1 //===- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file declares the SDNode class and derived classes, which are used to
10 // represent the nodes and operations present in a SelectionDAG.  These nodes
11 // and operations are machine code level operations, with some similarities to
12 // the GCC RTL representation.
13 //
14 // Clients should include the SelectionDAG.h file instead of this file directly.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
19 #define LLVM_CODEGEN_SELECTIONDAGNODES_H
20 
21 #include "llvm/ADT/APFloat.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/BitVector.h"
24 #include "llvm/ADT/FoldingSet.h"
25 #include "llvm/ADT/GraphTraits.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/ilist_node.h"
29 #include "llvm/ADT/iterator.h"
30 #include "llvm/ADT/iterator_range.h"
31 #include "llvm/CodeGen/ISDOpcodes.h"
32 #include "llvm/CodeGen/MachineMemOperand.h"
33 #include "llvm/CodeGen/Register.h"
34 #include "llvm/CodeGen/ValueTypes.h"
35 #include "llvm/CodeGenTypes/MachineValueType.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DebugLoc.h"
38 #include "llvm/IR/Instruction.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/Metadata.h"
41 #include "llvm/IR/Operator.h"
42 #include "llvm/Support/AlignOf.h"
43 #include "llvm/Support/AtomicOrdering.h"
44 #include "llvm/Support/Casting.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Support/TypeSize.h"
47 #include <algorithm>
48 #include <cassert>
49 #include <climits>
50 #include <cstddef>
51 #include <cstdint>
52 #include <cstring>
53 #include <iterator>
54 #include <string>
55 #include <tuple>
56 #include <utility>
57 
58 namespace llvm {
59 
60 class APInt;
61 class Constant;
62 class GlobalValue;
63 class MachineBasicBlock;
64 class MachineConstantPoolValue;
65 class MCSymbol;
66 class raw_ostream;
67 class SDNode;
68 class SelectionDAG;
69 class Type;
70 class Value;
71 
72 void checkForCycles(const SDNode *N, const SelectionDAG *DAG = nullptr,
73                     bool force = false);
74 
75 /// This represents a list of ValueType's that has been intern'd by
76 /// a SelectionDAG.  Instances of this simple value class are returned by
77 /// SelectionDAG::getVTList(...).
78 ///
79 struct SDVTList {
80   const EVT *VTs;
81   unsigned int NumVTs;
82 };
83 
84 namespace ISD {
85 
86   /// Node predicates
87 
88 /// If N is a BUILD_VECTOR or SPLAT_VECTOR node whose elements are all the
89 /// same constant or undefined, return true and return the constant value in
90 /// \p SplatValue.
91 bool isConstantSplatVector(const SDNode *N, APInt &SplatValue);
92 
93 /// Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where
94 /// all of the elements are ~0 or undef. If \p BuildVectorOnly is set to
95 /// true, it only checks BUILD_VECTOR.
96 bool isConstantSplatVectorAllOnes(const SDNode *N,
97                                   bool BuildVectorOnly = false);
98 
99 /// Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where
100 /// all of the elements are 0 or undef. If \p BuildVectorOnly is set to true, it
101 /// only checks BUILD_VECTOR.
102 bool isConstantSplatVectorAllZeros(const SDNode *N,
103                                    bool BuildVectorOnly = false);
104 
105 /// Return true if the specified node is a BUILD_VECTOR where all of the
106 /// elements are ~0 or undef.
107 bool isBuildVectorAllOnes(const SDNode *N);
108 
109 /// Return true if the specified node is a BUILD_VECTOR where all of the
110 /// elements are 0 or undef.
111 bool isBuildVectorAllZeros(const SDNode *N);
112 
113 /// Return true if the specified node is a BUILD_VECTOR node of all
114 /// ConstantSDNode or undef.
115 bool isBuildVectorOfConstantSDNodes(const SDNode *N);
116 
117 /// Return true if the specified node is a BUILD_VECTOR node of all
118 /// ConstantFPSDNode or undef.
119 bool isBuildVectorOfConstantFPSDNodes(const SDNode *N);
120 
121 /// Returns true if the specified node is a vector where all elements can
122 /// be truncated to the specified element size without a loss in meaning.
123 bool isVectorShrinkable(const SDNode *N, unsigned NewEltSize, bool Signed);
124 
125 /// Return true if the node has at least one operand and all operands of the
126 /// specified node are ISD::UNDEF.
127 bool allOperandsUndef(const SDNode *N);
128 
129 /// Return true if the specified node is FREEZE(UNDEF).
130 bool isFreezeUndef(const SDNode *N);
131 
132 } // end namespace ISD
133 
134 //===----------------------------------------------------------------------===//
135 /// Unlike LLVM values, Selection DAG nodes may return multiple
136 /// values as the result of a computation.  Many nodes return multiple values,
137 /// from loads (which define a token and a return value) to ADDC (which returns
138 /// a result and a carry value), to calls (which may return an arbitrary number
139 /// of values).
140 ///
141 /// As such, each use of a SelectionDAG computation must indicate the node that
142 /// computes it as well as which return value to use from that node.  This pair
143 /// of information is represented with the SDValue value type.
144 ///
145 class SDValue {
146   friend struct DenseMapInfo<SDValue>;
147 
148   SDNode *Node = nullptr; // The node defining the value we are using.
149   unsigned ResNo = 0;     // Which return value of the node we are using.
150 
151 public:
152   SDValue() = default;
153   SDValue(SDNode *node, unsigned resno);
154 
155   /// get the index which selects a specific result in the SDNode
156   unsigned getResNo() const { return ResNo; }
157 
158   /// get the SDNode which holds the desired result
159   SDNode *getNode() const { return Node; }
160 
161   /// set the SDNode
162   void setNode(SDNode *N) { Node = N; }
163 
164   inline SDNode *operator->() const { return Node; }
165 
166   bool operator==(const SDValue &O) const {
167     return Node == O.Node && ResNo == O.ResNo;
168   }
169   bool operator!=(const SDValue &O) const {
170     return !operator==(O);
171   }
172   bool operator<(const SDValue &O) const {
173     return std::tie(Node, ResNo) < std::tie(O.Node, O.ResNo);
174   }
175   explicit operator bool() const {
176     return Node != nullptr;
177   }
178 
179   SDValue getValue(unsigned R) const {
180     return SDValue(Node, R);
181   }
182 
183   /// Return true if this node is an operand of N.
184   bool isOperandOf(const SDNode *N) const;
185 
186   /// Return the ValueType of the referenced return value.
187   inline EVT getValueType() const;
188 
189   /// Return the simple ValueType of the referenced return value.
190   MVT getSimpleValueType() const {
191     return getValueType().getSimpleVT();
192   }
193 
194   /// Returns the size of the value in bits.
195   ///
196   /// If the value type is a scalable vector type, the scalable property will
197   /// be set and the runtime size will be a positive integer multiple of the
198   /// base size.
199   TypeSize getValueSizeInBits() const {
200     return getValueType().getSizeInBits();
201   }
202 
203   uint64_t getScalarValueSizeInBits() const {
204     return getValueType().getScalarType().getFixedSizeInBits();
205   }
206 
207   // Forwarding methods - These forward to the corresponding methods in SDNode.
208   inline unsigned getOpcode() const;
209   inline unsigned getNumOperands() const;
210   inline const SDValue &getOperand(unsigned i) const;
211   inline uint64_t getConstantOperandVal(unsigned i) const;
212   inline const APInt &getConstantOperandAPInt(unsigned i) const;
213   inline bool isTargetMemoryOpcode() const;
214   inline bool isTargetOpcode() const;
215   inline bool isMachineOpcode() const;
216   inline bool isUndef() const;
217   inline unsigned getMachineOpcode() const;
218   inline const DebugLoc &getDebugLoc() const;
219   inline void dump() const;
220   inline void dump(const SelectionDAG *G) const;
221   inline void dumpr() const;
222   inline void dumpr(const SelectionDAG *G) const;
223 
224   /// Return true if this operand (which must be a chain) reaches the
225   /// specified operand without crossing any side-effecting instructions.
226   /// In practice, this looks through token factors and non-volatile loads.
227   /// In order to remain efficient, this only
228   /// looks a couple of nodes in, it does not do an exhaustive search.
229   bool reachesChainWithoutSideEffects(SDValue Dest,
230                                       unsigned Depth = 2) const;
231 
232   /// Return true if there are no nodes using value ResNo of Node.
233   inline bool use_empty() const;
234 
235   /// Return true if there is exactly one node using value ResNo of Node.
236   inline bool hasOneUse() const;
237 };
238 
239 template<> struct DenseMapInfo<SDValue> {
240   static inline SDValue getEmptyKey() {
241     SDValue V;
242     V.ResNo = -1U;
243     return V;
244   }
245 
246   static inline SDValue getTombstoneKey() {
247     SDValue V;
248     V.ResNo = -2U;
249     return V;
250   }
251 
252   static unsigned getHashValue(const SDValue &Val) {
253     return ((unsigned)((uintptr_t)Val.getNode() >> 4) ^
254             (unsigned)((uintptr_t)Val.getNode() >> 9)) + Val.getResNo();
255   }
256 
257   static bool isEqual(const SDValue &LHS, const SDValue &RHS) {
258     return LHS == RHS;
259   }
260 };
261 
262 /// Allow casting operators to work directly on
263 /// SDValues as if they were SDNode*'s.
264 template<> struct simplify_type<SDValue> {
265   using SimpleType = SDNode *;
266 
267   static SimpleType getSimplifiedValue(SDValue &Val) {
268     return Val.getNode();
269   }
270 };
271 template<> struct simplify_type<const SDValue> {
272   using SimpleType = /*const*/ SDNode *;
273 
274   static SimpleType getSimplifiedValue(const SDValue &Val) {
275     return Val.getNode();
276   }
277 };
278 
279 /// Represents a use of a SDNode. This class holds an SDValue,
280 /// which records the SDNode being used and the result number, a
281 /// pointer to the SDNode using the value, and Next and Prev pointers,
282 /// which link together all the uses of an SDNode.
283 ///
284 class SDUse {
285   /// Val - The value being used.
286   SDValue Val;
287   /// User - The user of this value.
288   SDNode *User = nullptr;
289   /// Prev, Next - Pointers to the uses list of the SDNode referred by
290   /// this operand.
291   SDUse **Prev = nullptr;
292   SDUse *Next = nullptr;
293 
294 public:
295   SDUse() = default;
296   SDUse(const SDUse &U) = delete;
297   SDUse &operator=(const SDUse &) = delete;
298 
299   /// Normally SDUse will just implicitly convert to an SDValue that it holds.
300   operator const SDValue&() const { return Val; }
301 
302   /// If implicit conversion to SDValue doesn't work, the get() method returns
303   /// the SDValue.
304   const SDValue &get() const { return Val; }
305 
306   /// This returns the SDNode that contains this Use.
307   SDNode *getUser() { return User; }
308   const SDNode *getUser() const { return User; }
309 
310   /// Get the next SDUse in the use list.
311   SDUse *getNext() const { return Next; }
312 
313   /// Convenience function for get().getNode().
314   SDNode *getNode() const { return Val.getNode(); }
315   /// Convenience function for get().getResNo().
316   unsigned getResNo() const { return Val.getResNo(); }
317   /// Convenience function for get().getValueType().
318   EVT getValueType() const { return Val.getValueType(); }
319 
320   /// Convenience function for get().operator==
321   bool operator==(const SDValue &V) const {
322     return Val == V;
323   }
324 
325   /// Convenience function for get().operator!=
326   bool operator!=(const SDValue &V) const {
327     return Val != V;
328   }
329 
330   /// Convenience function for get().operator<
331   bool operator<(const SDValue &V) const {
332     return Val < V;
333   }
334 
335 private:
336   friend class SelectionDAG;
337   friend class SDNode;
338   // TODO: unfriend HandleSDNode once we fix its operand handling.
339   friend class HandleSDNode;
340 
341   void setUser(SDNode *p) { User = p; }
342 
343   /// Remove this use from its existing use list, assign it the
344   /// given value, and add it to the new value's node's use list.
345   inline void set(const SDValue &V);
346   /// Like set, but only supports initializing a newly-allocated
347   /// SDUse with a non-null value.
348   inline void setInitial(const SDValue &V);
349   /// Like set, but only sets the Node portion of the value,
350   /// leaving the ResNo portion unmodified.
351   inline void setNode(SDNode *N);
352 
353   void addToList(SDUse **List) {
354     Next = *List;
355     if (Next) Next->Prev = &Next;
356     Prev = List;
357     *List = this;
358   }
359 
360   void removeFromList() {
361     *Prev = Next;
362     if (Next) Next->Prev = Prev;
363   }
364 };
365 
366 /// simplify_type specializations - Allow casting operators to work directly on
367 /// SDValues as if they were SDNode*'s.
368 template<> struct simplify_type<SDUse> {
369   using SimpleType = SDNode *;
370 
371   static SimpleType getSimplifiedValue(SDUse &Val) {
372     return Val.getNode();
373   }
374 };
375 
376 /// These are IR-level optimization flags that may be propagated to SDNodes.
377 /// TODO: This data structure should be shared by the IR optimizer and the
378 /// the backend.
379 struct SDNodeFlags {
380 private:
381   bool NoUnsignedWrap : 1;
382   bool NoSignedWrap : 1;
383   bool Exact : 1;
384   bool Disjoint : 1;
385   bool NonNeg : 1;
386   bool NoNaNs : 1;
387   bool NoInfs : 1;
388   bool NoSignedZeros : 1;
389   bool AllowReciprocal : 1;
390   bool AllowContract : 1;
391   bool ApproximateFuncs : 1;
392   bool AllowReassociation : 1;
393 
394   // We assume instructions do not raise floating-point exceptions by default,
395   // and only those marked explicitly may do so.  We could choose to represent
396   // this via a positive "FPExcept" flags like on the MI level, but having a
397   // negative "NoFPExcept" flag here makes the flag intersection logic more
398   // straightforward.
399   bool NoFPExcept : 1;
400   // Instructions with attached 'unpredictable' metadata on IR level.
401   bool Unpredictable : 1;
402 
403 public:
404   /// Default constructor turns off all optimization flags.
405   SDNodeFlags()
406       : NoUnsignedWrap(false), NoSignedWrap(false), Exact(false),
407         Disjoint(false), NonNeg(false), NoNaNs(false), NoInfs(false),
408         NoSignedZeros(false), AllowReciprocal(false), AllowContract(false),
409         ApproximateFuncs(false), AllowReassociation(false), NoFPExcept(false),
410         Unpredictable(false) {}
411 
412   /// Propagate the fast-math-flags from an IR FPMathOperator.
413   void copyFMF(const FPMathOperator &FPMO) {
414     setNoNaNs(FPMO.hasNoNaNs());
415     setNoInfs(FPMO.hasNoInfs());
416     setNoSignedZeros(FPMO.hasNoSignedZeros());
417     setAllowReciprocal(FPMO.hasAllowReciprocal());
418     setAllowContract(FPMO.hasAllowContract());
419     setApproximateFuncs(FPMO.hasApproxFunc());
420     setAllowReassociation(FPMO.hasAllowReassoc());
421   }
422 
423   // These are mutators for each flag.
424   void setNoUnsignedWrap(bool b) { NoUnsignedWrap = b; }
425   void setNoSignedWrap(bool b) { NoSignedWrap = b; }
426   void setExact(bool b) { Exact = b; }
427   void setDisjoint(bool b) { Disjoint = b; }
428   void setNonNeg(bool b) { NonNeg = b; }
429   void setNoNaNs(bool b) { NoNaNs = b; }
430   void setNoInfs(bool b) { NoInfs = b; }
431   void setNoSignedZeros(bool b) { NoSignedZeros = b; }
432   void setAllowReciprocal(bool b) { AllowReciprocal = b; }
433   void setAllowContract(bool b) { AllowContract = b; }
434   void setApproximateFuncs(bool b) { ApproximateFuncs = b; }
435   void setAllowReassociation(bool b) { AllowReassociation = b; }
436   void setNoFPExcept(bool b) { NoFPExcept = b; }
437   void setUnpredictable(bool b) { Unpredictable = b; }
438 
439   // These are accessors for each flag.
440   bool hasNoUnsignedWrap() const { return NoUnsignedWrap; }
441   bool hasNoSignedWrap() const { return NoSignedWrap; }
442   bool hasExact() const { return Exact; }
443   bool hasDisjoint() const { return Disjoint; }
444   bool hasNonNeg() const { return NonNeg; }
445   bool hasNoNaNs() const { return NoNaNs; }
446   bool hasNoInfs() const { return NoInfs; }
447   bool hasNoSignedZeros() const { return NoSignedZeros; }
448   bool hasAllowReciprocal() const { return AllowReciprocal; }
449   bool hasAllowContract() const { return AllowContract; }
450   bool hasApproximateFuncs() const { return ApproximateFuncs; }
451   bool hasAllowReassociation() const { return AllowReassociation; }
452   bool hasNoFPExcept() const { return NoFPExcept; }
453   bool hasUnpredictable() const { return Unpredictable; }
454 
455   /// Clear any flags in this flag set that aren't also set in Flags. All
456   /// flags will be cleared if Flags are undefined.
