1 //===-- Process.h -----------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #ifndef LLDB_TARGET_PROCESS_H
10 #define LLDB_TARGET_PROCESS_H
11 
12 #include "lldb/Host/Config.h"
13 
14 #include <climits>
15 
16 #include <chrono>
17 #include <list>
18 #include <memory>
19 #include <mutex>
20 #include <optional>
21 #include <string>
22 #include <unordered_set>
23 #include <vector>
24 
25 #include "lldb/Breakpoint/BreakpointSite.h"
26 #include "lldb/Breakpoint/StopPointSiteList.h"
27 #include "lldb/Breakpoint/WatchpointResource.h"
28 #include "lldb/Core/LoadedModuleInfoList.h"
29 #include "lldb/Core/PluginInterface.h"
30 #include "lldb/Core/SourceManager.h"
31 #include "lldb/Core/ThreadSafeValue.h"
32 #include "lldb/Core/ThreadedCommunication.h"
33 #include "lldb/Core/UserSettingsController.h"
34 #include "lldb/Host/HostThread.h"
35 #include "lldb/Host/ProcessLaunchInfo.h"
36 #include "lldb/Host/ProcessRunLock.h"
37 #include "lldb/Symbol/ObjectFile.h"
38 #include "lldb/Target/ExecutionContextScope.h"
39 #include "lldb/Target/InstrumentationRuntime.h"
40 #include "lldb/Target/Memory.h"
41 #include "lldb/Target/MemoryTagManager.h"
42 #include "lldb/Target/QueueList.h"
43 #include "lldb/Target/ThreadList.h"
44 #include "lldb/Target/ThreadPlanStack.h"
45 #include "lldb/Target/Trace.h"
46 #include "lldb/Utility/AddressableBits.h"
47 #include "lldb/Utility/ArchSpec.h"
48 #include "lldb/Utility/Broadcaster.h"
49 #include "lldb/Utility/Event.h"
50 #include "lldb/Utility/Listener.h"
51 #include "lldb/Utility/NameMatches.h"
52 #include "lldb/Utility/ProcessInfo.h"
53 #include "lldb/Utility/Status.h"
54 #include "lldb/Utility/StructuredData.h"
55 #include "lldb/Utility/TraceGDBRemotePackets.h"
56 #include "lldb/Utility/UnimplementedError.h"
57 #include "lldb/Utility/UserIDResolver.h"
58 #include "lldb/lldb-private.h"
59 
60 #include "llvm/ADT/AddressRanges.h"
61 #include "llvm/ADT/ArrayRef.h"
62 #include "llvm/Support/Error.h"
63 #include "llvm/Support/Threading.h"
64 #include "llvm/Support/VersionTuple.h"
65 
66 namespace lldb_private {
67 
68 template <typename B, typename S> struct Range;
69 
70 class ProcessExperimentalProperties : public Properties {
71 public:
72   ProcessExperimentalProperties();
73 };
74 
75 class ProcessProperties : public Properties {
76 public:
77   // Pass nullptr for "process" if the ProcessProperties are to be the global
78   // copy
79   ProcessProperties(lldb_private::Process *process);
80 
81   ~ProcessProperties() override;
82 
83   bool GetDisableMemoryCache() const;
84   uint64_t GetMemoryCacheLineSize() const;
85   Args GetExtraStartupCommands() const;
86   void SetExtraStartupCommands(const Args &args);
87   FileSpec GetPythonOSPluginPath() const;
88   uint32_t GetVirtualAddressableBits() const;
89   void SetVirtualAddressableBits(uint32_t bits);
90   uint32_t GetHighmemVirtualAddressableBits() const;
91   void SetHighmemVirtualAddressableBits(uint32_t bits);
92   void SetPythonOSPluginPath(const FileSpec &file);
93   bool GetIgnoreBreakpointsInExpressions() const;
94   void SetIgnoreBreakpointsInExpressions(bool ignore);
95   bool GetUnwindOnErrorInExpressions() const;
96   void SetUnwindOnErrorInExpressions(bool ignore);
97   bool GetStopOnSharedLibraryEvents() const;
98   void SetStopOnSharedLibraryEvents(bool stop);
99   bool GetDisableLangRuntimeUnwindPlans() const;
100   void SetDisableLangRuntimeUnwindPlans(bool disable);
101   bool GetDetachKeepsStopped() const;
102   void SetDetachKeepsStopped(bool keep_stopped);
103   bool GetWarningsOptimization() const;
104   bool GetWarningsUnsupportedLanguage() const;
105   bool GetStopOnExec() const;
106   std::chrono::seconds GetUtilityExpressionTimeout() const;
107   std::chrono::seconds GetInterruptTimeout() const;
108   bool GetOSPluginReportsAllThreads() const;
109   void SetOSPluginReportsAllThreads(bool does_report);
110   bool GetSteppingRunsAllThreads() const;
111   FollowForkMode GetFollowForkMode() const;
112 
113 protected:
114   Process *m_process; // Can be nullptr for global ProcessProperties
115   std::unique_ptr<ProcessExperimentalProperties> m_experimental_properties_up;
116 };
117 
118 // ProcessAttachInfo
119 //
120 // Describes any information that is required to attach to a process.
121 
122 class ProcessAttachInfo : public ProcessInstanceInfo {
123 public:
124   ProcessAttachInfo() = default;
125 
ProcessAttachInfo(const ProcessLaunchInfo & launch_info)126   ProcessAttachInfo(const ProcessLaunchInfo &launch_info)
127       : m_resume_count(0), m_wait_for_launch(false), m_ignore_existing(true),
128         m_continue_once_attached(false), m_detach_on_error(true),
129         m_async(false) {
130     ProcessInfo::operator=(launch_info);
131     SetProcessPluginName(launch_info.GetProcessPluginName());
132     SetResumeCount(launch_info.GetResumeCount());
133     m_detach_on_error = launch_info.GetDetachOnError();
134   }
135 
GetWaitForLaunch()136   bool GetWaitForLaunch() const { return m_wait_for_launch; }
137 
SetWaitForLaunch(bool b)138   void SetWaitForLaunch(bool b) { m_wait_for_launch = b; }
139 
GetAsync()140   bool GetAsync() const { return m_async; }
141 
SetAsync(bool b)142   void SetAsync(bool b) { m_async = b; }
143 
GetIgnoreExisting()144   bool GetIgnoreExisting() const { return m_ignore_existing; }
145 
SetIgnoreExisting(bool b)146   void SetIgnoreExisting(bool b) { m_ignore_existing = b; }
147 
GetContinueOnceAttached()148   bool GetContinueOnceAttached() const { return m_continue_once_attached; }
149 
SetContinueOnceAttached(bool b)150   void SetContinueOnceAttached(bool b) { m_continue_once_attached = b; }
151 
GetResumeCount()152   uint32_t GetResumeCount() const { return m_resume_count; }
153 
SetResumeCount(uint32_t c)154   void SetResumeCount(uint32_t c) { m_resume_count = c; }
155 
GetProcessPluginName()156   llvm::StringRef GetProcessPluginName() const {
157     return llvm::StringRef(m_plugin_name);
158   }
159 
SetProcessPluginName(llvm::StringRef plugin)160   void SetProcessPluginName(llvm::StringRef plugin) {
161     m_plugin_name = std::string(plugin);
162   }
163 
Clear()164   void Clear() {
165     ProcessInstanceInfo::Clear();
166     m_plugin_name.clear();
167     m_resume_count = 0;
168     m_wait_for_launch = false;
169     m_ignore_existing = true;
170     m_continue_once_attached = false;
171   }
172 
ProcessInfoSpecified()173   bool ProcessInfoSpecified() const {
174     if (GetExecutableFile())
175       return true;
176     if (GetProcessID() != LLDB_INVALID_PROCESS_ID)
177       return true;
178     if (GetParentProcessID() != LLDB_INVALID_PROCESS_ID)
179       return true;
180     return false;
181   }
182 
GetDetachOnError()183   bool GetDetachOnError() const { return m_detach_on_error; }
184 
SetDetachOnError(bool enable)185   void SetDetachOnError(bool enable) { m_detach_on_error = enable; }
186 
187   lldb::ListenerSP GetListenerForProcess(Debugger &debugger);
188 
189 protected:
190   std::string m_plugin_name;
191   uint32_t m_resume_count = 0; // How many times do we resume after launching
192   bool m_wait_for_launch = false;
193   bool m_ignore_existing = true;
194   bool m_continue_once_attached = false; // Supports the use-case scenario of
195                                          // immediately continuing the process
196                                          // once attached.
197   bool m_detach_on_error =
198       true; // If we are debugging remotely, instruct the stub to
199             // detach rather than killing the target on error.
200   bool m_async =
201       false; // Use an async attach where we start the attach and return
202              // immediately (used by GUI programs with --waitfor so they can
203              // call SBProcess::Stop() to cancel attach)
204 };
205 
206 // This class tracks the Modification state of the process.  Things that can
207 // currently modify the program are running the program (which will up the
208 // StopID) and writing memory (which will up the MemoryID.)
209 // FIXME: Should we also include modification of register states?
210 
211 class ProcessModID {
212   friend bool operator==(const ProcessModID &lhs, const ProcessModID &rhs);
213 
214 public:
215   ProcessModID() = default;
216 
ProcessModID(const ProcessModID & rhs)217   ProcessModID(const ProcessModID &rhs)
218       : m_stop_id(rhs.m_stop_id), m_memory_id(rhs.m_memory_id) {}
219 
220   const ProcessModID &operator=(const ProcessModID &rhs) {
221     if (this != &rhs) {
222       m_stop_id = rhs.m_stop_id;
223       m_memory_id = rhs.m_memory_id;
224     }
225     return *this;
226   }
227 
228   ~ProcessModID() = default;
229 
BumpStopID()230   uint32_t BumpStopID() {
231     const uint32_t prev_stop_id = m_stop_id++;
232     if (!IsLastResumeForUserExpression())
233       m_last_natural_stop_id++;
234     return prev_stop_id;
235   }
236 
BumpMemoryID()237   void BumpMemoryID() { m_memory_id++; }
238 
BumpResumeID()239   void BumpResumeID() {
240     m_resume_id++;
241     if (m_running_user_expression > 0)
242       m_last_user_expression_resume = m_resume_id;
243   }
244 
IsRunningUtilityFunction()245   bool IsRunningUtilityFunction() const {
246     return m_running_utility_function > 0;
247   }
248 
GetStopID()249   uint32_t GetStopID() const { return m_stop_id; }
GetLastNaturalStopID()250   uint32_t GetLastNaturalStopID() const { return m_last_natural_stop_id; }
GetMemoryID()251   uint32_t GetMemoryID() const { return m_memory_id; }
GetResumeID()252   uint32_t GetResumeID() const { return m_resume_id; }
GetLastUserExpressionResumeID()253   uint32_t GetLastUserExpressionResumeID() const {
254     return m_last_user_expression_resume;
255   }
256 
MemoryIDEqual(const ProcessModID & compare)257   bool MemoryIDEqual(const ProcessModID &compare) const {
258     return m_memory_id == compare.m_memory_id;
259   }
260 
StopIDEqual(const ProcessModID & compare)261   bool StopIDEqual(const ProcessModID &compare) const {
262     return m_stop_id == compare.m_stop_id;
263   }
264 
SetInvalid()265   void SetInvalid() { m_stop_id = UINT32_MAX; }
266 
IsValid()267   bool IsValid() const { return m_stop_id != UINT32_MAX; }
268 
IsLastResumeForUserExpression()269   bool IsLastResumeForUserExpression() const {
270     // If we haven't yet resumed the target, then it can't be for a user
271     // expression...
