1 //===- ScopDetection.h - Detect Scops ---------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Detect the maximal Scops of a function.
10 //
11 // A static control part (Scop) is a subgraph of the control flow graph (CFG)
12 // that only has statically known control flow and can therefore be described
13 // within the polyhedral model.
14 //
15 // Every Scop fulfills these restrictions:
16 //
17 // * It is a single entry single exit region
18 //
19 // * Only affine linear bounds in the loops
20 //
21 // Every natural loop in a Scop must have a number of loop iterations that can
22 // be described as an affine linear function in surrounding loop iterators or
23 // parameters. (A parameter is a scalar that does not change its value during
24 // execution of the Scop).
25 //
26 // * Only comparisons of affine linear expressions in conditions
27 //
28 // * All loops and conditions perfectly nested
29 //
30 // The control flow needs to be structured such that it could be written using
31 // just 'for' and 'if' statements, without the need for any 'goto', 'break' or
32 // 'continue'.
33 //
34 // * Side effect free functions call
35 //
36 // Only function calls and intrinsics that do not have side effects are allowed
37 // (readnone).
38 //
39 // The Scop detection finds the largest Scops by checking if the largest
40 // region is a Scop. If this is not the case, its canonical subregions are
41 // checked until a region is a Scop. It is now tried to extend this Scop by
42 // creating a larger non canonical region.
43 //
44 //===----------------------------------------------------------------------===//
45 
46 #ifndef POLLY_SCOPDETECTION_H
47 #define POLLY_SCOPDETECTION_H
48 
49 #include "polly/ScopDetectionDiagnostic.h"
50 #include "polly/Support/ScopHelper.h"
51 #include "llvm/Analysis/AliasAnalysis.h"
52 #include "llvm/Analysis/AliasSetTracker.h"
53 #include "llvm/Analysis/RegionInfo.h"
54 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
55 #include "llvm/Pass.h"
56 #include <set>
57 
58 namespace polly {
59 using llvm::AAResults;
60 using llvm::AliasSetTracker;
61 using llvm::AnalysisInfoMixin;
62 using llvm::AnalysisKey;
63 using llvm::AnalysisUsage;
64 using llvm::BatchAAResults;
65 using llvm::BranchInst;
66 using llvm::CallInst;
67 using llvm::DenseMap;
68 using llvm::DominatorTree;
69 using llvm::Function;
70 using llvm::FunctionAnalysisManager;
71 using llvm::FunctionPass;
72 using llvm::IntrinsicInst;
73 using llvm::LoopInfo;
74 using llvm::Module;
75 using llvm::OptimizationRemarkEmitter;
76 using llvm::PassInfoMixin;
77 using llvm::PreservedAnalyses;
78 using llvm::RegionInfo;
79 using llvm::ScalarEvolution;
80 using llvm::SCEVUnknown;
81 using llvm::SetVector;
82 using llvm::SmallSetVector;
83 using llvm::SmallVectorImpl;
84 using llvm::StringRef;
85 using llvm::SwitchInst;
86 
87 using ParamSetType = std::set<const SCEV *>;
88 
89 // Description of the shape of an array.
90 struct ArrayShape {
91   // Base pointer identifying all accesses to this array.
92   const SCEVUnknown *BasePointer;
93 
94   // Sizes of each delinearized dimension.
95   SmallVector<const SCEV *, 4> DelinearizedSizes;
96 
ArrayShapeArrayShape97   ArrayShape(const SCEVUnknown *B) : BasePointer(B) {}
98 };
99 
100 struct MemAcc {
101   const Instruction *Insn;
102 
103   // A pointer to the shape description of the array.
104   std::shared_ptr<ArrayShape> Shape;
105 
106   // Subscripts computed by delinearization.
107   SmallVector<const SCEV *, 4> DelinearizedSubscripts;
108 
MemAccMemAcc109   MemAcc(const Instruction *I, std::shared_ptr<ArrayShape> S)
110       : Insn(I), Shape(S) {}
111 };
112 
113 using MapInsnToMemAcc = std::map<const Instruction *, MemAcc>;
114 using PairInstSCEV = std::pair<const Instruction *, const SCEV *>;
115 using AFs = std::vector<PairInstSCEV>;
116 using BaseToAFs = std::map<const SCEVUnknown *, AFs>;
117 using BaseToElSize = std::map<const SCEVUnknown *, const SCEV *>;
118 
119 extern bool PollyTrackFailures;
120 extern bool PollyDelinearize;
121 extern bool PollyUseRuntimeAliasChecks;
122 extern bool PollyProcessUnprofitable;
123 extern bool PollyInvariantLoadHoisting;
124 extern bool PollyAllowUnsignedOperations;
125 extern bool PollyAllowFullFunction;
126 
127 /// A function attribute which will cause Polly to skip the function
128 extern StringRef PollySkipFnAttr;
129 
130 //===----------------------------------------------------------------------===//
131 /// Pass to detect the maximal static control parts (Scops) of a
132 /// function.