457   void intersectWith(const SDNodeFlags Flags) {
458     NoUnsignedWrap &= Flags.NoUnsignedWrap;
459     NoSignedWrap &= Flags.NoSignedWrap;
460     Exact &= Flags.Exact;
461     Disjoint &= Flags.Disjoint;
462     NonNeg &= Flags.NonNeg;
463     NoNaNs &= Flags.NoNaNs;
464     NoInfs &= Flags.NoInfs;
465     NoSignedZeros &= Flags.NoSignedZeros;
466     AllowReciprocal &= Flags.AllowReciprocal;
467     AllowContract &= Flags.AllowContract;
468     ApproximateFuncs &= Flags.ApproximateFuncs;
469     AllowReassociation &= Flags.AllowReassociation;
470     NoFPExcept &= Flags.NoFPExcept;
471     Unpredictable &= Flags.Unpredictable;
472   }
473 };
474 
475 /// Represents one node in the SelectionDAG.
476 ///
477 class SDNode : public FoldingSetNode, public ilist_node<SDNode> {
478 private:
479   /// The operation that this node performs.
480   int32_t NodeType;
481 
482 public:
483   /// Unique and persistent id per SDNode in the DAG. Used for debug printing.
484   /// We do not place that under `#if LLVM_ENABLE_ABI_BREAKING_CHECKS`
485   /// intentionally because it adds unneeded complexity without noticeable
486   /// benefits (see discussion with @thakis in D120714).
487   uint16_t PersistentId = 0xffff;
488 
489 protected:
490   // We define a set of mini-helper classes to help us interpret the bits in our
491   // SubclassData.  These are designed to fit within a uint16_t so they pack
492   // with PersistentId.
493 
494 #if defined(_AIX) && (!defined(__GNUC__) || defined(__clang__))
495 // Except for GCC; by default, AIX compilers store bit-fields in 4-byte words
496 // and give the `pack` pragma push semantics.
497 #define BEGIN_TWO_BYTE_PACK() _Pragma("pack(2)")
498 #define END_TWO_BYTE_PACK() _Pragma("pack(pop)")
499 #else
500 #define BEGIN_TWO_BYTE_PACK()
501 #define END_TWO_BYTE_PACK()
502 #endif
503 
504 BEGIN_TWO_BYTE_PACK()
505   class SDNodeBitfields {
506     friend class SDNode;
507     friend class MemIntrinsicSDNode;
508     friend class MemSDNode;
509     friend class SelectionDAG;
510 
511     uint16_t HasDebugValue : 1;
512     uint16_t IsMemIntrinsic : 1;
513     uint16_t IsDivergent : 1;
514   };
515   enum { NumSDNodeBits = 3 };
516 
517   class ConstantSDNodeBitfields {
518     friend class ConstantSDNode;
519 
520     uint16_t : NumSDNodeBits;
521 
522     uint16_t IsOpaque : 1;
523   };
524 
525   class MemSDNodeBitfields {
526     friend class MemSDNode;
527     friend class MemIntrinsicSDNode;
528     friend class AtomicSDNode;
529 
530     uint16_t : NumSDNodeBits;
531 
532     uint16_t IsVolatile : 1;
533     uint16_t IsNonTemporal : 1;
534     uint16_t IsDereferenceable : 1;
535     uint16_t IsInvariant : 1;
536   };
537   enum { NumMemSDNodeBits = NumSDNodeBits + 4 };
538 
539   class LSBaseSDNodeBitfields {
540     friend class LSBaseSDNode;
541     friend class VPBaseLoadStoreSDNode;
542     friend class MaskedLoadStoreSDNode;
543     friend class MaskedGatherScatterSDNode;
544     friend class VPGatherScatterSDNode;
545 
546     uint16_t : NumMemSDNodeBits;
547 
548     // This storage is shared between disparate class hierarchies to hold an
549     // enumeration specific to the class hierarchy in use.
550     //   LSBaseSDNode => enum ISD::MemIndexedMode
551     //   VPLoadStoreBaseSDNode => enum ISD::MemIndexedMode
552     //   MaskedLoadStoreBaseSDNode => enum ISD::MemIndexedMode
553     //   VPGatherScatterSDNode => enum ISD::MemIndexType
554     //   MaskedGatherScatterSDNode => enum ISD::MemIndexType
555     uint16_t AddressingMode : 3;
556   };
557   enum { NumLSBaseSDNodeBits = NumMemSDNodeBits + 3 };
558 
559   class LoadSDNodeBitfields {
560     friend class LoadSDNode;
561     friend class VPLoadSDNode;
562     friend class VPStridedLoadSDNode;
563     friend class MaskedLoadSDNode;
564     friend class MaskedGatherSDNode;
565     friend class VPGatherSDNode;
566 
567     uint16_t : NumLSBaseSDNodeBits;
568 
569     uint16_t ExtTy : 2; // enum ISD::LoadExtType
570     uint16_t IsExpanding : 1;
571   };
572 
573   class StoreSDNodeBitfields {
574     friend class StoreSDNode;
575     friend class VPStoreSDNode;
576     friend class VPStridedStoreSDNode;
577     friend class MaskedStoreSDNode;
578     friend class MaskedScatterSDNode;
579     friend class VPScatterSDNode;
580 
581     uint16_t : NumLSBaseSDNodeBits;
582 
583     uint16_t IsTruncating : 1;
584     uint16_t IsCompressing : 1;
585   };
586 
587   union {
588     char RawSDNodeBits[sizeof(uint16_t)];
589     SDNodeBitfields SDNodeBits;
590     ConstantSDNodeBitfields ConstantSDNodeBits;
591     MemSDNodeBitfields MemSDNodeBits;
592     LSBaseSDNodeBitfields LSBaseSDNodeBits;
593     LoadSDNodeBitfields LoadSDNodeBits;
594     StoreSDNodeBitfields StoreSDNodeBits;
595   };
596 END_TWO_BYTE_PACK()
597 #undef BEGIN_TWO_BYTE_PACK
598 #undef END_TWO_BYTE_PACK
599 
600   // RawSDNodeBits must cover the entirety of the union.  This means that all of
601   // the union's members must have size <= RawSDNodeBits.  We write the RHS as
602   // "2" instead of sizeof(RawSDNodeBits) because MSVC can't handle the latter.
603   static_assert(sizeof(SDNodeBitfields) <= 2, "field too wide");
604   static_assert(sizeof(ConstantSDNodeBitfields) <= 2, "field too wide");
605   static_assert(sizeof(MemSDNodeBitfields) <= 2, "field too wide");
606   static_assert(sizeof(LSBaseSDNodeBitfields) <= 2, "field too wide");
607   static_assert(sizeof(LoadSDNodeBitfields) <= 2, "field too wide");
608   static_assert(sizeof(StoreSDNodeBitfields) <= 2, "field too wide");
609 
610 private:
611   friend class SelectionDAG;
612   // TODO: unfriend HandleSDNode once we fix its operand handling.
613   friend class HandleSDNode;
614 
615   /// Unique id per SDNode in the DAG.
616   int NodeId = -1;
617 
618   /// The values that are used by this operation.
619   SDUse *OperandList = nullptr;
620 
621   /// The types of the values this node defines.  SDNode's may
622   /// define multiple values simultaneously.
623   const EVT *ValueList;
624 
625   /// List of uses for this SDNode.
626   SDUse *UseList = nullptr;
627 
628   /// The number of entries in the Operand/Value list.
629   unsigned short NumOperands = 0;
630   unsigned short NumValues;
631 
632   // The ordering of the SDNodes. It roughly corresponds to the ordering of the
633   // original LLVM instructions.
634   // This is used for turning off scheduling, because we'll forgo
635   // the normal scheduling algorithms and output the instructions according to
636   // this ordering.
637   unsigned IROrder;
638 
639   /// Source line information.
640   DebugLoc debugLoc;
641 
642   /// Return a pointer to the specified value type.
643   static const EVT *getValueTypeList(EVT VT);
644 
645   SDNodeFlags Flags;
646 
647   uint32_t CFIType = 0;
648 
649 public:
650   //===--------------------------------------------------------------------===//
651   //  Accessors
652   //
653 
654   /// Return the SelectionDAG opcode value for this node. For
655   /// pre-isel nodes (those for which isMachineOpcode returns false), these
656   /// are the opcode values in the ISD and <target>ISD namespaces. For
657   /// post-isel opcodes, see getMachineOpcode.
658   unsigned getOpcode()  const { return (unsigned)NodeType; }
659 
660   /// Test if this node has a target-specific opcode (in the
661   /// \<target\>ISD namespace).
662   bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
663 
664   /// Test if this node has a target-specific opcode that may raise
665   /// FP exceptions (in the \<target\>ISD namespace and greater than
666   /// FIRST_TARGET_STRICTFP_OPCODE).  Note that all target memory
667   /// opcode are currently automatically considered to possibly raise
668   /// FP exceptions as well.
669   bool isTargetStrictFPOpcode() const {
670     return NodeType >= ISD::FIRST_TARGET_STRICTFP_OPCODE;
671   }
672 
673   /// Test if this node has a target-specific
674   /// memory-referencing opcode (in the \<target\>ISD namespace and
675   /// greater than FIRST_TARGET_MEMORY_OPCODE).
676   bool isTargetMemoryOpcode() const {
677     return NodeType >= ISD::FIRST_TARGET_MEMORY_OPCODE;
678   }
679 
680   /// Return true if the type of the node type undefined.
681   bool isUndef() const { return NodeType == ISD::UNDEF; }
682 
683   /// Test if this node is a memory intrinsic (with valid pointer information).
684   /// INTRINSIC_W_CHAIN and INTRINSIC_VOID nodes are sometimes created for
685   /// non-memory intrinsics (with chains) that are not really instances of
686   /// MemSDNode. For such nodes, we need some extra state to determine the
687   /// proper classof relationship.
688   bool isMemIntrinsic() const {
689     return (NodeType == ISD::INTRINSIC_W_CHAIN ||
690             NodeType == ISD::INTRINSIC_VOID) &&
691            SDNodeBits.IsMemIntrinsic;
692   }
693 
694   /// Test if this node is a strict floating point pseudo-op.
695   bool isStrictFPOpcode() {
696     switch (NodeType) {
697       default:
698         return false;
699       case ISD::STRICT_FP16_TO_FP:
700       case ISD::STRICT_FP_TO_FP16:
701       case ISD::STRICT_BF16_TO_FP:
702       case ISD::STRICT_FP_TO_BF16:
703 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
704       case ISD::STRICT_##DAGN:
705 #include "llvm/IR/ConstrainedOps.def"
706         return true;
707     }
708   }
709 
710   /// Test if this node is a vector predication operation.
711   bool isVPOpcode() const { return ISD::isVPOpcode(getOpcode()); }
712 
713   /// Test if this node has a post-isel opcode, directly
714   /// corresponding to a MachineInstr opcode.
715   bool isMachineOpcode() const { return NodeType < 0; }
716 
717   /// This may only be called if isMachineOpcode returns
718   /// true. It returns the MachineInstr opcode value that the node's opcode
719   /// corresponds to.
720   unsigned getMachineOpcode() const {
721     assert(isMachineOpcode() && "Not a MachineInstr opcode!");
722     return ~NodeType;
723   }
724 
725   bool getHasDebugValue() const { return SDNodeBits.HasDebugValue; }
726   void setHasDebugValue(bool b) { SDNodeBits.HasDebugValue = b; }
727 
728   bool isDivergent() const { return SDNodeBits.IsDivergent; }
729 
730   /// Return true if there are no uses of this node.
731   bool use_empty() const { return UseList == nullptr; }
732 
733   /// Return true if there is exactly one use of this node.
734   bool hasOneUse() const { return hasSingleElement(uses()); }
735 
736   /// Return the number of uses of this node. This method takes
737   /// time proportional to the number of uses.
738   size_t use_size() const { return std::distance(use_begin(), use_end()); }
739 
740   /// Return the unique node id.
741   int getNodeId() const { return NodeId; }
742 
743   /// Set unique node id.
744   void setNodeId(int Id) { NodeId = Id; }
745 
746   /// Return the node ordering.
747   unsigned getIROrder() const { return IROrder; }
748 
749   /// Set the node ordering.
750   void setIROrder(unsigned Order) { IROrder = Order; }
751 
752   /// Return the source location info.
753   const DebugLoc &getDebugLoc() const { return debugLoc; }
754 
755   /// Set source location info.  Try to avoid this, putting
756   /// it in the constructor is preferable.
757   void setDebugLoc(DebugLoc dl) { debugLoc = std::move(dl); }
758 
759   /// This class provides iterator support for SDUse
760   /// operands that use a specific SDNode.
761   class use_iterator {
762     friend class SDNode;
763 
764     SDUse *Op = nullptr;
765 
766     explicit use_iterator(SDUse *op) : Op(op) {}
767 
768   public:
769     using iterator_category = std::forward_iterator_tag;
770     using value_type = SDUse;
771     using difference_type = std::ptrdiff_t;
772     using pointer = value_type *;
773     using reference = value_type &;
774 
775     use_iterator() = default;
776     use_iterator(const use_iterator &I) = default;
777     use_iterator &operator=(const use_iterator &) = default;
778 
779     bool operator==(const use_iterator &x) const { return Op == x.Op; }
780     bool operator!=(const use_iterator &x) const {
781       return !operator==(x);
782     }
783 
784     /// Return true if this iterator is at the end of uses list.
785     bool atEnd() const { return Op == nullptr; }
786 
787     // Iterator traversal: forward iteration only.
788     use_iterator &operator++() {          // Preincrement
789       assert(Op && "Cannot increment end iterator!");
790       Op = Op->getNext();
791       return *this;
792     }
793 
794     use_iterator operator++(int) {        // Postincrement
795       use_iterator tmp = *this; ++*this; return tmp;
796     }
797 
798     /// Retrieve a pointer to the current user node.
799     SDNode *operator*() const {
800       assert(Op && "Cannot dereference end iterator!");
801       return Op->getUser();
802     }
803 
804     SDNode *operator->() const { return operator*(); }
805 
806     SDUse &getUse() const { return *Op; }
807 
808     /// Retrieve the operand # of this use in its user.
809     unsigned getOperandNo() const {
810       assert(Op && "Cannot dereference end iterator!");
811       return (unsigned)(Op - Op->getUser()->OperandList);
812     }
813   };
814 
815   /// Provide iteration support to walk over all uses of an SDNode.
816   use_iterator use_begin() const {
817     return use_iterator(UseList);
818   }
819 
820   static use_iterator use_end() { return use_iterator(nullptr); }
821 
822   inline iterator_range<use_iterator> uses() {
823     return make_range(use_begin(), use_end());
824   }
825   inline iterator_range<use_iterator> uses() const {
826     return make_range(use_begin(), use_end());
827   }
828 
829   /// Return true if there are exactly NUSES uses of the indicated value.
830   /// This method ignores uses of other values defined by this operation.
831   bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
832 
833   /// Return true if there are any use of the indicated value.
834   /// This method ignores uses of other values defined by this operation.
835   bool hasAnyUseOfValue(unsigned Value) const;
836 
837   /// Return true if this node is the only use of N.
838   bool isOnlyUserOf(const SDNode *N) const;
839 
840   /// Return true if this node is an operand of N.
841   bool isOperandOf(const SDNode *N) const;
842 
843   /// Return true if this node is a predecessor of N.
844   /// NOTE: Implemented on top of hasPredecessor and every bit as
845   /// expensive. Use carefully.
846   bool isPredecessorOf(const SDNode *N) const {
847     return N->hasPredecessor(this);
848   }
849 
850   /// Return true if N is a predecessor of this node.
851   /// N is either an operand of this node, or can be reached by recursively
852   /// traversing up the operands.
853   /// NOTE: This is an expensive method. Use it carefully.
854   bool hasPredecessor(const SDNode *N) const;
855 
856   /// Returns true if N is a predecessor of any node in Worklist. This
857   /// helper keeps Visited and Worklist sets externally to allow unions
858   /// searches to be performed in parallel, caching of results across
859   /// queries and incremental addition to Worklist. Stops early if N is
860   /// found but will resume. Remember to clear Visited and Worklists
861   /// if DAG changes. MaxSteps gives a maximum number of nodes to visit before
862   /// giving up. The TopologicalPrune flag signals that positive NodeIds are
863   /// topologically ordered (Operands have strictly smaller node id) and search
864   /// can be pruned leveraging this.
