1 //==--------------- llvm/CodeGen/SDPatternMatch.h ---------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// Contains matchers for matching SelectionDAG nodes and values.
10 ///
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_CODEGEN_SDPATTERNMATCH_H
14 #define LLVM_CODEGEN_SDPATTERNMATCH_H
15 
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/CodeGen/SelectionDAG.h"
19 #include "llvm/CodeGen/SelectionDAGNodes.h"
20 #include "llvm/CodeGen/TargetLowering.h"
21 
22 namespace llvm {
23 namespace SDPatternMatch {
24 
25 /// MatchContext can repurpose existing patterns to behave differently under
26 /// a certain context. For instance, `m_Opc(ISD::ADD)` matches plain ADD nodes
27 /// in normal circumstances, but matches VP_ADD nodes under a custom
28 /// VPMatchContext. This design is meant to facilitate code / pattern reusing.
29 class BasicMatchContext {
30   const SelectionDAG *DAG;
31   const TargetLowering *TLI;
32 
33 public:
BasicMatchContext(const SelectionDAG * DAG)34   explicit BasicMatchContext(const SelectionDAG *DAG)
35       : DAG(DAG), TLI(DAG ? &DAG->getTargetLoweringInfo() : nullptr) {}
36 
BasicMatchContext(const TargetLowering * TLI)37   explicit BasicMatchContext(const TargetLowering *TLI)
38       : DAG(nullptr), TLI(TLI) {}
39 
40   // A valid MatchContext has to implement the following functions.
41 
getDAG()42   const SelectionDAG *getDAG() const { return DAG; }
43 
getTLI()44   const TargetLowering *getTLI() const { return TLI; }
45 
46   /// Return true if N effectively has opcode Opcode.
match(SDValue N,unsigned Opcode)47   bool match(SDValue N, unsigned Opcode) const {
48     return N->getOpcode() == Opcode;
49   }
50 };
51 
52 template <typename Pattern, typename MatchContext>
sd_context_match(SDValue N,const MatchContext & Ctx,Pattern && P)53 [[nodiscard]] bool sd_context_match(SDValue N, const MatchContext &Ctx,
54                                     Pattern &&P) {
55   return P.match(Ctx, N);
56 }
57 
58 template <typename Pattern, typename MatchContext>
sd_context_match(SDNode * N,const MatchContext & Ctx,Pattern && P)59 [[nodiscard]] bool sd_context_match(SDNode *N, const MatchContext &Ctx,
60                                     Pattern &&P) {
61   return sd_context_match(SDValue(N, 0), Ctx, P);
62 }
63 
64 template <typename Pattern>
sd_match(SDNode * N,const SelectionDAG * DAG,Pattern && P)65 [[nodiscard]] bool sd_match(SDNode *N, const SelectionDAG *DAG, Pattern &&P) {
66   return sd_context_match(N, BasicMatchContext(DAG), P);
67 }
68 
69 template <typename Pattern>
sd_match(SDValue N,const SelectionDAG * DAG,Pattern && P)70 [[nodiscard]] bool sd_match(SDValue N, const SelectionDAG *DAG, Pattern &&P) {
71   return sd_context_match(N, BasicMatchContext(DAG), P);
72 }
73 
74 template <typename Pattern>
sd_match(SDNode * N,Pattern && P)75 [[nodiscard]] bool sd_match(SDNode *N, Pattern &&P) {
76   return sd_match(N, nullptr, P);
77 }
78 
79 template <typename Pattern>
sd_match(SDValue N,Pattern && P)80 [[nodiscard]] bool sd_match(SDValue N, Pattern &&P) {
81   return sd_match(N, nullptr, P);
82 }
83 
84 // === Utilities ===
85 struct Value_match {
86   SDValue MatchVal;
87 
88   Value_match() = default;
89 
Value_matchValue_match90   explicit Value_match(SDValue Match) : MatchVal(Match) {}
91 
matchValue_match92   template <typename MatchContext> bool match(const MatchContext &, SDValue N) {
93     if (MatchVal)
94       return MatchVal == N;
95     return N.getNode();
96   }
97 };
98 
99 /// Match any valid SDValue.