272     if (m_resume_id == 0)
273       return false;
274 
275     return m_resume_id == m_last_user_expression_resume;
276   }
277 
IsRunningExpression()278   bool IsRunningExpression() const {
279     // Don't return true if we are no longer running an expression:
280     if (m_running_user_expression || m_running_utility_function)
281       return true;
282     return false;
283   }
284 
SetRunningUserExpression(bool on)285   void SetRunningUserExpression(bool on) {
286     if (on)
287       m_running_user_expression++;
288     else
289       m_running_user_expression--;
290   }
291 
SetRunningUtilityFunction(bool on)292   void SetRunningUtilityFunction(bool on) {
293     if (on)
294       m_running_utility_function++;
295     else {
296       assert(m_running_utility_function > 0 &&
297              "Called SetRunningUtilityFunction(false) without calling "
298              "SetRunningUtilityFunction(true) before?");
299       m_running_utility_function--;
300     }
301   }
302 
SetStopEventForLastNaturalStopID(lldb::EventSP event_sp)303   void SetStopEventForLastNaturalStopID(lldb::EventSP event_sp) {
304     m_last_natural_stop_event = std::move(event_sp);
305   }
306 
GetStopEventForStopID(uint32_t stop_id)307   lldb::EventSP GetStopEventForStopID(uint32_t stop_id) const {
308     if (stop_id == m_last_natural_stop_id)
309       return m_last_natural_stop_event;
310     return lldb::EventSP();
311   }
312 
313 private:
314   uint32_t m_stop_id = 0;
315   uint32_t m_last_natural_stop_id = 0;
316   uint32_t m_resume_id = 0;
317   uint32_t m_memory_id = 0;
318   uint32_t m_last_user_expression_resume = 0;
319   uint32_t m_running_user_expression = false;
320   uint32_t m_running_utility_function = 0;
321   lldb::EventSP m_last_natural_stop_event;
322 };
323 
324 inline bool operator==(const ProcessModID &lhs, const ProcessModID &rhs) {
325   if (lhs.StopIDEqual(rhs) && lhs.MemoryIDEqual(rhs))
326     return true;
327   else
328     return false;
329 }
330 
331 inline bool operator!=(const ProcessModID &lhs, const ProcessModID &rhs) {
332   return (!lhs.StopIDEqual(rhs) || !lhs.MemoryIDEqual(rhs));
333 }
334 
335 /// \class Process Process.h "lldb/Target/Process.h"
336 /// A plug-in interface definition class for debugging a process.
337 class Process : public std::enable_shared_from_this<Process>,
338                 public ProcessProperties,
339                 public Broadcaster,
340                 public ExecutionContextScope,
341                 public PluginInterface {
342   friend class FunctionCaller; // For WaitForStateChangeEventsPrivate
343   friend class Debugger; // For PopProcessIOHandler and ProcessIOHandlerIsActive
344   friend class DynamicLoader; // For LoadOperatingSystemPlugin
345   friend class ProcessEventData;
346   friend class StopInfo;
347   friend class Target;
348   friend class ThreadList;
349 
350 public:
351   /// Broadcaster event bits definitions.
352   enum {
353     eBroadcastBitStateChanged = (1 << 0),
354     eBroadcastBitInterrupt = (1 << 1),
355     eBroadcastBitSTDOUT = (1 << 2),
356     eBroadcastBitSTDERR = (1 << 3),
357     eBroadcastBitProfileData = (1 << 4),
358     eBroadcastBitStructuredData = (1 << 5),
359   };
360   // This is all the event bits the public process broadcaster broadcasts.
361   // The process shadow listener signs up for all these bits...
362   static constexpr int g_all_event_bits =
363       eBroadcastBitStateChanged | eBroadcastBitInterrupt | eBroadcastBitSTDOUT |
364       eBroadcastBitSTDERR | eBroadcastBitProfileData |
365       eBroadcastBitStructuredData;
366 
367   enum {
368     eBroadcastInternalStateControlStop = (1 << 0),
369     eBroadcastInternalStateControlPause = (1 << 1),
370     eBroadcastInternalStateControlResume = (1 << 2)
371   };
372 
373   typedef Range<lldb::addr_t, lldb::addr_t> LoadRange;
374   // We use a read/write lock to allow on or more clients to access the process
375   // state while the process is stopped (reader). We lock the write lock to
376   // control access to the process while it is running (readers, or clients
377   // that want the process stopped can block waiting for the process to stop,
378   // or just try to lock it to see if they can immediately access the stopped
379   // process. If the try read lock fails, then the process is running.
380   typedef ProcessRunLock::ProcessRunLocker StopLocker;
381 
382   // These two functions fill out the Broadcaster interface:
383 
384   static llvm::StringRef GetStaticBroadcasterClass();
385 
386   static constexpr llvm::StringRef AttachSynchronousHijackListenerName =
387       "lldb.internal.Process.AttachSynchronous.hijack";
388   static constexpr llvm::StringRef LaunchSynchronousHijackListenerName =
389       "lldb.internal.Process.LaunchSynchronous.hijack";
390   static constexpr llvm::StringRef ResumeSynchronousHijackListenerName =
391       "lldb.internal.Process.ResumeSynchronous.hijack";
392 
GetBroadcasterClass()393   llvm::StringRef GetBroadcasterClass() const override {
394     return GetStaticBroadcasterClass();
395   }
396 
397 /// A notification structure that can be used by clients to listen
398 /// for changes in a process's lifetime.
399 ///
400 /// \see RegisterNotificationCallbacks (const Notifications&) @see
401 /// UnregisterNotificationCallbacks (const Notifications&)
402   typedef struct {
403     void *baton;
404     void (*initialize)(void *baton, Process *process);
405     void (*process_state_changed)(void *baton, Process *process,
406                                   lldb::StateType state);
407   } Notifications;
408 
409   class ProcessEventData : public EventData {
410     friend class Process;
411 
412   public:
413     ProcessEventData();
414     ProcessEventData(const lldb::ProcessSP &process, lldb::StateType state);
415 
416     ~ProcessEventData() override;
417 
418     static llvm::StringRef GetFlavorString();
419 
420     llvm::StringRef GetFlavor() const override;
421 
GetProcessSP()422     lldb::ProcessSP GetProcessSP() const { return m_process_wp.lock(); }
423 
GetState()424     lldb::StateType GetState() const { return m_state; }
GetRestarted()425     bool GetRestarted() const { return m_restarted; }
426 
GetNumRestartedReasons()427     size_t GetNumRestartedReasons() { return m_restarted_reasons.size(); }
428 
GetRestartedReasonAtIndex(size_t idx)429     const char *GetRestartedReasonAtIndex(size_t idx) {
430       return ((idx < m_restarted_reasons.size())
431                   ? m_restarted_reasons[idx].c_str()
432                   : nullptr);
433     }
434 
GetInterrupted()435     bool GetInterrupted() const { return m_interrupted; }
436 
437     void Dump(Stream *s) const override;
438 
439     virtual bool ShouldStop(Event *event_ptr, bool &found_valid_stopinfo);
440 
441     void DoOnRemoval(Event *event_ptr) override;
442 
443     static const Process::ProcessEventData *
444     GetEventDataFromEvent(const Event *event_ptr);
445 
446     static lldb::ProcessSP GetProcessFromEvent(const Event *event_ptr);
447 
448     static lldb::StateType GetStateFromEvent(const Event *event_ptr);
449 
450     static bool GetRestartedFromEvent(const Event *event_ptr);
451 
452     static size_t GetNumRestartedReasons(const Event *event_ptr);
453 
454     static const char *GetRestartedReasonAtIndex(const Event *event_ptr,
455                                                  size_t idx);
456 
457     static void AddRestartedReason(Event *event_ptr, const char *reason);
458 
459     static void SetRestartedInEvent(Event *event_ptr, bool new_value);
460 
461     static bool GetInterruptedFromEvent(const Event *event_ptr);
462 
463     static void SetInterruptedInEvent(Event *event_ptr, bool new_value);
464 
465     static bool SetUpdateStateOnRemoval(Event *event_ptr);
466 
467   private:
SetUpdateStateOnRemoval()468     void SetUpdateStateOnRemoval() { m_update_state++; }
469 
SetRestarted(bool new_value)470     void SetRestarted(bool new_value) { m_restarted = new_value; }
471 
SetInterrupted(bool new_value)472     void SetInterrupted(bool new_value) { m_interrupted = new_value; }
473 
AddRestartedReason(const char * reason)474     void AddRestartedReason(const char *reason) {
475       m_restarted_reasons.push_back(reason);
476     }
477 
478     lldb::ProcessWP m_process_wp;
479     lldb::StateType m_state = lldb::eStateInvalid;
480     std::vector<std::string> m_restarted_reasons;
481     bool m_restarted = false; // For "eStateStopped" events, this is true if the
482                               // target was automatically restarted.
483     int m_update_state = 0;
484     bool m_interrupted = false;
485 
486     ProcessEventData(const ProcessEventData &) = delete;
487     const ProcessEventData &operator=(const ProcessEventData &) = delete;
488   };
489 
490   /// Destructor.
491   ///
492   /// The destructor is virtual since this class is designed to be inherited
493   /// from by the plug-in instance.
494   ~Process() override;
495 
496   static void SettingsInitialize();
497 
498   static void SettingsTerminate();
499 
500   static ProcessProperties &GetGlobalProperties();
501 
502   /// Find a Process plug-in that can debug \a module using the currently
503   /// selected architecture.
504   ///
505   /// Scans all loaded plug-in interfaces that implement versions of the
506   /// Process plug-in interface and returns the first instance that can debug
507   /// the file.
508   ///
509   /// \see Process::CanDebug ()
510   static lldb::ProcessSP FindPlugin(lldb::TargetSP target_sp,
511                                     llvm::StringRef plugin_name,
512                                     lldb::ListenerSP listener_sp,
513                                     const FileSpec *crash_file_path,
514                                     bool can_connect);
515 
516   /// Static function that can be used with the \b host function
517   /// Host::StartMonitoringChildProcess ().
518   ///
519   /// This function can be used by lldb_private::Process subclasses when they
520   /// want to watch for a local process and have its exit status automatically
521   /// set when the host child process exits. Subclasses should call
522   /// Host::StartMonitoringChildProcess () with:
523   ///     callback = Process::SetHostProcessExitStatus
524   ///     pid = Process::GetID()
525   ///     monitor_signals = false
526   static bool
527   SetProcessExitStatus(lldb::pid_t pid, // The process ID we want to monitor
528                        bool exited,
529                        int signo,   // Zero for no signal
530                        int status); // Exit value of process if signal is zero
531 
532   lldb::ByteOrder GetByteOrder() const;
533 
534   uint32_t GetAddressByteSize() const;
535 
536   /// Returns the pid of the process or LLDB_INVALID_PROCESS_ID if there is
537   /// no known pid.
