<8> TSFlags = 0;
340
341  // If set then consider this register class to be the base class for registers in
342  // its MemberList.  The base class for registers present in multiple base register
343  // classes will be resolved in the order defined by this value, with lower values
344  // taking precedence over higher ones.  Ties are resolved by enumeration order.
345  int BaseClassOrder = ?;
346}
347
348// The memberList in a RegisterClass is a dag of set operations. TableGen
349// evaluates these set operations and expand them into register lists. These
350// are the most common operation, see test/TableGen/SetTheory.td for more
351// examples of what is possible:
352//
353// (add R0, R1, R2) - Set Union. Each argument can be an individual register, a
354// register class, or a sub-expression. This is also the way to simply list
355// registers.
356//
357// (sub GPR, SP) - Set difference. Subtract the last arguments from the first.
358//
359// (and GPR, CSR) - Set intersection. All registers from the first set that are
360// also in the second set.
361//
362// (sequence "R%u", 0, 15) -> [R0, R1, ..., R15]. Generate a sequence of
363// numbered registers.  Takes an optional 4th operand which is a stride to use
364// when generating the sequence.
365//
366// (shl GPR, 4) - Remove the first N elements.
367//
368// (trunc GPR, 4) - Truncate after the first N elements.
369//
370// (rotl GPR, 1) - Rotate N places to the left.
371//
372// (rotr GPR, 1) - Rotate N places to the right.
373//
374// (decimate GPR, 2) - Pick every N'th element, starting with the first.
375//
376// (interleave A, B, ...) - Interleave the elements from each argument list.
377//
378// All of these operators work on ordered sets, not lists. That means
379// duplicates are removed from sub-expressions.
380
381// Set operators. The rest is defined in TargetSelectionDAG.td.
382def sequence;
383def decimate;
384def interleave;
385
386// RegisterTuples - Automatically generate super-registers by forming tuples of
387// sub-registers. This is useful for modeling register sequence constraints
388// with pseudo-registers that are larger than the architectural registers.
389//
390// The sub-register lists are zipped together:
391//
392//   def EvenOdd : RegisterTuples<[sube, subo], [(add R0, R2), (add R1, R3)]>;
393//
394// Generates the same registers as:
395//
396//   let SubRegIndices = [sube, subo] in {
397//     def R0_R1 : RegisterWithSubRegs<"", [R0, R1]>;
398//     def R2_R3 : RegisterWithSubRegs<"", [R2, R3]>;
399//   }
400//
401// The generated pseudo-registers inherit super-classes and fields from their
402// first sub-register. Most fields from the Register class are inferred, and
403// the AsmName and Dwarf numbers are cleared.
404//
405// RegisterTuples instances can be used in other set operations to form
406// register classes and so on. This is the only way of using the generated
407// registers.
408//
409// RegNames may be specified to supply asm names for the generated tuples.
410// If used must have the same size as the list of produced registers.
411class RegisterTuples<list<SubRegIndex> Indices, list<dag> Regs,
412                     list<string> RegNames = []> {
413  // SubRegs - N lists of registers to be zipped up. Super-registers are
414  // synthesized from the first element of each SubRegs list, the second
415  // element and so on.
416  list<dag> SubRegs = Regs;
417
418  // SubRegIndices - N SubRegIndex instances. This provides the names of the
419  // sub-registers in the synthesized super-registers.
420  list<SubRegIndex> SubRegIndices = Indices;
421
422  // List of asm names for the generated tuple registers.
423  list<string> RegAsmNames = RegNames;
424
425  // PositionOrder - Indicate tablegen to place the newly added register at a later
426  // position to avoid iterations on them on unsupported target.
427  int PositionOrder = 0;
428}
429
430// RegisterCategory - This class is a list of RegisterClasses that belong to a
431// general cateogry --- e.g. "general purpose" or "fixed" registers. This is
432// useful for identifying registers in a generic way instead of having
433// information about a specific target's registers.
434class RegisterCategory<list<RegisterClass> classes> {
435  // Classes - A list of register classes that fall within the category.
436  list<RegisterClass> Classes = classes;
437}
438
439//===----------------------------------------------------------------------===//
440// DwarfRegNum - This class provides a mapping of the llvm register enumeration
441// to the register numbering used by gcc and gdb.  These values are used by a
442// debug information writer to describe where values may be located during
443// execution.
444class DwarfRegNum<list<int> Numbers> {
445  // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
446  // These values can be determined by locating the <target>.h file in the
447  // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES.  The
448  // order of these names correspond to the enumeration used by gcc.  A value of
449  // -1 indicates that the gcc number is undefined and -2 that register number
450  // is invalid for this mode/flavour.
451  list<int> DwarfNumbers = Numbers;
452}
453
454// DwarfRegAlias - This class declares that a given register uses the same dwarf
455// numbers as another one. This is useful for making it clear that the two
456// registers do have the same number. It also lets us build a mapping
457// from dwarf register number to llvm register.
458class DwarfRegAlias<Register reg> {
459      Register DwarfAlias = reg;
460}
461
462//===----------------------------------------------------------------------===//
463// Pull in the common support for MCPredicate (portable scheduling predicates).
464//
465include "llvm/Target/TargetInstrPredicate.td"
466
467//===----------------------------------------------------------------------===//
468// Pull in the common support for scheduling
469//
470include "llvm/Target/TargetSchedule.td"
471
472class InstructionEncoding {
473  // Size of encoded instruction.
474  int Size;
475
476  // The "namespace" in which this instruction exists, on targets like ARM
477  // which multiple ISA namespaces exist.
478  string DecoderNamespace = "";
479
480  // List of predicates which will be turned into isel matching code.
481  list<Predicate> Predicates = [];
482
483  string DecoderMethod = "";
484
485  // Is the instruction decoder method able to completely determine if the
486  // given instruction is valid or not. If the TableGen definition of the
487  // instruction specifies bitpattern A??B where A and B are static bits, the
488  // hasCompleteDecoder flag says whether the decoder method fully handles the
489  // ?? space, i.e. if it is a final arbiter for the instruction validity.
490  // If not then the decoder attempts to continue decoding when the decoder
491  // method fails.
492  //
493  // This allows to handle situations where the encoding is not fully
494  // orthogonal. Example:
495  // * InstA with bitpattern 0b0000????,
496  // * InstB with bitpattern 0b000000?? but the associated decoder method
497  //   DecodeInstB() returns Fail when ?? is 0b00 or 0b11.
498  //
499  // The decoder tries to decode a bitpattern that matches both InstA and
500  // InstB bitpatterns first as InstB (because it is the most specific
501  // encoding). In the default case (hasCompleteDecoder = 1), when
502  // DecodeInstB() returns Fail the bitpattern gets rejected. By setting
503  // hasCompleteDecoder = 0 in InstB, the decoder is informed that
504  // DecodeInstB() is not able to determine if all possible values of ?? are
505  // valid or not. If DecodeInstB() returns Fail the decoder will attempt to
506  // decode the bitpattern as InstA too.
507  bit hasCompleteDecoder = true;
508}
509
510// Allows specifying an InstructionEncoding by HwMode. If an Instruction specifies
511// an EncodingByHwMode, its Inst and Size members are ignored and Ts are used
512// to encode and decode based on HwMode.
513class EncodingByHwMode<list<HwMode> Ms = [], list<InstructionEncoding> Ts = []>
514    : HwModeSelect<Ms> {
515  // The length of this list must be the same as the length of Ms.
516  list<InstructionEncoding> Objects = Ts;
517}
518
519//===----------------------------------------------------------------------===//
520// Instruction set description - These classes correspond to the C++ classes in
521// the Target/TargetInstrInfo.h file.
522//
523class Instruction : InstructionEncoding {
524  string Namespace = "";
525
526  dag OutOperandList;       // An dag containing the MI def operand list.
527  dag InOperandList;        // An dag containing the MI use operand list.
528  string AsmString = "";    // The .s format to print the instruction with.
529
530  // Allows specifying a canonical InstructionEncoding by HwMode. If non-empty,
531  // the Inst member of this Instruction is ignored.
532  EncodingByHwMode EncodingInfos;
533
534  // Pattern - Set to the DAG pattern for this instruction, if we know of one,
535  // otherwise, uninitialized.