865   static bool hasPredecessorHelper(const SDNode *N,
866                                    SmallPtrSetImpl<const SDNode *> &Visited,
867                                    SmallVectorImpl<const SDNode *> &Worklist,
868                                    unsigned int MaxSteps = 0,
869                                    bool TopologicalPrune = false) {
870     SmallVector<const SDNode *, 8> DeferredNodes;
871     if (Visited.count(N))
872       return true;
873 
874     // Node Id's are assigned in three places: As a topological
875     // ordering (> 0), during legalization (results in values set to
876     // 0), new nodes (set to -1). If N has a topolgical id then we
877     // know that all nodes with ids smaller than it cannot be
878     // successors and we need not check them. Filter out all node
879     // that can't be matches. We add them to the worklist before exit
880     // in case of multiple calls. Note that during selection the topological id
881     // may be violated if a node's predecessor is selected before it. We mark
882     // this at selection negating the id of unselected successors and
883     // restricting topological pruning to positive ids.
884 
885     int NId = N->getNodeId();
886     // If we Invalidated the Id, reconstruct original NId.
887     if (NId < -1)
888       NId = -(NId + 1);
889 
890     bool Found = false;
891     while (!Worklist.empty()) {
892       const SDNode *M = Worklist.pop_back_val();
893       int MId = M->getNodeId();
894       if (TopologicalPrune && M->getOpcode() != ISD::TokenFactor && (NId > 0) &&
895           (MId > 0) && (MId < NId)) {
896         DeferredNodes.push_back(M);
897         continue;
898       }
899       for (const SDValue &OpV : M->op_values()) {
900         SDNode *Op = OpV.getNode();
901         if (Visited.insert(Op).second)
902           Worklist.push_back(Op);
903         if (Op == N)
904           Found = true;
905       }
906       if (Found)
907         break;
908       if (MaxSteps != 0 && Visited.size() >= MaxSteps)
909         break;
910     }
911     // Push deferred nodes back on worklist.
912     Worklist.append(DeferredNodes.begin(), DeferredNodes.end());
913     // If we bailed early, conservatively return found.
914     if (MaxSteps != 0 && Visited.size() >= MaxSteps)
915       return true;
916     return Found;
917   }
918 
919   /// Return true if all the users of N are contained in Nodes.
920   /// NOTE: Requires at least one match, but doesn't require them all.
921   static bool areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N);
922 
923   /// Return the number of values used by this operation.
924   unsigned getNumOperands() const { return NumOperands; }
925 
926   /// Return the maximum number of operands that a SDNode can hold.
927   static constexpr size_t getMaxNumOperands() {
928     return std::numeric_limits<decltype(SDNode::NumOperands)>::max();
929   }
930 
931   /// Helper method returns the integer value of a ConstantSDNode operand.
932   inline uint64_t getConstantOperandVal(unsigned Num) const;
933 
934   /// Helper method returns the zero-extended integer value of a ConstantSDNode.
935   inline uint64_t getAsZExtVal() const;
936 
937   /// Helper method returns the APInt of a ConstantSDNode operand.
938   inline const APInt &getConstantOperandAPInt(unsigned Num) const;
939 
940   /// Helper method returns the APInt value of a ConstantSDNode.
941   inline const APInt &getAsAPIntVal() const;
942 
943   const SDValue &getOperand(unsigned Num) const {
944     assert(Num < NumOperands && "Invalid child # of SDNode!");
945     return OperandList[Num];
946   }
947 
948   using op_iterator = SDUse *;
949 
950   op_iterator op_begin() const { return OperandList; }
951   op_iterator op_end() const { return OperandList+NumOperands; }
952   ArrayRef<SDUse> ops() const { return ArrayRef(op_begin(), op_end()); }
953 
954   /// Iterator for directly iterating over the operand SDValue's.
955   struct value_op_iterator
956       : iterator_adaptor_base<value_op_iterator, op_iterator,
957                               std::random_access_iterator_tag, SDValue,
958                               ptrdiff_t, value_op_iterator *,
959                               value_op_iterator *> {
960     explicit value_op_iterator(SDUse *U = nullptr)
961       : iterator_adaptor_base(U) {}
962 
963     const SDValue &operator*() const { return I->get(); }
964   };
965 
966   iterator_range<value_op_iterator> op_values() const {
967     return make_range(value_op_iterator(op_begin()),
968                       value_op_iterator(op_end()));
969   }
970 
971   SDVTList getVTList() const {
972     SDVTList X = { ValueList, NumValues };
973     return X;
974   }
975 
976   /// If this node has a glue operand, return the node
977   /// to which the glue operand points. Otherwise return NULL.
978   SDNode *getGluedNode() const {
979     if (getNumOperands() != 0 &&
980         getOperand(getNumOperands()-1).getValueType() == MVT::Glue)
981       return getOperand(getNumOperands()-1).getNode();
982     return nullptr;
983   }
984 
985   /// If this node has a glue value with a user, return
986   /// the user (there is at most one). Otherwise return NULL.
987   SDNode *getGluedUser() const {
988     for (use_iterator UI = use_begin(), UE = use_end(); UI != UE; ++UI)
989       if (UI.getUse().get().getValueType() == MVT::Glue)
990         return *UI;
991     return nullptr;
992   }
993 
994   SDNodeFlags getFlags() const { return Flags; }
995   void setFlags(SDNodeFlags NewFlags) { Flags = NewFlags; }
996 
997   /// Clear any flags in this node that aren't also set in Flags.
998   /// If Flags is not in a defined state then this has no effect.
999   void intersectFlagsWith(const SDNodeFlags Flags);
1000 
1001   void setCFIType(uint32_t Type) { CFIType = Type; }
1002   uint32_t getCFIType() const { return CFIType; }
1003 
1004   /// Return the number of values defined/returned by this operator.
1005   unsigned getNumValues() const { return NumValues; }
1006 
1007   /// Return the type of a specified result.
1008   EVT getValueType(unsigned ResNo) const {
1009     assert(ResNo < NumValues && "Illegal result number!");
1010     return ValueList[ResNo];
1011   }
1012 
1013   /// Return the type of a specified result as a simple type.
1014   MVT getSimpleValueType(unsigned ResNo) const {
1015     return getValueType(ResNo).getSimpleVT();
1016   }
1017 
1018   /// Returns MVT::getSizeInBits(getValueType(ResNo)).
1019   ///
1020   /// If the value type is a scalable vector type, the scalable property will
1021   /// be set and the runtime size will be a positive integer multiple of the
1022   /// base size.
1023   TypeSize getValueSizeInBits(unsigned ResNo) const {
1024     return getValueType(ResNo).getSizeInBits();
1025   }
1026 
1027   using value_iterator = const EVT *;
1028 
1029   value_iterator value_begin() const { return ValueList; }
1030   value_iterator value_end() const { return ValueList+NumValues; }
1031   iterator_range<value_iterator> values() const {
1032     return llvm::make_range(value_begin(), value_end());
1033   }
1034 
1035   /// Return the opcode of this operation for printing.
1036   std::string getOperationName(const SelectionDAG *G = nullptr) const;
1037   static const char* getIndexedModeName(ISD::MemIndexedMode AM);
1038   void print_types(raw_ostream &OS, const SelectionDAG *G) const;
1039   void print_details(raw_ostream &OS, const SelectionDAG *G) const;
1040   void print(raw_ostream &OS, const SelectionDAG *G = nullptr) const;
1041   void printr(raw_ostream &OS, const SelectionDAG *G = nullptr) const;
1042 
1043   /// Print a SelectionDAG node and all children down to
1044   /// the leaves.  The given SelectionDAG allows target-specific nodes
1045   /// to be printed in human-readable form.  Unlike printr, this will
1046   /// print the whole DAG, including children that appear multiple
1047   /// times.
1048   ///
1049   void printrFull(raw_ostream &O, const SelectionDAG *G = nullptr) const;
1050 
1051   /// Print a SelectionDAG node and children up to
1052   /// depth "depth."  The given SelectionDAG allows target-specific
1053   /// nodes to be printed in human-readable form.  Unlike printr, this
1054   /// will print children that appear multiple times wherever they are
1055   /// used.
1056   ///
1057   void printrWithDepth(raw_ostream &O, const SelectionDAG *G = nullptr,
1058                        unsigned depth = 100) const;
1059 
1060   /// Dump this node, for debugging.
1061   void dump() const;
1062 
1063   /// Dump (recursively) this node and its use-def subgraph.
1064   void dumpr() const;
1065 
1066   /// Dump this node, for debugging.
1067   /// The given SelectionDAG allows target-specific nodes to be printed
1068   /// in human-readable form.
1069   void dump(const SelectionDAG *G) const;
1070 
1071   /// Dump (recursively) this node and its use-def subgraph.
1072   /// The given SelectionDAG allows target-specific nodes to be printed
1073   /// in human-readable form.
1074   void dumpr(const SelectionDAG *G) const;
1075 
1076   /// printrFull to dbgs().  The given SelectionDAG allows
1077   /// target-specific nodes to be printed in human-readable form.
1078   /// Unlike dumpr, this will print the whole DAG, including children
1079   /// that appear multiple times.
1080   void dumprFull(const SelectionDAG *G = nullptr) const;
1081 
1082   /// printrWithDepth to dbgs().  The given
1083   /// SelectionDAG allows target-specific nodes to be printed in
1084   /// human-readable form.  Unlike dumpr, this will print children
1085   /// that appear multiple times wherever they are used.
1086   ///
1087   void dumprWithDepth(const SelectionDAG *G = nullptr,
1088                       unsigned depth = 100) const;
1089 
1090   /// Gather unique data for the node.
1091   void Profile(FoldingSetNodeID &ID) const;
1092 
1093   /// This method should only be used by the SDUse class.
1094   void addUse(SDUse &U) { U.addToList(&UseList); }
1095 
1096 protected:
1097   static SDVTList getSDVTList(EVT VT) {
1098     SDVTList Ret = { getValueTypeList(VT), 1 };
1099     return Ret;
1100   }
1101 
1102   /// Create an SDNode.
1103   ///
1104   /// SDNodes are created without any operands, and never own the operand
1105   /// storage. To add operands, see SelectionDAG::createOperands.
1106   SDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs)
1107       : NodeType(Opc), ValueList(VTs.VTs), NumValues(VTs.NumVTs),
1108         IROrder(Order), debugLoc(std::move(dl)) {
1109     memset(&RawSDNodeBits, 0, sizeof(RawSDNodeBits));
1110     assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
1111     assert(NumValues == VTs.NumVTs &&
1112            "NumValues wasn't wide enough for its operands!");
1113   }
1114 
1115   /// Release the operands and set this node to have zero operands.
1116   void DropOperands();
1117 };
1118 
1119 /// Wrapper class for IR location info (IR ordering and DebugLoc) to be passed
1120 /// into SDNode creation functions.
1121 /// When an SDNode is created from the DAGBuilder, the DebugLoc is extracted
1122 /// from the original Instruction, and IROrder is the ordinal position of
1123 /// the instruction.
1124 /// When an SDNode is created after the DAG is being built, both DebugLoc and
1125 /// the IROrder are propagated from the original SDNode.
1126 /// So SDLoc class provides two constructors besides the default one, one to
1127 /// be used by the DAGBuilder, the other to be used by others.
1128 class SDLoc {
1129 private:
1130   DebugLoc DL;
1131   int IROrder = 0;
1132 
1133 public:
1134   SDLoc() = default;
1135   SDLoc(const SDNode *N) : DL(N->getDebugLoc()), IROrder(N->getIROrder()) {}
1136   SDLoc(const SDValue V) : SDLoc(V.getNode()) {}
1137   SDLoc(const Instruction *I, int Order) : IROrder(Order) {
1138     assert(Order >= 0 && "bad IROrder");
1139     if (I)
1140       DL = I->getDebugLoc();
1141   }
1142 
1143   unsigned getIROrder() const { return IROrder; }
1144   const DebugLoc &getDebugLoc() const { return DL; }
1145 };
1146 
1147 // Define inline functions from the SDValue class.
1148 
1149 inline SDValue::SDValue(SDNode *node, unsigned resno)
1150     : Node(node), ResNo(resno) {
1151   // Explicitly check for !ResNo to avoid use-after-free, because there are
1152   // callers that use SDValue(N, 0) with a deleted N to indicate successful
1153   // combines.
1154   assert((!Node || !ResNo || ResNo < Node->getNumValues()) &&
1155          "Invalid result number for the given node!");
1156   assert(ResNo < -2U && "Cannot use result numbers reserved for DenseMaps.");
1157 }
1158 
1159 inline unsigned SDValue::getOpcode() const {
1160   return Node->getOpcode();
1161 }
1162 
1163 inline EVT SDValue::getValueType() const {
1164   return Node->getValueType(ResNo);
1165 }
1166 
1167 inline unsigned SDValue::getNumOperands() const {
1168   return Node->getNumOperands();
1169 }
1170 
1171 inline const SDValue &SDValue::getOperand(unsigned i) const {
1172   return Node->getOperand(i);
1173 }
1174 
1175 inline uint64_t SDValue::getConstantOperandVal(unsigned i) const {
1176   return Node->getConstantOperandVal(i);
1177 }
1178 
1179 inline const APInt &SDValue::getConstantOperandAPInt(unsigned i) const {
1180   return Node->getConstantOperandAPInt(i);
1181 }
1182 
1183 inline bool SDValue::isTargetOpcode() const {
1184   return Node->isTargetOpcode();
1185 }
1186 
1187 inline bool SDValue::isTargetMemoryOpcode() const {
1188   return Node->isTargetMemoryOpcode();
1189 }
1190 
1191 inline bool SDValue::isMachineOpcode() const {
1192   return Node->isMachineOpcode();
1193 }
1194 
1195 inline unsigned SDValue::getMachineOpcode() const {
1196   return Node->getMachineOpcode();
1197 }
1198 
1199 inline bool SDValue::isUndef() const {
1200   return Node->isUndef();
1201 }
1202 
1203 inline bool SDValue::use_empty() const {
1204   return !Node->hasAnyUseOfValue(ResNo);
1205 }
1206 
1207 inline bool SDValue::hasOneUse() const {
1208   return Node->hasNUsesOfValue(1, ResNo);
1209 }
1210 
1211 inline const DebugLoc &SDValue::getDebugLoc() const {
1212   return Node->getDebugLoc();
1213 }
1214 
1215 inline void SDValue::dump() const {
1216   return Node->dump();
1217 }
1218 
1219 inline void SDValue::dump(const SelectionDAG *G) const {
1220   return Node->dump(G);
1221 }
1222 
1223 inline void SDValue::dumpr() const {
1224   return Node->dumpr();
1225 }
1226 
1227 inline void SDValue::dumpr(const SelectionDAG *G) const {
1228   return Node->dumpr(G);
1229 }
1230 
1231 // Define inline functions from the SDUse class.
1232 
1233 inline void SDUse::set(const SDValue &V) {
1234   if (Val.getNode()) removeFromList();
1235   Val = V;
1236   if (V.getNode())
1237     V->addUse(*this);
1238 }
1239 
1240 inline void SDUse::setInitial(const SDValue &V) {
1241   Val = V;
1242   V->addUse(*this);
1243 }
1244 
1245 inline void SDUse::setNode(SDNode *N) {
1246   if (Val.getNode()) removeFromList();
1247   Val.setNode(N);
1248   if (N) N->addUse(*this);
1249 }
1250 
1251 /// This class is used to form a handle around another node that
1252 /// is persistent and is updated across invocations of replaceAllUsesWith on its
1253 /// operand.  This node should be directly created by end-users and not added to
1254 /// the AllNodes list.
1255 class HandleSDNode : public SDNode {
1256   SDUse Op;
1257 
1258 public:
1259   explicit HandleSDNode(SDValue X)
1260     : SDNode(ISD::HANDLENODE, 0, DebugLoc(), getSDVTList(MVT::Other)) {
1261     // HandleSDNodes are never inserted into the DAG, so they won't be
1262     // auto-numbered. Use ID 65535 as a sentinel.
1263     PersistentId = 0xffff;
1264 
1265     // Manually set up the operand list. This node type is special in that it's
1266     // always stack allocated and SelectionDAG does not manage its operands.
1267     // TODO: This should either (a) not be in the SDNode hierarchy, or (b) not
1268     // be so special.
1269     Op.setUser(this);
1270     Op.setInitial(X);
1271     NumOperands = 1;
1272     OperandList = &Op;
1273   }
1274   ~HandleSDNode();
1275 
1276   const SDValue &getValue() const { return Op; }
1277 };
1278 
1279 class AddrSpaceCastSDNode : public SDNode {
1280 private:
1281   unsigned SrcAddrSpace;
1282   unsigned DestAddrSpace;
1283 
1284 public:
1285   AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, EVT VT,
1286                       unsigned SrcAS, unsigned DestAS);
1287 
1288   unsigned getSrcAddressSpace() const { return SrcAddrSpace; }
1289   unsigned getDestAddressSpace() const { return DestAddrSpace; }
1290 
1291   static bool classof(const SDNode *N) {
1292     return N->getOpcode() == ISD::ADDRSPACECAST;
1293   }
1294 };
1295 
1296 /// This is an abstract virtual class for memory operations.