GetID()538   lldb::pid_t GetID() const { return m_pid; }
539 
540   /// Sets the stored pid.
541   ///
542   /// This does not change the pid of underlying process.
SetID(lldb::pid_t new_pid)543   void SetID(lldb::pid_t new_pid) { m_pid = new_pid; }
544 
GetUniqueID()545   uint32_t GetUniqueID() const { return m_process_unique_id; }
546 
547   /// Check if a plug-in instance can debug the file in \a module.
548   ///
549   /// Each plug-in is given a chance to say whether it can debug the file in
550   /// \a module. If the Process plug-in instance can debug a file on the
551   /// current system, it should return \b true.
552   ///
553   /// \return
554   ///     Returns \b true if this Process plug-in instance can
555   ///     debug the executable, \b false otherwise.
556   virtual bool CanDebug(lldb::TargetSP target,
557                         bool plugin_specified_by_name) = 0;
558 
559   /// This object is about to be destroyed, do any necessary cleanup.
560   ///
561   /// Subclasses that override this method should always call this superclass
562   /// method.
563   /// If you are running Finalize in your Process subclass Destructor, pass
564   /// \b true.  If we are in the destructor, shared_from_this will no longer
565   /// work, so we have to avoid doing anything that might trigger that.
566   virtual void Finalize(bool destructing);
567 
568   /// Return whether this object is valid (i.e. has not been finalized.)
569   ///
570   /// \return
571   ///     Returns \b true if this Process has not been finalized
572   ///     and \b false otherwise.
IsValid()573   bool IsValid() const { return !m_finalizing; }
574 
575   /// Return a multi-word command object that can be used to expose plug-in
576   /// specific commands.
577   ///
578   /// This object will be used to resolve plug-in commands and can be
579   /// triggered by a call to:
580   ///
581   ///     (lldb) process command <args>
582   ///
583   /// \return
584   ///     A CommandObject which can be one of the concrete subclasses
585   ///     of CommandObject like CommandObjectRaw, CommandObjectParsed,
586   ///     or CommandObjectMultiword.
GetPluginCommandObject()587   virtual CommandObject *GetPluginCommandObject() { return nullptr; }
588 
589   /// The underlying plugin might store the low-level communication history for
590   /// this session.  Dump it into the provided stream.
DumpPluginHistory(Stream & s)591   virtual void DumpPluginHistory(Stream &s) { return; }
592 
593   /// Launch a new process.
594   ///
595   /// Launch a new process by spawning a new process using the target object's
596   /// executable module's file as the file to launch.
597   ///
598   /// This function is not meant to be overridden by Process subclasses. It
599   /// will first call Process::WillLaunch (Module *) and if that returns \b
600   /// true, Process::DoLaunch (Module*, char const *[],char const *[],const
601   /// char *,const char *, const char *) will be called to actually do the
602   /// launching. If DoLaunch returns \b true, then Process::DidLaunch() will
603   /// be called.
604   ///
605   /// \param[in] launch_info
606   ///     Details regarding the environment, STDIN/STDOUT/STDERR
607   ///     redirection, working path, etc. related to the requested launch.
608   ///
609   /// \return
610   ///     An error object. Call GetID() to get the process ID if
611   ///     the error object is success.
612   virtual Status Launch(ProcessLaunchInfo &launch_info);
613 
614   virtual Status LoadCore();
615 
DoLoadCore()616   virtual Status DoLoadCore() {
617     Status error;
618     error.SetErrorStringWithFormatv(
619         "error: {0} does not support loading core files.", GetPluginName());
620     return error;
621   }
622 
623   /// The "ShadowListener" for a process is just an ordinary Listener that
624   /// listens for all the Process event bits.  It's convenient because you can
625   /// specify it in the LaunchInfo or AttachInfo, so it will get events from
626   /// the very start of the process.
SetShadowListener(lldb::ListenerSP shadow_listener_sp)627   void SetShadowListener(lldb::ListenerSP shadow_listener_sp) {
628     if (shadow_listener_sp)
629       AddListener(shadow_listener_sp, g_all_event_bits);
630   }
631 
632   // FUTURE WORK: GetLoadImageUtilityFunction are the first use we've
633   // had of having other plugins cache data in the Process.  This is handy for
634   // long-living plugins - like the Platform - which manage interactions whose
635   // lifetime is governed by the Process lifetime.  If we find we need to do
636   // this more often, we should construct a general solution to the problem.
637   // The consensus suggestion was that we have a token based registry in the
638   // Process. Some undecided questions are  (1) who manages the tokens.  It's
639   // probably best that you add the element  and get back a token that
640   // represents it.  That will avoid collisions.  But there may be some utility
641   // in the registerer controlling the token? (2) whether the thing added
642   // should be simply owned by Process, and just go away when it does (3)
643   // whether the registree should be notified of the Process' demise.
644   //
645   // We are postponing designing this till we have at least a second use case.
646   /// Get the cached UtilityFunction that assists in loading binary images
647   /// into the process.
648   ///
649   /// \param[in] platform
650   ///     The platform fetching the UtilityFunction.
651   /// \param[in] factory
652   ///     A function that will be called only once per-process in a
653   ///     thread-safe way to create the UtilityFunction if it has not
654   ///     been initialized yet.
655   ///
656   /// \return
657   ///     The cached utility function or null if the platform is not the
658   ///     same as the target's platform.
659   UtilityFunction *GetLoadImageUtilityFunction(
660       Platform *platform,
661       llvm::function_ref<std::unique_ptr<UtilityFunction>()> factory);
662 
663   /// Get the dynamic loader plug-in for this process.
664   ///
665   /// The default action is to let the DynamicLoader plug-ins check the main
666   /// executable and the DynamicLoader will select itself automatically.
667   /// Subclasses can override this if inspecting the executable is not
668   /// desired, or if Process subclasses can only use a specific DynamicLoader
669   /// plug-in.
670   virtual DynamicLoader *GetDynamicLoader();
671 
672   void SetDynamicLoader(lldb::DynamicLoaderUP dyld);
673 
674   // Returns AUXV structure found in many ELF-based environments.
675   //
676   // The default action is to return an empty data buffer.
677   //
678   // \return
679   //    A data extractor containing the contents of the AUXV data.
680   virtual DataExtractor GetAuxvData();
681 
682   /// Sometimes processes know how to retrieve and load shared libraries. This
683   /// is normally done by DynamicLoader plug-ins, but sometimes the connection
684   /// to the process allows retrieving this information. The dynamic loader
685   /// plug-ins can use this function if they can't determine the current
686   /// shared library load state.
687   ///
688   /// \return
689   ///    A status object indicating if the operation was sucessful or not.
LoadModules()690   virtual llvm::Error LoadModules() {
691     return llvm::make_error<llvm::StringError>("Not implemented.",
692                                                llvm::inconvertibleErrorCode());
693   }
694 
695   /// Query remote GDBServer for a detailed loaded library list
696   /// \return
697   ///    The list of modules currently loaded by the process, or an error.
GetLoadedModuleList()698   virtual llvm::Expected<LoadedModuleInfoList> GetLoadedModuleList() {
699     return llvm::createStringError(llvm::inconvertibleErrorCode(),
700                                    "Not implemented");
701   }
702 
703   /// Save core dump into the specified file.
704   ///
705   /// \param[in] outfile
706   ///     Path to store core dump in.
707   ///
708   /// \return
709   ///     true if saved successfully, false if saving the core dump
710   ///     is not supported by the plugin, error otherwise.
711   virtual llvm::Expected<bool> SaveCore(llvm::StringRef outfile);
712 
713   struct CoreFileMemoryRange {
714     llvm::AddressRange range;  /// The address range to save into the core file.
715     uint32_t lldb_permissions; /// A bit set of lldb::Permissions bits.
716 
717     bool operator==(const CoreFileMemoryRange &rhs) const {
718       return range == rhs.range && lldb_permissions == rhs.lldb_permissions;
719     }
720 
721     bool operator!=(const CoreFileMemoryRange &rhs) const {
722       return !(*this == rhs);
723     }
724 
725     bool operator<(const CoreFileMemoryRange &rhs) const {
726       if (range < rhs.range)
727         return true;
728       if (range == rhs.range)
729         return lldb_permissions < rhs.lldb_permissions;
730       return false;
731     }
732   };
733 
734   using CoreFileMemoryRanges = std::vector<CoreFileMemoryRange>;
735 
736   /// Helper function for Process::SaveCore(...) that calculates the address
737   /// ranges that should be saved. This allows all core file plug-ins to save
738   /// consistent memory ranges given a \a core_style.
739   Status CalculateCoreFileSaveRanges(lldb::SaveCoreStyle core_style,
740                                      CoreFileMemoryRanges &ranges);
741 
742 protected:
743   virtual JITLoaderList &GetJITLoaders();
744 
745 public:
746   /// Get the system architecture for this process.
GetSystemArchitecture()747   virtual ArchSpec GetSystemArchitecture() { return {}; }
748 
749   /// Get the system runtime plug-in for this process.
750   ///
751   /// \return
752   ///   Returns a pointer to the SystemRuntime plugin for this Process
753   ///   if one is available.  Else returns nullptr.
754   virtual SystemRuntime *GetSystemRuntime();
755 
756   /// Attach to an existing process using the process attach info.
757   ///
758   /// This function is not meant to be overridden by Process subclasses. It
759   /// will first call WillAttach (lldb::pid_t) or WillAttach (const char *),
760   /// and if that returns \b true, DoAttach (lldb::pid_t) or DoAttach (const
761   /// char *) will be called to actually do the attach. If DoAttach returns \b
762   /// true, then Process::DidAttach() will be called.
763   ///
764   /// \param[in] attach_info
765   ///     The process attach info.
766   ///
767   /// \return
768   ///     Returns \a pid if attaching was successful, or
769   ///     LLDB_INVALID_PROCESS_ID if attaching fails.
770   virtual Status Attach(ProcessAttachInfo &attach_info);
771 
772   /// Attach to a remote system via a URL
773   ///
774   /// \param[in] remote_url
775   ///     The URL format that we are connecting to.
776   ///
777   /// \return
778   ///     Returns an error object.
779   virtual Status ConnectRemote(llvm::StringRef remote_url);
780 
GetShouldDetach()781   bool GetShouldDetach() const { return m_should_detach; }
782 
SetShouldDetach(bool b)783   void SetShouldDetach(bool b) { m_should_detach = b; }
784 
785   /// Get the image vector for the current process.
786   ///
787   /// \return
788   ///     The constant reference to the member m_image_tokens.
GetImageTokens()789   const std::vector<lldb::addr_t>& GetImageTokens() { return m_image_tokens; }
790 
791   /// Get the image information address for the current process.
792   ///
793   /// Some runtimes have system functions that can help dynamic loaders locate
794   /// the dynamic loader information needed to observe shared libraries being
795   /// loaded or unloaded. This function is in the Process interface (as
796   /// opposed to the DynamicLoader interface) to ensure that remote debugging
797   /// can take advantage of this functionality.
798   ///
799   /// \return
800   ///     The address of the dynamic loader information, or
801   ///     LLDB_INVALID_ADDRESS if this is not supported by this
802   ///     interface.