536  list<dag> Pattern;
537
538  // The follow state will eventually be inferred automatically from the
539  // instruction pattern.
540
541  list<Register> Uses = []; // Default to using no non-operand registers
542  list<Register> Defs = []; // Default to modifying no non-operand registers
543
544  // Predicates - List of predicates which will be turned into isel matching
545  // code.
546  list<Predicate> Predicates = [];
547
548  // Size - Size of encoded instruction, or zero if the size cannot be determined
549  // from the opcode.
550  int Size = 0;
551
552  // Code size, for instruction selection.
553  // FIXME: What does this actually mean?
554  int CodeSize = 0;
555
556  // Added complexity passed onto matching pattern.
557  int AddedComplexity  = 0;
558
559  // Indicates if this is a pre-isel opcode that should be
560  // legalized/regbankselected/selected.
561  bit isPreISelOpcode = false;
562
563  // These bits capture information about the high-level semantics of the
564  // instruction.
565  bit isReturn     = false;     // Is this instruction a return instruction?
566  bit isBranch     = false;     // Is this instruction a branch instruction?
567  bit isEHScopeReturn = false;  // Does this instruction end an EH scope?
568  bit isIndirectBranch = false; // Is this instruction an indirect branch?
569  bit isCompare    = false;     // Is this instruction a comparison instruction?
570  bit isMoveImm    = false;     // Is this instruction a move immediate instruction?
571  bit isMoveReg    = false;     // Is this instruction a move register instruction?
572  bit isBitcast    = false;     // Is this instruction a bitcast instruction?
573  bit isSelect     = false;     // Is this instruction a select instruction?
574  bit isBarrier    = false;     // Can control flow fall through this instruction?
575  bit isCall       = false;     // Is this instruction a call instruction?
576  bit isAdd        = false;     // Is this instruction an add instruction?
577  bit isTrap       = false;     // Is this instruction a trap instruction?
578  bit canFoldAsLoad = false;    // Can this be folded as a simple memory operand?
579  bit mayLoad      = ?;         // Is it possible for this inst to read memory?
580  bit mayStore     = ?;         // Is it possible for this inst to write memory?
581  bit mayRaiseFPException = false; // Can this raise a floating-point exception?
582  bit isConvertibleToThreeAddress = false;  // Can this 2-addr instruction promote?
583  bit isCommutable = false;     // Is this 3 operand instruction commutable?
584  bit isTerminator = false;     // Is this part of the terminator for a basic block?
585  bit isReMaterializable = false; // Is this instruction re-materializable?
586  bit isPredicable = false;     // 1 means this instruction is predicable
587                                // even if it does not have any operand
588                                // tablegen can identify as a predicate
589  bit isUnpredicable = false;   // 1 means this instruction is not predicable
590                                // even if it _does_ have a predicate operand
591  bit hasDelaySlot = false;     // Does this instruction have an delay slot?
592  bit usesCustomInserter = false; // Pseudo instr needing special help.
593  bit hasPostISelHook = false;  // To be *adjusted* after isel by target hook.
594  bit hasCtrlDep   = false;     // Does this instruction r/w ctrl-flow chains?
595  bit isNotDuplicable = false;  // Is it unsafe to duplicate this instruction?
596  bit isConvergent = false;     // Is this instruction convergent?
597  bit isAuthenticated = false;  // Does this instruction authenticate a pointer?
598  bit isAsCheapAsAMove = false; // As cheap (or cheaper) than a move instruction.
599  bit hasExtraSrcRegAllocReq = false; // Sources have special regalloc requirement?
600  bit hasExtraDefRegAllocReq = false; // Defs have special regalloc requirement?
601  bit isRegSequence = false;    // Is this instruction a kind of reg sequence?
602                                // If so, make sure to override
603                                // TargetInstrInfo::getRegSequenceLikeInputs.
604  bit isPseudo     = false;     // Is this instruction a pseudo-instruction?
605                                // If so, won't have encoding information for
606                                // the [MC]CodeEmitter stuff.
607  bit isMeta = false;           // Is this instruction a meta-instruction?
608                                // If so, won't produce any output in the form of
609                                // executable instructions
610  bit isExtractSubreg = false;  // Is this instruction a kind of extract subreg?
611                                // If so, make sure to override
612                                // TargetInstrInfo::getExtractSubregLikeInputs.
613  bit isInsertSubreg = false;   // Is this instruction a kind of insert subreg?
614                                // If so, make sure to override
615                                // TargetInstrInfo::getInsertSubregLikeInputs.
616  bit variadicOpsAreDefs = false; // Are variadic operands definitions?
617
618  // Does the instruction have side effects that are not captured by any
619  // operands of the instruction or other flags?
620  bit hasSideEffects = ?;
621
622  // Is this instruction a "real" instruction (with a distinct machine
623  // encoding), or is it a pseudo instruction used for codegen modeling
624  // purposes.
625  // FIXME: For now this is distinct from isPseudo, above, as code-gen-only
626  // instructions can (and often do) still have encoding information
627  // associated with them. Once we've migrated all of them over to true
628  // pseudo-instructions that are lowered to real instructions prior to
629  // the printer/emitter, we can remove this attribute and just use isPseudo.
630  //
631  // The intended use is:
632  // isPseudo: Does not have encoding information and should be expanded,
633  //   at the latest, during lowering to MCInst.
634  //
635  // isCodeGenOnly: Does have encoding information and can go through to the
636  //   CodeEmitter unchanged, but duplicates a canonical instruction
637  //   definition's encoding and should be ignored when constructing the
638  //   assembler match tables.
639  bit isCodeGenOnly = false;
640
641  // Is this instruction a pseudo instruction for use by the assembler parser.
642  bit isAsmParserOnly = false;
643
644  // This instruction is not expected to be queried for scheduling latencies
645  // and therefore needs no scheduling information even for a complete
646  // scheduling model.
647  bit hasNoSchedulingInfo = false;
648
649  InstrItinClass Itinerary = NoItinerary;// Execution steps used for scheduling.
650
651  // Scheduling information from TargetSchedule.td.
652  list<SchedReadWrite> SchedRW;
653
654  string Constraints = "";  // OperandConstraint, e.g. $src = $dst.
655
656  /// DisableEncoding - List of operand names (e.g. "$op1,$op2") that should not
657  /// be encoded into the output machineinstr.
658  string DisableEncoding = "";
659
660  string PostEncoderMethod = "";
661
662  /// Target-specific flags. This becomes the TSFlags field in TargetInstrDesc.
663  bits<64> TSFlags = 0;
664
665  ///@name Assembler Parser Support
666  ///@{
667
668  string AsmMatchConverter = "";
669
670  /// TwoOperandAliasConstraint - Enable TableGen to auto-generate a
671  /// two-operand matcher inst-alias for a three operand instruction.
672  /// For example, the arm instruction "add r3, r3, r5" can be written
673  /// as "add r3, r5". The constraint is of the same form as a tied-operand
674  /// constraint. For example, "$Rn = $Rd".
675  string TwoOperandAliasConstraint = "";
676
677  /// Assembler variant name to use for this instruction. If specified then
678  /// instruction will be presented only in MatchTable for this variant. If
679  /// not specified then assembler variants will be determined based on
680  /// AsmString
681  string AsmVariantName = "";
682
683  ///@}
684
685  /// UseNamedOperandTable - If set, the operand indices of this instruction
686  /// can be queried via the getNamedOperandIdx() function which is generated
687  /// by TableGen.
688  bit UseNamedOperandTable = false;
689
690  /// Should generate helper functions that help you to map a logical operand's
691  /// index to the underlying MIOperand's index.
692  /// In most architectures logical operand indicies are equal to
693  /// MIOperand indicies, but for some CISC architectures, a logical operand
694  /// might be consist of multiple MIOperand (e.g. a logical operand that
695  /// uses complex address mode).
696  bit UseLogicalOperandMappings = false;
697
698  /// Should FastISel ignore this instruction. For certain ISAs, they have
699  /// instructions which map to the same ISD Opcode, value type operands and
700  /// instruction selection predicates. FastISel cannot handle such cases, but
701  /// SelectionDAG can.
702  bit FastISelShouldIgnore = false;
703
704  /// HasPositionOrder: Indicate tablegen to sort the instructions by record
705  /// ID, so that instruction that is defined earlier can be sorted earlier
706  /// in the assembly matching table.