m_Value()100 inline Value_match m_Value() { return Value_match(); }
101 
m_Specific(SDValue N)102 inline Value_match m_Specific(SDValue N) {
103   assert(N);
104   return Value_match(N);
105 }
106 
107 struct DeferredValue_match {
108   SDValue &MatchVal;
109 
DeferredValue_matchDeferredValue_match110   explicit DeferredValue_match(SDValue &Match) : MatchVal(Match) {}
111 
matchDeferredValue_match112   template <typename MatchContext> bool match(const MatchContext &, SDValue N) {
113     return N == MatchVal;
114   }
115 };
116 
117 /// Similar to m_Specific, but the specific value to match is determined by
118 /// another sub-pattern in the same sd_match() expression. For instance,
119 /// We cannot match `(add V, V)` with `m_Add(m_Value(X), m_Specific(X))` since
120 /// `X` is not initialized at the time it got copied into `m_Specific`. Instead,
121 /// we should use `m_Add(m_Value(X), m_Deferred(X))`.
m_Deferred(SDValue & V)122 inline DeferredValue_match m_Deferred(SDValue &V) {
123   return DeferredValue_match(V);
124 }
125 
126 struct Opcode_match {
127   unsigned Opcode;
128 
Opcode_matchOpcode_match129   explicit Opcode_match(unsigned Opc) : Opcode(Opc) {}
130 
131   template <typename MatchContext>
matchOpcode_match132   bool match(const MatchContext &Ctx, SDValue N) {
133     return Ctx.match(N, Opcode);
134   }
135 };
136 
m_Opc(unsigned Opcode)137 inline Opcode_match m_Opc(unsigned Opcode) { return Opcode_match(Opcode); }
138 
139 template <unsigned NumUses, typename Pattern> struct NUses_match {
140   Pattern P;
141 
NUses_matchNUses_match142   explicit NUses_match(const Pattern &P) : P(P) {}
143 
144   template <typename MatchContext>
matchNUses_match145   bool match(const MatchContext &Ctx, SDValue N) {
146     // SDNode::hasNUsesOfValue is pretty expensive when the SDNode produces
147     // multiple results, hence we check the subsequent pattern here before
148     // checking the number of value users.
149     return P.match(Ctx, N) && N->hasNUsesOfValue(NumUses, N.getResNo());
150   }
151 };
152 
153 template <typename Pattern>
m_OneUse(const Pattern & P)154 inline NUses_match<1, Pattern> m_OneUse(const Pattern &P) {
155   return NUses_match<1, Pattern>(P);
156 }
157 template <unsigned N, typename Pattern>
m_NUses(const Pattern & P)158 inline NUses_match<N, Pattern> m_NUses(const Pattern &P) {
159   return NUses_match<N, Pattern>(P);
160 }
161 
m_OneUse()162 inline NUses_match<1, Value_match> m_OneUse() {
163   return NUses_match<1, Value_match>(m_Value());
164 }
m_NUses()165 template <unsigned N> inline NUses_match<N, Value_match> m_NUses() {
166   return NUses_match<N, Value_match>(m_Value());
167 }
168 
169 struct Value_bind {
170   SDValue &BindVal;
171 
Value_bindValue_bind172   explicit Value_bind(SDValue &N) : BindVal(N) {}
173 
matchValue_bind174   template <typename MatchContext> bool match(const MatchContext &, SDValue N) {
175     BindVal = N;
176     return true;
177   }
178 };
179 
m_Value(SDValue & N)180 inline Value_bind m_Value(SDValue &N) { return Value_bind(N); }
181 
182 template <typename Pattern, typename PredFuncT> struct TLI_pred_match {
183   Pattern P;
184   PredFuncT PredFunc;
185 
TLI_pred_matchTLI_pred_match186   TLI_pred_match(const PredFuncT &Pred, const Pattern &P)
187       : P(P), PredFunc(Pred) {}
188 
189   template <typename MatchContext>
matchTLI_pred_match190   bool match(const MatchContext &Ctx, SDValue N) {
191     assert(Ctx.getTLI() && "TargetLowering is required for this pattern.");
192     return PredFunc(*Ctx.getTLI(), N) && P.match(Ctx, N);
193   }
194 };
195 
196 // Explicit deduction guide.
