1 //==- CodeGen/TargetRegisterInfo.h - Target Register Information -*- C++ -*-==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file describes an abstract interface used to get information about a 10 // target machines register file. This information is used for a variety of 11 // purposed, especially register allocation. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #ifndef LLVM_CODEGEN_TARGETREGISTERINFO_H 16 #define LLVM_CODEGEN_TARGETREGISTERINFO_H 17 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/iterator_range.h" 22 #include "llvm/CodeGen/MachineBasicBlock.h" 23 #include "llvm/CodeGen/RegisterBank.h" 24 #include "llvm/IR/CallingConv.h" 25 #include "llvm/MC/LaneBitmask.h" 26 #include "llvm/MC/MCRegisterInfo.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/MathExtras.h" 29 #include "llvm/Support/Printable.h" 30 #include <cassert> 31 #include <cstdint> 32 33 namespace llvm { 34 35 class BitVector; 36 class DIExpression; 37 class LiveRegMatrix; 38 class MachineFunction; 39 class MachineInstr; 40 class RegScavenger; 41 class VirtRegMap; 42 class LiveIntervals; 43 class LiveInterval; 44 45 class TargetRegisterClass { 46 public: 47 using iterator = const MCPhysReg *; 48 using const_iterator = const MCPhysReg *; 49 using sc_iterator = const TargetRegisterClass* const *; 50 51 // Instance variables filled by tablegen, do not use! 52 const MCRegisterClass *MC; 53 const uint32_t *SubClassMask; 54 const uint16_t *SuperRegIndices; 55 const LaneBitmask LaneMask; 56 /// Classes with a higher priority value are assigned first by register 57 /// allocators using a greedy heuristic. The value is in the range [0,31]. 58 const uint8_t AllocationPriority; 59 60 // Change allocation priority heuristic used by greedy. 61 const bool GlobalPriority; 62 63 /// Configurable target specific flags. 64 const uint8_t TSFlags; 65 /// Whether the class supports two (or more) disjunct subregister indices. 66 const bool HasDisjunctSubRegs; 67 /// Whether a combination of subregisters can cover every register in the 68 /// class. See also the CoveredBySubRegs description in Target.td. 69 const bool CoveredBySubRegs; 70 const sc_iterator SuperClasses; 71 ArrayRef<MCPhysReg> (*OrderFunc)(const MachineFunction&); 72 73 /// Return the register class ID number. getID()74 unsigned getID() const { return MC->getID(); } 75 76 /// begin/end - Return all of the registers in this class. 77 /// begin()78 iterator begin() const { return MC->begin(); } end()79 iterator end() const { return MC->end(); } 80 81 /// Return the number of registers in this class. getNumRegs()82 unsigned getNumRegs() const { return MC->getNumRegs(); } 83 getRegisters()84 ArrayRef<MCPhysReg> getRegisters() const { 85 return ArrayRef(begin(), getNumRegs()); 86 } 87 88 /// Return the specified register in the class. getRegister(unsigned i)89 MCRegister getRegister(unsigned i) const { 90 return MC->getRegister(i); 91 } 92 93 /// Return true if the specified register is included in this register class. 94 /// This does not include virtual registers. contains(Register Reg)95 bool contains(Register Reg) const { 96 /// FIXME: Historically this function has returned false when given vregs 97 /// but it should probably only receive physical registers 98 if (!Reg.isPhysical()) 99 return false; 100 return MC->contains(Reg.asMCReg()); 101 } 102 103 /// Return true if both registers are in this class. contains(Register Reg1,Register Reg2)104 bool contains(Register Reg1, Register Reg2) const { 105 /// FIXME: Historically this function has returned false when given a vregs 106 /// but it should probably only receive physical registers 107 if (!Reg1.isPhysical() || !Reg2.isPhysical()) 108 return false; 109 return MC->contains(Reg1.asMCReg(), Reg2.asMCReg()); 110 } 111 112 /// Return the cost of copying a value between two registers in this class. 113 /// A negative number means the register class is very expensive 114 /// to copy e.g. status flag register classes. getCopyCost()115 int getCopyCost() const { return MC->getCopyCost(); } 116 117 /// Return true if this register class may be used to create virtual 118 /// registers. isAllocatable()119 bool isAllocatable() const { return MC->isAllocatable(); } 120 121 /// Return true if this register class has a defined BaseClassOrder. isBaseClass()122 bool isBaseClass() const { return MC->isBaseClass(); } 123 124 /// Return true if the specified TargetRegisterClass 125 /// is a proper sub-class of this TargetRegisterClass. hasSubClass(const TargetRegisterClass * RC)126 bool hasSubClass(const TargetRegisterClass *RC) const { 127 return RC != this && hasSubClassEq(RC); 128 } 129 130 /// Returns true if RC is a sub-class of or equal to this class. hasSubClassEq(const TargetRegisterClass * RC)131 bool hasSubClassEq(const TargetRegisterClass *RC) const { 132 unsigned ID = RC->getID(); 133 return (SubClassMask[ID / 32] >> (ID % 32)) & 1; 134 } 135 136 /// Return true if the specified TargetRegisterClass is a 137 /// proper super-class of this TargetRegisterClass. hasSuperClass(const TargetRegisterClass * RC)138 bool hasSuperClass(const TargetRegisterClass *RC) const { 139 return RC->hasSubClass(this); 140 } 141 142 /// Returns true if RC is a super-class of or equal to this class. hasSuperClassEq(const TargetRegisterClass * RC)143 bool hasSuperClassEq(const TargetRegisterClass *RC) const { 144 return RC->hasSubClassEq(this); 145 } 146 147 /// Returns a bit vector of subclasses, including this one. 148 /// The vector is indexed by class IDs. 149 /// 150 /// To use it, consider the returned array as a chunk of memory that 151 /// contains an array of bits of size NumRegClasses. Each 32-bit chunk 152 /// contains a bitset of the ID of the subclasses in big-endian style. 153 154 /// I.e., the representation of the memory from left to right at the 155 /// bit level looks like: 156 /// [31 30 ... 1 0] [ 63 62 ... 33 32] ... 157 /// [ XXX NumRegClasses NumRegClasses - 1 ... ] 158 /// Where the number represents the class ID and XXX bits that 159 /// should be ignored. 160 /// 161 /// See the implementation of hasSubClassEq for an example of how it 162 /// can be used. getSubClassMask()163 const uint32_t *getSubClassMask() const { 164 return SubClassMask; 165 } 166 167 /// Returns a 0-terminated list of sub-register indices that project some 168 /// super-register class into this register class. The list has an entry for 169 /// each Idx such that: 170 /// 171 /// There exists SuperRC where: 172 /// For all Reg in SuperRC: 173 /// this->contains(Reg:Idx) getSuperRegIndices()174 const uint16_t *getSuperRegIndices() const { 175 return SuperRegIndices; 176 } 177 178 /// Returns a NULL-terminated list of super-classes. The 179 /// classes are ordered by ID which is also a topological ordering from large 180 /// to small classes. The list does NOT include the current class. getSuperClasses()181 sc_iterator getSuperClasses() const { 182 return SuperClasses; 183 } 184 185 /// Return true if this TargetRegisterClass is a subset 186 /// class of at least one other TargetRegisterClass. isASubClass()187 bool isASubClass() const { 188 return SuperClasses[0] != nullptr; 189 } 190 191 /// Returns the preferred order for allocating registers from this register 192 /// class in MF. The raw order comes directly from the .td file and may 193 /// include reserved registers that are not allocatable. 194 /// Register allocators should also make sure to allocate 195 /// callee-saved registers only after all the volatiles are used. The 196 /// RegisterClassInfo class provides filtered allocation orders with 197 /// callee-saved registers moved to the end. 198 /// 199 /// The MachineFunction argument can be used to tune the allocatable 200 /// registers based on the characteristics of the function, subtarget, or 201 /// other criteria. 