707  bit HasPositionOrder = false;
708}
709
710/// Defines a Pat match between compressed and uncompressed instruction.
711/// The relationship and helper function generation are handled by
712/// CompressInstEmitter backend.
713class CompressPat<dag input, dag output, list<Predicate> predicates = []> {
714  /// Uncompressed instruction description.
715  dag Input = input;
716  /// Compressed instruction description.
717  dag Output = output;
718  /// Predicates that must be true for this to match.
719  list<Predicate> Predicates = predicates;
720  /// Duplicate match when tied operand is just different.
721  bit isCompressOnly = false;
722}
723
724/// Defines an additional encoding that disassembles to the given instruction
725/// Like Instruction, the Inst and SoftFail fields are omitted to allow targets
726// to specify their size.
727class AdditionalEncoding<Instruction I> : InstructionEncoding {
728  Instruction AliasOf = I;
729}
730
731/// PseudoInstExpansion - Expansion information for a pseudo-instruction.
732/// Which instruction it expands to and how the operands map from the
733/// pseudo.
734class PseudoInstExpansion<dag Result> {
735  dag ResultInst = Result;     // The instruction to generate.
736  bit isPseudo = true;
737}
738
739/// Predicates - These are extra conditionals which are turned into instruction
740/// selector matching code. Currently each predicate is just a string.
741class Predicate<string cond> {
742  string CondString = cond;
743
744  /// AssemblerMatcherPredicate - If this feature can be used by the assembler
745  /// matcher, this is true.  Targets should set this by inheriting their
746  /// feature from the AssemblerPredicate class in addition to Predicate.
747  bit AssemblerMatcherPredicate = false;
748
749  /// AssemblerCondDag - Set of subtarget features being tested used
750  /// as alternative condition string used for assembler matcher. Must be used
751  /// with (all_of) to indicate that all features must be present, or (any_of)
752  /// to indicate that at least one must be. The required lack of presence of
753  /// a feature can be tested using a (not) node including the feature.
754  /// e.g. "(all_of ModeThumb)" is translated to "(Bits & ModeThumb) != 0".
755  ///      "(all_of (not ModeThumb))" is translated to
756  ///      "(Bits & ModeThumb) == 0".
757  ///      "(all_of ModeThumb, FeatureThumb2)" is translated to
758  ///      "(Bits & ModeThumb) != 0 && (Bits & FeatureThumb2) != 0".
759  ///      "(any_of ModeTumb, FeatureThumb2)" is translated to
760  ///      "(Bits & ModeThumb) != 0 || (Bits & FeatureThumb2) != 0".
761  /// all_of and any_of cannot be combined in a single dag, instead multiple
762  /// predicates can be placed onto Instruction definitions.
763  dag AssemblerCondDag;
764
765  /// PredicateName - User-level name to use for the predicate. Mainly for use
766  /// in diagnostics such as missing feature errors in the asm matcher.
767  string PredicateName = "";
768
769  /// Setting this to '1' indicates that the predicate must be recomputed on
770  /// every function change. Most predicates can leave this at '0'.
771  ///
772  /// Ignored by SelectionDAG, it always recomputes the predicate on every use.
773  bit RecomputePerFunction = false;
774}
775
776/// NoHonorSignDependentRounding - This predicate is true if support for
777/// sign-dependent-rounding is not enabled.
778def NoHonorSignDependentRounding
779 : Predicate<"!TM.Options.HonorSignDependentRoundingFPMath()">;
780
781class Requires<list<Predicate> preds> {
782  list<Predicate> Predicates = preds;
783}
784
785/// ops definition - This is just a simple marker used to identify the operand
786/// list for an instruction. outs and ins are identical both syntactically and
787/// semantically; they are used to define def operands and use operands to
788/// improve readability. This should be used like this:
789///     (outs R32:$dst), (ins R32:$src1, R32:$src2) or something similar.
790def ops;
791def outs;
792def ins;
793
794/// variable_ops definition - Mark this instruction as taking a variable number
795/// of operands.
796def variable_ops;
797
798/// variable-length instruction encoding utilities.
799/// The `ascend` operator should be used like this:
800///     (ascend 0b0010, 0b1101)
801/// Which represent a seqence of encoding fragments placing from LSB to MSB.
802/// Thus, in this case the final encoding will be 0b1101_0010.
803/// The arguments for `ascend` can either be `bits` or another DAG.
804def ascend;
805/// In addition, we can use `descend` to describe an encoding that places
806/// its arguments (i.e. encoding fragments) from MSB to LSB. For instance:
807///     (descend 0b0010, 0b1101)
808/// This results in an encoding of 0b0010_1101.
809def descend;
810/// The `operand` operator should be used like this:
811///     (operand "$src", 4)
812/// Which represents a 4-bit encoding for an instruction operand named `$src`.
813def operand;
814/// Similar to `operand`, we can reference only part of the operand's encoding:
815///     (slice "$src", 6, 8)
816///     (slice "$src", 8, 6)
817/// Both DAG represent bit 6 to 8 (total of 3 bits) in the encoding of operand
818/// `$src`.
819def slice;
820/// You can use `encoder` or `decoder` to specify a custom encoder or decoder
821/// function for a specific `operand` or `slice` directive. For example:
822///     (operand "$src", 4, (encoder "encodeMyImm"))
823///     (slice "$src", 8, 6, (encoder "encodeMyReg"))
824///     (operand "$src", 4, (encoder "encodeMyImm"), (decoder "decodeMyImm"))
825/// The ordering of `encoder` and `decoder` in the same `operand` or `slice`
826/// doesn't matter.
827/// Note that currently we cannot assign different decoders in the same
828/// (instruction) operand.
829def encoder;
830def decoder;
831
832/// PointerLikeRegClass - Values that are designed to have pointer width are
833/// derived from this.  TableGen treats the register class as having a symbolic
834/// type that it doesn't know, and resolves the actual regclass to use by using
835/// the TargetRegisterInfo::getPointerRegClass() hook at codegen time.
836class PointerLikeRegClass<int Kind> {
837  int RegClassKind = Kind;
838}
839
840
841/// ptr_rc definition - Mark this operand as being a pointer value whose
842/// register class is resolved dynamically via a callback to TargetInstrInfo.
843/// FIXME: We should probably change this to a class which contain a list of
844/// flags. But currently we have but one flag.
845def ptr_rc : PointerLikeRegClass<0>;
846
847/// unknown definition - Mark this operand as being of unknown type, causing
848/// it to be resolved by inference in the context it is used.
849class unknown_class;
850def unknown : unknown_class;
851
852/// AsmOperandClass - Representation for the kinds of operands which the target
853/// specific parser can create and the assembly matcher may need to distinguish.
854///
855/// Operand classes are used to define the order in which instructions are
856/// matched, to ensure that the instruction which gets matched for any
857/// particular list of operands is deterministic.
858///
859/// The target specific parser must be able to classify a parsed operand into a
860/// unique class which does not partially overlap with any other classes. It can
861/// match a subset of some other class, in which case the super class field
862/// should be defined.
863class AsmOperandClass {
864  /// The name to use for this class, which should be usable as an enum value.
865  string Name = ?;
866
867  /// The super classes of this operand.
868  list<AsmOperandClass> SuperClasses = [];
869
870  /// The name of the method on the target specific operand to call to test
871  /// whether the operand is an instance of this class. If not set, this will
872  /// default to "isFoo", where Foo is the AsmOperandClass name. The method
873  /// signature should be:
874  ///   bool isFoo() const;
875  string PredicateMethod = ?;
876
877  /// The name of the method on the target specific operand to call to add the
878  /// target specific operand to an MCInst. If not set, this will default to
879  /// "addFooOperands", where Foo is the AsmOperandClass name. The method
880  /// signature should be:
881  ///   void addFooOperands(MCInst &Inst, unsigned N) const;
882  string RenderMethod = ?;
883
884  /// The name of the method on the target specific operand to call to custom
885  /// handle the operand parsing. This is useful when the operands do not relate
886  /// to immediates or registers and are very instruction specific (as flags to
887  /// set in a processor register, coprocessor number, ...).