197 template <typename PredFuncT, typename Pattern>
198 TLI_pred_match(const PredFuncT &Pred, const Pattern &P)
199     -> TLI_pred_match<Pattern, PredFuncT>;
200 
201 /// Match legal SDNodes based on the information provided by TargetLowering.
m_LegalOp(const Pattern & P)202 template <typename Pattern> inline auto m_LegalOp(const Pattern &P) {
203   return TLI_pred_match{[](const TargetLowering &TLI, SDValue N) {
204                           return TLI.isOperationLegal(N->getOpcode(),
205                                                       N.getValueType());
206                         },
207                         P};
208 }
209 
210 /// Switch to a different MatchContext for subsequent patterns.
211 template <typename NewMatchContext, typename Pattern> struct SwitchContext {
212   const NewMatchContext &Ctx;
213   Pattern P;
214 
215   template <typename OrigMatchContext>
matchSwitchContext216   bool match(const OrigMatchContext &, SDValue N) {
217     return P.match(Ctx, N);
218   }
219 };
220 
221 template <typename MatchContext, typename Pattern>
m_Context(const MatchContext & Ctx,Pattern && P)222 inline SwitchContext<MatchContext, Pattern> m_Context(const MatchContext &Ctx,
223                                                       Pattern &&P) {
224   return SwitchContext<MatchContext, Pattern>{Ctx, std::move(P)};
225 }
226 
227 // === Value type ===
228 struct ValueType_bind {
229   EVT &BindVT;
230 
ValueType_bindValueType_bind231   explicit ValueType_bind(EVT &Bind) : BindVT(Bind) {}
232 
matchValueType_bind233   template <typename MatchContext> bool match(const MatchContext &, SDValue N) {
234     BindVT = N.getValueType();
235     return true;
236   }
237 };
238 
239 /// Retreive the ValueType of the current SDValue.
m_VT(EVT & VT)240 inline ValueType_bind m_VT(EVT &VT) { return ValueType_bind(VT); }
241 
242 template <typename Pattern, typename PredFuncT> struct ValueType_match {
243   PredFuncT PredFunc;
244   Pattern P;
245 
ValueType_matchValueType_match246   ValueType_match(const PredFuncT &Pred, const Pattern &P)
247       : PredFunc(Pred), P(P) {}
248 
249   template <typename MatchContext>
matchValueType_match250   bool match(const MatchContext &Ctx, SDValue N) {
251     return PredFunc(N.getValueType()) && P.match(Ctx, N);
252   }
253 };
254 
255 // Explicit deduction guide.
256 template <typename PredFuncT, typename Pattern>
257 ValueType_match(const PredFuncT &Pred, const Pattern &P)
258     -> ValueType_match<Pattern, PredFuncT>;
259 
260 /// Match a specific ValueType.
261 template <typename Pattern>
m_SpecificVT(EVT RefVT,const Pattern & P)262 inline auto m_SpecificVT(EVT RefVT, const Pattern &P) {
263   return ValueType_match{[=](EVT VT) { return VT == RefVT; }, P};
264 }
m_SpecificVT(EVT RefVT)265 inline auto m_SpecificVT(EVT RefVT) {
266   return ValueType_match{[=](EVT VT) { return VT == RefVT; }, m_Value()};
267 }
268 
m_Glue()269 inline auto m_Glue() { return m_SpecificVT(MVT::Glue); }
m_OtherVT()270 inline auto m_OtherVT() { return m_SpecificVT(MVT::Other); }
271 
272 /// Match any integer ValueTypes.
m_IntegerVT(const Pattern & P)273 template <typename Pattern> inline auto m_IntegerVT(const Pattern &P) {
274   return ValueType_match{[](EVT VT) { return VT.isInteger(); }, P};
275 }
m_IntegerVT()276 inline auto m_IntegerVT() {
277   return ValueType_match{[](EVT VT) { return VT.isInteger(); }, m_Value()};
278 }
279 
280 /// Match any floating point ValueTypes.