202 /// 203 /// By default, this method returns all registers in the class. getRawAllocationOrder(const MachineFunction & MF)204 ArrayRef<MCPhysReg> getRawAllocationOrder(const MachineFunction &MF) const { 205 return OrderFunc ? OrderFunc(MF) : getRegisters(); 206 } 207 208 /// Returns the combination of all lane masks of register in this class. 209 /// The lane masks of the registers are the combination of all lane masks 210 /// of their subregisters. Returns 1 if there are no subregisters. getLaneMask()211 LaneBitmask getLaneMask() const { 212 return LaneMask; 213 } 214 }; 215 216 /// Extra information, not in MCRegisterDesc, about registers. 217 /// These are used by codegen, not by MC. 218 struct TargetRegisterInfoDesc { 219 const uint8_t *CostPerUse; // Extra cost of instructions using register. 220 unsigned NumCosts; // Number of cost values associated with each register. 221 const bool 222 *InAllocatableClass; // Register belongs to an allocatable regclass. 223 }; 224 225 /// Each TargetRegisterClass has a per register weight, and weight 226 /// limit which must be less than the limits of its pressure sets. 227 struct RegClassWeight { 228 unsigned RegWeight; 229 unsigned WeightLimit; 230 }; 231 232 /// TargetRegisterInfo base class - We assume that the target defines a static 233 /// array of TargetRegisterDesc objects that represent all of the machine 234 /// registers that the target has. As such, we simply have to track a pointer 235 /// to this array so that we can turn register number into a register 236 /// descriptor. 237 /// 238 class TargetRegisterInfo : public MCRegisterInfo { 239 public: 240 using regclass_iterator = const TargetRegisterClass * const *; 241 using vt_iterator = const MVT::SimpleValueType *; 242 struct RegClassInfo { 243 unsigned RegSize, SpillSize, SpillAlignment; 244 unsigned VTListOffset; 245 }; 246 private: 247 const TargetRegisterInfoDesc *InfoDesc; // Extra desc array for codegen 248 const char *const *SubRegIndexNames; // Names of subreg indexes. 249 // Pointer to array of lane masks, one per sub-reg index. 250 const LaneBitmask *SubRegIndexLaneMasks; 251 252 regclass_iterator RegClassBegin, RegClassEnd; // List of regclasses 253 LaneBitmask CoveringLanes; 254 const RegClassInfo *const RCInfos; 255 const MVT::SimpleValueType *const RCVTLists; 256 unsigned HwMode; 257 258 protected: 259 TargetRegisterInfo(const TargetRegisterInfoDesc *ID, 260 regclass_iterator RCB, 261 regclass_iterator RCE, 262 const char *const *SRINames, 263 const LaneBitmask *SRILaneMasks, 264 LaneBitmask CoveringLanes, 265 const RegClassInfo *const RCIs, 266 const MVT::SimpleValueType *const RCVTLists, 267 unsigned Mode = 0); 268 virtual ~TargetRegisterInfo(); 269 270 public: 271 /// Return the number of registers for the function. (may overestimate) getNumSupportedRegs(const MachineFunction &)272 virtual unsigned getNumSupportedRegs(const MachineFunction &) const { 273 return getNumRegs(); 274 } 275 276 // Register numbers can represent physical registers, virtual registers, and 277 // sometimes stack slots. The unsigned values are divided into these ranges: 278 // 279 // 0 Not a register, can be used as a sentinel. 280 // [1;2^30) Physical registers assigned by TableGen. 281 // [2^30;2^31) Stack slots. (Rarely used.) 282 // [2^31;2^32) Virtual registers assigned by MachineRegisterInfo. 283 // 284 // Further sentinels can be allocated from the small negative integers. 285 // DenseMapInfo<unsigned> uses -1u and -2u. 286 287 /// Return the size in bits of a register from class RC. getRegSizeInBits(const TargetRegisterClass & RC)288 TypeSize getRegSizeInBits(const TargetRegisterClass &RC) const { 289 return TypeSize::getFixed(getRegClassInfo(RC).RegSize); 290 } 291 292 /// Return the size in bytes of the stack slot allocated to hold a spilled 293 /// copy of a register from class RC. getSpillSize(const TargetRegisterClass & RC)294 unsigned getSpillSize(const TargetRegisterClass &RC) const { 295 return getRegClassInfo(RC).SpillSize / 8; 296 } 297 298 /// Return the minimum required alignment in bytes for a spill slot for 299 /// a register of this class. getSpillAlign(const TargetRegisterClass & RC)300 Align getSpillAlign(const TargetRegisterClass &RC) const { 301 return Align(getRegClassInfo(RC).SpillAlignment / 8); 302 } 303 304 /// Return true if the given TargetRegisterClass has the ValueType T. isTypeLegalForClass(const TargetRegisterClass & RC,MVT T)305 bool isTypeLegalForClass(const TargetRegisterClass &RC, MVT T) const { 306 for (auto I = legalclasstypes_begin(RC); *I != MVT::Other; ++I) 307 if (MVT(*I) == T) 308 return true; 309 return false; 310 } 311 312 /// Return true if the given TargetRegisterClass is compatible with LLT T. isTypeLegalForClass(const TargetRegisterClass & RC,LLT T)313 bool isTypeLegalForClass(const TargetRegisterClass &RC, LLT T) const { 314 for (auto I = legalclasstypes_begin(RC); *I != MVT::Other; ++I) { 315 MVT VT(*I); 316 if (VT == MVT::Untyped) 317 return true; 318 319 if (LLT(VT) == T) 320 return true; 321 } 322 return false; 323 } 324 325 /// Loop over all of the value types that can be represented by values 326 /// in the given register class. legalclasstypes_begin(const TargetRegisterClass & RC)327 vt_iterator legalclasstypes_begin(const TargetRegisterClass &RC) const { 328 return &RCVTLists[getRegClassInfo(RC).VTListOffset]; 329 } 330 legalclasstypes_end(const TargetRegisterClass & RC)331 vt_iterator legalclasstypes_end(const TargetRegisterClass &RC) const { 332 vt_iterator I = legalclasstypes_begin(RC); 333 while (*I != MVT::Other) 334 ++I; 335 return I; 336 } 337 338 /// Returns the Register Class of a physical register of the given type, 339 /// picking the most sub register class of the right type that contains this 340 /// physreg. 341 const TargetRegisterClass *getMinimalPhysRegClass(MCRegister Reg, 342 MVT VT = MVT::Other) const; 343 344 /// Returns the Register Class of a physical register of the given type, 345 /// picking the most sub register class of the right type that contains this 346 /// physreg. If there is no register class compatible with the given type, 347 /// returns nullptr. 348 const TargetRegisterClass *getMinimalPhysRegClassLLT(MCRegister Reg, 349 LLT Ty = LLT()) const; 350 351 /// Return the maximal subclass of the given register class that is 352 /// allocatable or NULL. 353 const TargetRegisterClass * 354 getAllocatableClass(const TargetRegisterClass *RC) const; 355 356 /// Returns a bitset indexed by register number indicating if a register is 357 /// allocatable or not. If a register class is specified, returns the subset 358 /// for the class. 359 BitVector getAllocatableSet(const MachineFunction &MF, 360 const TargetRegisterClass *RC = nullptr) const; 361 362 /// Get a list of cost values for all registers that correspond to the index 363 /// returned by RegisterCostTableIndex. getRegisterCosts(const MachineFunction & MF)364 ArrayRef<uint8_t> getRegisterCosts(const MachineFunction &MF) const { 365 unsigned Idx = getRegisterCostTableIndex(MF); 366 unsigned NumRegs = getNumRegs(); 367 assert(Idx < InfoDesc->NumCosts && "CostPerUse index out of bounds"); 368 369 return ArrayRef(&InfoDesc->CostPerUse[Idx * NumRegs], NumRegs); 370 } 371 372 /// Return true if the register is in the allocation of any register class. isInAllocatableClass(MCRegister RegNo)373 bool isInAllocatableClass(MCRegister RegNo) const { 374 return InfoDesc->InAllocatableClass[RegNo]; 375 } 376 377 /// Return the human-readable symbolic target-specific 378 /// name for the specified SubRegIndex. getSubRegIndexName(unsigned SubIdx)379 const char *getSubRegIndexName(unsigned SubIdx) const { 380 assert(SubIdx && SubIdx < getNumSubRegIndices() && 381 "This is not a subregister index"); 382 return SubRegIndexNames[SubIdx-1]; 383 } 384 385 /// Return a bitmask representing the parts of a register that are covered by 386 /// SubIdx \see LaneBitmask. 