1297 class MemSDNode : public SDNode {
1298 private:
1299   // VT of in-memory value.
1300   EVT MemoryVT;
1301 
1302 protected:
1303   /// Memory reference information.
1304   MachineMemOperand *MMO;
1305 
1306 public:
1307   MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTs,
1308             EVT memvt, MachineMemOperand *MMO);
1309 
1310   bool readMem() const { return MMO->isLoad(); }
1311   bool writeMem() const { return MMO->isStore(); }
1312 
1313   /// Returns alignment and volatility of the memory access
1314   Align getOriginalAlign() const { return MMO->getBaseAlign(); }
1315   Align getAlign() const { return MMO->getAlign(); }
1316 
1317   /// Return the SubclassData value, without HasDebugValue. This contains an
1318   /// encoding of the volatile flag, as well as bits used by subclasses. This
1319   /// function should only be used to compute a FoldingSetNodeID value.
1320   /// The HasDebugValue bit is masked out because CSE map needs to match
1321   /// nodes with debug info with nodes without debug info. Same is about
1322   /// isDivergent bit.
1323   unsigned getRawSubclassData() const {
1324     uint16_t Data;
1325     union {
1326       char RawSDNodeBits[sizeof(uint16_t)];
1327       SDNodeBitfields SDNodeBits;
1328     };
1329     memcpy(&RawSDNodeBits, &this->RawSDNodeBits, sizeof(this->RawSDNodeBits));
1330     SDNodeBits.HasDebugValue = 0;
1331     SDNodeBits.IsDivergent = false;
1332     memcpy(&Data, &RawSDNodeBits, sizeof(RawSDNodeBits));
1333     return Data;
1334   }
1335 
1336   bool isVolatile() const { return MemSDNodeBits.IsVolatile; }
1337   bool isNonTemporal() const { return MemSDNodeBits.IsNonTemporal; }
1338   bool isDereferenceable() const { return MemSDNodeBits.IsDereferenceable; }
1339   bool isInvariant() const { return MemSDNodeBits.IsInvariant; }
1340 
1341   // Returns the offset from the location of the access.
1342   int64_t getSrcValueOffset() const { return MMO->getOffset(); }
1343 
1344   /// Returns the AA info that describes the dereference.
1345   AAMDNodes getAAInfo() const { return MMO->getAAInfo(); }
1346 
1347   /// Returns the Ranges that describes the dereference.
1348   const MDNode *getRanges() const { return MMO->getRanges(); }
1349 
1350   /// Returns the synchronization scope ID for this memory operation.
1351   SyncScope::ID getSyncScopeID() const { return MMO->getSyncScopeID(); }
1352 
1353   /// Return the atomic ordering requirements for this memory operation. For
1354   /// cmpxchg atomic operations, return the atomic ordering requirements when
1355   /// store occurs.
1356   AtomicOrdering getSuccessOrdering() const {
1357     return MMO->getSuccessOrdering();
1358   }
1359 
1360   /// Return a single atomic ordering that is at least as strong as both the
1361   /// success and failure orderings for an atomic operation.  (For operations
1362   /// other than cmpxchg, this is equivalent to getSuccessOrdering().)
1363   AtomicOrdering getMergedOrdering() const { return MMO->getMergedOrdering(); }
1364 
1365   /// Return true if the memory operation ordering is Unordered or higher.
1366   bool isAtomic() const { return MMO->isAtomic(); }
1367 
1368   /// Returns true if the memory operation doesn't imply any ordering
1369   /// constraints on surrounding memory operations beyond the normal memory
1370   /// aliasing rules.
1371   bool isUnordered() const { return MMO->isUnordered(); }
1372 
1373   /// Returns true if the memory operation is neither atomic or volatile.
1374   bool isSimple() const { return !isAtomic() && !isVolatile(); }
1375 
1376   /// Return the type of the in-memory value.
1377   EVT getMemoryVT() const { return MemoryVT; }
1378 
1379   /// Return a MachineMemOperand object describing the memory
1380   /// reference performed by operation.
1381   MachineMemOperand *getMemOperand() const { return MMO; }
1382 
1383   const MachinePointerInfo &getPointerInfo() const {
1384     return MMO->getPointerInfo();
1385   }
1386 
1387   /// Return the address space for the associated pointer
1388   unsigned getAddressSpace() const {
1389     return getPointerInfo().getAddrSpace();
1390   }
1391 
1392   /// Update this MemSDNode's MachineMemOperand information
1393   /// to reflect the alignment of NewMMO, if it has a greater alignment.
1394   /// This must only be used when the new alignment applies to all users of
1395   /// this MachineMemOperand.
1396   void refineAlignment(const MachineMemOperand *NewMMO) {
1397     MMO->refineAlignment(NewMMO);
1398   }
1399 
1400   const SDValue &getChain() const { return getOperand(0); }
1401 
1402   const SDValue &getBasePtr() const {
1403     switch (getOpcode()) {
1404     case ISD::STORE:
1405     case ISD::ATOMIC_STORE:
1406     case ISD::VP_STORE:
1407     case ISD::MSTORE:
1408     case ISD::VP_SCATTER:
1409     case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
1410       return getOperand(2);
1411     case ISD::MGATHER:
1412     case ISD::MSCATTER:
1413       return getOperand(3);
1414     default:
1415       return getOperand(1);
1416     }
1417   }
1418 
1419   // Methods to support isa and dyn_cast
1420   static bool classof(const SDNode *N) {
1421     // For some targets, we lower some target intrinsics to a MemIntrinsicNode
1422     // with either an intrinsic or a target opcode.
1423     switch (N->getOpcode()) {
1424     case ISD::LOAD:
1425     case ISD::STORE:
1426     case ISD::PREFETCH:
1427     case ISD::ATOMIC_CMP_SWAP:
1428     case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
1429     case ISD::ATOMIC_SWAP:
1430     case ISD::ATOMIC_LOAD_ADD:
1431     case ISD::ATOMIC_LOAD_SUB:
1432     case ISD::ATOMIC_LOAD_AND:
1433     case ISD::ATOMIC_LOAD_CLR:
1434     case ISD::ATOMIC_LOAD_OR:
1435     case ISD::ATOMIC_LOAD_XOR:
1436     case ISD::ATOMIC_LOAD_NAND:
1437     case ISD::ATOMIC_LOAD_MIN:
1438     case ISD::ATOMIC_LOAD_MAX:
1439     case ISD::ATOMIC_LOAD_UMIN:
1440     case ISD::ATOMIC_LOAD_UMAX:
1441     case ISD::ATOMIC_LOAD_FADD:
1442     case ISD::ATOMIC_LOAD_FSUB:
1443     case ISD::ATOMIC_LOAD_FMAX:
1444     case ISD::ATOMIC_LOAD_FMIN:
1445     case ISD::ATOMIC_LOAD_UINC_WRAP:
1446     case ISD::ATOMIC_LOAD_UDEC_WRAP:
1447     case ISD::ATOMIC_LOAD:
1448     case ISD::ATOMIC_STORE:
1449     case ISD::MLOAD:
1450     case ISD::MSTORE:
1451     case ISD::MGATHER:
1452     case ISD::MSCATTER:
1453     case ISD::VP_LOAD:
1454     case ISD::VP_STORE:
1455     case ISD::VP_GATHER:
1456     case ISD::VP_SCATTER:
1457     case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
1458     case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
1459     case ISD::GET_FPENV_MEM:
1460     case ISD::SET_FPENV_MEM:
1461       return true;
1462     default:
1463       return N->isMemIntrinsic() || N->isTargetMemoryOpcode();
1464     }
1465   }
1466 };
1467 
1468 /// This is an SDNode representing atomic operations.
1469 class AtomicSDNode : public MemSDNode {
1470 public:
1471   AtomicSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTL,
1472                EVT MemVT, MachineMemOperand *MMO)
1473     : MemSDNode(Opc, Order, dl, VTL, MemVT, MMO) {
1474     assert(((Opc != ISD::ATOMIC_LOAD && Opc != ISD::ATOMIC_STORE) ||
1475             MMO->isAtomic()) && "then why are we using an AtomicSDNode?");
1476   }
1477 
1478   const SDValue &getBasePtr() const {
1479     return getOpcode() == ISD::ATOMIC_STORE ? getOperand(2) : getOperand(1);
1480   }
1481   const SDValue &getVal() const {
1482     return getOpcode() == ISD::ATOMIC_STORE ? getOperand(1) : getOperand(2);
1483   }
1484 
1485   /// Returns true if this SDNode represents cmpxchg atomic operation, false
1486   /// otherwise.
1487   bool isCompareAndSwap() const {
1488     unsigned Op = getOpcode();
1489     return Op == ISD::ATOMIC_CMP_SWAP ||
1490            Op == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS;
1491   }
1492 
1493   /// For cmpxchg atomic operations, return the atomic ordering requirements
1494   /// when store does not occur.
1495   AtomicOrdering getFailureOrdering() const {
1496     assert(isCompareAndSwap() && "Must be cmpxchg operation");
1497     return MMO->getFailureOrdering();
1498   }
1499 
1500   // Methods to support isa and dyn_cast
1501   static bool classof(const SDNode *N) {
1502     return N->getOpcode() == ISD::ATOMIC_CMP_SWAP     ||
1503            N->getOpcode() == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS ||
1504            N->getOpcode() == ISD::ATOMIC_SWAP         ||
1505            N->getOpcode() == ISD::ATOMIC_LOAD_ADD     ||
1506            N->getOpcode() == ISD::ATOMIC_LOAD_SUB     ||
1507            N->getOpcode() == ISD::ATOMIC_LOAD_AND     ||
1508            N->getOpcode() == ISD::ATOMIC_LOAD_CLR     ||
1509            N->getOpcode() == ISD::ATOMIC_LOAD_OR      ||
1510            N->getOpcode() == ISD::ATOMIC_LOAD_XOR     ||
1511            N->getOpcode() == ISD::ATOMIC_LOAD_NAND    ||
1512            N->getOpcode() == ISD::ATOMIC_LOAD_MIN     ||
1513            N->getOpcode() == ISD::ATOMIC_LOAD_MAX     ||
1514            N->getOpcode() == ISD::ATOMIC_LOAD_UMIN    ||
1515            N->getOpcode() == ISD::ATOMIC_LOAD_UMAX    ||
1516            N->getOpcode() == ISD::ATOMIC_LOAD_FADD    ||
1517            N->getOpcode() == ISD::ATOMIC_LOAD_FSUB    ||
1518            N->getOpcode() == ISD::ATOMIC_LOAD_FMAX    ||
1519            N->getOpcode() == ISD::ATOMIC_LOAD_FMIN    ||
1520            N->getOpcode() == ISD::ATOMIC_LOAD_UINC_WRAP ||
1521            N->getOpcode() == ISD::ATOMIC_LOAD_UDEC_WRAP ||
1522            N->getOpcode() == ISD::ATOMIC_LOAD         ||
1523            N->getOpcode() == ISD::ATOMIC_STORE;
1524   }
1525 };
1526 
1527 /// This SDNode is used for target intrinsics that touch
1528 /// memory and need an associated MachineMemOperand. Its opcode may be
1529 /// INTRINSIC_VOID, INTRINSIC_W_CHAIN, PREFETCH, or a target-specific opcode
1530 /// with a value not less than FIRST_TARGET_MEMORY_OPCODE.
1531 class MemIntrinsicSDNode : public MemSDNode {
1532 public:
1533   MemIntrinsicSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
1534                      SDVTList VTs, EVT MemoryVT, MachineMemOperand *MMO)
1535       : MemSDNode(Opc, Order, dl, VTs, MemoryVT, MMO) {
1536     SDNodeBits.IsMemIntrinsic = true;
1537   }
1538 
1539   // Methods to support isa and dyn_cast
1540   static bool classof(const SDNode *N) {
1541     // We lower some target intrinsics to their target opcode
1542     // early a node with a target opcode can be of this class
1543     return N->isMemIntrinsic()             ||
1544            N->getOpcode() == ISD::PREFETCH ||
1545            N->isTargetMemoryOpcode();
1546   }
1547 };
1548 
1549 /// This SDNode is used to implement the code generator
1550 /// support for the llvm IR shufflevector instruction.  It combines elements
1551 /// from two input vectors into a new input vector, with the selection and
1552 /// ordering of elements determined by an array of integers, referred to as
1553 /// the shuffle mask.  For input vectors of width N, mask indices of 0..N-1
1554 /// refer to elements from the LHS input, and indices from N to 2N-1 the RHS.
1555 /// An index of -1 is treated as undef, such that the code generator may put
1556 /// any value in the corresponding element of the result.
1557 class ShuffleVectorSDNode : public SDNode {
1558   // The memory for Mask is owned by the SelectionDAG's OperandAllocator, and
1559   // is freed when the SelectionDAG object is destroyed.
1560   const int *Mask;
1561 
1562 protected:
1563   friend class SelectionDAG;
1564 
1565   ShuffleVectorSDNode(EVT VT, unsigned Order, const DebugLoc &dl, const int *M)
1566       : SDNode(ISD::VECTOR_SHUFFLE, Order, dl, getSDVTList(VT)), Mask(M) {}
1567 
1568 public:
1569   ArrayRef<int> getMask() const {
1570     EVT VT = getValueType(0);
1571     return ArrayRef(Mask, VT.getVectorNumElements());
1572   }
1573 
1574   int getMaskElt(unsigned Idx) const {
1575     assert(Idx < getValueType(0).getVectorNumElements() && "Idx out of range!");
1576     return Mask[Idx];
1577   }
1578 
1579   bool isSplat() const { return isSplatMask(Mask, getValueType(0)); }
1580 
1581   int getSplatIndex() const {
1582     assert(isSplat() && "Cannot get splat index for non-splat!");
1583     EVT VT = getValueType(0);
1584     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1585       if (Mask[i] >= 0)
1586         return Mask[i];
1587 
1588     // We can choose any index value here and be correct because all elements
1589     // are undefined. Return 0 for better potential for callers to simplify.
1590     return 0;
1591   }
1592 
1593   static bool isSplatMask(const int *Mask, EVT VT);
1594 
1595   /// Change values in a shuffle permute mask assuming
1596   /// the two vector operands have swapped position.
1597   static void commuteMask(MutableArrayRef<int> Mask) {
1598     unsigned NumElems = Mask.size();
1599     for (unsigned i = 0; i != NumElems; ++i) {
1600       int idx = Mask[i];
1601       if (idx < 0)
1602         continue;
1603       else if (idx < (int)NumElems)
1604         Mask[i] = idx + NumElems;
1605       else
1606         Mask[i] = idx - NumElems;
1607     }
1608   }
1609 
1610   static bool classof(const SDNode *N) {
1611     return N->getOpcode() == ISD::VECTOR_SHUFFLE;
1612   }
1613 };
1614 
1615 class ConstantSDNode : public SDNode {
1616   friend class SelectionDAG;
1617 
1618   const ConstantInt *Value;
1619 
1620   ConstantSDNode(bool isTarget, bool isOpaque, const ConstantInt *val, EVT VT)
1621       : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, 0, DebugLoc(),
1622                getSDVTList(VT)),
1623         Value(val) {
1624     ConstantSDNodeBits.IsOpaque = isOpaque;
1625   }
1626 
1627 public:
1628   const ConstantInt *getConstantIntValue() const { return Value; }
1629   const APInt &getAPIntValue() const { return Value->getValue(); }
1630   uint64_t getZExtValue() const { return Value->getZExtValue(); }
1631   int64_t getSExtValue() const { return Value->getSExtValue(); }
1632   uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX) {
1633     return Value->getLimitedValue(Limit);
1634   }
1635   MaybeAlign getMaybeAlignValue() const { return Value->getMaybeAlignValue(); }
1636   Align getAlignValue() const { return Value->getAlignValue(); }
1637 
1638   bool isOne() const { return Value->isOne(); }
1639   bool isZero() const { return Value->isZero(); }
1640   bool isAllOnes() const { return Value->isMinusOne(); }
1641   bool isMaxSignedValue() const { return Value->isMaxValue(true); }
1642   bool isMinSignedValue() const { return Value->isMinValue(true); }
1643 
1644   bool isOpaque() const { return ConstantSDNodeBits.IsOpaque; }
1645 
1646   static bool classof(const SDNode *N) {
1647     return N->getOpcode() == ISD::Constant ||
1648            N->getOpcode() == ISD::TargetConstant;
1649   }
1650 };
1651 
1652 uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
1653   return cast<ConstantSDNode>(getOperand(Num))->getZExtValue();
1654 }
1655 
1656 uint64_t SDNode::getAsZExtVal() const {
1657   return cast<ConstantSDNode>(this)->getZExtValue();
1658 }
1659 
1660 const APInt &SDNode::getConstantOperandAPInt(unsigned Num) const {
1661   return cast<ConstantSDNode>(getOperand(Num))->getAPIntValue();
1662 }
1663 
1664 const APInt &SDNode::getAsAPIntVal() const {
1665   return cast<ConstantSDNode>(this)->getAPIntValue();
1666 }
1667 
1668 class ConstantFPSDNode : public SDNode {
1669   friend class SelectionDAG;
1670 
1671   const ConstantFP *Value;
1672 
1673   ConstantFPSDNode(bool isTarget, const ConstantFP *val, EVT VT)
1674       : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP, 0,
1675                DebugLoc(), getSDVTList(VT)),
1676         Value(val) {}
1677 
1678 public:
1679   const APFloat& getValueAPF() const { return Value->getValueAPF(); }
1680   const ConstantFP *getConstantFPValue() const { return Value; }
1681 
1682   /// Return true if the value is positive or negative zero.