803   virtual lldb::addr_t GetImageInfoAddress();
804 
805   /// Called when the process is about to broadcast a public stop.
806   ///
807   /// There are public and private stops. Private stops are when the process
808   /// is doing things like stepping and the client doesn't need to know about
809   /// starts and stop that implement a thread plan. Single stepping over a
810   /// source line in code might end up being implemented by one or more
811   /// process starts and stops. Public stops are when clients will be notified
812   /// that the process is stopped. These events typically trigger UI updates
813   /// (thread stack frames to be displayed, variables to be displayed, and
814   /// more). This function can be overriden and allows process subclasses to
815   /// do something before the eBroadcastBitStateChanged event is sent to
816   /// public clients.
WillPublicStop()817   virtual void WillPublicStop() {}
818 
819 /// Register for process and thread notifications.
820 ///
821 /// Clients can register notification callbacks by filling out a
822 /// Process::Notifications structure and calling this function.
823 ///
824 /// \param[in] callbacks
825 ///     A structure that contains the notification baton and
826 ///     callback functions.
827 ///
828 /// \see Process::Notifications
829   void RegisterNotificationCallbacks(const Process::Notifications &callbacks);
830 
831 /// Unregister for process and thread notifications.
832 ///
833 /// Clients can unregister notification callbacks by passing a copy of the
834 /// original baton and callbacks in \a callbacks.
835 ///
836 /// \param[in] callbacks
837 ///     A structure that contains the notification baton and
838 ///     callback functions.
839 ///
840 /// \return
841 ///     Returns \b true if the notification callbacks were
842 ///     successfully removed from the process, \b false otherwise.
843 ///
844 /// \see Process::Notifications
845   bool UnregisterNotificationCallbacks(const Process::Notifications &callbacks);
846 
847   //==================================================================
848   // Built in Process Control functions
849   //==================================================================
850   /// Resumes all of a process's threads as configured using the Thread run
851   /// control functions.
852   ///
853   /// Threads for a process should be updated with one of the run control
854   /// actions (resume, step, or suspend) that they should take when the
855   /// process is resumed. If no run control action is given to a thread it
856   /// will be resumed by default.
857   ///
858   /// This function is not meant to be overridden by Process subclasses. This
859   /// function will take care of disabling any breakpoints that threads may be
860   /// stopped at, single stepping, and re-enabling breakpoints, and enabling
861   /// the basic flow control that the plug-in instances need not worry about.
862   ///
863   /// N.B. This function also sets the Write side of the Run Lock, which is
864   /// unset when the corresponding stop event is pulled off the Public Event
865   /// Queue.  If you need to resume the process without setting the Run Lock,
866   /// use PrivateResume (though you should only do that from inside the
867   /// Process class.
868   ///
869   /// \return
870   ///     Returns an error object.
871   ///
872   /// \see Thread:Resume()
873   /// \see Thread:Step()
874   /// \see Thread:Suspend()
875   Status Resume();
876 
877   /// Resume a process, and wait for it to stop.
878   Status ResumeSynchronous(Stream *stream);
879 
880   /// Halts a running process.
881   ///
882   /// This function is not meant to be overridden by Process subclasses. If
883   /// the process is successfully halted, a eStateStopped process event with
884   /// GetInterrupted will be broadcast.  If false, we will halt the process
885   /// with no events generated by the halt.
886   ///
887   /// \param[in] clear_thread_plans
888   ///     If true, when the process stops, clear all thread plans.
889   ///
890   /// \param[in] use_run_lock
891   ///     Whether to release the run lock after the stop.
892   ///
893   /// \return
894   ///     Returns an error object.  If the error is empty, the process is
895   ///     halted.
896   ///     otherwise the halt has failed.
897   Status Halt(bool clear_thread_plans = false, bool use_run_lock = true);
898 
899   /// Detaches from a running or stopped process.
900   ///
901   /// This function is not meant to be overridden by Process subclasses.
902   ///
903   /// \param[in] keep_stopped
904   ///     If true, don't resume the process on detach.
905   ///
906   /// \return
907   ///     Returns an error object.
908   Status Detach(bool keep_stopped);
909 
910   /// Kills the process and shuts down all threads that were spawned to track
911   /// and monitor the process.
912   ///
913   /// This function is not meant to be overridden by Process subclasses.
914   ///
915   /// \param[in] force_kill
916   ///     Whether lldb should force a kill (instead of a detach) from
917   ///     the inferior process.  Normally if lldb launched a binary and
918   ///     Destory is called, lldb kills it.  If lldb attached to a
919   ///     running process and Destory is called, lldb detaches.  If
920   ///     this behavior needs to be over-ridden, this is the bool that
921   ///     can be used.
922   ///
923   /// \return
924   ///     Returns an error object.
925   Status Destroy(bool force_kill);
926 
927   /// Sends a process a UNIX signal \a signal.
928   ///
929   /// This function is not meant to be overridden by Process subclasses.
930   ///
931   /// \return
932   ///     Returns an error object.
933   Status Signal(int signal);
934 
935   void SetUnixSignals(lldb::UnixSignalsSP &&signals_sp);
936 
937   const lldb::UnixSignalsSP &GetUnixSignals();
938 
939   //==================================================================
940   // Plug-in Process Control Overrides
941   //==================================================================
942 
943   /// Called before attaching to a process.
944   ///
945   /// \return
946   ///     Returns an error object.
947   Status WillAttachToProcessWithID(lldb::pid_t pid);
948 
949   /// Called before attaching to a process.
950   ///
951   /// Allow Process plug-ins to execute some code before attaching a process.
952   ///
953   /// \return
954   ///     Returns an error object.
DoWillAttachToProcessWithID(lldb::pid_t pid)955   virtual Status DoWillAttachToProcessWithID(lldb::pid_t pid) {
956     return Status();
957   }
958 
959   /// Called before attaching to a process.
960   ///
961   /// \return
962   ///     Returns an error object.
963   Status WillAttachToProcessWithName(const char *process_name,
964                                      bool wait_for_launch);
965 
966   /// Called before attaching to a process.
967   ///
968   /// Allow Process plug-ins to execute some code before attaching a process.
969   ///
970   /// \return
971   ///     Returns an error object.
DoWillAttachToProcessWithName(const char * process_name,bool wait_for_launch)972   virtual Status DoWillAttachToProcessWithName(const char *process_name,
973                                                bool wait_for_launch) {
974     return Status();
975   }
976 
977   /// Attach to a remote system via a URL
978   ///
979   /// \param[in] remote_url
980   ///     The URL format that we are connecting to.
981   ///
982   /// \return
983   ///     Returns an error object.
DoConnectRemote(llvm::StringRef remote_url)984   virtual Status DoConnectRemote(llvm::StringRef remote_url) {
985     Status error;
986     error.SetErrorString("remote connections are not supported");
987     return error;
988   }
989 
990   /// Attach to an existing process using a process ID.
991   ///
992   /// \param[in] pid
993   ///     The process ID that we should attempt to attach to.
994   ///
995   /// \param[in] attach_info
996   ///     Information on how to do the attach. For example, GetUserID()
997   ///     will return the uid to attach as.
998   ///
999   /// \return
1000   ///     Returns a successful Status attaching was successful, or
1001   ///     an appropriate (possibly platform-specific) error code if
1002   ///     attaching fails.
1003   /// hanming : need flag
DoAttachToProcessWithID(lldb::pid_t pid,const ProcessAttachInfo & attach_info)1004   virtual Status DoAttachToProcessWithID(lldb::pid_t pid,
1005                                          const ProcessAttachInfo &attach_info) {
1006     Status error;
1007     error.SetErrorStringWithFormatv(
1008         "error: {0} does not support attaching to a process by pid",
1009         GetPluginName());
1010     return error;
1011   }
1012 
1013   /// Attach to an existing process using a partial process name.
1014   ///
1015   /// \param[in] process_name
1016   ///     The name of the process to attach to.
1017   ///
1018   /// \param[in] attach_info
1019   ///     Information on how to do the attach. For example, GetUserID()
1020   ///     will return the uid to attach as.
1021   ///
1022   /// \return
1023   ///     Returns a successful Status attaching was successful, or
1024   ///     an appropriate (possibly platform-specific) error code if
1025   ///     attaching fails.
1026   virtual Status
DoAttachToProcessWithName(const char * process_name,const ProcessAttachInfo & attach_info)1027   DoAttachToProcessWithName(const char *process_name,
1028                             const ProcessAttachInfo &attach_info) {
1029     Status error;
1030     error.SetErrorString("attach by name is not supported");
1031     return error;
1032   }
1033 
1034   /// Called after attaching a process.
1035   ///
1036   /// \param[in] process_arch
1037   ///     If you can figure out the process architecture after attach, fill it
1038   ///     in here.
1039   ///
1040   /// Allow Process plug-ins to execute some code after attaching to a
1041   /// process.
DidAttach(ArchSpec & process_arch)1042   virtual void DidAttach(ArchSpec &process_arch) { process_arch.Clear(); }
1043 
1044   /// Called after a process re-execs itself.
1045   ///
1046   /// Allow Process plug-ins to execute some code after a process has exec'ed
1047   /// itself. Subclasses typically should override DoDidExec() as the
1048   /// lldb_private::Process class needs to remove its dynamic loader, runtime,
1049   /// ABI and other plug-ins, as well as unload all shared libraries.
1050   virtual void DidExec();
1051 
1052   /// Subclasses of Process should implement this function if they need to do
1053   /// anything after a process exec's itself.
DoDidExec()1054   virtual void DoDidExec() {}
1055 
1056   /// Called after a reported fork.
DidFork(lldb::pid_t child_pid,lldb::tid_t child_tid)1057   virtual void DidFork(lldb::pid_t child_pid, lldb::tid_t child_tid) {}
1058 
1059   /// Called after a reported vfork.
DidVFork(lldb::pid_t child_pid,lldb::tid_t child_tid)1060   virtual void DidVFork(lldb::pid_t child_pid, lldb::tid_t child_tid) {}
1061 
1062   /// Called after reported vfork completion.
DidVForkDone()1063   virtual void DidVForkDone() {}
1064 
1065   /// Called before launching to a process.
1066   /// \return
1067   ///     Returns an error object.
1068   Status WillLaunch(Module *module);
1069 
1070   /// Called before launching to a process.
1071   ///
1072   /// Allow Process plug-ins to execute some code before launching a process.
1073   ///
1074   /// \return
1075   ///     Returns an error object.
DoWillLaunch(Module * module)1076   virtual Status DoWillLaunch(Module *module) { return Status(); }
1077 
1078   /// Launch a new process.
1079   ///
1080   /// Launch a new process by spawning a new process using \a exe_module's
1081   /// file as the file to launch. Launch details are provided in \a
1082   /// launch_info.
1083   ///
1084   /// \param[in] exe_module
1085   ///     The module from which to extract the file specification and
1086   ///     launch.
1087   ///
1088   /// \param[in] launch_info
1089   ///     Details (e.g. arguments, stdio redirection, etc.) for the
1090   ///     requested launch.
1091   ///
1092   /// \return
1093   ///     An Status instance indicating success or failure of the
1094   ///     operation.