133 class ScopDetection {
134 public:
135   using RegionSet = SetVector<const Region *>;
136 
137   // Remember the valid regions
138   RegionSet ValidRegions;
139 
140   /// Context variables for SCoP detection.
141   struct DetectionContext {
142     Region &CurRegion;   // The region to check.
143     BatchAAResults BAA;  // The batched alias analysis results.
144     AliasSetTracker AST; // The AliasSetTracker to hold the alias information.
145     bool Verifying;      // If we are in the verification phase?
146 
147     /// If this flag is set, the SCoP must eventually be rejected, even with
148     /// KeepGoing.
149     bool IsInvalid = false;
150 
151     /// Container to remember rejection reasons for this region.
152     RejectLog Log;
153 
154     /// Map a base pointer to all access functions accessing it.
155     ///
156     /// This map is indexed by the base pointer. Each element of the map
157     /// is a list of memory accesses that reference this base pointer.
158     BaseToAFs Accesses;
159 
160     /// The set of base pointers with non-affine accesses.
161     ///
162     /// This set contains all base pointers and the locations where they are
163     /// used for memory accesses that can not be detected as affine accesses.
164     llvm::SetVector<std::pair<const SCEVUnknown *, Loop *>> NonAffineAccesses;
165     BaseToElSize ElementSize;
166 
167     /// The region has at least one load instruction.
168     bool hasLoads = false;
169 
170     /// The region has at least one store instruction.
171     bool hasStores = false;
172 
173     /// Flag to indicate the region has at least one unknown access.
174     bool HasUnknownAccess = false;
175 
176     /// The set of non-affine subregions in the region we analyze.
177     RegionSet NonAffineSubRegionSet;
178 
179     /// The set of loops contained in non-affine regions.
180     BoxedLoopsSetTy BoxedLoopsSet;
181 
182     /// Loads that need to be invariant during execution.
183     InvariantLoadsSetTy RequiredILS;
184 
185     /// Map to memory access description for the corresponding LLVM
186     ///        instructions.
187     MapInsnToMemAcc InsnToMemAcc;
188 
189     /// Initialize a DetectionContext from scratch.
DetectionContextDetectionContext190     DetectionContext(Region &R, AAResults &AA, bool Verify)
191         : CurRegion(R), BAA(AA), AST(BAA), Verifying(Verify), Log(&R) {}
192   };
193 
194   /// Helper data structure to collect statistics about loop counts.
195   struct LoopStats {
196     int NumLoops;
197     int MaxDepth;
198   };
199 
200   int NextScopID = 0;
getNextID()201   int getNextID() { return NextScopID++; }
202 
203 private:
204   //===--------------------------------------------------------------------===//
205 
206   /// Analyses used
207   //@{
208   const DominatorTree &DT;
209   ScalarEvolution &SE;
210   LoopInfo &LI;
211   RegionInfo &RI;
212   AAResults &AA;
213   //@}
214 
215   /// Map to remember detection contexts for all regions.
216   using DetectionContextMapTy =
217       DenseMap<BBPair, std::unique_ptr<DetectionContext>>;
218   DetectionContextMapTy DetectionContextMap;
219 
220   /// Cache for the isErrorBlock function.
221   DenseMap<std::tuple<const BasicBlock *, const Region *>, bool>
222       ErrorBlockCache;
223 
224   /// Remove cached results for @p R.
225   void removeCachedResults(const Region &R);
226 
227   /// Remove cached results for the children of @p R recursively.
228   void removeCachedResultsRecursively(const Region &R);
229 
230   /// Check if @p S0 and @p S1 do contain multiple possibly aliasing pointers.
231   ///
232   /// @param S0    A expression to check.
233   /// @param S1    Another expression to check or nullptr.
234   /// @param Scope The loop/scope the expressions are checked in.
235   ///
236   /// @returns True, if multiple possibly aliasing pointers are used in @p S0
237   ///          (and @p S1 if given).