888  string ParserMethod = ?;
889
890  // The diagnostic type to present when referencing this operand in a
891  // match failure error message. By default, use a generic "invalid operand"
892  // diagnostic. The target AsmParser maps these codes to text.
893  string DiagnosticType = "";
894
895  /// A diagnostic message to emit when an invalid value is provided for this
896  /// operand.
897  string DiagnosticString = "";
898
899  /// Set to 1 if this operand is optional and not always required. Typically,
900  /// the AsmParser will emit an error when it finishes parsing an
901  /// instruction if it hasn't matched all the operands yet.  However, this
902  /// error will be suppressed if all of the remaining unmatched operands are
903  /// marked as IsOptional.
904  ///
905  /// Optional arguments must be at the end of the operand list.
906  bit IsOptional = false;
907
908  /// The name of the method on the target specific asm parser that returns the
909  /// default operand for this optional operand. This method is only used if
910  /// IsOptional == 1. If not set, this will default to "defaultFooOperands",
911  /// where Foo is the AsmOperandClass name. The method signature should be:
912  ///   std::unique_ptr<MCParsedAsmOperand> defaultFooOperands() const;
913  string DefaultMethod = ?;
914}
915
916def ImmAsmOperand : AsmOperandClass {
917  let Name = "Imm";
918}
919
920/// Operand Types - These provide the built-in operand types that may be used
921/// by a target.  Targets can optionally provide their own operand types as
922/// needed, though this should not be needed for RISC targets.
923class Operand<ValueType ty> : DAGOperand {
924  ValueType Type = ty;
925  string PrintMethod = "printOperand";
926  string EncoderMethod = "";
927  bit hasCompleteDecoder = true;
928  string OperandType = "OPERAND_UNKNOWN";
929  dag MIOperandInfo = (ops);
930
931  // MCOperandPredicate - Optionally, a code fragment operating on
932  // const MCOperand &MCOp, and returning a bool, to indicate if
933  // the value of MCOp is valid for the specific subclass of Operand
934  code MCOperandPredicate;
935
936  // ParserMatchClass - The "match class" that operands of this type fit
937  // in. Match classes are used to define the order in which instructions are
938  // match, to ensure that which instructions gets matched is deterministic.
939  //
940  // The target specific parser must be able to classify an parsed operand into
941  // a unique class, which does not partially overlap with any other classes. It
942  // can match a subset of some other class, in which case the AsmOperandClass
943  // should declare the other operand as one of its super classes.
944  AsmOperandClass ParserMatchClass = ImmAsmOperand;
945}
946
947class RegisterOperand<RegisterClass regclass, string pm = "printOperand">
948  : DAGOperand {
949  // RegClass - The register class of the operand.
950  RegisterClass RegClass = regclass;
951  // PrintMethod - The target method to call to print register operands of
952  // this type. The method normally will just use an alt-name index to look
953  // up the name to print. Default to the generic printOperand().
954  string PrintMethod = pm;
955
956  // EncoderMethod - The target method name to call to encode this register
957  // operand.
958  string EncoderMethod = "";
959
960  // ParserMatchClass - The "match class" that operands of this type fit
961  // in. Match classes are used to define the order in which instructions are
962  // match, to ensure that which instructions gets matched is deterministic.
963  //
964  // The target specific parser must be able to classify an parsed operand into
965  // a unique class, which does not partially overlap with any other classes. It
966  // can match a subset of some other class, in which case the AsmOperandClass
967  // should declare the other operand as one of its super classes.
968  AsmOperandClass ParserMatchClass;
969
970  string OperandType = "OPERAND_REGISTER";
971
972  // When referenced in the result of a CodeGen pattern, GlobalISel will
973  // normally copy the matched operand to the result. When this is set, it will
974  // emit a special copy that will replace zero-immediates with the specified
975  // zero-register.
976  Register GIZeroRegister = ?;
977}
978
979let OperandType = "OPERAND_IMMEDIATE" in {
980def i1imm  : Operand<i1>;
981def i8imm  : Operand<i8>;
982def i16imm : Operand<i16>;
983def i32imm : Operand<i32>;
984def i64imm : Operand<i64>;
985
986def f32imm : Operand<f32>;
987def f64imm : Operand<f64>;
988}
989
990// Register operands for generic instructions don't have an MVT, but do have
991// constraints linking the operands (e.g. all operands of a G_ADD must
992// have the same LLT).
993class TypedOperand<string Ty> : Operand<untyped> {
994  let OperandType = Ty;
995  bit IsPointer = false;
996  bit IsImmediate = false;
997}
998
999def type0 : TypedOperand<"OPERAND_GENERIC_0">;
1000def type1 : TypedOperand<"OPERAND_GENERIC_1">;
1001def type2 : TypedOperand<"OPERAND_GENERIC_2">;
1002def type3 : TypedOperand<"OPERAND_GENERIC_3">;
1003def type4 : TypedOperand<"OPERAND_GENERIC_4">;
1004def type5 : TypedOperand<"OPERAND_GENERIC_5">;
1005
1006let IsPointer = true in {
1007  def ptype0 : TypedOperand<"OPERAND_GENERIC_0">;
1008  def ptype1 : TypedOperand<"OPERAND_GENERIC_1">;
1009  def ptype2 : TypedOperand<"OPERAND_GENERIC_2">;
1010  def ptype3 : TypedOperand<"OPERAND_GENERIC_3">;
1011  def ptype4 : TypedOperand<"OPERAND_GENERIC_4">;
1012  def ptype5 : TypedOperand<"OPERAND_GENERIC_5">;
1013}
1014
1015// untyped_imm is for operands where isImm() will be true. It currently has no
1016// special behaviour and is only used for clarity.
1017def untyped_imm_0 : TypedOperand<"OPERAND_GENERIC_IMM_0"> {
1018  let IsImmediate = true;
1019}
1020
1021/// zero_reg definition - Special node to stand for the zero register.
1022///
1023def zero_reg;
1024
1025/// undef_tied_input - Special node to indicate an input register tied
1026/// to an output which defaults to IMPLICIT_DEF.
1027def undef_tied_input;
1028
1029/// All operands which the MC layer classifies as predicates should inherit from
1030/// this class in some manner. This is already handled for the most commonly
1031/// used PredicateOperand, but may be useful in other circumstances.
1032class PredicateOp;
1033
1034/// OperandWithDefaultOps - This Operand class can be used as the parent class
1035/// for an Operand that needs to be initialized with a default value if
1036/// no value is supplied in a pattern.  This class can be used to simplify the
1037/// pattern definitions for instructions that have target specific flags
1038/// encoded as immediate operands.
1039class OperandWithDefaultOps<ValueType ty, dag defaultops>
1040  : Operand<ty> {
1041  dag DefaultOps = defaultops;
1042}
1043
1044/// PredicateOperand - This can be used to define a predicate operand for an
1045/// instruction.  OpTypes specifies the MIOperandInfo for the operand, and
1046/// AlwaysVal specifies the value of this predicate when set to "always
1047/// execute".
1048class PredicateOperand<ValueType ty, dag OpTypes, dag AlwaysVal>
1049  : OperandWithDefaultOps<ty, AlwaysVal>, PredicateOp {
1050  let MIOperandInfo = OpTypes;
1051}
1052
1053/// OptionalDefOperand - This is used to define a optional definition operand
1054/// for an instruction. DefaultOps is the register the operand represents if
1055/// none is supplied, e.g. zero_reg.
1056class OptionalDefOperand<ValueType ty, dag OpTypes, dag defaultops>
1057  : OperandWithDefaultOps<ty, defaultops> {
1058  let MIOperandInfo = OpTypes;
1059}
1060
1061
1062// InstrInfo - This class should only be instantiated once to provide parameters
1063// which are global to the target machine.
1064//
1065class InstrInfo {
1066  // Target can specify its instructions in either big or little-endian formats.
1067  // For instance, while both Sparc and PowerPC are big-endian platforms, the
1068  // Sparc manual specifies its instructions in the format [31..0] (big), while
1069  // PowerPC specifies them using the format [0..31] (little).
1070  bit isLittleEndianEncoding = false;
1071
1072  // The instruction properties mayLoad, mayStore, and hasSideEffects are unset
1073  // by default, and TableGen will infer their value from the instruction
1074  // pattern when possible.