m_FloatingPointVT(const Pattern & P)281 template <typename Pattern> inline auto m_FloatingPointVT(const Pattern &P) {
282   return ValueType_match{[](EVT VT) { return VT.isFloatingPoint(); }, P};
283 }
m_FloatingPointVT()284 inline auto m_FloatingPointVT() {
285   return ValueType_match{[](EVT VT) { return VT.isFloatingPoint(); },
286                          m_Value()};
287 }
288 
289 /// Match any vector ValueTypes.
m_VectorVT(const Pattern & P)290 template <typename Pattern> inline auto m_VectorVT(const Pattern &P) {
291   return ValueType_match{[](EVT VT) { return VT.isVector(); }, P};
292 }
m_VectorVT()293 inline auto m_VectorVT() {
294   return ValueType_match{[](EVT VT) { return VT.isVector(); }, m_Value()};
295 }
296 
297 /// Match fixed-length vector ValueTypes.
m_FixedVectorVT(const Pattern & P)298 template <typename Pattern> inline auto m_FixedVectorVT(const Pattern &P) {
299   return ValueType_match{[](EVT VT) { return VT.isFixedLengthVector(); }, P};
300 }
m_FixedVectorVT()301 inline auto m_FixedVectorVT() {
302   return ValueType_match{[](EVT VT) { return VT.isFixedLengthVector(); },
303                          m_Value()};
304 }
305 
306 /// Match scalable vector ValueTypes.
m_ScalableVectorVT(const Pattern & P)307 template <typename Pattern> inline auto m_ScalableVectorVT(const Pattern &P) {
308   return ValueType_match{[](EVT VT) { return VT.isScalableVector(); }, P};
309 }
m_ScalableVectorVT()310 inline auto m_ScalableVectorVT() {
311   return ValueType_match{[](EVT VT) { return VT.isScalableVector(); },
312                          m_Value()};
313 }
314 
315 /// Match legal ValueTypes based on the information provided by TargetLowering.
m_LegalType(const Pattern & P)316 template <typename Pattern> inline auto m_LegalType(const Pattern &P) {
317   return TLI_pred_match{[](const TargetLowering &TLI, SDValue N) {
318                           return TLI.isTypeLegal(N.getValueType());
319                         },
320                         P};
321 }
322 
323 // === Patterns combinators ===
324 template <typename... Preds> struct And {
matchAnd325   template <typename MatchContext> bool match(const MatchContext &, SDValue N) {
326     return true;
327   }
328 };
329 
330 template <typename Pred, typename... Preds>
331 struct And<Pred, Preds...> : And<Preds...> {
332   Pred P;
333   And(Pred &&p, Preds &&...preds)
334       : And<Preds...>(std::forward<Preds>(preds)...), P(std::forward<Pred>(p)) {
335   }
336 
337   template <typename MatchContext>
338   bool match(const MatchContext &Ctx, SDValue N) {
339     return P.match(Ctx, N) && And<Preds...>::match(Ctx, N);
340   }
341 };
342 
343 template <typename... Preds> struct Or {
344   template <typename MatchContext> bool match(const MatchContext &, SDValue N) {
345     return false;
346   }
347 };
348 
349 template <typename Pred, typename... Preds>
350 struct Or<Pred, Preds...> : Or<Preds...> {
351   Pred P;
352   Or(Pred &&p, Preds &&...preds)
353       : Or<Preds...>(std::forward<Preds>(preds)...), P(std::forward<Pred>(p)) {}
354 
355   template <typename MatchContext>
356   bool match(const MatchContext &Ctx, SDValue N) {
357     return P.match(Ctx, N) || Or<Preds...>::match(Ctx, N);
358   }
359 };
360 
361 template <typename... Preds> And<Preds...> m_AllOf(Preds &&...preds) {
362   return And<Preds...>(std::forward<Preds>(preds)...);