DoLaunch(Module * exe_module,ProcessLaunchInfo & launch_info)1095   virtual Status DoLaunch(Module *exe_module, ProcessLaunchInfo &launch_info) {
1096     Status error;
1097     error.SetErrorStringWithFormatv(
1098         "error: {0} does not support launching processes", GetPluginName());
1099     return error;
1100   }
1101 
1102   /// Called after launching a process.
1103   ///
1104   /// Allow Process plug-ins to execute some code after launching a process.
DidLaunch()1105   virtual void DidLaunch() {}
1106 
1107   /// Called before resuming to a process.
1108   ///
1109   /// Allow Process plug-ins to execute some code before resuming a process.
1110   ///
1111   /// \return
1112   ///     Returns an error object.
WillResume()1113   virtual Status WillResume() { return Status(); }
1114 
1115   /// Resumes all of a process's threads as configured using the Thread run
1116   /// control functions.
1117   ///
1118   /// Threads for a process should be updated with one of the run control
1119   /// actions (resume, step, or suspend) that they should take when the
1120   /// process is resumed. If no run control action is given to a thread it
1121   /// will be resumed by default.
1122   ///
1123   /// \return
1124   ///     Returns \b true if the process successfully resumes using
1125   ///     the thread run control actions, \b false otherwise.
1126   ///
1127   /// \see Thread:Resume()
1128   /// \see Thread:Step()
1129   /// \see Thread:Suspend()
DoResume()1130   virtual Status DoResume() {
1131     Status error;
1132     error.SetErrorStringWithFormatv(
1133         "error: {0} does not support resuming processes", GetPluginName());
1134     return error;
1135   }
1136 
1137   /// Called after resuming a process.
1138   ///
1139   /// Allow Process plug-ins to execute some code after resuming a process.
DidResume()1140   virtual void DidResume() {}
1141 
1142   /// Called before halting to a process.
1143   ///
1144   /// Allow Process plug-ins to execute some code before halting a process.
1145   ///
1146   /// \return
1147   ///     Returns an error object.
WillHalt()1148   virtual Status WillHalt() { return Status(); }
1149 
1150   /// Halts a running process.
1151   ///
1152   /// DoHalt must produce one and only one stop StateChanged event if it
1153   /// actually stops the process.  If the stop happens through some natural
1154   /// event (for instance a SIGSTOP), then forwarding that event will do.
1155   /// Otherwise, you must generate the event manually. This function is called
1156   /// from the context of the private state thread.
1157   ///
1158   /// \param[out] caused_stop
1159   ///     If true, then this Halt caused the stop, otherwise, the
1160   ///     process was already stopped.
1161   ///
1162   /// \return
1163   ///     Returns \b true if the process successfully halts, \b false
1164   ///     otherwise.
DoHalt(bool & caused_stop)1165   virtual Status DoHalt(bool &caused_stop) {
1166     Status error;
1167     error.SetErrorStringWithFormatv(
1168         "error: {0} does not support halting processes", GetPluginName());
1169     return error;
1170   }
1171 
1172   /// Called after halting a process.
1173   ///
1174   /// Allow Process plug-ins to execute some code after halting a process.
DidHalt()1175   virtual void DidHalt() {}
1176 
1177   /// Called before detaching from a process.
1178   ///
1179   /// Allow Process plug-ins to execute some code before detaching from a
1180   /// process.
1181   ///
1182   /// \return
1183   ///     Returns an error object.
WillDetach()1184   virtual Status WillDetach() { return Status(); }
1185 
1186   /// Detaches from a running or stopped process.
1187   ///
1188   /// \return
1189   ///     Returns \b true if the process successfully detaches, \b
1190   ///     false otherwise.
DoDetach(bool keep_stopped)1191   virtual Status DoDetach(bool keep_stopped) {
1192     Status error;
1193     error.SetErrorStringWithFormatv(
1194         "error: {0} does not support detaching from processes",
1195         GetPluginName());
1196     return error;
1197   }
1198 
1199   /// Called after detaching from a process.
1200   ///
1201   /// Allow Process plug-ins to execute some code after detaching from a
1202   /// process.
DidDetach()1203   virtual void DidDetach() {}
1204 
DetachRequiresHalt()1205   virtual bool DetachRequiresHalt() { return false; }
1206 
1207   /// Called before sending a signal to a process.
1208   ///
1209   /// Allow Process plug-ins to execute some code before sending a signal to a
1210   /// process.
1211   ///
1212   /// \return
1213   ///     Returns no error if it is safe to proceed with a call to
1214   ///     Process::DoSignal(int), otherwise an error describing what
1215   ///     prevents the signal from being sent.
WillSignal()1216   virtual Status WillSignal() { return Status(); }
1217 
1218   /// Sends a process a UNIX signal \a signal.
1219   ///
1220   /// \return
1221   ///     Returns an error object.
DoSignal(int signal)1222   virtual Status DoSignal(int signal) {
1223     Status error;
1224     error.SetErrorStringWithFormatv(
1225         "error: {0} does not support sending signals to processes",
1226         GetPluginName());
1227     return error;
1228   }
1229 
WillDestroy()1230   virtual Status WillDestroy() { return Status(); }
1231 
1232   virtual Status DoDestroy() = 0;
1233 
DidDestroy()1234   virtual void DidDestroy() {}
1235 
DestroyRequiresHalt()1236   virtual bool DestroyRequiresHalt() { return true; }
1237 
1238   /// Called after sending a signal to a process.
1239   ///
1240   /// Allow Process plug-ins to execute some code after sending a signal to a
1241   /// process.
DidSignal()1242   virtual void DidSignal() {}
1243 
1244   /// Currently called as part of ShouldStop.
1245   /// FIXME: Should really happen when the target stops before the
1246   /// event is taken from the queue...
1247   ///
1248   /// This callback is called as the event
1249   /// is about to be queued up to allow Process plug-ins to execute some code
1250   /// prior to clients being notified that a process was stopped. Common
1251   /// operations include updating the thread list, invalidating any thread
1252   /// state (registers, stack, etc) prior to letting the notification go out.
1253   ///
1254   virtual void RefreshStateAfterStop() = 0;
1255 
1256   /// Sometimes the connection to a process can detect the host OS version
1257   /// that the process is running on. The current platform should be checked
1258   /// first in case the platform is connected, but clients can fall back onto
1259   /// this function if the platform fails to identify the host OS version. The
1260   /// platform should be checked first in case you are running a simulator
1261   /// platform that might itself be running natively, but have different
1262   /// heuristics for figuring out which OS is emulating.
1263   ///
1264   /// \return
1265   ///     Returns the version tuple of the host OS. In case of failure an empty
1266   ///     VersionTuple is returner.
GetHostOSVersion()1267   virtual llvm::VersionTuple GetHostOSVersion() { return llvm::VersionTuple(); }
1268 
1269   /// \return the macCatalyst version of the host OS.
GetHostMacCatalystVersion()1270   virtual llvm::VersionTuple GetHostMacCatalystVersion() { return {}; }
1271 
1272   /// Get the target object pointer for this module.
1273   ///
1274   /// \return
1275   ///     A Target object pointer to the target that owns this
1276   ///     module.
GetTarget()1277   Target &GetTarget() { return *m_target_wp.lock(); }
1278 
1279   /// Get the const target object pointer for this module.
1280   ///
1281   /// \return
1282   ///     A const Target object pointer to the target that owns this
1283   ///     module.
GetTarget()1284   const Target &GetTarget() const { return *m_target_wp.lock(); }
1285 
1286   /// Flush all data in the process.
1287   ///
1288   /// Flush the memory caches, all threads, and any other cached data in the
1289   /// process.
1290   ///
1291   /// This function can be called after a world changing event like adding a
1292   /// new symbol file, or after the process makes a large context switch (from
1293   /// boot ROM to booted into an OS).
1294   void Flush();
1295 
1296   /// Get accessor for the current process state.
1297   ///
1298   /// \return
1299   ///     The current state of the process.
1300   ///
1301   /// \see lldb::StateType
1302   lldb::StateType GetState();
1303 
1304   lldb::ExpressionResults
1305   RunThreadPlan(ExecutionContext &exe_ctx, lldb::ThreadPlanSP &thread_plan_sp,
1306                 const EvaluateExpressionOptions &options,
1307                 DiagnosticManager &diagnostic_manager);
1308 
1309   static const char *ExecutionResultAsCString(lldb::ExpressionResults result);
1310 
1311   void GetStatus(Stream &ostrm);
1312 
1313   size_t GetThreadStatus(Stream &ostrm, bool only_threads_with_stop_reason,
1314                          uint32_t start_frame, uint32_t num_frames,
1315                          uint32_t num_frames_with_source,
1316                          bool stop_format);
1317 
1318   void SendAsyncInterrupt();
1319 
1320   // Notify this process class that modules got loaded.
1321   //
1322   // If subclasses override this method, they must call this version before
1323   // doing anything in the subclass version of the function.
1324   virtual void ModulesDidLoad(ModuleList &module_list);
1325 
1326   /// Retrieve the list of shared libraries that are loaded for this process
1327   /// This method is used on pre-macOS 10.12, pre-iOS 10, pre-tvOS 10, pre-
1328   /// watchOS 3 systems.  The following two methods are for newer versions of
1329   /// those OSes.
1330   ///
1331   /// For certain platforms, the time it takes for the DynamicLoader plugin to
1332   /// read all of the shared libraries out of memory over a slow communication
1333   /// channel may be too long.  In that instance, the gdb-remote stub may be
1334   /// able to retrieve the necessary information about the solibs out of
1335   /// memory and return a concise summary sufficient for the DynamicLoader
1336   /// plugin.
1337   ///
1338   /// \param [in] image_list_address
1339   ///     The address where the table of shared libraries is stored in memory,
1340   ///     if that is appropriate for this platform.  Else this may be
1341   ///     passed as LLDB_INVALID_ADDRESS.
1342   ///
1343   /// \param [in] image_count
1344   ///     The number of shared libraries that are present in this process, if
1345   ///     that is appropriate for this platofrm  Else this may be passed as
1346   ///     LLDB_INVALID_ADDRESS.
1347   ///
1348   /// \return
1349   ///     A StructuredDataSP object which, if non-empty, will contain the
1350   ///     information the DynamicLoader needs to get the initial scan of
1351   ///     solibs resolved.
1352   virtual lldb_private::StructuredData::ObjectSP
GetLoadedDynamicLibrariesInfos(lldb::addr_t image_list_address,lldb::addr_t image_count)1353   GetLoadedDynamicLibrariesInfos(lldb::addr_t image_list_address,
1354                                  lldb::addr_t image_count) {
1355     return StructuredData::ObjectSP();
1356   }
1357 
1358   // On macOS 10.12, tvOS 10, iOS 10, watchOS 3 and newer, debugserver can
1359   // return the full list of loaded shared libraries without needing any input.
1360   virtual lldb_private::StructuredData::ObjectSP
GetLoadedDynamicLibrariesInfos()1361   GetLoadedDynamicLibrariesInfos() {
1362     return StructuredData::ObjectSP();
1363   }
1364 
1365   // On macOS 10.12, tvOS 10, iOS 10, watchOS 3 and newer, debugserver can
1366   // return information about binaries given their load addresses.