1075  //
1076  // Normally, TableGen will issue an error if it can't infer the value of a
1077  // property that hasn't been set explicitly. When guessInstructionProperties
1078  // is set, it will guess a safe value instead.
1079  //
1080  // This option is a temporary migration help. It will go away.
1081  bit guessInstructionProperties = true;
1082}
1083
1084// Standard Pseudo Instructions.
1085// This list must match TargetOpcodes.def.
1086// Only these instructions are allowed in the TargetOpcode namespace.
1087// Ensure mayLoad and mayStore have a default value, so as not to break
1088// targets that set guessInstructionProperties=0. Any local definition of
1089// mayLoad/mayStore takes precedence over these default values.
1090class StandardPseudoInstruction : Instruction {
1091  let mayLoad = false;
1092  let mayStore = false;
1093  let isCodeGenOnly = true;
1094  let isPseudo = true;
1095  let hasNoSchedulingInfo = true;
1096  let Namespace = "TargetOpcode";
1097}
1098def PHI : StandardPseudoInstruction {
1099  let OutOperandList = (outs unknown:$dst);
1100  let InOperandList = (ins variable_ops);
1101  let AsmString = "PHINODE";
1102  let hasSideEffects = false;
1103}
1104def INLINEASM : StandardPseudoInstruction {
1105  let OutOperandList = (outs);
1106  let InOperandList = (ins variable_ops);
1107  let AsmString = "";
1108  let hasSideEffects = false;  // Note side effect is encoded in an operand.
1109}
1110def INLINEASM_BR : StandardPseudoInstruction {
1111  let OutOperandList = (outs);
1112  let InOperandList = (ins variable_ops);
1113  let AsmString = "";
1114  // Unlike INLINEASM, this is always treated as having side-effects.
1115  let hasSideEffects = true;
1116  // Despite potentially branching, this instruction is intentionally _not_
1117  // marked as a terminator or a branch.
1118}
1119def CFI_INSTRUCTION : StandardPseudoInstruction {
1120  let OutOperandList = (outs);
1121  let InOperandList = (ins i32imm:$id);
1122  let AsmString = "";
1123  let hasCtrlDep = true;
1124  let hasSideEffects = false;
1125  let isNotDuplicable = true;
1126  let isMeta = true;
1127}
1128def EH_LABEL : StandardPseudoInstruction {
1129  let OutOperandList = (outs);
1130  let InOperandList = (ins i32imm:$id);
1131  let AsmString = "";
1132  let hasCtrlDep = true;
1133  let hasSideEffects = false;
1134  let isNotDuplicable = true;
1135  let isMeta = true;
1136}
1137def GC_LABEL : StandardPseudoInstruction {
1138  let OutOperandList = (outs);
1139  let InOperandList = (ins i32imm:$id);
1140  let AsmString = "";
1141  let hasCtrlDep = true;
1142  let hasSideEffects = false;
1143  let isNotDuplicable = true;
1144  let isMeta = true;
1145}
1146def ANNOTATION_LABEL : StandardPseudoInstruction {
1147  let OutOperandList = (outs);
1148  let InOperandList = (ins i32imm:$id);
1149  let AsmString = "";
1150  let hasCtrlDep = true;
1151  let hasSideEffects = false;
1152  let isNotDuplicable = true;
1153}
1154def KILL : StandardPseudoInstruction {
1155  let OutOperandList = (outs);
1156  let InOperandList = (ins variable_ops);
1157  let AsmString = "";
1158  let hasSideEffects = false;
1159  let isMeta = true;
1160}
1161def EXTRACT_SUBREG : StandardPseudoInstruction {
1162  let OutOperandList = (outs unknown:$dst);
1163  let InOperandList = (ins unknown:$supersrc, i32imm:$subidx);
1164  let AsmString = "";
1165  let hasSideEffects = false;
1166}
1167def INSERT_SUBREG : StandardPseudoInstruction {
1168  let OutOperandList = (outs unknown:$dst);
1169  let InOperandList = (ins unknown:$supersrc, unknown:$subsrc, i32imm:$subidx);
1170  let AsmString = "";
1171  let hasSideEffects = false;
1172  let Constraints = "$supersrc = $dst";
1173}
1174def IMPLICIT_DEF : StandardPseudoInstruction {
1175  let OutOperandList = (outs unknown:$dst);
1176  let InOperandList = (ins);
1177  let AsmString = "";
1178  let hasSideEffects = false;
1179  let isReMaterializable = true;
1180  let isAsCheapAsAMove = true;
1181  let isMeta = true;
1182}
1183def SUBREG_TO_REG : StandardPseudoInstruction {
1184  let OutOperandList = (outs unknown:$dst);
1185  let InOperandList = (ins unknown:$implsrc, unknown:$subsrc, i32imm:$subidx);
1186  let AsmString = "";
1187  let hasSideEffects = false;
1188}
1189def COPY_TO_REGCLASS : StandardPseudoInstruction {
1190  let OutOperandList = (outs unknown:$dst);
1191  let InOperandList = (ins unknown:$src, i32imm:$regclass);
1192  let AsmString = "";
1193  let hasSideEffects = false;
1194  let isAsCheapAsAMove = true;
1195}
1196def DBG_VALUE : StandardPseudoInstruction {
1197  let OutOperandList = (outs);
1198  let InOperandList = (ins variable_ops);
1199  let AsmString = "DBG_VALUE";
1200  let hasSideEffects = false;
1201  let isMeta = true;
1202}
1203def DBG_VALUE_LIST : StandardPseudoInstruction {
1204  let OutOperandList = (outs);
1205  let InOperandList = (ins variable_ops);
1206  let AsmString = "DBG_VALUE_LIST";
1207  let hasSideEffects = 0;
1208  let isMeta = true;
1209}
1210def DBG_INSTR_REF : StandardPseudoInstruction {
1211  let OutOperandList = (outs);
1212  let InOperandList = (ins variable_ops);
1213  let AsmString = "DBG_INSTR_REF";
1214  let hasSideEffects = false;
1215  let isMeta = true;
1216}
1217def DBG_PHI : StandardPseudoInstruction {
1218  let OutOperandList = (outs);
1219  let InOperandList = (ins variable_ops);
1220  let AsmString = "DBG_PHI";
1221  let hasSideEffects = 0;
1222  let isMeta = true;
1223}
1224def DBG_LABEL : StandardPseudoInstruction {
1225  let OutOperandList = (outs);
1226  let InOperandList = (ins unknown:$label);
1227  let AsmString = "DBG_LABEL";
1228  let hasSideEffects = false;
1229  let isMeta = true;
1230}
1231def REG_SEQUENCE : StandardPseudoInstruction {
1232  let OutOperandList = (outs unknown:$dst);
1233  let InOperandList = (ins unknown:$supersrc, variable_ops);
1234  let AsmString = "";
1235  let hasSideEffects = false;
1236  let isAsCheapAsAMove = true;
1237}
1238def COPY : StandardPseudoInstruction {
1239  let OutOperandList = (outs unknown:$dst);
1240  let InOperandList = (ins unknown:$src);
1241  let AsmString = "";
1242  let hasSideEffects = false;
1243  let isAsCheapAsAMove = true;
1244  let hasNoSchedulingInfo = false;
1245}
1246def BUNDLE : StandardPseudoInstruction {
1247  let OutOperandList = (outs);
1248  let InOperandList = (ins variable_ops);
1249  let AsmString = "BUNDLE";
1250  let hasSideEffects = false;
1251}
1252def LIFETIME_START : StandardPseudoInstruction {
1253  let OutOperandList = (outs);
1254  let InOperandList = (ins i32imm:$id);
1255  let AsmString = "LIFETIME_START";
1256  let hasSideEffects = false;
1257  let isMeta = true;
1258}
1259def LIFETIME_END : StandardPseudoInstruction {
1260  let OutOperandList = (outs);
1261  let InOperandList = (ins i32imm:$id);
1262  let AsmString = "LIFETIME_END";
1263  let hasSideEffects = false;
1264  let isMeta = true;
1265}
1266def PSEUDO_PROBE : StandardPseudoInstruction {
1267  let OutOperandList = (outs);
1268  let InOperandList = (ins i64imm:$guid, i64imm:$index, i8imm:$type, i32imm:$attr);
1269  let AsmString = "PSEUDO_PROBE";
1270  let hasSideEffects = 1;