363 }
364 
365 template <typename... Preds> Or<Preds...> m_AnyOf(Preds &&...preds) {
366   return Or<Preds...>(std::forward<Preds>(preds)...);
367 }
368 
369 // === Generic node matching ===
370 template <unsigned OpIdx, typename... OpndPreds> struct Operands_match {
371   template <typename MatchContext>
372   bool match(const MatchContext &Ctx, SDValue N) {
373     // Returns false if there are more operands than predicates;
374     return N->getNumOperands() == OpIdx;
375   }
376 };
377 
378 template <unsigned OpIdx, typename OpndPred, typename... OpndPreds>
379 struct Operands_match<OpIdx, OpndPred, OpndPreds...>
380     : Operands_match<OpIdx + 1, OpndPreds...> {
381   OpndPred P;
382 
383   Operands_match(OpndPred &&p, OpndPreds &&...preds)
384       : Operands_match<OpIdx + 1, OpndPreds...>(
385             std::forward<OpndPreds>(preds)...),
386         P(std::forward<OpndPred>(p)) {}
387 
388   template <typename MatchContext>
389   bool match(const MatchContext &Ctx, SDValue N) {
390     if (OpIdx < N->getNumOperands())
391       return P.match(Ctx, N->getOperand(OpIdx)) &&
392              Operands_match<OpIdx + 1, OpndPreds...>::match(Ctx, N);
393 
394     // This is the case where there are more predicates than operands.
395     return false;
396   }
397 };
398 
399 template <typename... OpndPreds>
400 auto m_Node(unsigned Opcode, OpndPreds &&...preds) {
401   return m_AllOf(m_Opc(Opcode), Operands_match<0, OpndPreds...>(
402                                     std::forward<OpndPreds>(preds)...));
403 }
404 
405 /// Provide number of operands that are not chain or glue, as well as the first
406 /// index of such operand.
407 template <bool ExcludeChain> struct EffectiveOperands {
408   unsigned Size = 0;
409   unsigned FirstIndex = 0;
410 
411   explicit EffectiveOperands(SDValue N) {
412     const unsigned TotalNumOps = N->getNumOperands();
413     FirstIndex = TotalNumOps;
414     for (unsigned I = 0; I < TotalNumOps; ++I) {
415       // Count the number of non-chain and non-glue nodes (we ignore chain
416       // and glue by default) and retreive the operand index offset.
417       EVT VT = N->getOperand(I).getValueType();
418       if (VT != MVT::Glue && VT != MVT::Other) {
419         ++Size;
420         if (FirstIndex == TotalNumOps)
421           FirstIndex = I;
422       }
423     }
424   }
425 };
426 
427 template <> struct EffectiveOperands<false> {
428   unsigned Size = 0;
429   unsigned FirstIndex = 0;
430 
431   explicit EffectiveOperands(SDValue N) : Size(N->getNumOperands()) {}
432 };
433 
434 // === Binary operations ===
435 template <typename LHS_P, typename RHS_P, bool Commutable = false,
436           bool ExcludeChain = false>
437 struct BinaryOpc_match {
438   unsigned Opcode;
439   LHS_P LHS;
440   RHS_P RHS;
441 
442   BinaryOpc_match(unsigned Opc, const LHS_P &L, const RHS_P &R)
443       : Opcode(Opc), LHS(L), RHS(R) {}
444 
445   template <typename MatchContext>
446   bool match(const MatchContext &Ctx, SDValue N) {
447     if (sd_context_match(N, Ctx, m_Opc(Opcode))) {
448       EffectiveOperands<ExcludeChain> EO(N);
449       assert(EO.Size == 2);
450       return (LHS.match(Ctx, N->getOperand(EO.FirstIndex)) &&
451               RHS.match(Ctx, N->getOperand(EO.FirstIndex + 1))) ||
452              (Commutable && LHS.match(Ctx, N->getOperand(EO.FirstIndex + 1)) &&