1683   bool isZero() const { return Value->isZero(); }
1684 
1685   /// Return true if the value is a NaN.
1686   bool isNaN() const { return Value->isNaN(); }
1687 
1688   /// Return true if the value is an infinity
1689   bool isInfinity() const { return Value->isInfinity(); }
1690 
1691   /// Return true if the value is negative.
1692   bool isNegative() const { return Value->isNegative(); }
1693 
1694   /// We don't rely on operator== working on double values, as
1695   /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
1696   /// As such, this method can be used to do an exact bit-for-bit comparison of
1697   /// two floating point values.
1698 
1699   /// We leave the version with the double argument here because it's just so
1700   /// convenient to write "2.0" and the like.  Without this function we'd
1701   /// have to duplicate its logic everywhere it's called.
1702   bool isExactlyValue(double V) const {
1703     return Value->getValueAPF().isExactlyValue(V);
1704   }
1705   bool isExactlyValue(const APFloat& V) const;
1706 
1707   static bool isValueValidForType(EVT VT, const APFloat& Val);
1708 
1709   static bool classof(const SDNode *N) {
1710     return N->getOpcode() == ISD::ConstantFP ||
1711            N->getOpcode() == ISD::TargetConstantFP;
1712   }
1713 };
1714 
1715 /// Returns true if \p V is a constant integer zero.
1716 bool isNullConstant(SDValue V);
1717 
1718 /// Returns true if \p V is an FP constant with a value of positive zero.
1719 bool isNullFPConstant(SDValue V);
1720 
1721 /// Returns true if \p V is an integer constant with all bits set.
1722 bool isAllOnesConstant(SDValue V);
1723 
1724 /// Returns true if \p V is a constant integer one.
1725 bool isOneConstant(SDValue V);
1726 
1727 /// Returns true if \p V is a constant min signed integer value.
1728 bool isMinSignedConstant(SDValue V);
1729 
1730 /// Returns true if \p V is a neutral element of Opc with Flags.
1731 /// When OperandNo is 0, it checks that V is a left identity. Otherwise, it
1732 /// checks that V is a right identity.
1733 bool isNeutralConstant(unsigned Opc, SDNodeFlags Flags, SDValue V,
1734                        unsigned OperandNo);
1735 
1736 /// Return the non-bitcasted source operand of \p V if it exists.
1737 /// If \p V is not a bitcasted value, it is returned as-is.
1738 SDValue peekThroughBitcasts(SDValue V);
1739 
1740 /// Return the non-bitcasted and one-use source operand of \p V if it exists.
1741 /// If \p V is not a bitcasted one-use value, it is returned as-is.
1742 SDValue peekThroughOneUseBitcasts(SDValue V);
1743 
1744 /// Return the non-extracted vector source operand of \p V if it exists.
1745 /// If \p V is not an extracted subvector, it is returned as-is.
1746 SDValue peekThroughExtractSubvectors(SDValue V);
1747 
1748 /// Return the non-truncated source operand of \p V if it exists.
1749 /// If \p V is not a truncation, it is returned as-is.
1750 SDValue peekThroughTruncates(SDValue V);
1751 
1752 /// Returns true if \p V is a bitwise not operation. Assumes that an all ones
1753 /// constant is canonicalized to be operand 1.
1754 bool isBitwiseNot(SDValue V, bool AllowUndefs = false);
1755 
1756 /// If \p V is a bitwise not, returns the inverted operand. Otherwise returns
1757 /// an empty SDValue. Only bits set in \p Mask are required to be inverted,
1758 /// other bits may be arbitrary.
1759 SDValue getBitwiseNotOperand(SDValue V, SDValue Mask, bool AllowUndefs);
1760 
1761 /// Returns the SDNode if it is a constant splat BuildVector or constant int.
1762 ConstantSDNode *isConstOrConstSplat(SDValue N, bool AllowUndefs = false,
1763                                     bool AllowTruncation = false);
1764 
1765 /// Returns the SDNode if it is a demanded constant splat BuildVector or
1766 /// constant int.
1767 ConstantSDNode *isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
1768                                     bool AllowUndefs = false,
1769                                     bool AllowTruncation = false);
1770 
1771 /// Returns the SDNode if it is a constant splat BuildVector or constant float.
1772 ConstantFPSDNode *isConstOrConstSplatFP(SDValue N, bool AllowUndefs = false);
1773 
1774 /// Returns the SDNode if it is a demanded constant splat BuildVector or
1775 /// constant float.
1776 ConstantFPSDNode *isConstOrConstSplatFP(SDValue N, const APInt &DemandedElts,
1777                                         bool AllowUndefs = false);
1778 
1779 /// Return true if the value is a constant 0 integer or a splatted vector of
1780 /// a constant 0 integer (with no undefs by default).
1781 /// Build vector implicit truncation is not an issue for null values.
1782 bool isNullOrNullSplat(SDValue V, bool AllowUndefs = false);
1783 
1784 /// Return true if the value is a constant 1 integer or a splatted vector of a
1785 /// constant 1 integer (with no undefs).
1786 /// Build vector implicit truncation is allowed, but the truncated bits need to
1787 /// be zero.
1788 bool isOneOrOneSplat(SDValue V, bool AllowUndefs = false);
1789 
1790 /// Return true if the value is a constant -1 integer or a splatted vector of a
1791 /// constant -1 integer (with no undefs).
1792 /// Does not permit build vector implicit truncation.
1793 bool isAllOnesOrAllOnesSplat(SDValue V, bool AllowUndefs = false);
1794 
1795 /// Return true if \p V is either a integer or FP constant.
1796 inline bool isIntOrFPConstant(SDValue V) {
1797   return isa<ConstantSDNode>(V) || isa<ConstantFPSDNode>(V);
1798 }
1799 
1800 class GlobalAddressSDNode : public SDNode {
1801   friend class SelectionDAG;
1802 
1803   const GlobalValue *TheGlobal;
1804   int64_t Offset;
1805   unsigned TargetFlags;
1806 
1807   GlobalAddressSDNode(unsigned Opc, unsigned Order, const DebugLoc &DL,
1808                       const GlobalValue *GA, EVT VT, int64_t o,
1809                       unsigned TF);
1810 
1811 public:
1812   const GlobalValue *getGlobal() const { return TheGlobal; }
1813   int64_t getOffset() const { return Offset; }
1814   unsigned getTargetFlags() const { return TargetFlags; }
1815   // Return the address space this GlobalAddress belongs to.
1816   unsigned getAddressSpace() const;
1817 
1818   static bool classof(const SDNode *N) {
1819     return N->getOpcode() == ISD::GlobalAddress ||
1820            N->getOpcode() == ISD::TargetGlobalAddress ||
1821            N->getOpcode() == ISD::GlobalTLSAddress ||
1822            N->getOpcode() == ISD::TargetGlobalTLSAddress;
1823   }
1824 };
1825 
1826 class FrameIndexSDNode : public SDNode {
1827   friend class SelectionDAG;
1828 
1829   int FI;
1830 
1831   FrameIndexSDNode(int fi, EVT VT, bool isTarg)
1832     : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex,
1833       0, DebugLoc(), getSDVTList(VT)), FI(fi) {
1834   }
1835 
1836 public:
1837   int getIndex() const { return FI; }
1838 
1839   static bool classof(const SDNode *N) {
1840     return N->getOpcode() == ISD::FrameIndex ||
1841            N->getOpcode() == ISD::TargetFrameIndex;
1842   }
1843 };
1844 
1845 /// This SDNode is used for LIFETIME_START/LIFETIME_END values, which indicate
1846 /// the offet and size that are started/ended in the underlying FrameIndex.
1847 class LifetimeSDNode : public SDNode {
1848   friend class SelectionDAG;
1849   int64_t Size;
1850   int64_t Offset; // -1 if offset is unknown.
1851 
1852   LifetimeSDNode(unsigned Opcode, unsigned Order, const DebugLoc &dl,
1853                  SDVTList VTs, int64_t Size, int64_t Offset)
1854       : SDNode(Opcode, Order, dl, VTs), Size(Size), Offset(Offset) {}
1855 public:
1856   int64_t getFrameIndex() const {
1857     return cast<FrameIndexSDNode>(getOperand(1))->getIndex();
1858   }
1859 
1860   bool hasOffset() const { return Offset >= 0; }
1861   int64_t getOffset() const {
1862     assert(hasOffset() && "offset is unknown");
1863     return Offset;
1864   }
1865   int64_t getSize() const {
1866     assert(hasOffset() && "offset is unknown");
1867     return Size;
1868   }
1869 
1870   // Methods to support isa and dyn_cast
1871   static bool classof(const SDNode *N) {
1872     return N->getOpcode() == ISD::LIFETIME_START ||
1873            N->getOpcode() == ISD::LIFETIME_END;
1874   }
1875 };
1876 
1877 /// This SDNode is used for PSEUDO_PROBE values, which are the function guid and
1878 /// the index of the basic block being probed. A pseudo probe serves as a place
1879 /// holder and will be removed at the end of compilation. It does not have any
1880 /// operand because we do not want the instruction selection to deal with any.
1881 class PseudoProbeSDNode : public SDNode {
1882   friend class SelectionDAG;
1883   uint64_t Guid;
1884   uint64_t Index;
1885   uint32_t Attributes;
1886 
1887   PseudoProbeSDNode(unsigned Opcode, unsigned Order, const DebugLoc &Dl,
1888                     SDVTList VTs, uint64_t Guid, uint64_t Index, uint32_t Attr)
1889       : SDNode(Opcode, Order, Dl, VTs), Guid(Guid), Index(Index),
1890         Attributes(Attr) {}
1891 
1892 public:
1893   uint64_t getGuid() const { return Guid; }
1894   uint64_t getIndex() const { return Index; }
1895   uint32_t getAttributes() const { return Attributes; }
1896 
1897   // Methods to support isa and dyn_cast
1898   static bool classof(const SDNode *N) {
1899     return N->getOpcode() == ISD::PSEUDO_PROBE;
1900   }
1901 };
1902 
1903 class JumpTableSDNode : public SDNode {
1904   friend class SelectionDAG;
1905 
1906   int JTI;
1907   unsigned TargetFlags;
1908 
1909   JumpTableSDNode(int jti, EVT VT, bool isTarg, unsigned TF)
1910     : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable,
1911       0, DebugLoc(), getSDVTList(VT)), JTI(jti), TargetFlags(TF) {
1912   }
1913 
1914 public:
1915   int getIndex() const { return JTI; }
1916   unsigned getTargetFlags() const { return TargetFlags; }
1917 
1918   static bool classof(const SDNode *N) {
1919     return N->getOpcode() == ISD::JumpTable ||
1920            N->getOpcode() == ISD::TargetJumpTable;
1921   }
1922 };
1923 
1924 class ConstantPoolSDNode : public SDNode {
1925   friend class SelectionDAG;
1926 
1927   union {
1928     const Constant *ConstVal;
1929     MachineConstantPoolValue *MachineCPVal;
1930   } Val;
1931   int Offset;  // It's a MachineConstantPoolValue if top bit is set.
1932   Align Alignment; // Minimum alignment requirement of CP.
1933   unsigned TargetFlags;
1934 
1935   ConstantPoolSDNode(bool isTarget, const Constant *c, EVT VT, int o,
1936                      Align Alignment, unsigned TF)
1937       : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0,
1938                DebugLoc(), getSDVTList(VT)),
1939         Offset(o), Alignment(Alignment), TargetFlags(TF) {
1940     assert(Offset >= 0 && "Offset is too large");
1941     Val.ConstVal = c;
1942   }
1943 
1944   ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v, EVT VT, int o,
1945                      Align Alignment, unsigned TF)
1946       : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0,
1947                DebugLoc(), getSDVTList(VT)),
1948         Offset(o), Alignment(Alignment), TargetFlags(TF) {
1949     assert(Offset >= 0 && "Offset is too large");
1950     Val.MachineCPVal = v;
1951     Offset |= 1 << (sizeof(unsigned)*CHAR_BIT-1);
1952   }
1953 
1954 public:
1955   bool isMachineConstantPoolEntry() const {
1956     return Offset < 0;
1957   }
1958 
1959   const Constant *getConstVal() const {
1960     assert(!isMachineConstantPoolEntry() && "Wrong constantpool type");
1961     return Val.ConstVal;
1962   }
1963 
1964   MachineConstantPoolValue *getMachineCPVal() const {
1965     assert(isMachineConstantPoolEntry() && "Wrong constantpool type");
1966     return Val.MachineCPVal;
1967   }
1968 
1969   int getOffset() const {
1970     return Offset & ~(1 << (sizeof(unsigned)*CHAR_BIT-1));
1971   }
1972 
1973   // Return the alignment of this constant pool object, which is either 0 (for
1974   // default alignment) or the desired value.
1975   Align getAlign() const { return Alignment; }
1976   unsigned getTargetFlags() const { return TargetFlags; }
1977 
1978   Type *getType() const;
1979 
1980   static bool classof(const SDNode *N) {
1981     return N->getOpcode() == ISD::ConstantPool ||
1982            N->getOpcode() == ISD::TargetConstantPool;
1983   }
1984 };
1985 
1986 /// Completely target-dependent object reference.
1987 class TargetIndexSDNode : public SDNode {
1988   friend class SelectionDAG;
1989 
1990   unsigned TargetFlags;
1991   int Index;
1992   int64_t Offset;
1993 
1994 public:
1995   TargetIndexSDNode(int Idx, EVT VT, int64_t Ofs, unsigned TF)
1996       : SDNode(ISD::TargetIndex, 0, DebugLoc(), getSDVTList(VT)),
1997         TargetFlags(TF), Index(Idx), Offset(Ofs) {}
1998 
1999   unsigned getTargetFlags() const { return TargetFlags; }
2000   int getIndex() const { return Index; }
2001   int64_t getOffset() const { return Offset; }
2002 
2003   static bool classof(const SDNode *N) {
2004     return N->getOpcode() == ISD::TargetIndex;
2005   }
2006 };
2007 
2008 class BasicBlockSDNode : public SDNode {
2009   friend class SelectionDAG;
2010 
2011   MachineBasicBlock *MBB;
2012 
2013   /// Debug info is meaningful and potentially useful here, but we create
2014   /// blocks out of order when they're jumped to, which makes it a bit
2015   /// harder.  Let's see if we need it first.
2016   explicit BasicBlockSDNode(MachineBasicBlock *mbb)
2017     : SDNode(ISD::BasicBlock, 0, DebugLoc(), getSDVTList(MVT::Other)), MBB(mbb)
2018   {}
2019 
2020 public:
2021   MachineBasicBlock *getBasicBlock() const { return MBB; }
2022 
2023   static bool classof(const SDNode *N) {
2024     return N->getOpcode() == ISD::BasicBlock;
2025   }
2026 };
2027 
2028 /// A "pseudo-class" with methods for operating on BUILD_VECTORs.
2029 class BuildVectorSDNode : public SDNode {
2030 public:
2031   // These are constructed as SDNodes and then cast to BuildVectorSDNodes.
2032   explicit BuildVectorSDNode() = delete;
2033 
2034   /// Check if this is a constant splat, and if so, find the
2035   /// smallest element size that splats the vector.  If MinSplatBits is
2036   /// nonzero, the element size must be at least that large.  Note that the
2037   /// splat element may be the entire vector (i.e., a one element vector).
2038   /// Returns the splat element value in SplatValue.  Any undefined bits in
2039   /// that value are zero, and the corresponding bits in the SplatUndef mask
2040   /// are set.  The SplatBitSize value is set to the splat element size in
2041   /// bits.  HasAnyUndefs is set to true if any bits in the vector are
2042   /// undefined.  isBigEndian describes the endianness of the target.