1271  let isMeta = true;
1272}
1273def ARITH_FENCE : StandardPseudoInstruction {
1274  let OutOperandList = (outs unknown:$dst);
1275  let InOperandList = (ins unknown:$src);
1276  let AsmString = "";
1277  let hasSideEffects = false;
1278  let Constraints = "$src = $dst";
1279  let isMeta = true;
1280}
1281
1282def STACKMAP : StandardPseudoInstruction {
1283  let OutOperandList = (outs);
1284  let InOperandList = (ins i64imm:$id, i32imm:$nbytes, variable_ops);
1285  let hasSideEffects = true;
1286  let isCall = true;
1287  let mayLoad = true;
1288  let usesCustomInserter = true;
1289}
1290def PATCHPOINT : StandardPseudoInstruction {
1291  let OutOperandList = (outs unknown:$dst);
1292  let InOperandList = (ins i64imm:$id, i32imm:$nbytes, unknown:$callee,
1293                       i32imm:$nargs, i32imm:$cc, variable_ops);
1294  let hasSideEffects = true;
1295  let isCall = true;
1296  let mayLoad = true;
1297  let usesCustomInserter = true;
1298}
1299def STATEPOINT : StandardPseudoInstruction {
1300  let OutOperandList = (outs variable_ops);
1301  let InOperandList = (ins variable_ops);
1302  let usesCustomInserter = true;
1303  let mayLoad = true;
1304  let mayStore = true;
1305  let hasSideEffects = true;
1306  let isCall = true;
1307}
1308def LOAD_STACK_GUARD : StandardPseudoInstruction {
1309  let OutOperandList = (outs ptr_rc:$dst);
1310  let InOperandList = (ins);
1311  let mayLoad = true;
1312  bit isReMaterializable = true;
1313  let hasSideEffects = false;
1314  bit isPseudo = true;
1315}
1316def PREALLOCATED_SETUP : StandardPseudoInstruction {
1317  let OutOperandList = (outs);
1318  let InOperandList = (ins i32imm:$a);
1319  let usesCustomInserter = true;
1320  let hasSideEffects = true;
1321}
1322def PREALLOCATED_ARG : StandardPseudoInstruction {
1323  let OutOperandList = (outs ptr_rc:$loc);
1324  let InOperandList = (ins i32imm:$a, i32imm:$b);
1325  let usesCustomInserter = true;
1326  let hasSideEffects = true;
1327}
1328def LOCAL_ESCAPE : StandardPseudoInstruction {
1329  // This instruction is really just a label. It has to be part of the chain so
1330  // that it doesn't get dropped from the DAG, but it produces nothing and has
1331  // no side effects.
1332  let OutOperandList = (outs);
1333  let InOperandList = (ins ptr_rc:$symbol, i32imm:$id);
1334  let hasSideEffects = false;
1335  let hasCtrlDep = true;
1336}
1337def FAULTING_OP : StandardPseudoInstruction {
1338  let OutOperandList = (outs unknown:$dst);
1339  let InOperandList = (ins variable_ops);
1340  let usesCustomInserter = true;
1341  let hasSideEffects = true;
1342  let mayLoad = true;
1343  let mayStore = true;
1344  let isTerminator = true;
1345  let isBranch = true;
1346}
1347def PATCHABLE_OP : StandardPseudoInstruction {
1348  let OutOperandList = (outs);
1349  let InOperandList = (ins variable_ops);
1350  let usesCustomInserter = true;
1351  let mayLoad = true;
1352  let mayStore = true;
1353  let hasSideEffects = true;
1354}
1355def PATCHABLE_FUNCTION_ENTER : StandardPseudoInstruction {
1356  let OutOperandList = (outs);
1357  let InOperandList = (ins);
1358  let AsmString = "# XRay Function Enter.";
1359  let usesCustomInserter = true;
1360  let hasSideEffects = true;
1361}
1362def PATCHABLE_RET : StandardPseudoInstruction {
1363  let OutOperandList = (outs);
1364  let InOperandList = (ins variable_ops);
1365  let AsmString = "# XRay Function Patchable RET.";
1366  let usesCustomInserter = true;
1367  let hasSideEffects = true;
1368  let isTerminator = true;
1369  let isReturn = true;
1370}
1371def PATCHABLE_FUNCTION_EXIT : StandardPseudoInstruction {
1372  let OutOperandList = (outs);
1373  let InOperandList = (ins);
1374  let AsmString = "# XRay Function Exit.";
1375  let usesCustomInserter = true;
1376  let hasSideEffects = true;
1377  let isReturn = false; // Original return instruction will follow
1378}
1379def PATCHABLE_TAIL_CALL : StandardPseudoInstruction {
1380  let OutOperandList = (outs);
1381  let InOperandList = (ins variable_ops);
1382  let AsmString = "# XRay Tail Call Exit.";
1383  let usesCustomInserter = true;
1384  let hasSideEffects = true;
1385  let isReturn = true;
1386}
1387def PATCHABLE_EVENT_CALL : StandardPseudoInstruction {
1388  let OutOperandList = (outs);
1389  let InOperandList = (ins ptr_rc:$event, unknown:$size);
1390  let AsmString = "# XRay Custom Event Log.";
1391  let usesCustomInserter = true;
1392  let isCall = true;
1393  let mayLoad = true;
1394  let mayStore = true;
1395  let hasSideEffects = true;
1396}
1397def PATCHABLE_TYPED_EVENT_CALL : StandardPseudoInstruction {
1398  let OutOperandList = (outs);
1399  let InOperandList = (ins unknown:$type, ptr_rc:$event, unknown:$size);
1400  let AsmString = "# XRay Typed Event Log.";
1401  let usesCustomInserter = true;
1402  let isCall = true;
1403  let mayLoad = true;
1404  let mayStore = true;
1405  let hasSideEffects = true;
1406}
1407def FENTRY_CALL : StandardPseudoInstruction {
1408  let OutOperandList = (outs);
1409  let InOperandList = (ins);
1410  let AsmString = "# FEntry call";
1411  let usesCustomInserter = true;
1412  let isCall = true;
1413  let mayLoad = true;
1414  let mayStore = true;
1415  let hasSideEffects = true;
1416}
1417def ICALL_BRANCH_FUNNEL : StandardPseudoInstruction {
1418  let OutOperandList = (outs);
1419  let InOperandList = (ins variable_ops);
1420  let AsmString = "";
1421  let hasSideEffects = true;
1422}
1423def MEMBARRIER : StandardPseudoInstruction {
1424  let OutOperandList = (outs);
1425  let InOperandList = (ins);
1426  let AsmString = "";
1427  let hasSideEffects = true;
1428  let Size = 0;
1429  let isMeta = true;
1430}
1431def JUMP_TABLE_DEBUG_INFO : StandardPseudoInstruction {
1432  let OutOperandList = (outs);
1433  let InOperandList = (ins i64imm:$jti);
1434  let AsmString = "";
1435  let hasSideEffects = false;
1436  let Size = 0;
1437  let isMeta = true;
1438}
1439
1440// Generic opcodes used in GlobalISel.
1441include "llvm/Target/GenericOpcodes.td"
1442
1443//===----------------------------------------------------------------------===//
1444// AsmParser - This class can be implemented by targets that wish to implement
1445// .s file parsing.
1446//
1447// Subtargets can have multiple different assembly parsers (e.g. AT&T vs Intel
1448// syntax on X86 for example).
1449//
1450class AsmParser {
1451  // AsmParserClassName - This specifies the suffix to use for the asmparser
1452  // class.  Generated AsmParser classes are always prefixed with the target
1453  // name.
1454  string AsmParserClassName  = "AsmParser";
1455
1456  // AsmParserInstCleanup - If non-empty, this is the name of a custom member
1457  // function of the AsmParser class to call on every matched instruction.
1458  // This can be used to perform target specific instruction post-processing.
1459  string AsmParserInstCleanup  = "";
1460
1461  // ShouldEmitMatchRegisterName - Set to false if the target needs a hand
1462  // written register name matcher
1463  bit ShouldEmitMatchRegisterName = true;
1464
1465  // Set to true if the target needs a generated 'alternative register name'
1466  // matcher.