238   bool involvesMultiplePtrs(const SCEV *S0, const SCEV *S1, Loop *Scope) const;
239 
240   /// Add the region @p AR as over approximated sub-region in @p Context.
241   ///
242   /// @param AR      The non-affine subregion.
243   /// @param Context The current detection context.
244   ///
245   /// @returns True if the subregion can be over approximated, false otherwise.
246   bool addOverApproximatedRegion(Region *AR, DetectionContext &Context) const;
247 
248   /// Find for a given base pointer terms that hint towards dimension
249   ///        sizes of a multi-dimensional array.
250   ///
251   /// @param Context      The current detection context.
252   /// @param BasePointer  A base pointer indicating the virtual array we are
253   ///                     interested in.
254   SmallVector<const SCEV *, 4>
255   getDelinearizationTerms(DetectionContext &Context,
256                           const SCEVUnknown *BasePointer) const;
257 
258   /// Check if the dimension size of a delinearized array is valid.
259   ///
260   /// @param Context     The current detection context.
261   /// @param Sizes       The sizes of the different array dimensions.
262   /// @param BasePointer The base pointer we are interested in.
263   /// @param Scope       The location where @p BasePointer is being used.
264   /// @returns True if one or more array sizes could be derived - meaning: we
265   ///          see this array as multi-dimensional.
266   bool hasValidArraySizes(DetectionContext &Context,
267                           SmallVectorImpl<const SCEV *> &Sizes,
268                           const SCEVUnknown *BasePointer, Loop *Scope) const;
269 
270   /// Derive access functions for a given base pointer.
271   ///
272   /// @param Context     The current detection context.
273   /// @param Sizes       The sizes of the different array dimensions.
274   /// @param BasePointer The base pointer of all the array for which to compute
275   ///                    access functions.
276   /// @param Shape       The shape that describes the derived array sizes and
277   ///                    which should be filled with newly computed access
278   ///                    functions.
279   /// @returns True if a set of affine access functions could be derived.
280   bool computeAccessFunctions(DetectionContext &Context,
281                               const SCEVUnknown *BasePointer,
282                               std::shared_ptr<ArrayShape> Shape) const;
283 
284   /// Check if all accesses to a given BasePointer are affine.
285   ///
286   /// @param Context     The current detection context.
287   /// @param BasePointer the base pointer we are interested in.
288   /// @param Scope       The location where @p BasePointer is being used.
289   /// @param True if consistent (multi-dimensional) array accesses could be
290   ///        derived for this array.
291   bool hasBaseAffineAccesses(DetectionContext &Context,
292                              const SCEVUnknown *BasePointer, Loop *Scope) const;
293 
294   /// Delinearize all non affine memory accesses and return false when there
295   /// exists a non affine memory access that cannot be delinearized. Return true
296   /// when all array accesses are affine after delinearization.
297   bool hasAffineMemoryAccesses(DetectionContext &Context) const;
298 
299   /// Try to expand the region R. If R can be expanded return the expanded
300   /// region, NULL otherwise.
301   Region *expandRegion(Region &R);
302 
303   /// Find the Scops in this region tree.
304   ///
305   /// @param The region tree to scan for scops.
306   void findScops(Region &R);
307 
308   /// Check if all basic block in the region are valid.
309   ///
310   /// @param Context The context of scop detection.
311   bool allBlocksValid(DetectionContext &Context);
312 
313   /// Check if a region has sufficient compute instructions.
314   ///
315   /// This function checks if a region has a non-trivial number of instructions
316   /// in each loop. This can be used as an indicator whether a loop is worth
317   /// optimizing.
318   ///
319   /// @param Context  The context of scop detection.
320   /// @param NumLoops The number of loops in the region.
321   ///
322   /// @return True if region is has sufficient compute instructions,
323   ///         false otherwise.
324   bool hasSufficientCompute(DetectionContext &Context,
325                             int NumAffineLoops) const;
326 
327   /// Check if the unique affine loop might be amendable to distribution.
328   ///
329   /// This function checks if the number of non-trivial blocks in the unique
330   /// affine loop in Context.CurRegion is at least two, thus if the loop might
331   /// be amendable to distribution.
332   ///
333   /// @param Context  The context of scop detection.
334   ///
335   /// @return True only if the affine loop might be amendable to distributable.
336   bool hasPossiblyDistributableLoop(DetectionContext &Context) const;
337 
338   /// Check if a region is profitable to optimize.