387 /// 388 /// SubIdx == 0 is allowed, it has the lane mask ~0u. getSubRegIndexLaneMask(unsigned SubIdx)389 LaneBitmask getSubRegIndexLaneMask(unsigned SubIdx) const { 390 assert(SubIdx < getNumSubRegIndices() && "This is not a subregister index"); 391 return SubRegIndexLaneMasks[SubIdx]; 392 } 393 394 /// Try to find one or more subregister indexes to cover \p LaneMask. 395 /// 396 /// If this is possible, returns true and appends the best matching set of 397 /// indexes to \p Indexes. If this is not possible, returns false. 398 bool getCoveringSubRegIndexes(const MachineRegisterInfo &MRI, 399 const TargetRegisterClass *RC, 400 LaneBitmask LaneMask, 401 SmallVectorImpl<unsigned> &Indexes) const; 402 403 /// The lane masks returned by getSubRegIndexLaneMask() above can only be 404 /// used to determine if sub-registers overlap - they can't be used to 405 /// determine if a set of sub-registers completely cover another 406 /// sub-register. 407 /// 408 /// The X86 general purpose registers have two lanes corresponding to the 409 /// sub_8bit and sub_8bit_hi sub-registers. Both sub_32bit and sub_16bit have 410 /// lane masks '3', but the sub_16bit sub-register doesn't fully cover the 411 /// sub_32bit sub-register. 412 /// 413 /// On the other hand, the ARM NEON lanes fully cover their registers: The 414 /// dsub_0 sub-register is completely covered by the ssub_0 and ssub_1 lanes. 415 /// This is related to the CoveredBySubRegs property on register definitions. 416 /// 417 /// This function returns a bit mask of lanes that completely cover their 418 /// sub-registers. More precisely, given: 419 /// 420 /// Covering = getCoveringLanes(); 421 /// MaskA = getSubRegIndexLaneMask(SubA); 422 /// MaskB = getSubRegIndexLaneMask(SubB); 423 /// 424 /// If (MaskA & ~(MaskB & Covering)) == 0, then SubA is completely covered by 425 /// SubB. getCoveringLanes()426 LaneBitmask getCoveringLanes() const { return CoveringLanes; } 427 428 /// Returns true if the two registers are equal or alias each other. 429 /// The registers may be virtual registers. regsOverlap(Register RegA,Register RegB)430 bool regsOverlap(Register RegA, Register RegB) const { 431 if (RegA == RegB) 432 return true; 433 if (RegA.isPhysical() && RegB.isPhysical()) 434 return MCRegisterInfo::regsOverlap(RegA.asMCReg(), RegB.asMCReg()); 435 return false; 436 } 437 438 /// Returns true if Reg contains RegUnit. hasRegUnit(MCRegister Reg,Register RegUnit)439 bool hasRegUnit(MCRegister Reg, Register RegUnit) const { 440 for (MCRegUnit Unit : regunits(Reg)) 441 if (Register(Unit) == RegUnit) 442 return true; 443 return false; 444 } 445 446 /// Returns the original SrcReg unless it is the target of a copy-like 447 /// operation, in which case we chain backwards through all such operations 448 /// to the ultimate source register. If a physical register is encountered, 449 /// we stop the search. 450 virtual Register lookThruCopyLike(Register SrcReg, 451 const MachineRegisterInfo *MRI) const; 452 453 /// Find the original SrcReg unless it is the target of a copy-like operation, 454 /// in which case we chain backwards through all such operations to the 455 /// ultimate source register. If a physical register is encountered, we stop 456 /// the search. 457 /// Return the original SrcReg if all the definitions in the chain only have 458 /// one user and not a physical register. 459 virtual Register 460 lookThruSingleUseCopyChain(Register SrcReg, 461 const MachineRegisterInfo *MRI) const; 462 463 /// Return a null-terminated list of all of the callee-saved registers on 464 /// this target. The register should be in the order of desired callee-save 465 /// stack frame offset. The first register is closest to the incoming stack 466 /// pointer if stack grows down, and vice versa. 467 /// Notice: This function does not take into account disabled CSRs. 468 /// In most cases you will want to use instead the function 469 /// getCalleeSavedRegs that is implemented in MachineRegisterInfo. 470 virtual const MCPhysReg* 471 getCalleeSavedRegs(const MachineFunction *MF) const = 0; 472 473 /// Return a mask of call-preserved registers for the given calling convention 474 /// on the current function. The mask should include all call-preserved 475 /// aliases. This is used by the register allocator to determine which 476 /// registers can be live across a call. 477 /// 478 /// The mask is an array containing (TRI::getNumRegs()+31)/32 entries. 479 /// A set bit indicates that all bits of the corresponding register are 480 /// preserved across the function call. The bit mask is expected to be 481 /// sub-register complete, i.e. if A is preserved, so are all its 482 /// sub-registers. 483 /// 484 /// Bits are numbered from the LSB, so the bit for physical register Reg can 485 /// be found as (Mask[Reg / 32] >> Reg % 32) & 1. 486 /// 487 /// A NULL pointer means that no register mask will be used, and call 488 /// instructions should use implicit-def operands to indicate call clobbered 489 /// registers. 490 /// getCallPreservedMask(const MachineFunction & MF,CallingConv::ID)491 virtual const uint32_t *getCallPreservedMask(const MachineFunction &MF, 492 CallingConv::ID) const { 493 // The default mask clobbers everything. All targets should override. 494 return nullptr; 495 } 496 497 /// Return a register mask for the registers preserved by the unwinder, 498 /// or nullptr if no custom mask is needed. 499 virtual const uint32_t * getCustomEHPadPreservedMask(const MachineFunction & MF)500 getCustomEHPadPreservedMask(const MachineFunction &MF) const { 501 return nullptr; 502 } 503 504 /// Return a register mask that clobbers everything. getNoPreservedMask()505 virtual const uint32_t *getNoPreservedMask() const { 506 llvm_unreachable("target does not provide no preserved mask"); 507 } 508 509 /// Return a list of all of the registers which are clobbered "inside" a call 510 /// to the given function. For example, these might be needed for PLT 511 /// sequences of long-branch veneers. 512 virtual ArrayRef<MCPhysReg> getIntraCallClobberedRegs(const MachineFunction * MF)513 getIntraCallClobberedRegs(const MachineFunction *MF) const { 514 return {}; 515 } 516 517 /// Return true if all bits that are set in mask \p mask0 are also set in 518 /// \p mask1. 519 bool regmaskSubsetEqual(const uint32_t *mask0, const uint32_t *mask1) const; 520 521 /// Return all the call-preserved register masks defined for this target. 522 virtual ArrayRef<const uint32_t *> getRegMasks() const = 0; 523 virtual ArrayRef<const char *> getRegMaskNames() const = 0; 524 525 /// Returns a bitset indexed by physical register number indicating if a 526 /// register is a special register that has particular uses and should be 527 /// considered unavailable at all times, e.g. stack pointer, return address. 528 /// A reserved register: 529 /// - is not allocatable 530 /// - is considered always live 531 /// - is ignored by liveness tracking 532 /// It is often necessary to reserve the super registers of a reserved 533 /// register as well, to avoid them getting allocated indirectly. You may use 534 /// markSuperRegs() and checkAllSuperRegsMarked() in this case. 535 virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0; 536 537 /// Returns either a string explaining why the given register is reserved for 538 /// this function, or an empty optional if no explanation has been written. 539 /// The absence of an explanation does not mean that the register is not 540 /// reserved (meaning, you should check that PhysReg is in fact reserved 541 /// before calling this). 