1467  //
1468  // This generates a function which can be used to lookup registers from
1469  // their aliases. This function will fail when called on targets where
1470  // several registers share the same alias (i.e. not a 1:1 mapping).
1471  bit ShouldEmitMatchRegisterAltName = false;
1472
1473  // Set to true if MatchRegisterName and MatchRegisterAltName functions
1474  // should be generated even if there are duplicate register names. The
1475  // target is responsible for coercing aliased registers as necessary
1476  // (e.g. in validateTargetOperandClass), and there are no guarantees about
1477  // which numeric register identifier will be returned in the case of
1478  // multiple matches.
1479  bit AllowDuplicateRegisterNames = false;
1480
1481  // HasMnemonicFirst - Set to false if target instructions don't always
1482  // start with a mnemonic as the first token.
1483  bit HasMnemonicFirst = true;
1484
1485  // ReportMultipleNearMisses -
1486  // When 0, the assembly matcher reports an error for one encoding or operand
1487  // that did not match the parsed instruction.
1488  // When 1, the assembly matcher returns a list of encodings that were close
1489  // to matching the parsed instruction, so to allow more detailed error
1490  // messages.
1491  bit ReportMultipleNearMisses = false;
1492
1493  // OperandParserMethod - If non-empty, this is the name of a custom
1494  // member function of the AsmParser class to call for every instruction
1495  // operand to be parsed.
1496  string OperandParserMethod = "";
1497
1498  // CallCustomParserForAllOperands - Set to true if the custom parser
1499  // method shall be called for all operands as opposed to only those
1500  // that have their own specified custom parsers.
1501  bit CallCustomParserForAllOperands = false;
1502}
1503def DefaultAsmParser : AsmParser;
1504
1505//===----------------------------------------------------------------------===//
1506// AsmParserVariant - Subtargets can have multiple different assembly parsers
1507// (e.g. AT&T vs Intel syntax on X86 for example). This class can be
1508// implemented by targets to describe such variants.
1509//
1510class AsmParserVariant {
1511  // Variant - AsmParsers can be of multiple different variants.  Variants are
1512  // used to support targets that need to parse multiple formats for the
1513  // assembly language.
1514  int Variant = 0;
1515
1516  // Name - The AsmParser variant name (e.g., AT&T vs Intel).
1517  string Name = "";
1518
1519  // CommentDelimiter - If given, the delimiter string used to recognize
1520  // comments which are hard coded in the .td assembler strings for individual
1521  // instructions.
1522  string CommentDelimiter = "";
1523
1524  // RegisterPrefix - If given, the token prefix which indicates a register
1525  // token. This is used by the matcher to automatically recognize hard coded
1526  // register tokens as constrained registers, instead of tokens, for the
1527  // purposes of matching.
1528  string RegisterPrefix = "";
1529
1530  // TokenizingCharacters - Characters that are standalone tokens
1531  string TokenizingCharacters = "[]*!";
1532
1533  // SeparatorCharacters - Characters that are not tokens
1534  string SeparatorCharacters = " \t,";
1535
1536  // BreakCharacters - Characters that start new identifiers
1537  string BreakCharacters = "";
1538}
1539def DefaultAsmParserVariant : AsmParserVariant;
1540
1541// Operators for combining SubtargetFeatures in AssemblerPredicates
1542def any_of;
1543def all_of;
1544
1545/// AssemblerPredicate - This is a Predicate that can be used when the assembler
1546/// matches instructions and aliases.
1547class AssemblerPredicate<dag cond, string name = ""> {
1548  bit AssemblerMatcherPredicate = true;
1549  dag AssemblerCondDag = cond;
1550  string PredicateName = name;
1551}
1552
1553/// TokenAlias - This class allows targets to define assembler token
1554/// operand aliases. That is, a token literal operand which is equivalent
1555/// to another, canonical, token literal. For example, ARM allows:
1556///   vmov.u32 s4, #0  -> vmov.i32, #0
1557/// 'u32' is a more specific designator for the 32-bit integer type specifier
1558/// and is legal for any instruction which accepts 'i32' as a datatype suffix.
1559///   def : TokenAlias<".u32", ".i32">;
1560///
1561/// This works by marking the match class of 'From' as a subclass of the
1562/// match class of 'To'.
1563class TokenAlias<string From, string To> {
1564  string FromToken = From;
1565  string ToToken = To;
1566}
1567
1568/// MnemonicAlias - This class allows targets to define assembler mnemonic
1569/// aliases.  This should be used when all forms of one mnemonic are accepted
1570/// with a different mnemonic.  For example, X86 allows:
1571///   sal %al, 1    -> shl %al, 1
1572///   sal %ax, %cl  -> shl %ax, %cl
1573///   sal %eax, %cl -> shl %eax, %cl
1574/// etc.  Though "sal" is accepted with many forms, all of them are directly
1575/// translated to a shl, so it can be handled with (in the case of X86, it
1576/// actually has one for each suffix as well):
1577///   def : MnemonicAlias<"sal", "shl">;
1578///
1579/// Mnemonic aliases are mapped before any other translation in the match phase,
1580/// and do allow Requires predicates, e.g.:
1581///
1582///  def : MnemonicAlias<"pushf", "pushfq">, Requires<[In64BitMode]>;
1583///  def : MnemonicAlias<"pushf", "pushfl">, Requires<[In32BitMode]>;
1584///
1585/// Mnemonic aliases can also be constrained to specific variants, e.g.:
1586///
1587///  def : MnemonicAlias<"pushf", "pushfq", "att">, Requires<[In64BitMode]>;
1588///
1589/// If no variant (e.g., "att" or "intel") is specified then the alias is
1590/// applied unconditionally.
1591class MnemonicAlias<string From, string To, string VariantName = ""> {
1592  string FromMnemonic = From;
1593  string ToMnemonic = To;
1594  string AsmVariantName = VariantName;
1595
1596  // Predicates - Predicates that must be true for this remapping to happen.
1597  list<Predicate> Predicates = [];
1598}
1599
1600/// InstAlias - This defines an alternate assembly syntax that is allowed to
1601/// match an instruction that has a different (more canonical) assembly
1602/// representation.
1603class InstAlias<string Asm, dag Result, int Emit = 1, string VariantName = ""> {
1604  string AsmString = Asm;      // The .s format to match the instruction with.
1605  dag ResultInst = Result;     // The MCInst to generate.
1606
1607  // This determines which order the InstPrinter detects aliases for
1608  // printing. A larger value makes the alias more likely to be
1609  // emitted. The Instruction's own definition is notionally 0.5, so 0
1610  // disables printing and 1 enables it if there are no conflicting aliases.
1611  int EmitPriority = Emit;
1612
1613  // Predicates - Predicates that must be true for this to match.
1614  list<Predicate> Predicates = [];
1615
1616  // If the instruction specified in Result has defined an AsmMatchConverter
1617  // then setting this to 1 will cause the alias to use the AsmMatchConverter
1618  // function when converting the OperandVector into an MCInst instead of the
1619  // function that is generated by the dag Result.
1620  // Setting this to 0 will cause the alias to ignore the Result instruction's
1621  // defined AsmMatchConverter and instead use the function generated by the
1622  // dag Result.
1623  bit UseInstAsmMatchConverter = true;
1624
1625  // Assembler variant name to use for this alias. If not specified then
1626  // assembler variants will be determined based on AsmString
1627  string AsmVariantName = VariantName;
1628}
1629
1630//===----------------------------------------------------------------------===//
1631// AsmWriter - This class can be implemented by targets that need to customize
1632// the format of the .s file writer.
1633//
1634// Subtargets can have multiple different asmwriters (e.g. AT&T vs Intel syntax
1635// on X86 for example).
1636//
1637class AsmWriter {
1638  // AsmWriterClassName - This specifies the suffix to use for the asmwriter
1639  // class.  Generated AsmWriter classes are always prefixed with the target
1640  // name.
1641  string AsmWriterClassName  = "InstPrinter";
1642
1643  // PassSubtarget - Determines whether MCSubtargetInfo should be passed to
1644  // the various print methods.
1645  // FIXME: Remove after all ports are updated.