2043   bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
2044                        unsigned &SplatBitSize, bool &HasAnyUndefs,
2045                        unsigned MinSplatBits = 0,
2046                        bool isBigEndian = false) const;
2047 
2048   /// Returns the demanded splatted value or a null value if this is not a
2049   /// splat.
2050   ///
2051   /// The DemandedElts mask indicates the elements that must be in the splat.
2052   /// If passed a non-null UndefElements bitvector, it will resize it to match
2053   /// the vector width and set the bits where elements are undef.
2054   SDValue getSplatValue(const APInt &DemandedElts,
2055                         BitVector *UndefElements = nullptr) const;
2056 
2057   /// Returns the splatted value or a null value if this is not a splat.
2058   ///
2059   /// If passed a non-null UndefElements bitvector, it will resize it to match
2060   /// the vector width and set the bits where elements are undef.
2061   SDValue getSplatValue(BitVector *UndefElements = nullptr) const;
2062 
2063   /// Find the shortest repeating sequence of values in the build vector.
2064   ///
2065   /// e.g. { u, X, u, X, u, u, X, u } -> { X }
2066   ///      { X, Y, u, Y, u, u, X, u } -> { X, Y }
2067   ///
2068   /// Currently this must be a power-of-2 build vector.
2069   /// The DemandedElts mask indicates the elements that must be present,
2070   /// undemanded elements in Sequence may be null (SDValue()). If passed a
2071   /// non-null UndefElements bitvector, it will resize it to match the original
2072   /// vector width and set the bits where elements are undef. If result is
2073   /// false, Sequence will be empty.
2074   bool getRepeatedSequence(const APInt &DemandedElts,
2075                            SmallVectorImpl<SDValue> &Sequence,
2076                            BitVector *UndefElements = nullptr) const;
2077 
2078   /// Find the shortest repeating sequence of values in the build vector.
2079   ///
2080   /// e.g. { u, X, u, X, u, u, X, u } -> { X }
2081   ///      { X, Y, u, Y, u, u, X, u } -> { X, Y }
2082   ///
2083   /// Currently this must be a power-of-2 build vector.
2084   /// If passed a non-null UndefElements bitvector, it will resize it to match
2085   /// the original vector width and set the bits where elements are undef.
2086   /// If result is false, Sequence will be empty.
2087   bool getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence,
2088                            BitVector *UndefElements = nullptr) const;
2089 
2090   /// Returns the demanded splatted constant or null if this is not a constant
2091   /// splat.
2092   ///
2093   /// The DemandedElts mask indicates the elements that must be in the splat.
2094   /// If passed a non-null UndefElements bitvector, it will resize it to match
2095   /// the vector width and set the bits where elements are undef.
2096   ConstantSDNode *
2097   getConstantSplatNode(const APInt &DemandedElts,
2098                        BitVector *UndefElements = nullptr) const;
2099 
2100   /// Returns the splatted constant or null if this is not a constant
2101   /// splat.
2102   ///
2103   /// If passed a non-null UndefElements bitvector, it will resize it to match
2104   /// the vector width and set the bits where elements are undef.
2105   ConstantSDNode *
2106   getConstantSplatNode(BitVector *UndefElements = nullptr) const;
2107 
2108   /// Returns the demanded splatted constant FP or null if this is not a
2109   /// constant FP splat.
2110   ///
2111   /// The DemandedElts mask indicates the elements that must be in the splat.
2112   /// If passed a non-null UndefElements bitvector, it will resize it to match
2113   /// the vector width and set the bits where elements are undef.
2114   ConstantFPSDNode *
2115   getConstantFPSplatNode(const APInt &DemandedElts,
2116                          BitVector *UndefElements = nullptr) const;
2117 
2118   /// Returns the splatted constant FP or null if this is not a constant
2119   /// FP splat.
2120   ///
2121   /// If passed a non-null UndefElements bitvector, it will resize it to match
2122   /// the vector width and set the bits where elements are undef.
2123   ConstantFPSDNode *
2124   getConstantFPSplatNode(BitVector *UndefElements = nullptr) const;
2125 
2126   /// If this is a constant FP splat and the splatted constant FP is an
2127   /// exact power or 2, return the log base 2 integer value.  Otherwise,
2128   /// return -1.
2129   ///
2130   /// The BitWidth specifies the necessary bit precision.
2131   int32_t getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
2132                                           uint32_t BitWidth) const;
2133 
2134   /// Extract the raw bit data from a build vector of Undef, Constant or
2135   /// ConstantFP node elements. Each raw bit element will be \p
2136   /// DstEltSizeInBits wide, undef elements are treated as zero, and entirely
2137   /// undefined elements are flagged in \p UndefElements.
2138   bool getConstantRawBits(bool IsLittleEndian, unsigned DstEltSizeInBits,
2139                           SmallVectorImpl<APInt> &RawBitElements,
2140                           BitVector &UndefElements) const;
2141 
2142   bool isConstant() const;
2143 
2144   /// If this BuildVector is constant and represents the numerical series
2145   /// "<a, a+n, a+2n, a+3n, ...>" where a is integer and n is a non-zero integer,
2146   /// the value "<a,n>" is returned.
2147   std::optional<std::pair<APInt, APInt>> isConstantSequence() const;
2148 
2149   /// Recast bit data \p SrcBitElements to \p DstEltSizeInBits wide elements.
2150   /// Undef elements are treated as zero, and entirely undefined elements are
2151   /// flagged in \p DstUndefElements.
2152   static void recastRawBits(bool IsLittleEndian, unsigned DstEltSizeInBits,
2153                             SmallVectorImpl<APInt> &DstBitElements,
2154                             ArrayRef<APInt> SrcBitElements,
2155                             BitVector &DstUndefElements,
2156                             const BitVector &SrcUndefElements);
2157 
2158   static bool classof(const SDNode *N) {
2159     return N->getOpcode() == ISD::BUILD_VECTOR;
2160   }
2161 };
2162 
2163 /// An SDNode that holds an arbitrary LLVM IR Value. This is
2164 /// used when the SelectionDAG needs to make a simple reference to something
2165 /// in the LLVM IR representation.
2166 ///
2167 class SrcValueSDNode : public SDNode {
2168   friend class SelectionDAG;
2169 
2170   const Value *V;
2171 
2172   /// Create a SrcValue for a general value.
2173   explicit SrcValueSDNode(const Value *v)
2174     : SDNode(ISD::SRCVALUE, 0, DebugLoc(), getSDVTList(MVT::Other)), V(v) {}
2175 
2176 public:
2177   /// Return the contained Value.
2178   const Value *getValue() const { return V; }
2179 
2180   static bool classof(const SDNode *N) {
2181     return N->getOpcode() == ISD::SRCVALUE;
2182   }
2183 };
2184 
2185 class MDNodeSDNode : public SDNode {
2186   friend class SelectionDAG;
2187 
2188   const MDNode *MD;
2189 
2190   explicit MDNodeSDNode(const MDNode *md)
2191   : SDNode(ISD::MDNODE_SDNODE, 0, DebugLoc(), getSDVTList(MVT::Other)), MD(md)
2192   {}
2193 
2194 public:
2195   const MDNode *getMD() const { return MD; }
2196 
2197   static bool classof(const SDNode *N) {
2198     return N->getOpcode() == ISD::MDNODE_SDNODE;
2199   }
2200 };
2201 
2202 class RegisterSDNode : public SDNode {
2203   friend class SelectionDAG;
2204 
2205   Register Reg;
2206 
2207   RegisterSDNode(Register reg, EVT VT)
2208     : SDNode(ISD::Register, 0, DebugLoc(), getSDVTList(VT)), Reg(reg) {}
2209 
2210 public:
2211   Register getReg() const { return Reg; }
2212 
2213   static bool classof(const SDNode *N) {
2214     return N->getOpcode() == ISD::Register;
2215   }
2216 };
2217 
2218 class RegisterMaskSDNode : public SDNode {
2219   friend class SelectionDAG;
2220 
2221   // The memory for RegMask is not owned by the node.
2222   const uint32_t *RegMask;
2223 
2224   RegisterMaskSDNode(const uint32_t *mask)
2225     : SDNode(ISD::RegisterMask, 0, DebugLoc(), getSDVTList(MVT::Untyped)),
2226       RegMask(mask) {}
2227 
2228 public:
2229   const uint32_t *getRegMask() const { return RegMask; }
2230 
2231   static bool classof(const SDNode *N) {
2232     return N->getOpcode() == ISD::RegisterMask;
2233   }
2234 };
2235 
2236 class BlockAddressSDNode : public SDNode {
2237   friend class SelectionDAG;
2238 
2239   const BlockAddress *BA;
2240   int64_t Offset;
2241   unsigned TargetFlags;
2242 
2243   BlockAddressSDNode(unsigned NodeTy, EVT VT, const BlockAddress *ba,
2244                      int64_t o, unsigned Flags)
2245     : SDNode(NodeTy, 0, DebugLoc(), getSDVTList(VT)),
2246              BA(ba), Offset(o), TargetFlags(Flags) {}
2247 
2248 public:
2249   const BlockAddress *getBlockAddress() const { return BA; }
2250   int64_t getOffset() const { return Offset; }
2251   unsigned getTargetFlags() const { return TargetFlags; }
2252 
2253   static bool classof(const SDNode *N) {
2254     return N->getOpcode() == ISD::BlockAddress ||
2255            N->getOpcode() == ISD::TargetBlockAddress;
2256   }
2257 };
2258 
2259 class LabelSDNode : public SDNode {
2260   friend class SelectionDAG;
2261 
2262   MCSymbol *Label;
2263 
2264   LabelSDNode(unsigned Opcode, unsigned Order, const DebugLoc &dl, MCSymbol *L)
2265       : SDNode(Opcode, Order, dl, getSDVTList(MVT::Other)), Label(L) {
2266     assert(LabelSDNode::classof(this) && "not a label opcode");
2267   }
2268 
2269 public:
2270   MCSymbol *getLabel() const { return Label; }
2271 
2272   static bool classof(const SDNode *N) {
2273     return N->getOpcode() == ISD::EH_LABEL ||
2274            N->getOpcode() == ISD::ANNOTATION_LABEL;
2275   }
2276 };
2277 
2278 class ExternalSymbolSDNode : public SDNode {
2279   friend class SelectionDAG;
2280 
2281   const char *Symbol;
2282   unsigned TargetFlags;
2283 
2284   ExternalSymbolSDNode(bool isTarget, const char *Sym, unsigned TF, EVT VT)
2285       : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol, 0,
2286                DebugLoc(), getSDVTList(VT)),
2287         Symbol(Sym), TargetFlags(TF) {}
2288 
2289 public:
2290   const char *getSymbol() const { return Symbol; }
2291   unsigned getTargetFlags() const { return TargetFlags; }
2292 
2293   static bool classof(const SDNode *N) {
2294     return N->getOpcode() == ISD::ExternalSymbol ||
2295            N->getOpcode() == ISD::TargetExternalSymbol;
2296   }
2297 };
2298 
2299 class MCSymbolSDNode : public SDNode {
2300   friend class SelectionDAG;
2301 
2302   MCSymbol *Symbol;
2303 
2304   MCSymbolSDNode(MCSymbol *Symbol, EVT VT)
2305       : SDNode(ISD::MCSymbol, 0, DebugLoc(), getSDVTList(VT)), Symbol(Symbol) {}
2306 
2307 public:
2308   MCSymbol *getMCSymbol() const { return Symbol; }
2309 
2310   static bool classof(const SDNode *N) {
2311     return N->getOpcode() == ISD::MCSymbol;
2312   }
2313 };
2314 
2315 class CondCodeSDNode : public SDNode {
2316   friend class SelectionDAG;
2317 
2318   ISD::CondCode Condition;
2319 
2320   explicit CondCodeSDNode(ISD::CondCode Cond)
2321     : SDNode(ISD::CONDCODE, 0, DebugLoc(), getSDVTList(MVT::Other)),
2322       Condition(Cond) {}
2323 
2324 public:
2325   ISD::CondCode get() const { return Condition; }
2326 
2327   static bool classof(const SDNode *N) {
2328     return N->getOpcode() == ISD::CONDCODE;
2329   }
2330 };
2331 
2332 /// This class is used to represent EVT's, which are used
2333 /// to parameterize some operations.
2334 class VTSDNode : public SDNode {
2335   friend class SelectionDAG;
2336 
2337   EVT ValueType;
2338 
2339   explicit VTSDNode(EVT VT)
2340     : SDNode(ISD::VALUETYPE, 0, DebugLoc(), getSDVTList(MVT::Other)),
2341       ValueType(VT) {}
2342 
2343 public:
2344   EVT getVT() const { return ValueType; }
2345 
2346   static bool classof(const SDNode *N) {
2347     return N->getOpcode() == ISD::VALUETYPE;
2348   }
2349 };
2350 
2351 /// Base class for LoadSDNode and StoreSDNode
2352 class LSBaseSDNode : public MemSDNode {
2353 public:
2354   LSBaseSDNode(ISD::NodeType NodeTy, unsigned Order, const DebugLoc &dl,
2355                SDVTList VTs, ISD::MemIndexedMode AM, EVT MemVT,
2356                MachineMemOperand *MMO)
2357       : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
2358     LSBaseSDNodeBits.AddressingMode = AM;
2359     assert(getAddressingMode() == AM && "Value truncated");
2360   }
2361 
2362   const SDValue &getOffset() const {
2363     return getOperand(getOpcode() == ISD::LOAD ? 2 : 3);
2364   }
2365 
2366   /// Return the addressing mode for this load or store:
2367   /// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
2368   ISD::MemIndexedMode getAddressingMode() const {
2369     return static_cast<ISD::MemIndexedMode>(LSBaseSDNodeBits.AddressingMode);
2370   }
2371 
2372   /// Return true if this is a pre/post inc/dec load/store.
2373   bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
2374 
2375   /// Return true if this is NOT a pre/post inc/dec load/store.
2376   bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
2377 
2378   static bool classof(const SDNode *N) {
2379     return N->getOpcode() == ISD::LOAD ||
2380            N->getOpcode() == ISD::STORE;
2381   }
2382 };
2383 
2384 /// This class is used to represent ISD::LOAD nodes.
2385 class LoadSDNode : public LSBaseSDNode {
2386   friend class SelectionDAG;
2387 
2388   LoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2389              ISD::MemIndexedMode AM, ISD::LoadExtType ETy, EVT MemVT,
2390              MachineMemOperand *MMO)
2391       : LSBaseSDNode(ISD::LOAD, Order, dl, VTs, AM, MemVT, MMO) {
2392     LoadSDNodeBits.ExtTy = ETy;
2393     assert(readMem() && "Load MachineMemOperand is not a load!");
2394     assert(!writeMem() && "Load MachineMemOperand is a store!");
2395   }
2396 
2397 public:
2398   /// Return whether this is a plain node,
2399   /// or one of the varieties of value-extending loads.
2400   ISD::LoadExtType getExtensionType() const {
2401     return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy);
2402   }
2403 
2404   const SDValue &getBasePtr() const { return getOperand(1); }
2405   const SDValue &getOffset() const { return getOperand(2); }
2406 
2407   static bool classof(const SDNode *N) {
2408     return N->getOpcode() == ISD::LOAD;
2409   }
2410 };
2411 
2412 /// This class is used to represent ISD::STORE nodes.
2413 class StoreSDNode : public LSBaseSDNode {
2414   friend class SelectionDAG;
2415 
2416   StoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2417               ISD::MemIndexedMode AM, bool isTrunc, EVT MemVT,
2418               MachineMemOperand *MMO)
2419       : LSBaseSDNode(ISD::STORE, Order, dl, VTs, AM, MemVT, MMO) {
2420     StoreSDNodeBits.IsTruncating = isTrunc;
2421     assert(!readMem() && "Store MachineMemOperand is a load!");
2422     assert(writeMem() && "Store MachineMemOperand is not a store!");
2423   }
2424 
2425 public:
2426   /// Return true if the op does a truncation before store.
2427   /// For integers this is the same as doing a TRUNCATE and storing the result.
2428   /// For floats, it is the same as doing an FP_ROUND and storing the result.