542 virtual std::optional<std::string> explainReservedReg(const MachineFunction & MF,MCRegister PhysReg)543 explainReservedReg(const MachineFunction &MF, MCRegister PhysReg) const { 544 return {}; 545 } 546 547 /// Returns false if we can't guarantee that Physreg, specified as an IR asm 548 /// clobber constraint, will be preserved across the statement. isAsmClobberable(const MachineFunction & MF,MCRegister PhysReg)549 virtual bool isAsmClobberable(const MachineFunction &MF, 550 MCRegister PhysReg) const { 551 return true; 552 } 553 554 /// Returns true if PhysReg cannot be written to in inline asm statements. isInlineAsmReadOnlyReg(const MachineFunction & MF,unsigned PhysReg)555 virtual bool isInlineAsmReadOnlyReg(const MachineFunction &MF, 556 unsigned PhysReg) const { 557 return false; 558 } 559 560 /// Returns true if PhysReg is unallocatable and constant throughout the 561 /// function. Used by MachineRegisterInfo::isConstantPhysReg(). isConstantPhysReg(MCRegister PhysReg)562 virtual bool isConstantPhysReg(MCRegister PhysReg) const { return false; } 563 564 /// Returns true if the register class is considered divergent. isDivergentRegClass(const TargetRegisterClass * RC)565 virtual bool isDivergentRegClass(const TargetRegisterClass *RC) const { 566 return false; 567 } 568 569 /// Returns true if the register is considered uniform. isUniformReg(const MachineRegisterInfo & MRI,const RegisterBankInfo & RBI,Register Reg)570 virtual bool isUniformReg(const MachineRegisterInfo &MRI, 571 const RegisterBankInfo &RBI, Register Reg) const { 572 return false; 573 } 574 575 /// Physical registers that may be modified within a function but are 576 /// guaranteed to be restored before any uses. This is useful for targets that 577 /// have call sequences where a GOT register may be updated by the caller 578 /// prior to a call and is guaranteed to be restored (also by the caller) 579 /// after the call. isCallerPreservedPhysReg(MCRegister PhysReg,const MachineFunction & MF)580 virtual bool isCallerPreservedPhysReg(MCRegister PhysReg, 581 const MachineFunction &MF) const { 582 return false; 583 } 584 585 /// This is a wrapper around getCallPreservedMask(). 586 /// Return true if the register is preserved after the call. 587 virtual bool isCalleeSavedPhysReg(MCRegister PhysReg, 588 const MachineFunction &MF) const; 589 590 /// Returns true if PhysReg can be used as an argument to a function. isArgumentRegister(const MachineFunction & MF,MCRegister PhysReg)591 virtual bool isArgumentRegister(const MachineFunction &MF, 592 MCRegister PhysReg) const { 593 return false; 594 } 595 596 /// Returns true if PhysReg is a fixed register. isFixedRegister(const MachineFunction & MF,MCRegister PhysReg)597 virtual bool isFixedRegister(const MachineFunction &MF, 598 MCRegister PhysReg) const { 599 return false; 600 } 601 602 /// Returns true if PhysReg is a general purpose register. isGeneralPurposeRegister(const MachineFunction & MF,MCRegister PhysReg)603 virtual bool isGeneralPurposeRegister(const MachineFunction &MF, 604 MCRegister PhysReg) const { 605 return false; 606 } 607 608 /// Prior to adding the live-out mask to a stackmap or patchpoint 609 /// instruction, provide the target the opportunity to adjust it (mainly to 610 /// remove pseudo-registers that should be ignored). adjustStackMapLiveOutMask(uint32_t * Mask)611 virtual void adjustStackMapLiveOutMask(uint32_t *Mask) const {} 612 613 /// Return a super-register of the specified register 614 /// Reg so its sub-register of index SubIdx is Reg. getMatchingSuperReg(MCRegister Reg,unsigned SubIdx,const TargetRegisterClass * RC)615 MCRegister getMatchingSuperReg(MCRegister Reg, unsigned SubIdx, 616 const TargetRegisterClass *RC) const { 617 return MCRegisterInfo::getMatchingSuperReg(Reg, SubIdx, RC->MC); 618 } 619 620 /// Return a subclass of the specified register 621 /// class A so that each register in it has a sub-register of the 622 /// specified sub-register index which is in the specified register class B. 623 /// 624 /// TableGen will synthesize missing A sub-classes. 625 virtual const TargetRegisterClass * 626 getMatchingSuperRegClass(const TargetRegisterClass *A, 627 const TargetRegisterClass *B, unsigned Idx) const; 628 629 // For a copy-like instruction that defines a register of class DefRC with 630 // subreg index DefSubReg, reading from another source with class SrcRC and 631 // subregister SrcSubReg return true if this is a preferable copy 632 // instruction or an earlier use should be used. 633 virtual bool shouldRewriteCopySrc(const TargetRegisterClass *DefRC, 634 unsigned DefSubReg, 635 const TargetRegisterClass *SrcRC, 636 unsigned SrcSubReg) const; 637 638 /// Returns the largest legal sub-class of RC that 639 /// supports the sub-register index Idx. 640 /// If no such sub-class exists, return NULL. 641 /// If all registers in RC already have an Idx sub-register, return RC. 642 /// 643 /// TableGen generates a version of this function that is good enough in most 644 /// cases. Targets can override if they have constraints that TableGen 645 /// doesn't understand. For example, the x86 sub_8bit sub-register index is 646 /// supported by the full GR32 register class in 64-bit mode, but only by the 647 /// GR32_ABCD regiister class in 32-bit mode. 648 /// 649 /// TableGen will synthesize missing RC sub-classes. 650 virtual const TargetRegisterClass * getSubClassWithSubReg(const TargetRegisterClass * RC,unsigned Idx)651 getSubClassWithSubReg(const TargetRegisterClass *RC, unsigned Idx) const { 652 assert(Idx == 0 && "Target has no sub-registers"); 653 return RC; 654 } 655 656 /// Return a register class that can be used for a subregister copy from/into 657 /// \p SuperRC at \p SubRegIdx. 658 virtual const TargetRegisterClass * getSubRegisterClass(const TargetRegisterClass * SuperRC,unsigned SubRegIdx)659 getSubRegisterClass(const TargetRegisterClass *SuperRC, 660 unsigned SubRegIdx) const { 661 return nullptr; 662 } 663 664 /// Return the subregister index you get from composing 665 /// two subregister indices. 666 /// 667 /// The special null sub-register index composes as the identity. 668 /// 669 /// If R:a:b is the same register as R:c, then composeSubRegIndices(a, b) 670 /// returns c. Note that composeSubRegIndices does not tell you about illegal 671 /// compositions. If R does not have a subreg a, or R:a does not have a subreg 672 /// b, composeSubRegIndices doesn't tell you. 673 /// 674 /// The ARM register Q0 has two D subregs dsub_0:D0 and dsub_1:D1. It also has 675 /// ssub_0:S0 - ssub_3:S3 subregs. 676 /// If you compose subreg indices dsub_1, ssub_0 you get ssub_2. composeSubRegIndices(unsigned a,unsigned b)677 unsigned composeSubRegIndices(unsigned a, unsigned b) const { 678 if (!a) return b; 679 if (!b) return a; 680 return composeSubRegIndicesImpl(a, b); 681 } 682 683 /// Transforms a LaneMask computed for one subregister to the lanemask that 684 /// would have been computed when composing the subsubregisters with IdxA 685 /// first. @sa composeSubRegIndices() composeSubRegIndexLaneMask(unsigned IdxA,LaneBitmask Mask)686 LaneBitmask composeSubRegIndexLaneMask(unsigned IdxA, 687 LaneBitmask Mask) const { 688 if (!IdxA) 689 return Mask; 690 return composeSubRegIndexLaneMaskImpl(IdxA, Mask); 691 } 692 693 /// Transform a lanemask given for a virtual register to the corresponding 694 /// lanemask before using subregister with index \p IdxA. 695 /// This is the reverse of composeSubRegIndexLaneMask(), assuming Mask is a 696 /// valie lane mask (no invalid bits set) the following holds: 697 /// X0 = composeSubRegIndexLaneMask(Idx, Mask) 698 /// X1 = reverseComposeSubRegIndexLaneMask(Idx, X0) 699 /// => X1 == Mask reverseComposeSubRegIndexLaneMask(unsigned IdxA,LaneBitmask LaneMask)700 LaneBitmask reverseComposeSubRegIndexLaneMask(unsigned IdxA, 701 LaneBitmask LaneMask) const { 702 if (!IdxA) 703 return LaneMask; 704 return reverseComposeSubRegIndexLaneMaskImpl(IdxA, LaneMask); 705 } 706 707 /// Debugging helper: dump register in human readable form to dbgs() stream. 708 static void dumpReg(Register Reg, unsigned SubRegIndex = 0, 709 const TargetRegisterInfo *TRI = nullptr); 710 711 /// Return target defined base register class for a physical register. 712 /// This is the register class with the lowest BaseClassOrder containing the 713 /// register. 