GetLoadedDynamicLibrariesInfos(const std::vector<lldb::addr_t> & load_addresses)1367   virtual lldb_private::StructuredData::ObjectSP GetLoadedDynamicLibrariesInfos(
1368       const std::vector<lldb::addr_t> &load_addresses) {
1369     return StructuredData::ObjectSP();
1370   }
1371 
1372   // Get information about the library shared cache, if that exists
1373   //
1374   // On macOS 10.12, tvOS 10, iOS 10, watchOS 3 and newer, debugserver can
1375   // return information about the library shared cache (a set of standard
1376   // libraries that are loaded at the same location for all processes on a
1377   // system) in use.
GetSharedCacheInfo()1378   virtual lldb_private::StructuredData::ObjectSP GetSharedCacheInfo() {
1379     return StructuredData::ObjectSP();
1380   }
1381 
1382   // Get information about the launch state of the process, if possible.
1383   //
1384   // On Darwin systems, libdyld can report on process state, most importantly
1385   // the startup stages where the system library is not yet initialized.
1386   virtual lldb_private::StructuredData::ObjectSP
GetDynamicLoaderProcessState()1387   GetDynamicLoaderProcessState() {
1388     return {};
1389   }
1390 
1391   /// Print a user-visible warning about a module being built with
1392   /// optimization
1393   ///
1394   /// Prints a async warning message to the user one time per Module where a
1395   /// function is found that was compiled with optimization, per Process.
1396   ///
1397   /// \param [in] sc
1398   ///     A SymbolContext with eSymbolContextFunction and eSymbolContextModule
1399   ///     pre-computed.
1400   void PrintWarningOptimization(const SymbolContext &sc);
1401 
1402   /// Print a user-visible warning about a function written in a
1403   /// language that this version of LLDB doesn't support.
1404   ///
1405   /// \see PrintWarningOptimization
1406   void PrintWarningUnsupportedLanguage(const SymbolContext &sc);
1407 
1408   virtual bool GetProcessInfo(ProcessInstanceInfo &info);
1409 
1410   /// Get the exit status for a process.
1411   ///
1412   /// \return
1413   ///     The process's return code, or -1 if the current process
1414   ///     state is not eStateExited.
1415   int GetExitStatus();
1416 
1417   /// Get a textual description of what the process exited.
1418   ///
1419   /// \return
1420   ///     The textual description of why the process exited, or nullptr
1421   ///     if there is no description available.
1422   const char *GetExitDescription();
1423 
DidExit()1424   virtual void DidExit() {}
1425 
1426   /// Get the current address mask in the Process
1427   ///
1428   /// This mask can used to set/clear non-address bits in an addr_t.
1429   ///
1430   /// \return
1431   ///   The current address mask.
1432   ///   Bits which are set to 1 are not used for addressing.
1433   ///   An address mask of 0 means all bits are used for addressing.
1434   ///   An address mask of LLDB_INVALID_ADDRESS_MASK (all 1's) means
1435   ///   that no mask has been set.
1436   lldb::addr_t GetCodeAddressMask();
1437   lldb::addr_t GetDataAddressMask();
1438 
1439   /// The highmem masks are for targets where we may have different masks
1440   /// for low memory versus high memory addresses, and they will be left
1441   /// as LLDB_INVALID_ADDRESS_MASK normally, meaning the base masks
1442   /// should be applied to all addresses.
1443   lldb::addr_t GetHighmemCodeAddressMask();
1444   lldb::addr_t GetHighmemDataAddressMask();
1445 
1446   void SetCodeAddressMask(lldb::addr_t code_address_mask);
1447   void SetDataAddressMask(lldb::addr_t data_address_mask);
1448 
1449   void SetHighmemCodeAddressMask(lldb::addr_t code_address_mask);
1450   void SetHighmemDataAddressMask(lldb::addr_t data_address_mask);
1451 
1452   /// Some targets might use bits in a code address to indicate a mode switch,
1453   /// ARM uses bit zero to signify a code address is thumb, so any ARM ABI
1454   /// plug-ins would strip those bits.
1455   /// Or use the high bits to authenticate a pointer value.
1456   lldb::addr_t FixCodeAddress(lldb::addr_t pc);
1457   lldb::addr_t FixDataAddress(lldb::addr_t pc);
1458 
1459   /// Use this method when you do not know, or do not care what kind of address
1460   /// you are fixing. On platforms where there would be a difference between the
1461   /// two types, it will pick the safest option.
1462   ///
1463   /// Its purpose is to signal that no specific choice was made and provide an
1464   /// alternative to randomly picking FixCode/FixData address. Which could break
1465   /// platforms where there is a difference (only Arm Thumb at this time).
1466   lldb::addr_t FixAnyAddress(lldb::addr_t pc);
1467 
1468   /// Get the Modification ID of the process.
1469   ///
1470   /// \return
1471   ///     The modification ID of the process.
GetModID()1472   ProcessModID GetModID() const { return m_mod_id; }
1473 
GetModIDRef()1474   const ProcessModID &GetModIDRef() const { return m_mod_id; }
1475 
GetStopID()1476   uint32_t GetStopID() const { return m_mod_id.GetStopID(); }
1477 
GetResumeID()1478   uint32_t GetResumeID() const { return m_mod_id.GetResumeID(); }
1479 
GetLastUserExpressionResumeID()1480   uint32_t GetLastUserExpressionResumeID() const {
1481     return m_mod_id.GetLastUserExpressionResumeID();
1482   }
1483 
GetLastNaturalStopID()1484   uint32_t GetLastNaturalStopID() const {
1485     return m_mod_id.GetLastNaturalStopID();
1486   }
1487 
GetStopEventForStopID(uint32_t stop_id)1488   lldb::EventSP GetStopEventForStopID(uint32_t stop_id) const {
1489     return m_mod_id.GetStopEventForStopID(stop_id);
1490   }
1491 
1492   /// Set accessor for the process exit status (return code).
1493   ///
1494   /// Sometimes a child exits and the exit can be detected by global functions
1495   /// (signal handler for SIGCHLD for example). This accessor allows the exit
1496   /// status to be set from an external source.
1497   ///
1498   /// Setting this will cause a eStateExited event to be posted to the process
1499   /// event queue.
1500   ///
1501   /// \param[in] exit_status
1502   ///     The value for the process's return code.
1503   ///
1504   /// \param[in] exit_string
1505   ///     A StringRef containing the reason for exiting. May be empty.
1506   ///
1507   /// \return
1508   ///     Returns \b false if the process was already in an exited state, \b
1509   ///     true otherwise.
1510   virtual bool SetExitStatus(int exit_status, llvm::StringRef exit_string);
1511 
1512   /// Check if a process is still alive.
1513   ///
1514   /// \return
1515   ///     Returns \b true if the process is still valid, \b false
1516   ///     otherwise.
1517   virtual bool IsAlive();
1518 
IsLiveDebugSession()1519   virtual bool IsLiveDebugSession() const { return true; };
1520 
1521   /// Provide a way to retrieve the core dump file that is loaded for debugging.
1522   /// Only available if IsLiveDebugSession() returns true.
1523   ///
1524   /// \return
1525   ///     File path to the core file.
GetCoreFile()1526   virtual FileSpec GetCoreFile() const { return {}; }
1527 
1528   /// Before lldb detaches from a process, it warns the user that they are
1529   /// about to lose their debug session. In some cases, this warning doesn't
1530   /// need to be emitted -- for instance, with core file debugging where the
1531   /// user can reconstruct the "state" by simply re-running the debugger on
1532   /// the core file.
1533   ///
1534   /// \return
1535   ///     Returns \b true if the user should be warned about detaching from
1536   ///     this process.
WarnBeforeDetach()1537   virtual bool WarnBeforeDetach() const { return true; }
1538 
1539   /// Read of memory from a process.
1540   ///
1541   /// This function will read memory from the current process's address space
1542   /// and remove any traps that may have been inserted into the memory.
1543   ///
1544   /// This function is not meant to be overridden by Process subclasses, the
1545   /// subclasses should implement Process::DoReadMemory (lldb::addr_t, size_t,
1546   /// void *).
1547   ///
1548   /// \param[in] vm_addr
1549   ///     A virtual load address that indicates where to start reading
1550   ///     memory from.
1551   ///
1552   /// \param[out] buf
1553   ///     A byte buffer that is at least \a size bytes long that
1554   ///     will receive the memory bytes.
1555   ///
1556   /// \param[in] size
1557   ///     The number of bytes to read.
1558   ///
1559   /// \param[out] error
1560   ///     An error that indicates the success or failure of this
1561   ///     operation. If error indicates success (error.Success()),
1562   ///     then the value returned can be trusted, otherwise zero
1563   ///     will be returned.
1564   ///
1565   /// \return
1566   ///     The number of bytes that were actually read into \a buf. If
1567   ///     the returned number is greater than zero, yet less than \a
1568   ///     size, then this function will get called again with \a
1569   ///     vm_addr, \a buf, and \a size updated appropriately. Zero is
1570   ///     returned in the case of an error.
1571   virtual size_t ReadMemory(lldb::addr_t vm_addr, void *buf, size_t size,
1572                             Status &error);
1573 
1574   /// Read of memory from a process.
1575   ///
1576   /// This function has the same semantics of ReadMemory except that it
1577   /// bypasses caching.
1578   ///
1579   /// \param[in] vm_addr
1580   ///     A virtual load address that indicates where to start reading
1581   ///     memory from.
1582   ///
1583   /// \param[out] buf
1584   ///     A byte buffer that is at least \a size bytes long that
1585   ///     will receive the memory bytes.
1586   ///
1587   /// \param[in] size
1588   ///     The number of bytes to read.
1589   ///
1590   /// \param[out] error
1591   ///     An error that indicates the success or failure of this
1592   ///     operation. If error indicates success (error.Success()),
1593   ///     then the value returned can be trusted, otherwise zero
1594   ///     will be returned.
1595   ///
1596   /// \return
1597   ///     The number of bytes that were actually read into \a buf. If
1598   ///     the returned number is greater than zero, yet less than \a
1599   ///     size, then this function will get called again with \a
1600   ///     vm_addr, \a buf, and \a size updated appropriately. Zero is
1601   ///     returned in the case of an error.
1602   size_t ReadMemoryFromInferior(lldb::addr_t vm_addr, void *buf, size_t size,
1603                                 Status &error);
1604 
1605   /// Read a NULL terminated C string from memory
1606   ///
1607   /// This function will read a cache page at a time until the NULL
1608   /// C string terminator is found. It will stop reading if the NULL
1609   /// termination byte isn't found before reading \a cstr_max_len bytes, and
1610   /// the results are always guaranteed to be NULL terminated (at most
1611   /// cstr_max_len - 1 bytes will be read).
1612   size_t ReadCStringFromMemory(lldb::addr_t vm_addr, char *cstr,
1613                                size_t cstr_max_len, Status &error);
1614 
1615   size_t ReadCStringFromMemory(lldb::addr_t vm_addr, std::string &out_str,
1616                                Status &error);
1617 
1618   /// Reads an unsigned integer of the specified byte size from process
1619   /// memory.
1620   ///
1621   /// \param[in] load_addr
1622   ///     A load address of the integer to read.
1623   ///
1624   /// \param[in] byte_size
1625   ///     The size in byte of the integer to read.