2429   bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
2430   void setTruncatingStore(bool Truncating) {
2431     StoreSDNodeBits.IsTruncating = Truncating;
2432   }
2433 
2434   const SDValue &getValue() const { return getOperand(1); }
2435   const SDValue &getBasePtr() const { return getOperand(2); }
2436   const SDValue &getOffset() const { return getOperand(3); }
2437 
2438   static bool classof(const SDNode *N) {
2439     return N->getOpcode() == ISD::STORE;
2440   }
2441 };
2442 
2443 /// This base class is used to represent VP_LOAD, VP_STORE,
2444 /// EXPERIMENTAL_VP_STRIDED_LOAD and EXPERIMENTAL_VP_STRIDED_STORE nodes
2445 class VPBaseLoadStoreSDNode : public MemSDNode {
2446 public:
2447   friend class SelectionDAG;
2448 
2449   VPBaseLoadStoreSDNode(ISD::NodeType NodeTy, unsigned Order,
2450                         const DebugLoc &DL, SDVTList VTs,
2451                         ISD::MemIndexedMode AM, EVT MemVT,
2452                         MachineMemOperand *MMO)
2453       : MemSDNode(NodeTy, Order, DL, VTs, MemVT, MMO) {
2454     LSBaseSDNodeBits.AddressingMode = AM;
2455     assert(getAddressingMode() == AM && "Value truncated");
2456   }
2457 
2458   // VPStridedStoreSDNode (Chain, Data, Ptr,    Offset, Stride, Mask, EVL)
2459   // VPStoreSDNode        (Chain, Data, Ptr,    Offset, Mask,   EVL)
2460   // VPStridedLoadSDNode  (Chain, Ptr,  Offset, Stride, Mask,   EVL)
2461   // VPLoadSDNode         (Chain, Ptr,  Offset, Mask,   EVL)
2462   // Mask is a vector of i1 elements;
2463   // the type of EVL is TLI.getVPExplicitVectorLengthTy().
2464   const SDValue &getOffset() const {
2465     return getOperand((getOpcode() == ISD::EXPERIMENTAL_VP_STRIDED_LOAD ||
2466                        getOpcode() == ISD::VP_LOAD)
2467                           ? 2
2468                           : 3);
2469   }
2470   const SDValue &getBasePtr() const {
2471     return getOperand((getOpcode() == ISD::EXPERIMENTAL_VP_STRIDED_LOAD ||
2472                        getOpcode() == ISD::VP_LOAD)
2473                           ? 1
2474                           : 2);
2475   }
2476   const SDValue &getMask() const {
2477     switch (getOpcode()) {
2478     default:
2479       llvm_unreachable("Invalid opcode");
2480     case ISD::VP_LOAD:
2481       return getOperand(3);
2482     case ISD::VP_STORE:
2483     case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
2484       return getOperand(4);
2485     case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
2486       return getOperand(5);
2487     }
2488   }
2489   const SDValue &getVectorLength() const {
2490     switch (getOpcode()) {
2491     default:
2492       llvm_unreachable("Invalid opcode");
2493     case ISD::VP_LOAD:
2494       return getOperand(4);
2495     case ISD::VP_STORE:
2496     case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
2497       return getOperand(5);
2498     case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
2499       return getOperand(6);
2500     }
2501   }
2502 
2503   /// Return the addressing mode for this load or store:
2504   /// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
2505   ISD::MemIndexedMode getAddressingMode() const {
2506     return static_cast<ISD::MemIndexedMode>(LSBaseSDNodeBits.AddressingMode);
2507   }
2508 
2509   /// Return true if this is a pre/post inc/dec load/store.
2510   bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
2511 
2512   /// Return true if this is NOT a pre/post inc/dec load/store.
2513   bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
2514 
2515   static bool classof(const SDNode *N) {
2516     return N->getOpcode() == ISD::EXPERIMENTAL_VP_STRIDED_LOAD ||
2517            N->getOpcode() == ISD::EXPERIMENTAL_VP_STRIDED_STORE ||
2518            N->getOpcode() == ISD::VP_LOAD || N->getOpcode() == ISD::VP_STORE;
2519   }
2520 };
2521 
2522 /// This class is used to represent a VP_LOAD node
2523 class VPLoadSDNode : public VPBaseLoadStoreSDNode {
2524 public:
2525   friend class SelectionDAG;
2526 
2527   VPLoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2528                ISD::MemIndexedMode AM, ISD::LoadExtType ETy, bool isExpanding,
2529                EVT MemVT, MachineMemOperand *MMO)
2530       : VPBaseLoadStoreSDNode(ISD::VP_LOAD, Order, dl, VTs, AM, MemVT, MMO) {
2531     LoadSDNodeBits.ExtTy = ETy;
2532     LoadSDNodeBits.IsExpanding = isExpanding;
2533   }
2534 
2535   ISD::LoadExtType getExtensionType() const {
2536     return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy);
2537   }
2538 
2539   const SDValue &getBasePtr() const { return getOperand(1); }
2540   const SDValue &getOffset() const { return getOperand(2); }
2541   const SDValue &getMask() const { return getOperand(3); }
2542   const SDValue &getVectorLength() const { return getOperand(4); }
2543 
2544   static bool classof(const SDNode *N) {
2545     return N->getOpcode() == ISD::VP_LOAD;
2546   }
2547   bool isExpandingLoad() const { return LoadSDNodeBits.IsExpanding; }
2548 };
2549 
2550 /// This class is used to represent an EXPERIMENTAL_VP_STRIDED_LOAD node.
2551 class VPStridedLoadSDNode : public VPBaseLoadStoreSDNode {
2552 public:
2553   friend class SelectionDAG;
2554 
2555   VPStridedLoadSDNode(unsigned Order, const DebugLoc &DL, SDVTList VTs,
2556                       ISD::MemIndexedMode AM, ISD::LoadExtType ETy,
2557                       bool IsExpanding, EVT MemVT, MachineMemOperand *MMO)
2558       : VPBaseLoadStoreSDNode(ISD::EXPERIMENTAL_VP_STRIDED_LOAD, Order, DL, VTs,
2559                               AM, MemVT, MMO) {
2560     LoadSDNodeBits.ExtTy = ETy;
2561     LoadSDNodeBits.IsExpanding = IsExpanding;
2562   }
2563 
2564   ISD::LoadExtType getExtensionType() const {
2565     return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy);
2566   }
2567 
2568   const SDValue &getBasePtr() const { return getOperand(1); }
2569   const SDValue &getOffset() const { return getOperand(2); }
2570   const SDValue &getStride() const { return getOperand(3); }
2571   const SDValue &getMask() const { return getOperand(4); }
2572   const SDValue &getVectorLength() const { return getOperand(5); }
2573 
2574   static bool classof(const SDNode *N) {
2575     return N->getOpcode() == ISD::EXPERIMENTAL_VP_STRIDED_LOAD;
2576   }
2577   bool isExpandingLoad() const { return LoadSDNodeBits.IsExpanding; }
2578 };
2579 
2580 /// This class is used to represent a VP_STORE node
2581 class VPStoreSDNode : public VPBaseLoadStoreSDNode {
2582 public:
2583   friend class SelectionDAG;
2584 
2585   VPStoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2586                 ISD::MemIndexedMode AM, bool isTrunc, bool isCompressing,
2587                 EVT MemVT, MachineMemOperand *MMO)
2588       : VPBaseLoadStoreSDNode(ISD::VP_STORE, Order, dl, VTs, AM, MemVT, MMO) {
2589     StoreSDNodeBits.IsTruncating = isTrunc;
2590     StoreSDNodeBits.IsCompressing = isCompressing;
2591   }
2592 
2593   /// Return true if this is a truncating store.
2594   /// For integers this is the same as doing a TRUNCATE and storing the result.
2595   /// For floats, it is the same as doing an FP_ROUND and storing the result.
2596   bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
2597 
2598   /// Returns true if the op does a compression to the vector before storing.
2599   /// The node contiguously stores the active elements (integers or floats)
2600   /// in src (those with their respective bit set in writemask k) to unaligned
2601   /// memory at base_addr.
2602   bool isCompressingStore() const { return StoreSDNodeBits.IsCompressing; }
2603 
2604   const SDValue &getValue() const { return getOperand(1); }
2605   const SDValue &getBasePtr() const { return getOperand(2); }
2606   const SDValue &getOffset() const { return getOperand(3); }
2607   const SDValue &getMask() const { return getOperand(4); }
2608   const SDValue &getVectorLength() const { return getOperand(5); }
2609 
2610   static bool classof(const SDNode *N) {
2611     return N->getOpcode() == ISD::VP_STORE;
2612   }
2613 };
2614 
2615 /// This class is used to represent an EXPERIMENTAL_VP_STRIDED_STORE node.
2616 class VPStridedStoreSDNode : public VPBaseLoadStoreSDNode {
2617 public:
2618   friend class SelectionDAG;
2619 
2620   VPStridedStoreSDNode(unsigned Order, const DebugLoc &DL, SDVTList VTs,
2621                        ISD::MemIndexedMode AM, bool IsTrunc, bool IsCompressing,
2622                        EVT MemVT, MachineMemOperand *MMO)
2623       : VPBaseLoadStoreSDNode(ISD::EXPERIMENTAL_VP_STRIDED_STORE, Order, DL,
2624                               VTs, AM, MemVT, MMO) {
2625     StoreSDNodeBits.IsTruncating = IsTrunc;
2626     StoreSDNodeBits.IsCompressing = IsCompressing;
2627   }
2628 
2629   /// Return true if this is a truncating store.
2630   /// For integers this is the same as doing a TRUNCATE and storing the result.
2631   /// For floats, it is the same as doing an FP_ROUND and storing the result.
2632   bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
2633 
2634   /// Returns true if the op does a compression to the vector before storing.
2635   /// The node contiguously stores the active elements (integers or floats)
2636   /// in src (those with their respective bit set in writemask k) to unaligned
2637   /// memory at base_addr.
2638   bool isCompressingStore() const { return StoreSDNodeBits.IsCompressing; }
2639 
2640   const SDValue &getValue() const { return getOperand(1); }
2641   const SDValue &getBasePtr() const { return getOperand(2); }
2642   const SDValue &getOffset() const { return getOperand(3); }
2643   const SDValue &getStride() const { return getOperand(4); }
2644   const SDValue &getMask() const { return getOperand(5); }
2645   const SDValue &getVectorLength() const { return getOperand(6); }
2646 
2647   static bool classof(const SDNode *N) {
2648     return N->getOpcode() == ISD::EXPERIMENTAL_VP_STRIDED_STORE;
2649   }
2650 };
2651 
2652 /// This base class is used to represent MLOAD and MSTORE nodes
2653 class MaskedLoadStoreSDNode : public MemSDNode {
2654 public:
2655   friend class SelectionDAG;
2656 
2657   MaskedLoadStoreSDNode(ISD::NodeType NodeTy, unsigned Order,
2658                         const DebugLoc &dl, SDVTList VTs,
2659                         ISD::MemIndexedMode AM, EVT MemVT,
2660                         MachineMemOperand *MMO)
2661       : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
2662     LSBaseSDNodeBits.AddressingMode = AM;
2663     assert(getAddressingMode() == AM && "Value truncated");
2664   }
2665 
2666   // MaskedLoadSDNode (Chain, ptr, offset, mask, passthru)
2667   // MaskedStoreSDNode (Chain, data, ptr, offset, mask)
2668   // Mask is a vector of i1 elements
2669   const SDValue &getOffset() const {
2670     return getOperand(getOpcode() == ISD::MLOAD ? 2 : 3);
2671   }
2672   const SDValue &getMask() const {
2673     return getOperand(getOpcode() == ISD::MLOAD ? 3 : 4);
2674   }
2675 
2676   /// Return the addressing mode for this load or store:
2677   /// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
2678   ISD::MemIndexedMode getAddressingMode() const {
2679     return static_cast<ISD::MemIndexedMode>(LSBaseSDNodeBits.AddressingMode);
2680   }
2681 
2682   /// Return true if this is a pre/post inc/dec load/store.
2683   bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
2684 
2685   /// Return true if this is NOT a pre/post inc/dec load/store.
2686   bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
2687 
2688   static bool classof(const SDNode *N) {
2689     return N->getOpcode() == ISD::MLOAD ||
2690            N->getOpcode() == ISD::MSTORE;
2691   }
2692 };
2693 
2694 /// This class is used to represent an MLOAD node
2695 class MaskedLoadSDNode : public MaskedLoadStoreSDNode {
2696 public:
2697   friend class SelectionDAG;
2698 
2699   MaskedLoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2700                    ISD::MemIndexedMode AM, ISD::LoadExtType ETy,
2701                    bool IsExpanding, EVT MemVT, MachineMemOperand *MMO)
2702       : MaskedLoadStoreSDNode(ISD::MLOAD, Order, dl, VTs, AM, MemVT, MMO) {
2703     LoadSDNodeBits.ExtTy = ETy;
2704     LoadSDNodeBits.IsExpanding = IsExpanding;
2705   }
2706 
2707   ISD::LoadExtType getExtensionType() const {
2708     return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy);
2709   }
2710 
2711   const SDValue &getBasePtr() const { return getOperand(1); }
2712   const SDValue &getOffset() const { return getOperand(2); }
2713   const SDValue &getMask() const { return getOperand(3); }
2714   const SDValue &getPassThru() const { return getOperand(4); }
2715 
2716   static bool classof(const SDNode *N) {
2717     return N->getOpcode() == ISD::MLOAD;
2718   }
2719 
2720   bool isExpandingLoad() const { return LoadSDNodeBits.IsExpanding; }
2721 };
2722 
2723 /// This class is used to represent an MSTORE node
2724 class MaskedStoreSDNode : public MaskedLoadStoreSDNode {
2725 public:
2726   friend class SelectionDAG;
2727 
2728   MaskedStoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2729                     ISD::MemIndexedMode AM, bool isTrunc, bool isCompressing,
2730                     EVT MemVT, MachineMemOperand *MMO)
2731       : MaskedLoadStoreSDNode(ISD::MSTORE, Order, dl, VTs, AM, MemVT, MMO) {
2732     StoreSDNodeBits.IsTruncating = isTrunc;
2733     StoreSDNodeBits.IsCompressing = isCompressing;
2734   }
2735 
2736   /// Return true if the op does a truncation before store.
2737   /// For integers this is the same as doing a TRUNCATE and storing the result.
2738   /// For floats, it is the same as doing an FP_ROUND and storing the result.
2739   bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
2740 
2741   /// Returns true if the op does a compression to the vector before storing.
2742   /// The node contiguously stores the active elements (integers or floats)
2743   /// in src (those with their respective bit set in writemask k) to unaligned
2744   /// memory at base_addr.
2745   bool isCompressingStore() const { return StoreSDNodeBits.IsCompressing; }
2746 
2747   const SDValue &getValue() const { return getOperand(1); }
2748   const SDValue &getBasePtr() const { return getOperand(2); }
2749   const SDValue &getOffset() const { return getOperand(3); }
2750   const SDValue &getMask() const { return getOperand(4); }
2751 
2752   static bool classof(const SDNode *N) {
2753     return N->getOpcode() == ISD::MSTORE;
2754   }
2755 };
2756 
2757 /// This is a base class used to represent
2758 /// VP_GATHER and VP_SCATTER nodes
2759 ///
2760 class VPGatherScatterSDNode : public MemSDNode {
2761 public:
2762   friend class SelectionDAG;
2763 
2764   VPGatherScatterSDNode(ISD::NodeType NodeTy, unsigned Order,
2765                         const DebugLoc &dl, SDVTList VTs, EVT MemVT,
2766                         MachineMemOperand *MMO, ISD::MemIndexType IndexType)
2767       : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
2768     LSBaseSDNodeBits.AddressingMode = IndexType;
2769     assert(getIndexType() == IndexType && "Value truncated");
2770   }
2771 
2772   /// How is Index applied to BasePtr when computing addresses.