453               RHS.match(Ctx, N->getOperand(EO.FirstIndex)));
454     }
455 
456     return false;
457   }
458 };
459 
460 template <typename LHS, typename RHS>
461 inline BinaryOpc_match<LHS, RHS, false> m_BinOp(unsigned Opc, const LHS &L,
462                                                 const RHS &R) {
463   return BinaryOpc_match<LHS, RHS, false>(Opc, L, R);
464 }
465 template <typename LHS, typename RHS>
466 inline BinaryOpc_match<LHS, RHS, true> m_c_BinOp(unsigned Opc, const LHS &L,
467                                                  const RHS &R) {
468   return BinaryOpc_match<LHS, RHS, true>(Opc, L, R);
469 }
470 
471 template <typename LHS, typename RHS>
472 inline BinaryOpc_match<LHS, RHS, false, true>
473 m_ChainedBinOp(unsigned Opc, const LHS &L, const RHS &R) {
474   return BinaryOpc_match<LHS, RHS, false, true>(Opc, L, R);
475 }
476 template <typename LHS, typename RHS>
477 inline BinaryOpc_match<LHS, RHS, true, true>
478 m_c_ChainedBinOp(unsigned Opc, const LHS &L, const RHS &R) {
479   return BinaryOpc_match<LHS, RHS, true, true>(Opc, L, R);
480 }
481 
482 // Common binary operations
483 template <typename LHS, typename RHS>
484 inline BinaryOpc_match<LHS, RHS, true> m_Add(const LHS &L, const RHS &R) {
485   return BinaryOpc_match<LHS, RHS, true>(ISD::ADD, L, R);
486 }
487 
488 template <typename LHS, typename RHS>
489 inline BinaryOpc_match<LHS, RHS, false> m_Sub(const LHS &L, const RHS &R) {
490   return BinaryOpc_match<LHS, RHS, false>(ISD::SUB, L, R);
491 }
492 
493 template <typename LHS, typename RHS>
494 inline BinaryOpc_match<LHS, RHS, true> m_Mul(const LHS &L, const RHS &R) {
495   return BinaryOpc_match<LHS, RHS, true>(ISD::MUL, L, R);
496 }
497 
498 template <typename LHS, typename RHS>
499 inline BinaryOpc_match<LHS, RHS, true> m_And(const LHS &L, const RHS &R) {
500   return BinaryOpc_match<LHS, RHS, true>(ISD::AND, L, R);
501 }
502 
503 template <typename LHS, typename RHS>
504 inline BinaryOpc_match<LHS, RHS, true> m_Or(const LHS &L, const RHS &R) {
505   return BinaryOpc_match<LHS, RHS, true>(ISD::OR, L, R);
506 }
507 
508 template <typename LHS, typename RHS>
509 inline BinaryOpc_match<LHS, RHS, true> m_Xor(const LHS &L, const RHS &R) {
510   return BinaryOpc_match<LHS, RHS, true>(ISD::XOR, L, R);
511 }
512 
513 template <typename LHS, typename RHS>
514 inline BinaryOpc_match<LHS, RHS, false> m_UDiv(const LHS &L, const RHS &R) {
515   return BinaryOpc_match<LHS, RHS, false>(ISD::UDIV, L, R);
516 }
517 template <typename LHS, typename RHS>
518 inline BinaryOpc_match<LHS, RHS, false> m_SDiv(const LHS &L, const RHS &R) {
519   return BinaryOpc_match<LHS, RHS, false>(ISD::SDIV, L, R);
520 }
521 
522 template <typename LHS, typename RHS>
523 inline BinaryOpc_match<LHS, RHS, false> m_URem(const LHS &L, const RHS &R) {
524   return BinaryOpc_match<LHS, RHS, false>(ISD::UREM, L, R);
525 }
526 template <typename LHS, typename RHS>
527 inline BinaryOpc_match<LHS, RHS, false> m_SRem(const LHS &L, const RHS &R) {
528   return BinaryOpc_match<LHS, RHS, false>(ISD::SREM, L, R);
529 }
530 
531 template <typename LHS, typename RHS>
532 inline BinaryOpc_match<LHS, RHS, false> m_Shl(const LHS &L, const RHS &R) {
533   return BinaryOpc_match<LHS, RHS, false>(ISD::SHL, L, R);
534 }
535 
536 template <typename LHS, typename RHS>