714 /// Will be nullptr if the register is not in any base register class. getPhysRegBaseClass(MCRegister Reg)715 virtual const TargetRegisterClass *getPhysRegBaseClass(MCRegister Reg) const { 716 return nullptr; 717 } 718 719 protected: 720 /// Overridden by TableGen in targets that have sub-registers. composeSubRegIndicesImpl(unsigned,unsigned)721 virtual unsigned composeSubRegIndicesImpl(unsigned, unsigned) const { 722 llvm_unreachable("Target has no sub-registers"); 723 } 724 725 /// Overridden by TableGen in targets that have sub-registers. 726 virtual LaneBitmask composeSubRegIndexLaneMaskImpl(unsigned,LaneBitmask)727 composeSubRegIndexLaneMaskImpl(unsigned, LaneBitmask) const { 728 llvm_unreachable("Target has no sub-registers"); 729 } 730 reverseComposeSubRegIndexLaneMaskImpl(unsigned,LaneBitmask)731 virtual LaneBitmask reverseComposeSubRegIndexLaneMaskImpl(unsigned, 732 LaneBitmask) const { 733 llvm_unreachable("Target has no sub-registers"); 734 } 735 736 /// Return the register cost table index. This implementation is sufficient 737 /// for most architectures and can be overriden by targets in case there are 738 /// multiple cost values associated with each register. getRegisterCostTableIndex(const MachineFunction & MF)739 virtual unsigned getRegisterCostTableIndex(const MachineFunction &MF) const { 740 return 0; 741 } 742 743 public: 744 /// Find a common super-register class if it exists. 745 /// 746 /// Find a register class, SuperRC and two sub-register indices, PreA and 747 /// PreB, such that: 748 /// 749 /// 1. PreA + SubA == PreB + SubB (using composeSubRegIndices()), and 750 /// 751 /// 2. For all Reg in SuperRC: Reg:PreA in RCA and Reg:PreB in RCB, and 752 /// 753 /// 3. SuperRC->getSize() >= max(RCA->getSize(), RCB->getSize()). 754 /// 755 /// SuperRC will be chosen such that no super-class of SuperRC satisfies the 756 /// requirements, and there is no register class with a smaller spill size 757 /// that satisfies the requirements. 758 /// 759 /// SubA and SubB must not be 0. Use getMatchingSuperRegClass() instead. 760 /// 761 /// Either of the PreA and PreB sub-register indices may be returned as 0. In 762 /// that case, the returned register class will be a sub-class of the 763 /// corresponding argument register class. 764 /// 765 /// The function returns NULL if no register class can be found. 766 const TargetRegisterClass* 767 getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA, 768 const TargetRegisterClass *RCB, unsigned SubB, 769 unsigned &PreA, unsigned &PreB) const; 770 771 //===--------------------------------------------------------------------===// 772 // Register Class Information 773 // 774 protected: getRegClassInfo(const TargetRegisterClass & RC)775 const RegClassInfo &getRegClassInfo(const TargetRegisterClass &RC) const { 776 return RCInfos[getNumRegClasses() * HwMode + RC.getID()]; 777 } 778 779 public: 780 /// Register class iterators regclass_begin()781 regclass_iterator regclass_begin() const { return RegClassBegin; } regclass_end()782 regclass_iterator regclass_end() const { return RegClassEnd; } regclasses()783 iterator_range<regclass_iterator> regclasses() const { 784 return make_range(regclass_begin(), regclass_end()); 785 } 786 getNumRegClasses()787 unsigned getNumRegClasses() const { 788 return (unsigned)(regclass_end()-regclass_begin()); 789 } 790 791 /// Returns the register class associated with the enumeration value. 792 /// See class MCOperandInfo. getRegClass(unsigned i)793 const TargetRegisterClass *getRegClass(unsigned i) const { 794 assert(i < getNumRegClasses() && "Register Class ID out of range"); 795 return RegClassBegin[i]; 796 } 797 798 /// Returns the name of the register class. getRegClassName(const TargetRegisterClass * Class)799 const char *getRegClassName(const TargetRegisterClass *Class) const { 800 return MCRegisterInfo::getRegClassName(Class->MC); 801 } 802 803 /// Find the largest common subclass of A and B. 804 /// Return NULL if there is no common subclass. 805 const TargetRegisterClass * 806 getCommonSubClass(const TargetRegisterClass *A, 807 const TargetRegisterClass *B) const; 808 809 /// Returns a TargetRegisterClass used for pointer values. 810 /// If a target supports multiple different pointer register classes, 811 /// kind specifies which one is indicated. 812 virtual const TargetRegisterClass * 813 getPointerRegClass(const MachineFunction &MF, unsigned Kind=0) const { 814 llvm_unreachable("Target didn't implement getPointerRegClass!"); 815 } 816 817 /// Returns a legal register class to copy a register in the specified class 818 /// to or from. If it is possible to copy the register directly without using 819 /// a cross register class copy, return the specified RC. Returns NULL if it 820 /// is not possible to copy between two registers of the specified class. 821 virtual const TargetRegisterClass * getCrossCopyRegClass(const TargetRegisterClass * RC)822 getCrossCopyRegClass(const TargetRegisterClass *RC) const { 823 return RC; 824 } 825 826 /// Returns the largest super class of RC that is legal to use in the current 827 /// sub-target and has the same spill size. 828 /// The returned register class can be used to create virtual registers which 829 /// means that all its registers can be copied and spilled. 830 virtual const TargetRegisterClass * getLargestLegalSuperClass(const TargetRegisterClass * RC,const MachineFunction &)831 getLargestLegalSuperClass(const TargetRegisterClass *RC, 832 const MachineFunction &) const { 833 /// The default implementation is very conservative and doesn't allow the 834 /// register allocator to inflate register classes. 835 return RC; 836 } 837 838 /// Return the register pressure "high water mark" for the specific register 839 /// class. The scheduler is in high register pressure mode (for the specific 840 /// register class) if it goes over the limit. 841 /// 842 /// Note: this is the old register pressure model that relies on a manually 843 /// specified representative register class per value type. getRegPressureLimit(const TargetRegisterClass * RC,MachineFunction & MF)844 virtual unsigned getRegPressureLimit(const TargetRegisterClass *RC, 845 MachineFunction &MF) const { 846 return 0; 847 } 848 849 /// Return a heuristic for the machine scheduler to compare the profitability 850 /// of increasing one register pressure set versus another. The scheduler 851 /// will prefer increasing the register pressure of the set which returns 852 /// the largest value for this function. getRegPressureSetScore(const MachineFunction & MF,unsigned PSetID)853 virtual unsigned getRegPressureSetScore(const MachineFunction &MF, 854 unsigned PSetID) const { 855 return PSetID; 856 } 857 858 /// Get the weight in units of pressure for this register class. 859 virtual const RegClassWeight &getRegClassWeight( 860 const TargetRegisterClass *RC) const = 0; 861 862 /// Returns size in bits of a phys/virtual/generic register. 863 TypeSize getRegSizeInBits(Register Reg, const MachineRegisterInfo &MRI) const; 864 865 /// Get the weight in units of pressure for this register unit. 866 virtual unsigned getRegUnitWeight(unsigned RegUnit) const = 0; 867 868 /// Get the number of dimensions of register pressure. 869 virtual unsigned getNumRegPressureSets() const = 0; 870 871 /// Get the name of this register unit pressure set. 872 virtual const char *getRegPressureSetName(unsigned Idx) const = 0; 873 874 /// Get the register unit pressure limit for this dimension. 875 /// This limit must be adjusted dynamically for reserved registers. 876 virtual unsigned getRegPressureSetLimit(const MachineFunction &MF, 877 unsigned Idx) const = 0; 878 879 /// Get the dimensions of register pressure impacted by this register class. 880 /// Returns a -1 terminated array of pressure set IDs. 881 virtual const int *getRegClassPressureSets( 882 const TargetRegisterClass *RC) const = 0; 883 884 /// Get the dimensions of register pressure impacted by this register unit. 885 /// Returns a -1 terminated array of pressure set IDs. 886 virtual const int *getRegUnitPressureSets(unsigned RegUnit) const = 0; 887 888 /// Get a list of 'hint' registers that the register allocator should try 889 /// first when allocating a physical register for the virtual register 890 /// VirtReg. These registers are effectively moved to the front of the 891 /// allocation order. If true is returned, regalloc will try to only use 892 /// hints to the greatest extent possible even if it means spilling. 