339   ///
340   /// Regions that are unlikely to expose interesting optimization opportunities
341   /// are called 'unprofitable' and may be skipped during scop detection.
342   ///
343   /// @param Context The context of scop detection.
344   ///
345   /// @return True if region is profitable to optimize, false otherwise.
346   bool isProfitableRegion(DetectionContext &Context) const;
347 
348   /// Check if a region is a Scop.
349   ///
350   /// @param Context The context of scop detection.
351   ///
352   /// @return If we short-circuited early to not waste time on known-invalid
353   ///         SCoPs. Use Context.IsInvalid to determine whether the region is a
354   ///         valid SCoP.
355   bool isValidRegion(DetectionContext &Context);
356 
357   /// Check if an intrinsic call can be part of a Scop.
358   ///
359   /// @param II      The intrinsic call instruction to check.
360   /// @param Context The current detection context.
361   bool isValidIntrinsicInst(IntrinsicInst &II, DetectionContext &Context) const;
362 
363   /// Check if a call instruction can be part of a Scop.
364   ///
365   /// @param CI      The call instruction to check.
366   /// @param Context The current detection context.
367   bool isValidCallInst(CallInst &CI, DetectionContext &Context) const;
368 
369   /// Check if the given loads could be invariant and can be hoisted.
370   ///
371   /// If true is returned the loads are added to the required invariant loads
372   /// contained in the @p Context.
373   ///
374   /// @param RequiredILS The loads to check.
375   /// @param Context     The current detection context.
376   ///
377   /// @return True if all loads can be assumed invariant.
378   bool onlyValidRequiredInvariantLoads(InvariantLoadsSetTy &RequiredILS,
379                                        DetectionContext &Context) const;
380 
381   /// Check if a value is invariant in the region Reg.
382   ///
383   /// @param Val Value to check for invariance.
384   /// @param Reg The region to consider for the invariance of Val.
385   /// @param Ctx The current detection context.
386   ///
387   /// @return True if the value represented by Val is invariant in the region
388   ///         identified by Reg.
389   bool isInvariant(Value &Val, const Region &Reg, DetectionContext &Ctx) const;
390 
391   /// Check if the memory access caused by @p Inst is valid.
392   ///
393   /// @param Inst    The access instruction.
394   /// @param AF      The access function.
395   /// @param BP      The access base pointer.
396   /// @param Context The current detection context.
397   bool isValidAccess(Instruction *Inst, const SCEV *AF, const SCEVUnknown *BP,
398                      DetectionContext &Context) const;
399 
400   /// Check if a memory access can be part of a Scop.
401   ///
402   /// @param Inst The instruction accessing the memory.
403   /// @param Context The context of scop detection.
404   bool isValidMemoryAccess(MemAccInst Inst, DetectionContext &Context) const;
405 
406   /// Check if an instruction can be part of a Scop.
407   ///
408   /// @param Inst The instruction to check.
409   /// @param Context The context of scop detection.
410   bool isValidInstruction(Instruction &Inst, DetectionContext &Context);
411 
412   /// Check if the switch @p SI with condition @p Condition is valid.
413   ///
414   /// @param BB           The block to check.
415   /// @param SI           The switch to check.
416   /// @param Condition    The switch condition.
417   /// @param IsLoopBranch Flag to indicate the branch is a loop exit/latch.
418   /// @param Context      The context of scop detection.
419   bool isValidSwitch(BasicBlock &BB, SwitchInst *SI, Value *Condition,
420                      bool IsLoopBranch, DetectionContext &Context) const;
421 
422   /// Check if the branch @p BI with condition @p Condition is valid.
423   ///
424   /// @param BB           The block to check.
425   /// @param BI           The branch to check.
426   /// @param Condition    The branch condition.
427   /// @param IsLoopBranch Flag to indicate the branch is a loop exit/latch.
428   /// @param Context      The context of scop detection.
429   bool isValidBranch(BasicBlock &BB, BranchInst *BI, Value *Condition,
430                      bool IsLoopBranch, DetectionContext &Context);
431 
432   /// Check if the SCEV @p S is affine in the current @p Context.
433   ///
434   /// This will also use a heuristic to decide if we want to require loads to be
435   /// invariant to make the expression affine or if we want to treat is as
436   /// non-affine.
437   ///
438   /// @param S           The expression to be checked.
439   /// @param Scope       The loop nest in which @p S is used.
440   /// @param Context     The context of scop detection.