1646  int PassSubtarget = 0;
1647
1648  // Variant - AsmWriters can be of multiple different variants.  Variants are
1649  // used to support targets that need to emit assembly code in ways that are
1650  // mostly the same for different targets, but have minor differences in
1651  // syntax.  If the asmstring contains {|} characters in them, this integer
1652  // will specify which alternative to use.  For example "{x|y|z}" with Variant
1653  // == 1, will expand to "y".
1654  int Variant = 0;
1655}
1656def DefaultAsmWriter : AsmWriter;
1657
1658
1659//===----------------------------------------------------------------------===//
1660// Target - This class contains the "global" target information
1661//
1662class Target {
1663  // InstructionSet - Instruction set description for this target.
1664  InstrInfo InstructionSet;
1665
1666  // AssemblyParsers - The AsmParser instances available for this target.
1667  list<AsmParser> AssemblyParsers = [DefaultAsmParser];
1668
1669  /// AssemblyParserVariants - The AsmParserVariant instances available for
1670  /// this target.
1671  list<AsmParserVariant> AssemblyParserVariants = [DefaultAsmParserVariant];
1672
1673  // AssemblyWriters - The AsmWriter instances available for this target.
1674  list<AsmWriter> AssemblyWriters = [DefaultAsmWriter];
1675
1676  // AllowRegisterRenaming - Controls whether this target allows
1677  // post-register-allocation renaming of registers.  This is done by
1678  // setting hasExtraDefRegAllocReq and hasExtraSrcRegAllocReq to 1
1679  // for all opcodes if this flag is set to 0.
1680  int AllowRegisterRenaming = 0;
1681}
1682
1683//===----------------------------------------------------------------------===//
1684// SubtargetFeature - A characteristic of the chip set.
1685//
1686class SubtargetFeature<string n, string f, string v, string d,
1687                       list<SubtargetFeature> i = []> {
1688  // Name - Feature name.  Used by command line (-mattr=) to determine the
1689  // appropriate target chip.
1690  //
1691  string Name = n;
1692
1693  // FieldName - Field in XXXSubtarget to be set by feature.
1694  //
1695  string FieldName = f;
1696
1697  // Value - Value the XXXSubtarget field to be set to by feature.
1698  //
1699  // A value of "true" or "false" implies the field is a bool. Otherwise,
1700  // it is assumed to be an integer. the integer value may be the name of an
1701  // enum constant. If multiple features use the same integer field, the
1702  // field will be set to the maximum value of all enabled features that
1703  // share the field.
1704  //
1705  string Value = v;
1706
1707  // Desc - Feature description.  Used by command line (-mattr=) to display help
1708  // information.
1709  //
1710  string Desc = d;
1711
1712  // Implies - Features that this feature implies are present. If one of those
1713  // features isn't set, then this one shouldn't be set either.
1714  //
1715  list<SubtargetFeature> Implies = i;
1716}
1717
1718/// Specifies a Subtarget feature that this instruction is deprecated on.
1719class Deprecated<SubtargetFeature dep> {
1720  SubtargetFeature DeprecatedFeatureMask = dep;
1721}
1722
1723/// A custom predicate used to determine if an instruction is
1724/// deprecated or not.
1725class ComplexDeprecationPredicate<string dep> {
1726  string ComplexDeprecationPredicate = dep;
1727}
1728
1729//===----------------------------------------------------------------------===//
1730// Processor chip sets - These values represent each of the chip sets supported
1731// by the scheduler.  Each Processor definition requires corresponding
1732// instruction itineraries.
1733//
1734class Processor<string n, ProcessorItineraries pi, list<SubtargetFeature> f,
1735                list<SubtargetFeature> tunef = []> {
1736  // Name - Chip set name.  Used by command line (-mcpu=) to determine the
1737  // appropriate target chip.
1738  //
1739  string Name = n;
1740
1741  // SchedModel - The machine model for scheduling and instruction cost.
1742  //
1743  SchedMachineModel SchedModel = NoSchedModel;
1744
1745  // ProcItin - The scheduling information for the target processor.
1746  //
1747  ProcessorItineraries ProcItin = pi;
1748
1749  // Features - list of
1750  list<SubtargetFeature> Features = f;
1751
1752  // TuneFeatures - list of features for tuning for this CPU. If the target
1753  // supports -mtune, this should contain the list of features used to make
1754  // microarchitectural optimization decisions for a given processor.  While
1755  // Features should contain the architectural features for the processor.
1756  list<SubtargetFeature> TuneFeatures = tunef;
1757}
1758
1759// ProcessorModel allows subtargets to specify the more general
1760// SchedMachineModel instead if a ProcessorItinerary. Subtargets will
1761// gradually move to this newer form.
1762//
1763// Although this class always passes NoItineraries to the Processor
1764// class, the SchedMachineModel may still define valid Itineraries.
1765class ProcessorModel<string n, SchedMachineModel m, list<SubtargetFeature> f,
1766                     list<SubtargetFeature> tunef = []>
1767  : Processor<n, NoItineraries, f, tunef> {
1768  let SchedModel = m;
1769}
1770
1771//===----------------------------------------------------------------------===//
1772// InstrMapping - This class is used to create mapping tables to relate
1773// instructions with each other based on the values specified in RowFields,
1774// ColFields, KeyCol and ValueCols.
1775//
1776class InstrMapping {
1777  // FilterClass - Used to limit search space only to the instructions that
1778  // define the relationship modeled by this InstrMapping record.
1779  string FilterClass;
1780
1781  // RowFields - List of fields/attributes that should be same for all the
1782  // instructions in a row of the relation table. Think of this as a set of
1783  // properties shared by all the instructions related by this relationship
1784  // model and is used to categorize instructions into subgroups. For instance,
1785  // if we want to define a relation that maps 'Add' instruction to its
1786  // predicated forms, we can define RowFields like this:
1787  //
1788  // let RowFields = BaseOp
1789  // All add instruction predicated/non-predicated will have to set their BaseOp
1790  // to the same value.
1791  //
1792  // def Add: { let BaseOp = 'ADD'; let predSense = 'nopred' }
1793  // def Add_predtrue: { let BaseOp = 'ADD'; let predSense = 'true' }
1794  // def Add_predfalse: { let BaseOp = 'ADD'; let predSense = 'false'  }
1795  list<string> RowFields = [];
1796
1797  // List of fields/attributes that are same for all the instructions
1798  // in a column of the relation table.
1799  // Ex: let ColFields = 'predSense' -- It means that the columns are arranged
1800  // based on the 'predSense' values. All the instruction in a specific
1801  // column have the same value and it is fixed for the column according
1802  // to the values set in 'ValueCols'.
1803  list<string> ColFields = [];
1804
1805  // Values for the fields/attributes listed in 'ColFields'.
1806  // Ex: let KeyCol = 'nopred' -- It means that the key instruction (instruction
1807  // that models this relation) should be non-predicated.
1808  // In the example above, 'Add' is the key instruction.
1809  list<string> KeyCol = [];
1810
1811  // List of values for the fields/attributes listed in 'ColFields', one for
1812  // each column in the relation table.
1813  //
1814  // Ex: let ValueCols = [['true'],['false']] -- It adds two columns in the
1815  // table. First column requires all the instructions to have predSense
1816  // set to 'true' and second column requires it to be 'false'.
1817  list<list<string> > ValueCols = [];
1818}
1819
1820//===----------------------------------------------------------------------===//
1821// Pull in the common support for calling conventions.
1822//
1823include "llvm/Target/TargetCallingConv.td"
1824
1825//===----------------------------------------------------------------------===//
1826// Pull in the common support for DAG isel generation.
1827//
1828include "llvm/Target/TargetSelectionDAG.td"
1829
1830//===----------------------------------------------------------------------===//
1831// Pull in the common support for Global ISel register bank info generation.
1832//
1833include "llvm/Target/GlobalISel/RegisterBank.td"
1834
1835//===----------------------------------------------------------------------===//
1836// Pull in the common support for DAG isel generation.
1837//
1838include "llvm/Target/GlobalISel/Target.td"
1839
1840//===----------------------------------------------------------------------===//
1841// Pull in the common support for the Global ISel DAG-based selector generation.
1842//
1843include "llvm/Target/GlobalISel/SelectionDAGCompat.td"
1844
1845//===----------------------------------------------------------------------===//
1846// Pull in the common support for Pfm Counters generation.
1847//
1848include "llvm/Target/TargetPfmCounters.td"
1849