893 /// 894 /// The Order argument is the allocation order for VirtReg's register class 895 /// as returned from RegisterClassInfo::getOrder(). The hint registers must 896 /// come from Order, and they must not be reserved. 897 /// 898 /// The default implementation of this function will only add target 899 /// independent register allocation hints. Targets that override this 900 /// function should typically call this default implementation as well and 901 /// expect to see generic copy hints added. 902 virtual bool 903 getRegAllocationHints(Register VirtReg, ArrayRef<MCPhysReg> Order, 904 SmallVectorImpl<MCPhysReg> &Hints, 905 const MachineFunction &MF, 906 const VirtRegMap *VRM = nullptr, 907 const LiveRegMatrix *Matrix = nullptr) const; 908 909 /// A callback to allow target a chance to update register allocation hints 910 /// when a register is "changed" (e.g. coalesced) to another register. 911 /// e.g. On ARM, some virtual registers should target register pairs, 912 /// if one of pair is coalesced to another register, the allocation hint of 913 /// the other half of the pair should be changed to point to the new register. updateRegAllocHint(Register Reg,Register NewReg,MachineFunction & MF)914 virtual void updateRegAllocHint(Register Reg, Register NewReg, 915 MachineFunction &MF) const { 916 // Do nothing. 917 } 918 919 /// Allow the target to reverse allocation order of local live ranges. This 920 /// will generally allocate shorter local live ranges first. For targets with 921 /// many registers, this could reduce regalloc compile time by a large 922 /// factor. It is disabled by default for three reasons: 923 /// (1) Top-down allocation is simpler and easier to debug for targets that 924 /// don't benefit from reversing the order. 925 /// (2) Bottom-up allocation could result in poor evicition decisions on some 926 /// targets affecting the performance of compiled code. 927 /// (3) Bottom-up allocation is no longer guaranteed to optimally color. reverseLocalAssignment()928 virtual bool reverseLocalAssignment() const { return false; } 929 930 /// Allow the target to override the cost of using a callee-saved register for 931 /// the first time. Default value of 0 means we will use a callee-saved 932 /// register if it is available. getCSRFirstUseCost()933 virtual unsigned getCSRFirstUseCost() const { return 0; } 934 935 /// Returns true if the target requires (and can make use of) the register 936 /// scavenger. requiresRegisterScavenging(const MachineFunction & MF)937 virtual bool requiresRegisterScavenging(const MachineFunction &MF) const { 938 return false; 939 } 940 941 /// Returns true if the target wants to use frame pointer based accesses to 942 /// spill to the scavenger emergency spill slot. useFPForScavengingIndex(const MachineFunction & MF)943 virtual bool useFPForScavengingIndex(const MachineFunction &MF) const { 944 return true; 945 } 946 947 /// Returns true if the target requires post PEI scavenging of registers for 948 /// materializing frame index constants. requiresFrameIndexScavenging(const MachineFunction & MF)949 virtual bool requiresFrameIndexScavenging(const MachineFunction &MF) const { 950 return false; 951 } 952 953 /// Returns true if the target requires using the RegScavenger directly for 954 /// frame elimination despite using requiresFrameIndexScavenging. requiresFrameIndexReplacementScavenging(const MachineFunction & MF)955 virtual bool requiresFrameIndexReplacementScavenging( 956 const MachineFunction &MF) const { 957 return false; 958 } 959 960 /// Returns true if the target wants the LocalStackAllocation pass to be run 961 /// and virtual base registers used for more efficient stack access. requiresVirtualBaseRegisters(const MachineFunction & MF)962 virtual bool requiresVirtualBaseRegisters(const MachineFunction &MF) const { 963 return false; 964 } 965 966 /// Return true if target has reserved a spill slot in the stack frame of 967 /// the given function for the specified register. e.g. On x86, if the frame 968 /// register is required, the first fixed stack object is reserved as its 969 /// spill slot. This tells PEI not to create a new stack frame 970 /// object for the given register. It should be called only after 971 /// determineCalleeSaves(). hasReservedSpillSlot(const MachineFunction & MF,Register Reg,int & FrameIdx)972 virtual bool hasReservedSpillSlot(const MachineFunction &MF, Register Reg, 973 int &FrameIdx) const { 974 return false; 975 } 976 977 /// Returns true if the live-ins should be tracked after register allocation. trackLivenessAfterRegAlloc(const MachineFunction & MF)978 virtual bool trackLivenessAfterRegAlloc(const MachineFunction &MF) const { 979 return true; 980 } 981 982 /// True if the stack can be realigned for the target. 983 virtual bool canRealignStack(const MachineFunction &MF) const; 984 985 /// True if storage within the function requires the stack pointer to be 986 /// aligned more than the normal calling convention calls for. 987 virtual bool shouldRealignStack(const MachineFunction &MF) const; 988 989 /// True if stack realignment is required and still possible. hasStackRealignment(const MachineFunction & MF)990 bool hasStackRealignment(const MachineFunction &MF) const { 991 return shouldRealignStack(MF) && canRealignStack(MF); 992 } 993 994 /// Get the offset from the referenced frame index in the instruction, 995 /// if there is one. getFrameIndexInstrOffset(const MachineInstr * MI,int Idx)996 virtual int64_t getFrameIndexInstrOffset(const MachineInstr *MI, 997 int Idx) const { 998 return 0; 999 } 1000 1001 /// Returns true if the instruction's frame index reference would be better 1002 /// served by a base register other than FP or SP. 1003 /// Used by LocalStackFrameAllocation to determine which frame index 1004 /// references it should create new base registers for. needsFrameBaseReg(MachineInstr * MI,int64_t Offset)1005 virtual bool needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const { 1006 return false; 1007 } 1008 1009 /// Insert defining instruction(s) for a pointer to FrameIdx before 1010 /// insertion point I. Return materialized frame pointer. materializeFrameBaseRegister(MachineBasicBlock * MBB,int FrameIdx,int64_t Offset)1011 virtual Register materializeFrameBaseRegister(MachineBasicBlock *MBB, 1012 int FrameIdx, 1013 int64_t Offset) const { 1014 llvm_unreachable("materializeFrameBaseRegister does not exist on this " 1015 "target"); 1016 } 1017 1018 /// Resolve a frame index operand of an instruction 1019 /// to reference the indicated base register plus offset instead. resolveFrameIndex(MachineInstr & MI,Register BaseReg,int64_t Offset)1020 virtual void resolveFrameIndex(MachineInstr &MI, Register BaseReg, 1021 int64_t Offset) const { 1022 llvm_unreachable("resolveFrameIndex does not exist on this target"); 1023 } 1024 1025 /// Determine whether a given base register plus offset immediate is 1026 /// encodable to resolve a frame index. isFrameOffsetLegal(const MachineInstr * MI,Register BaseReg,int64_t Offset)1027 virtual bool isFrameOffsetLegal(const MachineInstr *MI, Register BaseReg, 1028 int64_t Offset) const { 1029 llvm_unreachable("isFrameOffsetLegal does not exist on this target"); 1030 } 1031 1032 /// Gets the DWARF expression opcodes for \p Offset. 1033 virtual void getOffsetOpcodes(const StackOffset &Offset, 1034 SmallVectorImpl<uint64_t> &Ops) const; 1035 1036 /// Prepends a DWARF expression for \p Offset to DIExpression \p Expr. 1037 DIExpression * 1038 prependOffsetExpression(const DIExpression *Expr, unsigned PrependFlags, 1039 const StackOffset &Offset) const; 1040 1041 /// Spill the register so it can be used by the register scavenger. 