1626   ///
1627   /// \param[in] fail_value
1628   ///     The value to return if we fail to read an integer.
1629   ///
1630   /// \param[out] error
1631   ///     An error that indicates the success or failure of this
1632   ///     operation. If error indicates success (error.Success()),
1633   ///     then the value returned can be trusted, otherwise zero
1634   ///     will be returned.
1635   ///
1636   /// \return
1637   ///     The unsigned integer that was read from the process memory
1638   ///     space. If the integer was smaller than a uint64_t, any
1639   ///     unused upper bytes will be zero filled. If the process
1640   ///     byte order differs from the host byte order, the integer
1641   ///     value will be appropriately byte swapped into host byte
1642   ///     order.
1643   uint64_t ReadUnsignedIntegerFromMemory(lldb::addr_t load_addr,
1644                                          size_t byte_size, uint64_t fail_value,
1645                                          Status &error);
1646 
1647   int64_t ReadSignedIntegerFromMemory(lldb::addr_t load_addr, size_t byte_size,
1648                                       int64_t fail_value, Status &error);
1649 
1650   lldb::addr_t ReadPointerFromMemory(lldb::addr_t vm_addr, Status &error);
1651 
1652   bool WritePointerToMemory(lldb::addr_t vm_addr, lldb::addr_t ptr_value,
1653                             Status &error);
1654 
1655   /// Actually do the writing of memory to a process.
1656   ///
1657   /// \param[in] vm_addr
1658   ///     A virtual load address that indicates where to start writing
1659   ///     memory to.
1660   ///
1661   /// \param[in] buf
1662   ///     A byte buffer that is at least \a size bytes long that
1663   ///     contains the data to write.
1664   ///
1665   /// \param[in] size
1666   ///     The number of bytes to write.
1667   ///
1668   /// \param[out] error
1669   ///     An error value in case the memory write fails.
1670   ///
1671   /// \return
1672   ///     The number of bytes that were actually written.
DoWriteMemory(lldb::addr_t vm_addr,const void * buf,size_t size,Status & error)1673   virtual size_t DoWriteMemory(lldb::addr_t vm_addr, const void *buf,
1674                                size_t size, Status &error) {
1675     error.SetErrorStringWithFormatv(
1676         "error: {0} does not support writing to processes", GetPluginName());
1677     return 0;
1678   }
1679 
1680   /// Write all or part of a scalar value to memory.
1681   ///
1682   /// The value contained in \a scalar will be swapped to match the byte order
1683   /// of the process that is being debugged. If \a size is less than the size
1684   /// of scalar, the least significant \a size bytes from scalar will be
1685   /// written. If \a size is larger than the byte size of scalar, then the
1686   /// extra space will be padded with zeros and the scalar value will be
1687   /// placed in the least significant bytes in memory.
1688   ///
1689   /// \param[in] vm_addr
1690   ///     A virtual load address that indicates where to start writing
1691   ///     memory to.
1692   ///
1693   /// \param[in] scalar
1694   ///     The scalar to write to the debugged process.
1695   ///
1696   /// \param[in] size
1697   ///     This value can be smaller or larger than the scalar value
1698   ///     itself. If \a size is smaller than the size of \a scalar,
1699   ///     the least significant bytes in \a scalar will be used. If
1700   ///     \a size is larger than the byte size of \a scalar, then
1701   ///     the extra space will be padded with zeros. If \a size is
1702   ///     set to UINT32_MAX, then the size of \a scalar will be used.
1703   ///
1704   /// \param[out] error
1705   ///     An error value in case the memory write fails.
1706   ///
1707   /// \return
1708   ///     The number of bytes that were actually written.
1709   size_t WriteScalarToMemory(lldb::addr_t vm_addr, const Scalar &scalar,
1710                              size_t size, Status &error);
1711 
1712   size_t ReadScalarIntegerFromMemory(lldb::addr_t addr, uint32_t byte_size,
1713                                      bool is_signed, Scalar &scalar,
1714                                      Status &error);
1715 
1716   /// Write memory to a process.
1717   ///
1718   /// This function will write memory to the current process's address space
1719   /// and maintain any traps that might be present due to software
1720   /// breakpoints.
1721   ///
1722   /// This function is not meant to be overridden by Process subclasses, the
1723   /// subclasses should implement Process::DoWriteMemory (lldb::addr_t,
1724   /// size_t, void *).
1725   ///
1726   /// \param[in] vm_addr
1727   ///     A virtual load address that indicates where to start writing
1728   ///     memory to.
1729   ///
1730   /// \param[in] buf
1731   ///     A byte buffer that is at least \a size bytes long that
1732   ///     contains the data to write.
1733   ///
1734   /// \param[in] size
1735   ///     The number of bytes to write.
1736   ///
1737   /// \return
1738   ///     The number of bytes that were actually written.
1739   // TODO: change this to take an ArrayRef<uint8_t>
1740   size_t WriteMemory(lldb::addr_t vm_addr, const void *buf, size_t size,
1741                      Status &error);
1742 
1743   /// Actually allocate memory in the process.
1744   ///
1745   /// This function will allocate memory in the process's address space.  This
1746   /// can't rely on the generic function calling mechanism, since that
1747   /// requires this function.
1748   ///
1749   /// \param[in] size
1750   ///     The size of the allocation requested.
1751   ///
1752   /// \return
1753   ///     The address of the allocated buffer in the process, or
1754   ///     LLDB_INVALID_ADDRESS if the allocation failed.
1755 
DoAllocateMemory(size_t size,uint32_t permissions,Status & error)1756   virtual lldb::addr_t DoAllocateMemory(size_t size, uint32_t permissions,
1757                                         Status &error) {
1758     error.SetErrorStringWithFormatv(
1759         "error: {0} does not support allocating in the debug process",
1760         GetPluginName());
1761     return LLDB_INVALID_ADDRESS;
1762   }
1763 
1764   virtual Status WriteObjectFile(std::vector<ObjectFile::LoadableData> entries);
1765 
1766   /// The public interface to allocating memory in the process.
1767   ///
1768   /// This function will allocate memory in the process's address space.  This
1769   /// can't rely on the generic function calling mechanism, since that
1770   /// requires this function.
1771   ///
1772   /// \param[in] size
1773   ///     The size of the allocation requested.
1774   ///
1775   /// \param[in] permissions
1776   ///     Or together any of the lldb::Permissions bits.  The permissions on
1777   ///     a given memory allocation can't be changed after allocation.  Note
1778   ///     that a block that isn't set writable can still be written on from
1779   ///     lldb,
1780   ///     just not by the process itself.
1781   ///
1782   /// \param[in,out] error
1783   ///     An error object to fill in if things go wrong.
1784   /// \return
1785   ///     The address of the allocated buffer in the process, or
1786   ///     LLDB_INVALID_ADDRESS if the allocation failed.
1787   lldb::addr_t AllocateMemory(size_t size, uint32_t permissions, Status &error);
1788 
1789   /// The public interface to allocating memory in the process, this also
1790   /// clears the allocated memory.
1791   ///
1792   /// This function will allocate memory in the process's address space.  This
1793   /// can't rely on the generic function calling mechanism, since that
1794   /// requires this function.
1795   ///
1796   /// \param[in] size
1797   ///     The size of the allocation requested.
1798   ///
1799   /// \param[in] permissions
1800   ///     Or together any of the lldb::Permissions bits.  The permissions on
1801   ///     a given memory allocation can't be changed after allocation.  Note
1802   ///     that a block that isn't set writable can still be written on from
1803   ///     lldb,
1804   ///     just not by the process itself.
1805   ///
1806   /// \param[in,out] error
1807   ///     An error object to fill in if things go wrong.
1808   ///
1809   /// \return
1810   ///     The address of the allocated buffer in the process, or
1811   ///     LLDB_INVALID_ADDRESS if the allocation failed.
1812 
1813   lldb::addr_t CallocateMemory(size_t size, uint32_t permissions,
1814                                Status &error);
1815 
1816   /// If this architecture and process supports memory tagging, return a tag
1817   /// manager that can be used to maniupulate those memory tags.
1818   ///
1819   /// \return
1820   ///     Either a valid pointer to a tag manager or an error describing why one
1821   ///     could not be provided.
1822   llvm::Expected<const MemoryTagManager *> GetMemoryTagManager();
1823 
1824   /// Read memory tags for the range addr to addr+len. It is assumed
1825   /// that this range has already been granule aligned.
1826   /// (see MemoryTagManager::MakeTaggedRange)
1827   ///
1828   /// This calls DoReadMemoryTags to do the target specific operations.
1829   ///
1830   /// \param[in] addr
1831   ///     Start of memory range to read tags for.
1832   ///
1833   /// \param[in] len
1834   ///     Length of memory range to read tags for (in bytes).
1835   ///
1836   /// \return
1837   ///     If this architecture or process does not support memory tagging,
1838   ///     an error saying so.
1839   ///     If it does, either the memory tags or an error describing a
1840   ///     failure to read or unpack them.
1841   virtual llvm::Expected<std::vector<lldb::addr_t>>
1842   ReadMemoryTags(lldb::addr_t addr, size_t len);
1843 
1844   /// Write memory tags for a range of memory.
1845   /// (calls DoWriteMemoryTags to do the target specific work)
1846   ///
1847   /// \param[in] addr
1848   ///     The address to start writing tags from. It is assumed that this
1849   ///     address is granule aligned.
1850   ///
1851   /// \param[in] len
1852   ///     The size of the range to write tags for. It is assumed that this
1853   ///     is some multiple of the granule size. This len can be different
1854   ///     from (number of tags * granule size) in the case where you want
1855   ///     lldb-server to repeat tags across the range.
1856   ///
1857   /// \param[in] tags
1858   ///     Allocation tags to be written. Since lldb-server can repeat tags for a
1859   ///     range, the number of tags doesn't have to match the number of granules
1860   ///     in the range. (though most of the time it will)
1861   ///
1862   /// \return
1863   ///     A Status telling you if the write succeeded or not.
1864   Status WriteMemoryTags(lldb::addr_t addr, size_t len,
1865                          const std::vector<lldb::addr_t> &tags);
1866 
1867   /// Resolve dynamically loaded indirect functions.
1868   ///
1869   /// \param[in] address
1870   ///     The load address of the indirect function to resolve.
1871   ///
1872   /// \param[out] error
1873   ///     An error value in case the resolve fails.
1874   ///
1875   /// \return
1876   ///     The address of the resolved function.
1877   ///     LLDB_INVALID_ADDRESS if the resolution failed.
1878   virtual lldb::addr_t ResolveIndirectFunction(const Address *address,
1879                                                Status &error);
1880 
1881   /// Locate the memory region that contains load_addr.
1882   ///
1883   /// If load_addr is within the address space the process has mapped
1884   /// range_info will be filled in with the start and end of that range as
1885   /// well as the permissions for that range and range_info. GetMapped will
1886   /// return true.
1887   ///
1888   /// If load_addr is outside any mapped region then range_info will have its
1889   /// start address set to load_addr and the end of the range will indicate
1890   /// the start of the next mapped range or be set to LLDB_INVALID_ADDRESS if
1891   /// there are no valid mapped ranges between load_addr and the end of the
1892   /// process address space.