441   bool isAffine(const SCEV *S, Loop *Scope, DetectionContext &Context) const;
442 
443   /// Check if the control flow in a basic block is valid.
444   ///
445   /// This function checks if a certain basic block is terminated by a
446   /// Terminator instruction we can handle or, if this is not the case,
447   /// registers this basic block as the start of a non-affine region.
448   ///
449   /// This function optionally allows unreachable statements.
450   ///
451   /// @param BB               The BB to check the control flow.
452   /// @param IsLoopBranch     Flag to indicate the branch is a loop exit/latch.
453   ///  @param AllowUnreachable Allow unreachable statements.
454   /// @param Context          The context of scop detection.
455   bool isValidCFG(BasicBlock &BB, bool IsLoopBranch, bool AllowUnreachable,
456                   DetectionContext &Context);
457 
458   /// Is a loop valid with respect to a given region.
459   ///
460   /// @param L The loop to check.
461   /// @param Context The context of scop detection.
462   bool isValidLoop(Loop *L, DetectionContext &Context);
463 
464   /// Count the number of loops and the maximal loop depth in @p L.
465   ///
466   /// @param L The loop to check.
467   /// @param SE The scalar evolution analysis.
468   /// @param MinProfitableTrips The minimum number of trip counts from which
469   ///                           a loop is assumed to be profitable and
470   ///                           consequently is counted.
471   /// returns A tuple of number of loops and their maximal depth.
472   static ScopDetection::LoopStats
473   countBeneficialSubLoops(Loop *L, ScalarEvolution &SE,
474                           unsigned MinProfitableTrips);
475 
476   /// Check if the function @p F is marked as invalid.
477   ///
478   /// @note An OpenMP subfunction will be marked as invalid.
479   static bool isValidFunction(Function &F);
480 
481   /// Can ISL compute the trip count of a loop.
482   ///
483   /// @param L The loop to check.
484   /// @param Context The context of scop detection.
485   ///
486   /// @return True if ISL can compute the trip count of the loop.
487   bool canUseISLTripCount(Loop *L, DetectionContext &Context);
488 
489   /// Print the locations of all detected scops.
490   void printLocations(Function &F);
491 
492   /// Check if a region is reducible or not.
493   ///
494   /// @param Region The region to check.
495   /// @param DbgLoc Parameter to save the location of instruction that
496   ///               causes irregular control flow if the region is irreducible.
497   ///
498   /// @return True if R is reducible, false otherwise.
499   bool isReducibleRegion(Region &R, DebugLoc &DbgLoc) const;
500 
501   /// Track diagnostics for invalid scops.
502   ///
503   /// @param Context The context of scop detection.
504   /// @param Assert Throw an assert in verify mode or not.
505   /// @param Args Argument list that gets passed to the constructor of RR.
506   template <class RR, typename... Args>
507   inline bool invalid(DetectionContext &Context, bool Assert,
508                       Args &&...Arguments) const;
509 
510 public:
511   ScopDetection(const DominatorTree &DT, ScalarEvolution &SE, LoopInfo &LI,
512                 RegionInfo &RI, AAResults &AA, OptimizationRemarkEmitter &ORE);
513 
514   void detect(Function &F);
515 
516   /// Get the RegionInfo stored in this pass.
517   ///
518   /// This was added to give the DOT printer easy access to this information.
getRI()519   RegionInfo *getRI() const { return &RI; }
520 
521   /// Get the LoopInfo stored in this pass.
getLI()522   LoopInfo *getLI() const { return &LI; }
523 
524   /// Is the region is the maximum region of a Scop?
525   ///
526   /// @param R The Region to test if it is maximum.
527   /// @param Verify Rerun the scop detection to verify SCoP was not invalidated
528   ///               meanwhile. Do not use if the region's DetectionContect is
529   ///               referenced by a Scop that is still to be processed.
530   ///
531   /// @return Return true if R is the maximum Region in a Scop, false otherwise.
532   bool isMaxRegionInScop(const Region &R, bool Verify = true);
533 
534   /// Return the detection context for @p R, nullptr if @p R was invalid.
535   DetectionContext *getDetectionContext(const Region *R) const;
536 
537   /// Return the set of rejection causes for @p R.
538   const RejectLog *lookupRejectionLog(const Region *R) const;
539 
540   /// Get a message why a region is invalid
541   ///
542   /// @param R The region for which we get the error message
543   ///
544   /// @return The error or "" if no error appeared.