1042 /// Return true if the register was spilled, false otherwise. 1043 /// If this function does not spill the register, the scavenger 1044 /// will instead spill it to the emergency spill slot. saveScavengerRegister(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,MachineBasicBlock::iterator & UseMI,const TargetRegisterClass * RC,Register Reg)1045 virtual bool saveScavengerRegister(MachineBasicBlock &MBB, 1046 MachineBasicBlock::iterator I, 1047 MachineBasicBlock::iterator &UseMI, 1048 const TargetRegisterClass *RC, 1049 Register Reg) const { 1050 return false; 1051 } 1052 1053 /// Process frame indices in reverse block order. This changes the behavior of 1054 /// the RegScavenger passed to eliminateFrameIndex. If this is true targets 1055 /// should scavengeRegisterBackwards in eliminateFrameIndex. New targets 1056 /// should prefer reverse scavenging behavior. 1057 /// TODO: Remove this when all targets return true. eliminateFrameIndicesBackwards()1058 virtual bool eliminateFrameIndicesBackwards() const { return true; } 1059 1060 /// This method must be overriden to eliminate abstract frame indices from 1061 /// instructions which may use them. The instruction referenced by the 1062 /// iterator contains an MO_FrameIndex operand which must be eliminated by 1063 /// this method. This method may modify or replace the specified instruction, 1064 /// as long as it keeps the iterator pointing at the finished product. 1065 /// SPAdj is the SP adjustment due to call frame setup instruction. 1066 /// FIOperandNum is the FI operand number. 1067 /// Returns true if the current instruction was removed and the iterator 1068 /// is not longer valid 1069 virtual bool eliminateFrameIndex(MachineBasicBlock::iterator MI, 1070 int SPAdj, unsigned FIOperandNum, 1071 RegScavenger *RS = nullptr) const = 0; 1072 1073 /// Return the assembly name for \p Reg. getRegAsmName(MCRegister Reg)1074 virtual StringRef getRegAsmName(MCRegister Reg) const { 1075 // FIXME: We are assuming that the assembly name is equal to the TableGen 1076 // name converted to lower case 1077 // 1078 // The TableGen name is the name of the definition for this register in the 1079 // target's tablegen files. For example, the TableGen name of 1080 // def EAX : Register <...>; is "EAX" 1081 return StringRef(getName(Reg)); 1082 } 1083 1084 //===--------------------------------------------------------------------===// 1085 /// Subtarget Hooks 1086 1087 /// SrcRC and DstRC will be morphed into NewRC if this returns true. shouldCoalesce(MachineInstr * MI,const TargetRegisterClass * SrcRC,unsigned SubReg,const TargetRegisterClass * DstRC,unsigned DstSubReg,const TargetRegisterClass * NewRC,LiveIntervals & LIS)1088 virtual bool shouldCoalesce(MachineInstr *MI, 1089 const TargetRegisterClass *SrcRC, 1090 unsigned SubReg, 1091 const TargetRegisterClass *DstRC, 1092 unsigned DstSubReg, 1093 const TargetRegisterClass *NewRC, 1094 LiveIntervals &LIS) const 1095 { return true; } 1096 1097 /// Region split has a high compile time cost especially for large live range. 1098 /// This method is used to decide whether or not \p VirtReg should 1099 /// go through this expensive splitting heuristic. 1100 virtual bool shouldRegionSplitForVirtReg(const MachineFunction &MF, 1101 const LiveInterval &VirtReg) const; 1102 1103 /// Last chance recoloring has a high compile time cost especially for 1104 /// targets with a lot of registers. 1105 /// This method is used to decide whether or not \p VirtReg should 1106 /// go through this expensive heuristic. 1107 /// When this target hook is hit, by returning false, there is a high 1108 /// chance that the register allocation will fail altogether (usually with 1109 /// "ran out of registers"). 1110 /// That said, this error usually points to another problem in the 1111 /// optimization pipeline. 1112 virtual bool shouldUseLastChanceRecoloringForVirtReg(const MachineFunction & MF,const LiveInterval & VirtReg)1113 shouldUseLastChanceRecoloringForVirtReg(const MachineFunction &MF, 1114 const LiveInterval &VirtReg) const { 1115 return true; 1116 } 1117 1118 /// Deferred spilling delays the spill insertion of a virtual register 1119 /// after every other allocation. By deferring the spilling, it is 1120 /// sometimes possible to eliminate that spilling altogether because 1121 /// something else could have been eliminated, thus leaving some space 1122 /// for the virtual register. 1123 /// However, this comes with a compile time impact because it adds one 1124 /// more stage to the greedy register allocator. 1125 /// This method is used to decide whether \p VirtReg should use the deferred 1126 /// spilling stage instead of being spilled right away. 1127 virtual bool shouldUseDeferredSpillingForVirtReg(const MachineFunction & MF,const LiveInterval & VirtReg)1128 shouldUseDeferredSpillingForVirtReg(const MachineFunction &MF, 1129 const LiveInterval &VirtReg) const { 1130 return false; 1131 } 1132 1133 /// When prioritizing live ranges in register allocation, if this hook returns 1134 /// true then the AllocationPriority of the register class will be treated as 1135 /// more important than whether the range is local to a basic block or global. 1136 virtual bool regClassPriorityTrumpsGlobalness(const MachineFunction & MF)1137 regClassPriorityTrumpsGlobalness(const MachineFunction &MF) const { 1138 return false; 1139 } 1140 1141 //===--------------------------------------------------------------------===// 1142 /// Debug information queries. 1143 1144 /// getFrameRegister - This method should return the register used as a base 1145 /// for values allocated in the current stack frame. 1146 virtual Register getFrameRegister(const MachineFunction &MF) const = 0; 1147 1148 /// Mark a register and all its aliases as reserved in the given set. 1149 void markSuperRegs(BitVector &RegisterSet, MCRegister Reg) const; 1150 1151 /// Returns true if for every register in the set all super registers are part 1152 /// of the set as well. 1153 bool checkAllSuperRegsMarked(const BitVector &RegisterSet, 1154 ArrayRef<MCPhysReg> Exceptions = ArrayRef<MCPhysReg>()) const; 1155 1156 virtual const TargetRegisterClass * getConstrainedRegClassForOperand(const MachineOperand & MO,const MachineRegisterInfo & MRI)1157 getConstrainedRegClassForOperand(const MachineOperand &MO, 1158 const MachineRegisterInfo &MRI) const { 1159 return nullptr; 1160 } 1161 1162 /// Returns the physical register number of sub-register "Index" 1163 /// for physical register RegNo. Return zero if the sub-register does not 1164 /// exist. getSubReg(MCRegister Reg,unsigned Idx)1165 inline MCRegister getSubReg(MCRegister Reg, unsigned Idx) const { 1166 return static_cast<const MCRegisterInfo *>(this)->getSubReg(Reg, Idx); 1167 } 1168 1169 /// Some targets have non-allocatable registers that aren't technically part 1170 /// of the explicit callee saved register list, but should be handled as such 1171 /// in certain cases. isNonallocatableRegisterCalleeSave(MCRegister Reg)1172 virtual bool isNonallocatableRegisterCalleeSave(MCRegister Reg) const { 1173 return false; 1174 } 1175 1176 /// Returns the Largest Super Class that is being initialized. There 1177 /// should be a Pseudo Instruction implemented for the super class 1178 /// that is being returned to ensure that Init Undef can apply the 1179 /// initialization correctly. 1180 virtual const TargetRegisterClass * getLargestSuperClass(const TargetRegisterClass * RC)1181 getLargestSuperClass(const TargetRegisterClass *RC) const { 1182 llvm_unreachable("Unexpected target register class."); 1183 } 1184 1185 /// Returns if the architecture being targeted has the required Pseudo 1186 /// Instructions for initializing the register. By default this returns false, 1187 /// but where it is overriden for an architecture, the behaviour will be 1188 /// different. This can either be a check to ensure the Register Class is 1189 /// present, or to return true as an indication the architecture supports the 1190 /// pass. If using the method that does not check for the Register Class, it 1191 /// is imperative to ensure all required Pseudo Instructions are implemented, 1192 /// otherwise compilation may fail with an `Unexpected register class` error. 