537 inline BinaryOpc_match<LHS, RHS, false> m_Sra(const LHS &L, const RHS &R) {
538   return BinaryOpc_match<LHS, RHS, false>(ISD::SRA, L, R);
539 }
540 template <typename LHS, typename RHS>
541 inline BinaryOpc_match<LHS, RHS, false> m_Srl(const LHS &L, const RHS &R) {
542   return BinaryOpc_match<LHS, RHS, false>(ISD::SRL, L, R);
543 }
544 
545 template <typename LHS, typename RHS>
546 inline BinaryOpc_match<LHS, RHS, true> m_FAdd(const LHS &L, const RHS &R) {
547   return BinaryOpc_match<LHS, RHS, true>(ISD::FADD, L, R);
548 }
549 
550 template <typename LHS, typename RHS>
551 inline BinaryOpc_match<LHS, RHS, false> m_FSub(const LHS &L, const RHS &R) {
552   return BinaryOpc_match<LHS, RHS, false>(ISD::FSUB, L, R);
553 }
554 
555 template <typename LHS, typename RHS>
556 inline BinaryOpc_match<LHS, RHS, true> m_FMul(const LHS &L, const RHS &R) {
557   return BinaryOpc_match<LHS, RHS, true>(ISD::FMUL, L, R);
558 }
559 
560 template <typename LHS, typename RHS>
561 inline BinaryOpc_match<LHS, RHS, false> m_FDiv(const LHS &L, const RHS &R) {
562   return BinaryOpc_match<LHS, RHS, false>(ISD::FDIV, L, R);
563 }
564 
565 template <typename LHS, typename RHS>
566 inline BinaryOpc_match<LHS, RHS, false> m_FRem(const LHS &L, const RHS &R) {
567   return BinaryOpc_match<LHS, RHS, false>(ISD::FREM, L, R);
568 }
569 
570 // === Unary operations ===
571 template <typename Opnd_P, bool ExcludeChain = false> struct UnaryOpc_match {
572   unsigned Opcode;
573   Opnd_P Opnd;
574 
575   UnaryOpc_match(unsigned Opc, const Opnd_P &Op) : Opcode(Opc), Opnd(Op) {}
576 
577   template <typename MatchContext>
578   bool match(const MatchContext &Ctx, SDValue N) {
579     if (sd_context_match(N, Ctx, m_Opc(Opcode))) {
580       EffectiveOperands<ExcludeChain> EO(N);
581       assert(EO.Size == 1);
582       return Opnd.match(Ctx, N->getOperand(EO.FirstIndex));
583     }
584 
585     return false;
586   }
587 };
588 
589 template <typename Opnd>
590 inline UnaryOpc_match<Opnd> m_UnaryOp(unsigned Opc, const Opnd &Op) {
591   return UnaryOpc_match<Opnd>(Opc, Op);
592 }
593 template <typename Opnd>
594 inline UnaryOpc_match<Opnd, true> m_ChainedUnaryOp(unsigned Opc,
595                                                    const Opnd &Op) {
596   return UnaryOpc_match<Opnd, true>(Opc, Op);
597 }
598 
599 template <typename Opnd> inline UnaryOpc_match<Opnd> m_ZExt(const Opnd &Op) {
600   return UnaryOpc_match<Opnd>(ISD::ZERO_EXTEND, Op);
601 }
602 
603 template <typename Opnd> inline UnaryOpc_match<Opnd> m_SExt(const Opnd &Op) {
604   return UnaryOpc_match<Opnd>(ISD::SIGN_EXTEND, Op);
605 }
606 
607 template <typename Opnd> inline UnaryOpc_match<Opnd> m_AnyExt(const Opnd &Op) {
608   return UnaryOpc_match<Opnd>(ISD::ANY_EXTEND, Op);
609 }
610 
611 template <typename Opnd> inline UnaryOpc_match<Opnd> m_Trunc(const Opnd &Op) {
612   return UnaryOpc_match<Opnd>(ISD::TRUNCATE, Op);
613 }
614 
615 // === Constants ===
616 struct ConstantInt_match {
617   APInt *BindVal;
618 
619   explicit ConstantInt_match(APInt *V) : BindVal(V) {}
620 
621   template <typename MatchContext> bool match(const MatchContext &, SDValue N) {
622     // The logics here are similar to that in
623     // SelectionDAG::isConstantIntBuildVectorOrConstantInt, but the latter also
624     // treats GlobalAddressSDNode as a constant, which is difficult to turn into
625     // APInt.
