1 //=- IslNodeBuilder.cpp - Translate an isl AST into a LLVM-IR AST -*- C++ -*-=//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the IslNodeBuilder, a class to translate an isl AST into
10 // a LLVM-IR AST.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef POLLY_ISLNODEBUILDER_H
15 #define POLLY_ISLNODEBUILDER_H
16 
17 #include "polly/CodeGen/BlockGenerators.h"
18 #include "polly/CodeGen/IslExprBuilder.h"
19 #include "polly/ScopDetectionDiagnostic.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/IR/InstrTypes.h"
23 #include "isl/ctx.h"
24 #include "isl/isl-noexceptions.h"
25 
26 namespace polly {
27 using llvm::LoopInfo;
28 using llvm::SmallSet;
29 
30 struct InvariantEquivClassTy;
31 
32 struct SubtreeReferences {
33   LoopInfo &LI;
34   ScalarEvolution &SE;
35   Scop &S;
36   ValueMapT &GlobalMap;
37   SetVector<Value *> &Values;
38   SetVector<const SCEV *> &SCEVs;
39   BlockGenerator &BlockGen;
40   // In case an (optional) parameter space location is provided, parameter space
41   // information is collected as well.
42   isl::space *ParamSpace;
43 };
44 
45 /// Extract the out-of-scop values and SCEVs referenced from a ScopStmt.
46 ///
47 /// This includes the SCEVUnknowns referenced by the SCEVs used in the
48 /// statement and the base pointers of the memory accesses. For scalar
49 /// statements we force the generation of alloca memory locations and list
50 /// these locations in the set of out-of-scop values as well.
51 ///
52 /// We also collect an isl::space that includes all parameter dimensions
53 /// used in the statement's memory accesses, in case the ParamSpace pointer
54 /// is non-null.
55 ///
56 /// @param Stmt             The statement for which to extract the information.
57 /// @param UserPtr          A void pointer that can be casted to a
58 ///                         SubtreeReferences structure.
59 /// @param CreateScalarRefs Should the result include allocas of scalar
60 ///                         references?
61 void addReferencesFromStmt(ScopStmt *Stmt, void *UserPtr,
62                            bool CreateScalarRefs = true);
63 
64 class IslNodeBuilder {
65 public:
IslNodeBuilder(PollyIRBuilder & Builder,ScopAnnotator & Annotator,const DataLayout & DL,LoopInfo & LI,ScalarEvolution & SE,DominatorTree & DT,Scop & S,BasicBlock * StartBlock)66   IslNodeBuilder(PollyIRBuilder &Builder, ScopAnnotator &Annotator,
67                  const DataLayout &DL, LoopInfo &LI, ScalarEvolution &SE,
68                  DominatorTree &DT, Scop &S, BasicBlock *StartBlock)
69       : S(S), Builder(Builder), Annotator(Annotator),
70         ExprBuilder(S, Builder, IDToValue, ValueMap, DL, SE, DT, LI,
71                     StartBlock),
72         BlockGen(Builder, LI, SE, DT, ScalarMap, EscapeMap, ValueMap,
73                  &ExprBuilder, StartBlock),
74         RegionGen(BlockGen), DL(DL), LI(LI), SE(SE), DT(DT),
75         StartBlock(StartBlock) {}
76 
77   virtual ~IslNodeBuilder() = default;
78 
79   void addParameters(__isl_take isl_set *Context);
80 
81   /// Generate code that evaluates @p Condition at run-time.
82   ///
83   /// This function is typically called to generate the LLVM-IR for the
84   /// run-time condition of the scop, that verifies that all the optimistic
85   /// assumptions we have taken during scop modeling and transformation
86   /// hold at run-time.
87   ///
88   /// @param Condition The condition to evaluate
89   ///
90   /// @result An llvm::Value that is true if the condition holds and false
91   ///         otherwise.
92   Value *createRTC(isl_ast_expr *Condition);
93 
94   void create(__isl_take isl_ast_node *Node);
95 
96   /// Allocate memory for all new arrays created by Polly.
97   void allocateNewArrays(BBPair StartExitBlocks);
98 
99   /// Preload all memory loads that are invariant.
100   bool preloadInvariantLoads();
101 
102   /// Finalize code generation.
103   ///
104   /// @see BlockGenerator::finalizeSCoP(Scop &S)
finalize()105   virtual void finalize() { BlockGen.finalizeSCoP(S); }
106 
getExprBuilder()107   IslExprBuilder &getExprBuilder() { return ExprBuilder; }
108 
109   /// Get the associated block generator.