1193 virtual bool doesRegClassHavePseudoInitUndef(const TargetRegisterClass * RC)1194 doesRegClassHavePseudoInitUndef(const TargetRegisterClass *RC) const { 1195 return false; 1196 } 1197 }; 1198 1199 //===----------------------------------------------------------------------===// 1200 // SuperRegClassIterator 1201 //===----------------------------------------------------------------------===// 1202 // 1203 // Iterate over the possible super-registers for a given register class. The 1204 // iterator will visit a list of pairs (Idx, Mask) corresponding to the 1205 // possible classes of super-registers. 1206 // 1207 // Each bit mask will have at least one set bit, and each set bit in Mask 1208 // corresponds to a SuperRC such that: 1209 // 1210 // For all Reg in SuperRC: Reg:Idx is in RC. 1211 // 1212 // The iterator can include (O, RC->getSubClassMask()) as the first entry which 1213 // also satisfies the above requirement, assuming Reg:0 == Reg. 1214 // 1215 class SuperRegClassIterator { 1216 const unsigned RCMaskWords; 1217 unsigned SubReg = 0; 1218 const uint16_t *Idx; 1219 const uint32_t *Mask; 1220 1221 public: 1222 /// Create a SuperRegClassIterator that visits all the super-register classes 1223 /// of RC. When IncludeSelf is set, also include the (0, sub-classes) entry. 1224 SuperRegClassIterator(const TargetRegisterClass *RC, 1225 const TargetRegisterInfo *TRI, 1226 bool IncludeSelf = false) 1227 : RCMaskWords((TRI->getNumRegClasses() + 31) / 32), 1228 Idx(RC->getSuperRegIndices()), Mask(RC->getSubClassMask()) { 1229 if (!IncludeSelf) 1230 ++*this; 1231 } 1232 1233 /// Returns true if this iterator is still pointing at a valid entry. isValid()1234 bool isValid() const { return Idx; } 1235 1236 /// Returns the current sub-register index. getSubReg()1237 unsigned getSubReg() const { return SubReg; } 1238 1239 /// Returns the bit mask of register classes that getSubReg() projects into 1240 /// RC. 1241 /// See TargetRegisterClass::getSubClassMask() for how to use it. getMask()1242 const uint32_t *getMask() const { return Mask; } 1243 1244 /// Advance iterator to the next entry. 1245 void operator++() { 1246 assert(isValid() && "Cannot move iterator past end."); 1247 Mask += RCMaskWords; 1248 SubReg = *Idx++; 1249 if (!SubReg) 1250 Idx = nullptr; 1251 } 1252 }; 1253 1254 //===----------------------------------------------------------------------===// 1255 // BitMaskClassIterator 1256 //===----------------------------------------------------------------------===// 1257 /// This class encapuslates the logic to iterate over bitmask returned by 1258 /// the various RegClass related APIs. 1259 /// E.g., this class can be used to iterate over the subclasses provided by 1260 /// TargetRegisterClass::getSubClassMask or SuperRegClassIterator::getMask. 1261 class BitMaskClassIterator { 1262 /// Total number of register classes. 1263 const unsigned NumRegClasses; 1264 /// Base index of CurrentChunk. 1265 /// In other words, the number of bit we read to get at the 1266 /// beginning of that chunck. 1267 unsigned Base = 0; 1268 /// Adjust base index of CurrentChunk. 1269 /// Base index + how many bit we read within CurrentChunk. 1270 unsigned Idx = 0; 1271 /// Current register class ID. 1272 unsigned ID = 0; 1273 /// Mask we are iterating over. 1274 const uint32_t *Mask; 1275 /// Current chunk of the Mask we are traversing. 1276 uint32_t CurrentChunk; 1277 1278 /// Move ID to the next set bit. moveToNextID()1279 void moveToNextID() { 1280 // If the current chunk of memory is empty, move to the next one, 1281 // while making sure we do not go pass the number of register 1282 // classes. 1283 while (!CurrentChunk) { 1284 // Move to the next chunk. 1285 Base += 32; 1286 if (Base >= NumRegClasses) { 1287 ID = NumRegClasses; 1288 return; 1289 } 1290 CurrentChunk = *++Mask; 1291 Idx = Base; 1292 } 1293 // Otherwise look for the first bit set from the right 1294 // (representation of the class ID is big endian). 1295 // See getSubClassMask for more details on the representation. 1296 unsigned Offset = llvm::countr_zero(CurrentChunk); 1297 // Add the Offset to the adjusted base number of this chunk: Idx. 1298 // This is the ID of the register class. 1299 ID = Idx + Offset; 1300 1301 // Consume the zeros, if any, and the bit we just read 1302 // so that we are at the right spot for the next call. 1303 // Do not do Offset + 1 because Offset may be 31 and 32 1304 // will be UB for the shift, though in that case we could 1305 // have make the chunk being equal to 0, but that would 1306 // have introduced a if statement. 1307 moveNBits(Offset); 1308 moveNBits(1); 1309 } 1310 1311 /// Move \p NumBits Bits forward in CurrentChunk. moveNBits(unsigned NumBits)1312 void moveNBits(unsigned NumBits) { 1313 assert(NumBits < 32 && "Undefined behavior spotted!"); 1314 // Consume the bit we read for the next call. 1315 CurrentChunk >>= NumBits; 1316 // Adjust the base for the chunk. 1317 Idx += NumBits; 1318 } 1319 1320 public: 1321 /// Create a BitMaskClassIterator that visits all the register classes 1322 /// represented by \p Mask. 1323 /// 1324 /// \pre \p Mask != nullptr BitMaskClassIterator(const uint32_t * Mask,const TargetRegisterInfo & TRI)1325 BitMaskClassIterator(const uint32_t *Mask, const TargetRegisterInfo &TRI) 1326 : NumRegClasses(TRI.getNumRegClasses()), Mask(Mask), CurrentChunk(*Mask) { 1327 // Move to the first ID. 1328 moveToNextID(); 1329 } 1330 1331 /// Returns true if this iterator is still pointing at a valid entry. isValid()1332 bool isValid() const { return getID() != NumRegClasses; } 1333 1334 /// Returns the current register class ID. getID()1335 unsigned getID() const { return ID; } 1336 1337 /// Advance iterator to the next entry. 1338 void operator++() { 1339 assert(isValid() && "Cannot move iterator past end."); 1340 moveToNextID(); 1341 } 1342 }; 1343 1344 // This is useful when building IndexedMaps keyed on virtual registers 1345 struct VirtReg2IndexFunctor { 1346 using argument_type = Register; operatorVirtReg2IndexFunctor1347 unsigned operator()(Register Reg) const { 1348 return Register::virtReg2Index(Reg); 1349 } 1350 }; 1351 1352 /// Prints virtual and physical registers with or without a TRI instance. 1353 /// 1354 /// The format is: 1355 /// %noreg - NoRegister 1356 /// %5 - a virtual register. 1357 /// %5:sub_8bit - a virtual register with sub-register index (with TRI). 1358 /// %eax - a physical register 1359 /// %physreg17 - a physical register when no TRI instance given. 1360 /// 1361 /// Usage: OS << printReg(Reg, TRI, SubRegIdx) << '\n'; 1362 Printable printReg(Register Reg, const TargetRegisterInfo *TRI = nullptr, 1363 unsigned SubIdx = 0, 1364 const MachineRegisterInfo *MRI = nullptr); 1365 1366 /// Create Printable object to print register units on a \ref raw_ostream. 1367 /// 1368 /// Register units are named after their root registers: 1369 /// 1370 /// al - Single root. 1371 /// fp0~st7 - Dual roots. 1372 /// 1373 /// Usage: OS << printRegUnit(Unit, TRI) << '\n'; 1374 Printable printRegUnit(unsigned Unit, const TargetRegisterInfo *TRI); 1375 1376 /// Create Printable object to print virtual registers and physical 1377 /// registers on a \ref raw_ostream. 1378 Printable printVRegOrUnit(unsigned VRegOrUnit, const TargetRegisterInfo *TRI); 1379 1380 /// Create Printable object to print register classes or register banks 1381 /// on a \ref raw_ostream. 1382 Printable printRegClassOrBank(Register Reg, const MachineRegisterInfo &RegInfo, 1383 const TargetRegisterInfo *TRI); 1384 1385 } // end namespace llvm 1386 1387 #endif // LLVM_CODEGEN_TARGETREGISTERINFO_H 1388