626     if (auto *C = dyn_cast_or_null<ConstantSDNode>(N.getNode())) {
627       if (BindVal)
628         *BindVal = C->getAPIntValue();
629       return true;
630     }
631 
632     APInt Discard;
633     return ISD::isConstantSplatVector(N.getNode(),
634                                       BindVal ? *BindVal : Discard);
635   }
636 };
637 /// Match any interger constants or splat of an integer constant.
638 inline ConstantInt_match m_ConstInt() { return ConstantInt_match(nullptr); }
639 /// Match any interger constants or splat of an integer constant; return the
640 /// specific constant or constant splat value.
641 inline ConstantInt_match m_ConstInt(APInt &V) { return ConstantInt_match(&V); }
642 
643 struct SpecificInt_match {
644   APInt IntVal;
645 
646   explicit SpecificInt_match(APInt APV) : IntVal(std::move(APV)) {}
647 
648   template <typename MatchContext>
649   bool match(const MatchContext &Ctx, SDValue N) {
650     APInt ConstInt;
651     if (sd_context_match(N, Ctx, m_ConstInt(ConstInt)))
652       return APInt::isSameValue(IntVal, ConstInt);
653     return false;
654   }
655 };
656 
657 /// Match a specific integer constant or constant splat value.
658 inline SpecificInt_match m_SpecificInt(APInt V) {
659   return SpecificInt_match(std::move(V));
660 }
661 inline SpecificInt_match m_SpecificInt(uint64_t V) {
662   return SpecificInt_match(APInt(64, V));
663 }
664 
665 inline SpecificInt_match m_Zero() { return m_SpecificInt(0U); }
666 inline SpecificInt_match m_One() { return m_SpecificInt(1U); }
667 inline SpecificInt_match m_AllOnes() { return m_SpecificInt(~0U); }
668 
669 /// Match true boolean value based on the information provided by
670 /// TargetLowering.
671 inline auto m_True() {
672   return TLI_pred_match{
673       [](const TargetLowering &TLI, SDValue N) {
674         APInt ConstVal;
675         if (sd_match(N, m_ConstInt(ConstVal)))
676           switch (TLI.getBooleanContents(N.getValueType())) {
677           case TargetLowering::ZeroOrOneBooleanContent:
678             return ConstVal.isOne();
679           case TargetLowering::ZeroOrNegativeOneBooleanContent:
680             return ConstVal.isAllOnes();
681           case TargetLowering::UndefinedBooleanContent:
682             return (ConstVal & 0x01) == 1;
683           }
684 
685         return false;
686       },
687       m_Value()};
688 }
689 /// Match false boolean value based on the information provided by
690 /// TargetLowering.
691 inline auto m_False() {
692   return TLI_pred_match{
693       [](const TargetLowering &TLI, SDValue N) {
694         APInt ConstVal;
695         if (sd_match(N, m_ConstInt(ConstVal)))
696           switch (TLI.getBooleanContents(N.getValueType())) {
697           case TargetLowering::ZeroOrOneBooleanContent:
698           case TargetLowering::ZeroOrNegativeOneBooleanContent:
699             return ConstVal.isZero();
700           case TargetLowering::UndefinedBooleanContent:
701             return (ConstVal & 0x01) == 0;
702           }
703 
704         return false;
705       },
706       m_Value()};
707 }
708 } // namespace SDPatternMatch
709 } // namespace llvm
710 #endif
711