110   ///
111   /// @return A reference to the associated block generator.
getBlockGenerator()112   BlockGenerator &getBlockGenerator() { return BlockGen; }
113 
114   /// Return the parallel subfunctions that have been created.
getParallelSubfunctions()115   const ArrayRef<Function *> getParallelSubfunctions() const {
116     return ParallelSubfunctions;
117   }
118 
119 protected:
120   Scop &S;
121   PollyIRBuilder &Builder;
122   ScopAnnotator &Annotator;
123 
124   IslExprBuilder ExprBuilder;
125 
126   /// Maps used by the block and region generator to demote scalars.
127   ///
128   ///@{
129 
130   /// See BlockGenerator::ScalarMap.
131   BlockGenerator::AllocaMapTy ScalarMap;
132 
133   /// See BlockGenerator::EscapeMap.
134   BlockGenerator::EscapeUsersAllocaMapTy EscapeMap;
135 
136   ///@}
137 
138   /// The generator used to copy a basic block.
139   BlockGenerator BlockGen;
140 
141   /// The generator used to copy a non-affine region.
142   RegionGenerator RegionGen;
143 
144   const DataLayout &DL;
145   LoopInfo &LI;
146   ScalarEvolution &SE;
147   DominatorTree &DT;
148   BasicBlock *StartBlock;
149 
150   /// The current iteration of out-of-scop loops
151   ///
152   /// This map provides for a given loop a llvm::Value that contains the current
153   /// loop iteration.
154   MapVector<const Loop *, const SCEV *> OutsideLoopIterations;
155 
156   // This maps an isl_id* to the Value* it has in the generated program. For now
157   // on, the only isl_ids that are stored here are the newly calculated loop
158   // ivs.
159   IslExprBuilder::IDToValueTy IDToValue;
160 
161   /// A collection of all parallel subfunctions that have been created.
162   SmallVector<Function *, 8> ParallelSubfunctions;
163 
164   /// Generate code for a given SCEV*
165   ///
166   /// This function generates code for a given SCEV expression. It generated
167   /// code is emitted at the end of the basic block our Builder currently
168   /// points to and the resulting value is returned.
169   ///
170   /// @param Expr The expression to code generate.
171   Value *generateSCEV(const SCEV *Expr);
172 
173   /// A set of Value -> Value remappings to apply when generating new code.
174   ///
175   /// When generating new code for a ScopStmt this map is used to map certain
176   /// llvm::Values to new llvm::Values.
177   ValueMapT ValueMap;
178 
179   /// Materialize code for @p Id if it was not done before.
180   ///
181   /// @returns False, iff a problem occurred and the value was not materialized.
182   bool materializeValue(__isl_take isl_id *Id);
183 
184   /// Materialize parameters of @p Set.
185   ///
186   /// @returns False, iff a problem occurred and the value was not materialized.
187   bool materializeParameters(__isl_take isl_set *Set);
188 
189   /// Materialize all parameters in the current scop.
190   ///
191   /// @returns False, iff a problem occurred and the value was not materialized.
192   bool materializeParameters();
193 
194   // Extract the upper bound of this loop
195   //
196   // The isl code generation can generate arbitrary expressions to check if the
197   // upper bound of a loop is reached, but it provides an option to enforce
198   // 'atomic' upper bounds. An 'atomic upper bound is always of the form
199   // iv <= expr, where expr is an (arbitrary) expression not containing iv.
200   //
201   // This function extracts 'atomic' upper bounds. Polly, in general, requires
202   // atomic upper bounds for the following reasons:
203   //
204   // 1. An atomic upper bound is loop invariant
205   //
206   //    It must not be calculated at each loop iteration and can often even be
207   //    hoisted out further by the loop invariant code motion.
208   //
209   // 2. OpenMP needs a loop invariant upper bound to calculate the number
210   //    of loop iterations.
211   //
212   // 3. With the existing code, upper bounds have been easier to implement.
213   isl::ast_expr getUpperBound(isl::ast_node_for For,
214                               CmpInst::Predicate &Predicate);
215 
216   /// Return non-negative number of iterations in case of the following form
217   /// of a loop and -1 otherwise.