545   std::string regionIsInvalidBecause(const Region *R) const;
546 
547   /// @name Maximum Region In Scops Iterators
548   ///
549   /// These iterators iterator over all maximum region in Scops of this
550   /// function.
551   //@{
552   using iterator = RegionSet::iterator;
553   using const_iterator = RegionSet::const_iterator;
554 
begin()555   iterator begin() { return ValidRegions.begin(); }
end()556   iterator end() { return ValidRegions.end(); }
557 
begin()558   const_iterator begin() const { return ValidRegions.begin(); }
end()559   const_iterator end() const { return ValidRegions.end(); }
560   //@}
561 
562   /// Emit rejection remarks for all rejected regions.
563   ///
564   /// @param F The function to emit remarks for.
565   void emitMissedRemarks(const Function &F);
566 
567   /// Mark the function as invalid so we will not extract any scop from
568   ///        the function.
569   ///
570   /// @param F The function to mark as invalid.
571   static void markFunctionAsInvalid(Function *F);
572 
573   /// Verify if all valid Regions in this Function are still valid
574   /// after some transformations.
575   void verifyAnalysis();
576 
577   /// Verify if R is still a valid part of Scop after some transformations.
578   ///
579   /// @param R The Region to verify.
580   void verifyRegion(const Region &R);
581 
582   /// Count the number of loops and the maximal loop depth in @p R.
583   ///
584   /// @param R The region to check
585   /// @param SE The scalar evolution analysis.
586   /// @param MinProfitableTrips The minimum number of trip counts from which
587   ///                           a loop is assumed to be profitable and
588   ///                           consequently is counted.
589   /// returns A tuple of number of loops and their maximal depth.
590   static ScopDetection::LoopStats
591   countBeneficialLoops(Region *R, ScalarEvolution &SE, LoopInfo &LI,
592                        unsigned MinProfitableTrips);
593 
594   /// Check if the block is a error block.
595   ///
596   /// A error block is currently any block that fulfills at least one of
597   /// the following conditions:
598   ///
599   ///  - It is terminated by an unreachable instruction
600   ///  - It contains a call to a non-pure function that is not immediately
601   ///    dominated by a loop header and that does not dominate the region exit.
602   ///    This is a heuristic to pick only error blocks that are conditionally
603   ///    executed and can be assumed to be not executed at all without the
604   ///    domains being available.
605   ///
606   /// @param BB The block to check.
607   /// @param R  The analyzed region.
608   ///
609   /// @return True if the block is a error block, false otherwise.
610   bool isErrorBlock(llvm::BasicBlock &BB, const llvm::Region &R);
611 
612 private:
613   /// OptimizationRemarkEmitter object used to emit diagnostic remarks
614   OptimizationRemarkEmitter &ORE;
615 };
616 
617 struct ScopAnalysis : AnalysisInfoMixin<ScopAnalysis> {
618   static AnalysisKey Key;
619 
620   using Result = ScopDetection;
621 
622   ScopAnalysis();
623 
624   Result run(Function &F, FunctionAnalysisManager &FAM);
625 };
626 
627 struct ScopAnalysisPrinterPass final : PassInfoMixin<ScopAnalysisPrinterPass> {
ScopAnalysisPrinterPassfinal628   ScopAnalysisPrinterPass(raw_ostream &OS) : OS(OS) {}
629 
630   PreservedAnalyses run(Function &F, FunctionAnalysisManager &FAM);
631 
632   raw_ostream &OS;
633 };
634 
635 class ScopDetectionWrapperPass final : public FunctionPass {
636   std::unique_ptr<ScopDetection> Result;
637 
638 public:
639   ScopDetectionWrapperPass();
640 
641   /// @name FunctionPass interface
642   ///@{
643   static char ID;
644   void getAnalysisUsage(AnalysisUsage &AU) const override;
645   void releaseMemory() override;
646   bool runOnFunction(Function &F) override;
647   void print(raw_ostream &OS, const Module *M = nullptr) const override;
648   ///@}
649 
getSD()650   ScopDetection &getSD() const { return *Result; }
651 };
652 
653 llvm::Pass *createScopDetectionPrinterLegacyPass(llvm::raw_ostream &OS);
654 } // namespace polly
655 
656 namespace llvm {
657 void initializeScopDetectionWrapperPassPass(llvm::PassRegistry &);
658 void initializeScopDetectionPrinterLegacyPassPass(llvm::PassRegistry &);
659 } // namespace llvm
660 
661 #endif // POLLY_SCOPDETECTION_H
662