2773   ISD::MemIndexType getIndexType() const {
2774     return static_cast<ISD::MemIndexType>(LSBaseSDNodeBits.AddressingMode);
2775   }
2776   bool isIndexScaled() const {
2777     return !cast<ConstantSDNode>(getScale())->isOne();
2778   }
2779   bool isIndexSigned() const { return isIndexTypeSigned(getIndexType()); }
2780 
2781   // In the both nodes address is Op1, mask is Op2:
2782   // VPGatherSDNode  (Chain, base, index, scale, mask, vlen)
2783   // VPScatterSDNode (Chain, value, base, index, scale, mask, vlen)
2784   // Mask is a vector of i1 elements
2785   const SDValue &getBasePtr() const {
2786     return getOperand((getOpcode() == ISD::VP_GATHER) ? 1 : 2);
2787   }
2788   const SDValue &getIndex() const {
2789     return getOperand((getOpcode() == ISD::VP_GATHER) ? 2 : 3);
2790   }
2791   const SDValue &getScale() const {
2792     return getOperand((getOpcode() == ISD::VP_GATHER) ? 3 : 4);
2793   }
2794   const SDValue &getMask() const {
2795     return getOperand((getOpcode() == ISD::VP_GATHER) ? 4 : 5);
2796   }
2797   const SDValue &getVectorLength() const {
2798     return getOperand((getOpcode() == ISD::VP_GATHER) ? 5 : 6);
2799   }
2800 
2801   static bool classof(const SDNode *N) {
2802     return N->getOpcode() == ISD::VP_GATHER ||
2803            N->getOpcode() == ISD::VP_SCATTER;
2804   }
2805 };
2806 
2807 /// This class is used to represent an VP_GATHER node
2808 ///
2809 class VPGatherSDNode : public VPGatherScatterSDNode {
2810 public:
2811   friend class SelectionDAG;
2812 
2813   VPGatherSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, EVT MemVT,
2814                  MachineMemOperand *MMO, ISD::MemIndexType IndexType)
2815       : VPGatherScatterSDNode(ISD::VP_GATHER, Order, dl, VTs, MemVT, MMO,
2816                               IndexType) {}
2817 
2818   static bool classof(const SDNode *N) {
2819     return N->getOpcode() == ISD::VP_GATHER;
2820   }
2821 };
2822 
2823 /// This class is used to represent an VP_SCATTER node
2824 ///
2825 class VPScatterSDNode : public VPGatherScatterSDNode {
2826 public:
2827   friend class SelectionDAG;
2828 
2829   VPScatterSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, EVT MemVT,
2830                   MachineMemOperand *MMO, ISD::MemIndexType IndexType)
2831       : VPGatherScatterSDNode(ISD::VP_SCATTER, Order, dl, VTs, MemVT, MMO,
2832                               IndexType) {}
2833 
2834   const SDValue &getValue() const { return getOperand(1); }
2835 
2836   static bool classof(const SDNode *N) {
2837     return N->getOpcode() == ISD::VP_SCATTER;
2838   }
2839 };
2840 
2841 /// This is a base class used to represent
2842 /// MGATHER and MSCATTER nodes
2843 ///
2844 class MaskedGatherScatterSDNode : public MemSDNode {
2845 public:
2846   friend class SelectionDAG;
2847 
2848   MaskedGatherScatterSDNode(ISD::NodeType NodeTy, unsigned Order,
2849                             const DebugLoc &dl, SDVTList VTs, EVT MemVT,
2850                             MachineMemOperand *MMO, ISD::MemIndexType IndexType)
2851       : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
2852     LSBaseSDNodeBits.AddressingMode = IndexType;
2853     assert(getIndexType() == IndexType && "Value truncated");
2854   }
2855 
2856   /// How is Index applied to BasePtr when computing addresses.
2857   ISD::MemIndexType getIndexType() const {
2858     return static_cast<ISD::MemIndexType>(LSBaseSDNodeBits.AddressingMode);
2859   }
2860   bool isIndexScaled() const {
2861     return !cast<ConstantSDNode>(getScale())->isOne();
2862   }
2863   bool isIndexSigned() const { return isIndexTypeSigned(getIndexType()); }
2864 
2865   // In the both nodes address is Op1, mask is Op2:
2866   // MaskedGatherSDNode  (Chain, passthru, mask, base, index, scale)
2867   // MaskedScatterSDNode (Chain, value, mask, base, index, scale)
2868   // Mask is a vector of i1 elements
2869   const SDValue &getBasePtr() const { return getOperand(3); }
2870   const SDValue &getIndex()   const { return getOperand(4); }
2871   const SDValue &getMask()    const { return getOperand(2); }
2872   const SDValue &getScale()   const { return getOperand(5); }
2873 
2874   static bool classof(const SDNode *N) {
2875     return N->getOpcode() == ISD::MGATHER ||
2876            N->getOpcode() == ISD::MSCATTER;
2877   }
2878 };
2879 
2880 /// This class is used to represent an MGATHER node
2881 ///
2882 class MaskedGatherSDNode : public MaskedGatherScatterSDNode {
2883 public:
2884   friend class SelectionDAG;
2885 
2886   MaskedGatherSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2887                      EVT MemVT, MachineMemOperand *MMO,
2888                      ISD::MemIndexType IndexType, ISD::LoadExtType ETy)
2889       : MaskedGatherScatterSDNode(ISD::MGATHER, Order, dl, VTs, MemVT, MMO,
2890                                   IndexType) {
2891     LoadSDNodeBits.ExtTy = ETy;
2892   }
2893 
2894   const SDValue &getPassThru() const { return getOperand(1); }
2895 
2896   ISD::LoadExtType getExtensionType() const {
2897     return ISD::LoadExtType(LoadSDNodeBits.ExtTy);
2898   }
2899 
2900   static bool classof(const SDNode *N) {
2901     return N->getOpcode() == ISD::MGATHER;
2902   }
2903 };
2904 
2905 /// This class is used to represent an MSCATTER node
2906 ///
2907 class MaskedScatterSDNode : public MaskedGatherScatterSDNode {
2908 public:
2909   friend class SelectionDAG;
2910 
2911   MaskedScatterSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2912                       EVT MemVT, MachineMemOperand *MMO,
2913                       ISD::MemIndexType IndexType, bool IsTrunc)
2914       : MaskedGatherScatterSDNode(ISD::MSCATTER, Order, dl, VTs, MemVT, MMO,
2915                                   IndexType) {
2916     StoreSDNodeBits.IsTruncating = IsTrunc;
2917   }
2918 
2919   /// Return true if the op does a truncation before store.
2920   /// For integers this is the same as doing a TRUNCATE and storing the result.
2921   /// For floats, it is the same as doing an FP_ROUND and storing the result.
2922   bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
2923 
2924   const SDValue &getValue() const { return getOperand(1); }
2925 
2926   static bool classof(const SDNode *N) {
2927     return N->getOpcode() == ISD::MSCATTER;
2928   }
2929 };
2930 
2931 class FPStateAccessSDNode : public MemSDNode {
2932 public:
2933   friend class SelectionDAG;
2934 
2935   FPStateAccessSDNode(unsigned NodeTy, unsigned Order, const DebugLoc &dl,
2936                       SDVTList VTs, EVT MemVT, MachineMemOperand *MMO)
2937       : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
2938     assert((NodeTy == ISD::GET_FPENV_MEM || NodeTy == ISD::SET_FPENV_MEM) &&
2939            "Expected FP state access node");
2940   }
2941 
2942   static bool classof(const SDNode *N) {
2943     return N->getOpcode() == ISD::GET_FPENV_MEM ||
2944            N->getOpcode() == ISD::SET_FPENV_MEM;
2945   }
2946 };
2947 
2948 /// An SDNode that represents everything that will be needed
2949 /// to construct a MachineInstr. These nodes are created during the
2950 /// instruction selection proper phase.
2951 ///
2952 /// Note that the only supported way to set the `memoperands` is by calling the
2953 /// `SelectionDAG::setNodeMemRefs` function as the memory management happens
2954 /// inside the DAG rather than in the node.
2955 class MachineSDNode : public SDNode {
2956 private:
2957   friend class SelectionDAG;
2958 
2959   MachineSDNode(unsigned Opc, unsigned Order, const DebugLoc &DL, SDVTList VTs)
2960       : SDNode(Opc, Order, DL, VTs) {}
2961 
2962   // We use a pointer union between a single `MachineMemOperand` pointer and
2963   // a pointer to an array of `MachineMemOperand` pointers. This is null when
2964   // the number of these is zero, the single pointer variant used when the
2965   // number is one, and the array is used for larger numbers.
2966   //
2967   // The array is allocated via the `SelectionDAG`'s allocator and so will
2968   // always live until the DAG is cleaned up and doesn't require ownership here.
2969   //
2970   // We can't use something simpler like `TinyPtrVector` here because `SDNode`
2971   // subclasses aren't managed in a conforming C++ manner. See the comments on
2972   // `SelectionDAG::MorphNodeTo` which details what all goes on, but the
2973   // constraint here is that these don't manage memory with their constructor or
2974   // destructor and can be initialized to a good state even if they start off
2975   // uninitialized.
2976   PointerUnion<MachineMemOperand *, MachineMemOperand **> MemRefs = {};
2977 
2978   // Note that this could be folded into the above `MemRefs` member if doing so
2979   // is advantageous at some point. We don't need to store this in most cases.
2980   // However, at the moment this doesn't appear to make the allocation any
2981   // smaller and makes the code somewhat simpler to read.
2982   int NumMemRefs = 0;
2983 
2984 public:
2985   using mmo_iterator = ArrayRef<MachineMemOperand *>::const_iterator;
2986 
2987   ArrayRef<MachineMemOperand *> memoperands() const {
2988     // Special case the common cases.
2989     if (NumMemRefs == 0)
2990       return {};
2991     if (NumMemRefs == 1)
2992       return ArrayRef(MemRefs.getAddrOfPtr1(), 1);
2993 
2994     // Otherwise we have an actual array.
2995     return ArrayRef(cast<MachineMemOperand **>(MemRefs), NumMemRefs);
2996   }
2997   mmo_iterator memoperands_begin() const { return memoperands().begin(); }
2998   mmo_iterator memoperands_end() const { return memoperands().end(); }
2999   bool memoperands_empty() const { return memoperands().empty(); }
3000 
3001   /// Clear out the memory reference descriptor list.
3002   void clearMemRefs() {
3003     MemRefs = nullptr;
3004     NumMemRefs = 0;
3005   }
3006 
3007   static bool classof(const SDNode *N) {
3008     return N->isMachineOpcode();
3009   }
3010 };
3011 
3012 /// An SDNode that records if a register contains a value that is guaranteed to
3013 /// be aligned accordingly.
3014 class AssertAlignSDNode : public SDNode {
3015   Align Alignment;
3016 
3017 public:
3018   AssertAlignSDNode(unsigned Order, const DebugLoc &DL, EVT VT, Align A)
3019       : SDNode(ISD::AssertAlign, Order, DL, getSDVTList(VT)), Alignment(A) {}
3020 
3021   Align getAlign() const { return Alignment; }
3022 
3023   static bool classof(const SDNode *N) {
3024     return N->getOpcode() == ISD::AssertAlign;
3025   }
3026 };
3027 
3028 class SDNodeIterator {
3029   const SDNode *Node;
3030   unsigned Operand;
3031 
3032   SDNodeIterator(const SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
3033 
3034 public:
3035   using iterator_category = std::forward_iterator_tag;
3036   using value_type = SDNode;
3037   using difference_type = std::ptrdiff_t;
3038   using pointer = value_type *;
3039   using reference = value_type &;
3040 
3041   bool operator==(const SDNodeIterator& x) const {
3042     return Operand == x.Operand;
3043   }
3044   bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
3045 
3046   pointer operator*() const {
3047     return Node->getOperand(Operand).getNode();
3048   }
3049   pointer operator->() const { return operator*(); }
3050 
3051   SDNodeIterator& operator++() {                // Preincrement
3052     ++Operand;
3053     return *this;
3054   }
3055   SDNodeIterator operator++(int) { // Postincrement
3056     SDNodeIterator tmp = *this; ++*this; return tmp;
3057   }
3058   size_t operator-(SDNodeIterator Other) const {
3059     assert(Node == Other.Node &&
3060            "Cannot compare iterators of two different nodes!");
3061     return Operand - Other.Operand;
3062   }
3063 
3064   static SDNodeIterator begin(const SDNode *N) { return SDNodeIterator(N, 0); }
3065   static SDNodeIterator end  (const SDNode *N) {
3066     return SDNodeIterator(N, N->getNumOperands());
3067   }
3068 
3069   unsigned getOperand() const { return Operand; }
3070   const SDNode *getNode() const { return Node; }
3071 };
3072 
3073 template <> struct GraphTraits<SDNode*> {
3074   using NodeRef = SDNode *;
3075   using ChildIteratorType = SDNodeIterator;
3076 
3077   static NodeRef getEntryNode(SDNode *N) { return N; }
3078 
3079   static ChildIteratorType child_begin(NodeRef N) {
3080     return SDNodeIterator::begin(N);
3081   }
3082 
3083   static ChildIteratorType child_end(NodeRef N) {
3084     return SDNodeIterator::end(N);
3085   }
3086 };
3087 
3088 /// A representation of the largest SDNode, for use in sizeof().
3089 ///
3090 /// This needs to be a union because the largest node differs on 32 bit systems
3091 /// with 4 and 8 byte pointer alignment, respectively.
3092 using LargestSDNode = AlignedCharArrayUnion<AtomicSDNode, TargetIndexSDNode,
3093                                             BlockAddressSDNode,
3094                                             GlobalAddressSDNode,
3095                                             PseudoProbeSDNode>;
3096 
3097 /// The SDNode class with the greatest alignment requirement.
3098 using MostAlignedSDNode = GlobalAddressSDNode;
3099 
3100 namespace ISD {
3101 
3102   /// Returns true if the specified node is a non-extending and unindexed load.
3103   inline bool isNormalLoad(const SDNode *N) {
3104     auto *Ld = dyn_cast<LoadSDNode>(N);
3105     return Ld && Ld->getExtensionType() == ISD::NON_EXTLOAD &&
3106            Ld->getAddressingMode() == ISD::UNINDEXED;
3107   }
3108 
3109   /// Returns true if the specified node is a non-extending load.
3110   inline bool isNON_EXTLoad(const SDNode *N) {
3111     auto *Ld = dyn_cast<LoadSDNode>(N);
3112     return Ld && Ld->getExtensionType() == ISD::NON_EXTLOAD;
3113   }
3114 
3115   /// Returns true if the specified node is a EXTLOAD.
3116   inline bool isEXTLoad(const SDNode *N) {
3117     auto *Ld = dyn_cast<LoadSDNode>(N);
3118     return Ld && Ld->getExtensionType() == ISD::EXTLOAD;
3119   }
3120 
3121   /// Returns true if the specified node is a SEXTLOAD.
3122   inline bool isSEXTLoad(const SDNode *N) {
3123     auto *Ld = dyn_cast<LoadSDNode>(N);
3124     return Ld && Ld->getExtensionType() == ISD::SEXTLOAD;
3125   }
3126 
3127   /// Returns true if the specified node is a ZEXTLOAD.
3128   inline bool isZEXTLoad(const SDNode *N) {
3129     auto *Ld = dyn_cast<LoadSDNode>(N);
3130     return Ld && Ld->getExtensionType() == ISD::ZEXTLOAD;
3131   }
3132 
3133   /// Returns true if the specified node is an unindexed load.
3134   inline bool isUNINDEXEDLoad(const SDNode *N) {
3135     auto *Ld = dyn_cast<LoadSDNode>(N);
3136     return Ld && Ld->getAddressingMode() == ISD::UNINDEXED;
3137   }
3138 
3139   /// Returns true if the specified node is a non-truncating
3140   /// and unindexed store.
3141   inline bool isNormalStore(const SDNode *N) {
3142     auto *St = dyn_cast<StoreSDNode>(N);
3143     return St && !St->isTruncatingStore() &&
3144            St->getAddressingMode() == ISD::UNINDEXED;
3145   }
3146 
3147   /// Returns true if the specified node is an unindexed store.
3148   inline bool isUNINDEXEDStore(const SDNode *N) {
3149     auto *St = dyn_cast<StoreSDNode>(N);
3150     return St && St->getAddressingMode() == ISD::UNINDEXED;
3151   }
3152 
3153   /// Attempt to match a unary predicate against a scalar/splat constant or
3154   /// every element of a constant BUILD_VECTOR.
3155   /// If AllowUndef is true, then UNDEF elements will pass nullptr to Match.
3156   template <typename ConstNodeType>
3157   bool matchUnaryPredicateImpl(SDValue Op,
3158                                std::function<bool(ConstNodeType *)> Match,
3159                                bool AllowUndefs = false);
3160 
3161   /// Hook for matching ConstantSDNode predicate
3162   inline bool matchUnaryPredicate(SDValue Op,
3163                                   std::function<bool(ConstantSDNode *)> Match,
3164                                   bool AllowUndefs = false) {
3165     return matchUnaryPredicateImpl<ConstantSDNode>(Op, Match, AllowUndefs);
3166   }
3167 
3168   /// Hook for matching ConstantFPSDNode predicate
3169   inline bool
3170   matchUnaryFpPredicate(SDValue Op,
3171                         std::function<bool(ConstantFPSDNode *)> Match,
3172                         bool AllowUndefs = false) {
3173     return matchUnaryPredicateImpl<ConstantFPSDNode>(Op, Match, AllowUndefs);
3174   }
3175 
3176   /// Attempt to match a binary predicate against a pair of scalar/splat
3177   /// constants or every element of a pair of constant BUILD_VECTORs.
3178   /// If AllowUndef is true, then UNDEF elements will pass nullptr to Match.
3179   /// If AllowTypeMismatch is true then RetType + ArgTypes don't need to match.
3180   bool matchBinaryPredicate(
3181       SDValue LHS, SDValue RHS,
3182       std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
3183       bool AllowUndefs = false, bool AllowTypeMismatch = false);
3184 
3185   /// Returns true if the specified value is the overflow result from one
3186   /// of the overflow intrinsic nodes.
3187   inline bool isOverflowIntrOpRes(SDValue Op) {
3188     unsigned Opc = Op.getOpcode();
3189     return (Op.getResNo() == 1 &&
3190             (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
3191              Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO));
3192   }
3193 
3194 } // end namespace ISD
3195 
3196 } // end namespace llvm
3197 
3198 #endif // LLVM_CODEGEN_SELECTIONDAGNODES_H
3199