218   ///
219   /// for (i = 0; i <= NumIter; i++) {
220   ///   loop body;
221   /// }
222   ///
223   /// NumIter is a non-negative integer value. Condition can have
224   /// isl_ast_op_lt type.
225   int getNumberOfIterations(isl::ast_node_for For);
226 
227   /// Compute the values and loops referenced in this subtree.
228   ///
229   /// This function looks at all ScopStmts scheduled below the provided For node
230   /// and finds the llvm::Value[s] and llvm::Loops[s] which are referenced but
231   /// not locally defined.
232   ///
233   /// Values that can be synthesized or that are available as globals are
234   /// considered locally defined.
235   ///
236   /// Loops that contain the scop or that are part of the scop are considered
237   /// locally defined. Loops that are before the scop, but do not contain the
238   /// scop itself are considered not locally defined.
239   ///
240   /// @param For    The node defining the subtree.
241   /// @param Values A vector that will be filled with the Values referenced in
242   ///               this subtree.
243   /// @param Loops  A vector that will be filled with the Loops referenced in
244   ///               this subtree.
245   void getReferencesInSubtree(const isl::ast_node &For,
246                               SetVector<Value *> &Values,
247                               SetVector<const Loop *> &Loops);
248 
249   /// Change the llvm::Value(s) used for code generation.
250   ///
251   /// When generating code certain values (e.g., references to induction
252   /// variables or array base pointers) in the original code may be replaced by
253   /// new values. This function allows to (partially) update the set of values
254   /// used. A typical use case for this function is the case when we continue
255   /// code generation in a subfunction/kernel function and need to explicitly
256   /// pass down certain values.
257   ///
258   /// @param NewValues A map that maps certain llvm::Values to new llvm::Values.
259   void updateValues(ValueMapT &NewValues);
260 
261   /// Return the most up-to-date version of the llvm::Value for code generation.
262   /// @param Original The Value to check for an up to date version.
263   /// @returns A remapped `Value` from ValueMap, or `Original` if no mapping
264   ///          exists.
265   /// @see IslNodeBuilder::updateValues
266   /// @see IslNodeBuilder::ValueMap
267   Value *getLatestValue(Value *Original) const;
268 
269   /// Generate code for a marker now.
270   ///
271   /// For mark nodes with an unknown name, we just forward the code generation
272   /// to its child. This is currently the only behavior implemented, as there is
273   /// currently not special handling for marker nodes implemented.
274   ///
275   /// @param Mark The node we generate code for.
276   virtual void createMark(__isl_take isl_ast_node *Marker);
277 
278   virtual void createFor(__isl_take isl_ast_node *For);
279 
280   /// Set to remember materialized invariant loads.
281   ///
282   /// An invariant load is identified by its pointer (the SCEV) and its type.
283   SmallSet<std::pair<const SCEV *, Type *>, 16> PreloadedPtrs;
284 
285   /// Preload the memory access at @p AccessRange with @p Build.
286   ///
287   /// @returns The preloaded value casted to type @p Ty
288   Value *preloadUnconditionally(__isl_take isl_set *AccessRange,
289                                 isl_ast_build *Build, Instruction *AccInst);
290 
291   /// Preload the memory load access @p MA.
292   ///
293   /// If @p MA is not always executed it will be conditionally loaded and
294   /// merged with undef from the same type. Hence, if @p MA is executed only
295   /// under condition C then the preload code will look like this:
296   ///
297   /// MA_preload = undef;
298   /// if (C)
299   ///   MA_preload = load MA;
300   /// use MA_preload
301   Value *preloadInvariantLoad(const MemoryAccess &MA,
302                               __isl_take isl_set *Domain);
303 
304   /// Preload the invariant access equivalence class @p IAClass
305   ///
306   /// This function will preload the representing load from @p IAClass and
307   /// map all members of @p IAClass to that preloaded value, potentially casted
308   /// to the required type.
309   ///
310   /// @returns False, iff a problem occurred and the load was not preloaded.
311   bool preloadInvariantEquivClass(InvariantEquivClassTy &IAClass);
312 
313   void createForSequential(isl::ast_node_for For, bool MarkParallel);
314 
315   /// Create LLVM-IR that executes a for node thread parallel.
316   ///
317   /// @param For The FOR isl_ast_node for which code is generated.
318   void createForParallel(__isl_take isl_ast_node *For);
319 
320   /// Create new access functions for modified memory accesses.
321   ///
322   /// In case the access function of one of the memory references in the Stmt
323   /// has been modified, we generate a new isl_ast_expr that reflects the
324   /// newly modified access function and return a map that maps from the
325   /// individual memory references in the statement (identified by their id)
326   /// to these newly generated ast expressions.
327   ///
328   /// @param Stmt  The statement for which to (possibly) generate new access
329   ///              functions.
330   /// @param Node  The ast node corresponding to the statement for us to extract
331   ///              the local schedule from.
332   /// @return A new hash table that contains remappings from memory ids to new
333   ///         access expressions.
334   __isl_give isl_id_to_ast_expr *
335   createNewAccesses(ScopStmt *Stmt, __isl_keep isl_ast_node *Node);
336 
337   /// Generate LLVM-IR that computes the values of the original induction
338   /// variables in function of the newly generated loop induction variables.
339   ///
340   /// Example:
341   ///
342   ///   // Original
343   ///   for i
344   ///     for j
345   ///       S(i)
346   ///
347   ///   Schedule: [i,j] -> [i+j, j]
348   ///
349   ///   // New
350   ///   for c0
351   ///     for c1
352   ///       S(c0 - c1, c1)
353   ///
354   /// Assuming the original code consists of two loops which are
355   /// transformed according to a schedule [i,j] -> [c0=i+j,c1=j]. The resulting
356   /// ast models the original statement as a call expression where each argument
357   /// is an expression that computes the old induction variables from the new
358   /// ones, ordered such that the first argument computes the value of induction
359   /// variable that was outermost in the original code.
360   ///
361   /// @param Expr The call expression that represents the statement.
362   /// @param Stmt The statement that is called.
363   /// @param LTS  The loop to SCEV map in which the mapping from the original
364   ///             loop to a SCEV representing the new loop iv is added. This
365   ///             mapping does not require an explicit induction variable.
366   ///             Instead, we think in terms of an implicit induction variable
367   ///             that counts the number of times a loop is executed. For each
368   ///             original loop this count, expressed in function of the new
369   ///             induction variables, is added to the LTS map.
370   void createSubstitutions(__isl_take isl_ast_expr *Expr, ScopStmt *Stmt,
371                            LoopToScevMapT &LTS);
372   void createSubstitutionsVector(__isl_take isl_ast_expr *Expr, ScopStmt *Stmt,
373                                  std::vector<LoopToScevMapT> &VLTS,
374                                  std::vector<Value *> &IVS,
375                                  __isl_take isl_id *IteratorID);
376   virtual void createIf(__isl_take isl_ast_node *If);
377   virtual void createUser(__isl_take isl_ast_node *User);
378   virtual void createBlock(__isl_take isl_ast_node *Block);
379 
380   /// Get the schedule for a given AST node.
381   ///
382   /// This information is used to reason about parallelism of loops or the
383   /// locality of memory accesses under a given schedule.
384   ///
385   /// @param Node The node we want to obtain the schedule for.
386   /// @return Return an isl_union_map that maps from the statements executed
387   ///         below this ast node to the scheduling vectors used to enumerate
388   ///         them.
389   ///
390   virtual isl::union_map getScheduleForAstNode(const isl::ast_node &Node);
391 
392 private:
393   /// Create code for a copy statement.
394   ///
395   /// A copy statement is expected to have one read memory access and one write
396   /// memory access (in this very order). Data is loaded from the location
397   /// described by the read memory access and written to the location described
398   /// by the write memory access. @p NewAccesses contains for each access
399   /// the isl ast expression that describes the location accessed.
400   ///
401   /// @param Stmt The copy statement that contains the accesses.
402   /// @param NewAccesses The hash table that contains remappings from memory
403   ///                    ids to new access expressions.
404   void generateCopyStmt(ScopStmt *Stmt,
405                         __isl_keep isl_id_to_ast_expr *NewAccesses);
406 
407   /// Materialize a canonical loop induction variable for `L`, which is a loop
408   /// that is *not* present in the Scop.
409   ///
410   /// Note that this is materialized at the point where the `Builder` is
411   /// currently pointing.
412   /// We also populate the `OutsideLoopIterations` map with `L`s SCEV to keep
413   /// track of the induction variable.
414   /// See [Code generation of induction variables of loops outside Scops]
415   Value *materializeNonScopLoopInductionVariable(const Loop *L);
416 };
417 
418 } // namespace polly
419 
420 #endif // POLLY_ISLNODEBUILDER_H
421