1893   ///
1894   /// GetMemoryRegionInfo calls DoGetMemoryRegionInfo. Override that function in
1895   /// process subclasses.
1896   ///
1897   /// \param[in] load_addr
1898   ///     The load address to query the range_info for. May include non
1899   ///     address bits, these will be removed by the ABI plugin if there is
1900   ///     one.
1901   ///
1902   /// \param[out] range_info
1903   ///     An range_info value containing the details of the range.
1904   ///
1905   /// \return
1906   ///     An error value.
1907   Status GetMemoryRegionInfo(lldb::addr_t load_addr,
1908                              MemoryRegionInfo &range_info);
1909 
1910   /// Obtain all the mapped memory regions within this process.
1911   ///
1912   /// \param[out] region_list
1913   ///     A vector to contain MemoryRegionInfo objects for all mapped
1914   ///     ranges.
1915   ///
1916   /// \return
1917   ///     An error value.
1918   virtual Status
1919   GetMemoryRegions(lldb_private::MemoryRegionInfos &region_list);
1920 
1921   /// Get the number of watchpoints supported by this target.
1922   ///
1923   /// We may be able to determine the number of watchpoints available
1924   /// on this target; retrieve this value if possible.
1925   ///
1926   /// This number may be less than the number of watchpoints a user
1927   /// can specify. This is because a single user watchpoint may require
1928   /// multiple watchpoint slots to implement. Due to the size
1929   /// and/or alignment of objects.
1930   ///
1931   /// \return
1932   ///     Returns the number of watchpoints, if available.
GetWatchpointSlotCount()1933   virtual std::optional<uint32_t> GetWatchpointSlotCount() {
1934     return std::nullopt;
1935   }
1936 
1937   /// Whether lldb will be notified about watchpoints after
1938   /// the instruction has completed executing, or if the
1939   /// instruction is rolled back and it is notified before it
1940   /// executes.
1941   /// The default behavior is "exceptions received after instruction
1942   /// has executed", except for certain CPU architectures.
1943   /// Process subclasses may override this if they have additional
1944   /// information.
1945   ///
1946   /// \return
1947   ///     Returns true for targets where lldb is notified after
1948   ///     the instruction has completed executing.
1949   bool GetWatchpointReportedAfter();
1950 
1951   lldb::ModuleSP ReadModuleFromMemory(const FileSpec &file_spec,
1952                                       lldb::addr_t header_addr,
1953                                       size_t size_to_read = 512);
1954 
1955   /// Attempt to get the attributes for a region of memory in the process.
1956   ///
1957   /// It may be possible for the remote debug server to inspect attributes for
1958   /// a region of memory in the process, such as whether there is a valid page
1959   /// of memory at a given address or whether that page is
1960   /// readable/writable/executable by the process.
1961   ///
1962   /// \param[in] load_addr
1963   ///     The address of interest in the process.
1964   ///
1965   /// \param[out] permissions
1966   ///     If this call returns successfully, this bitmask will have
1967   ///     its Permissions bits set to indicate whether the region is
1968   ///     readable/writable/executable.  If this call fails, the
1969   ///     bitmask values are undefined.
1970   ///
1971   /// \return
1972   ///     Returns true if it was able to determine the attributes of the
1973   ///     memory region.  False if not.
1974   virtual bool GetLoadAddressPermissions(lldb::addr_t load_addr,
1975                                          uint32_t &permissions);
1976 
1977   /// Determines whether executing JIT-compiled code in this process is
1978   /// possible.
1979   ///
1980   /// \return
1981   ///     True if execution of JIT code is possible; false otherwise.
1982   bool CanJIT();
1983 
1984   /// Sets whether executing JIT-compiled code in this process is possible.
1985   ///
1986   /// \param[in] can_jit
1987   ///     True if execution of JIT code is possible; false otherwise.
1988   void SetCanJIT(bool can_jit);
1989 
1990   /// Determines whether executing function calls using the interpreter is
1991   /// possible for this process.
1992   ///
1993   /// \return
1994   ///     True if possible; false otherwise.
CanInterpretFunctionCalls()1995   bool CanInterpretFunctionCalls() { return m_can_interpret_function_calls; }
1996 
1997   /// Sets whether executing function calls using the interpreter is possible
1998   /// for this process.
1999   ///
2000   /// \param[in] can_interpret_function_calls
2001   ///     True if possible; false otherwise.
SetCanInterpretFunctionCalls(bool can_interpret_function_calls)2002   void SetCanInterpretFunctionCalls(bool can_interpret_function_calls) {
2003     m_can_interpret_function_calls = can_interpret_function_calls;
2004   }
2005 
2006   /// Sets whether executing code in this process is possible. This could be
2007   /// either through JIT or interpreting.
2008   ///
2009   /// \param[in] can_run_code
2010   ///     True if execution of code is possible; false otherwise.
2011   void SetCanRunCode(bool can_run_code);
2012 
2013   /// Actually deallocate memory in the process.
2014   ///
2015   /// This function will deallocate memory in the process's address space that
2016   /// was allocated with AllocateMemory.
2017   ///
2018   /// \param[in] ptr
2019   ///     A return value from AllocateMemory, pointing to the memory you
2020   ///     want to deallocate.
2021   ///
2022   /// \return
2023   ///     \b true if the memory was deallocated, \b false otherwise.
DoDeallocateMemory(lldb::addr_t ptr)2024   virtual Status DoDeallocateMemory(lldb::addr_t ptr) {
2025     Status error;
2026     error.SetErrorStringWithFormatv(
2027         "error: {0} does not support deallocating in the debug process",
2028         GetPluginName());
2029     return error;
2030   }
2031 
2032   /// The public interface to deallocating memory in the process.
2033   ///
2034   /// This function will deallocate memory in the process's address space that
2035   /// was allocated with AllocateMemory.
2036   ///
2037   /// \param[in] ptr
2038   ///     A return value from AllocateMemory, pointing to the memory you
2039   ///     want to deallocate.
2040   ///
2041   /// \return
2042   ///     \b true if the memory was deallocated, \b false otherwise.
2043   Status DeallocateMemory(lldb::addr_t ptr);
2044 
2045   /// Get any available STDOUT.
2046   ///
2047   /// Calling this method is a valid operation only if all of the following
2048   /// conditions are true: 1) The process was launched, and not attached to.
2049   /// 2) The process was not launched with eLaunchFlagDisableSTDIO. 3) The
2050   /// process was launched without supplying a valid file path
2051   ///    for STDOUT.
2052   ///
2053   /// Note that the implementation will probably need to start a read thread
2054   /// in the background to make sure that the pipe is drained and the STDOUT
2055   /// buffered appropriately, to prevent the process from deadlocking trying
2056   /// to write to a full buffer.
2057   ///
2058   /// Events will be queued indicating that there is STDOUT available that can
2059   /// be retrieved using this function.
2060   ///
2061   /// \param[out] buf
2062   ///     A buffer that will receive any STDOUT bytes that are
2063   ///     currently available.
2064   ///
2065   /// \param[in] buf_size
2066   ///     The size in bytes for the buffer \a buf.
2067   ///
2068   /// \return
2069   ///     The number of bytes written into \a buf. If this value is
2070   ///     equal to \a buf_size, another call to this function should
2071   ///     be made to retrieve more STDOUT data.
2072   virtual size_t GetSTDOUT(char *buf, size_t buf_size, Status &error);
2073 
2074   /// Get any available STDERR.
2075   ///
2076   /// Calling this method is a valid operation only if all of the following
2077   /// conditions are true: 1) The process was launched, and not attached to.
2078   /// 2) The process was not launched with eLaunchFlagDisableSTDIO. 3) The
2079   /// process was launched without supplying a valid file path
2080   ///    for STDERR.
2081   ///
2082   /// Note that the implementation will probably need to start a read thread
2083   /// in the background to make sure that the pipe is drained and the STDERR
2084   /// buffered appropriately, to prevent the process from deadlocking trying
2085   /// to write to a full buffer.
2086   ///
2087   /// Events will be queued indicating that there is STDERR available that can
2088   /// be retrieved using this function.
2089   ///
2090   /// \param[in] buf
2091   ///     A buffer that will receive any STDERR bytes that are
2092   ///     currently available.
2093   ///
2094   /// \param[out] buf_size
2095   ///     The size in bytes for the buffer \a buf.
2096   ///
2097   /// \return
2098   ///     The number of bytes written into \a buf. If this value is
2099   ///     equal to \a buf_size, another call to this function should
2100   ///     be made to retrieve more STDERR data.
2101   virtual size_t GetSTDERR(char *buf, size_t buf_size, Status &error);
2102 
2103   /// Puts data into this process's STDIN.
2104   ///
2105   /// Calling this method is a valid operation only if all of the following
2106   /// conditions are true: 1) The process was launched, and not attached to.
2107   /// 2) The process was not launched with eLaunchFlagDisableSTDIO. 3) The
2108   /// process was launched without supplying a valid file path
2109   ///    for STDIN.
2110   ///
2111   /// \param[in] buf
2112   ///     A buffer that contains the data to write to the process's STDIN.
2113   ///
2114   /// \param[in] buf_size
2115   ///     The size in bytes for the buffer \a buf.
2116   ///
2117   /// \return
2118   ///     The number of bytes written into \a buf. If this value is
2119   ///     less than \a buf_size, another call to this function should
2120   ///     be made to write the rest of the data.
PutSTDIN(const char * buf,size_t buf_size,Status & error)2121   virtual size_t PutSTDIN(const char *buf, size_t buf_size, Status &error) {
2122     error.SetErrorString("stdin unsupported");
2123     return 0;
2124   }
2125 
2126   /// Get any available profile data.
2127   ///
2128   /// \param[out] buf
2129   ///     A buffer that will receive any profile data bytes that are
2130   ///     currently available.
2131   ///
2132   /// \param[out] buf_size
2133   ///     The size in bytes for the buffer \a buf.
2134   ///
2135   /// \return
2136   ///     The number of bytes written into \a buf. If this value is
2137   ///     equal to \a buf_size, another call to this function should
2138   ///     be made to retrieve more profile data.
2139   virtual size_t GetAsyncProfileData(char *buf, size_t buf_size, Status &error);
2140 
2141   // Process Breakpoints
2142   size_t GetSoftwareBreakpointTrapOpcode(BreakpointSite *bp_site);
2143 
EnableBreakpointSite(BreakpointSite * bp_site)2144   virtual Status EnableBreakpointSite(BreakpointSite *bp_site) {
2145     Status error;
2146     error.SetErrorStringWithFormatv(
2147         "error: {0} does not support enabling breakpoints", GetPluginName());
2148     return error;
2149   }
2150 
DisableBreakpointSite(BreakpointSite * bp_site)2151   virtual Status DisableBreakpointSite(BreakpointSite *bp_site) {
2152     Status error;
2153     error.SetErrorStringWithFormatv(
2154         "error: {0} does not support disabling breakpoints", GetPluginName());
2155     return error;
2156   }
2157 
2158   // This is implemented completely using the lldb::Process API. Subclasses
2159   // don't need to implement this function unless the standard flow of read
2160   // existing opcode, write breakpoint opcode, verify breakpoint opcode doesn't
2161   // work for a specific process plug-in.
2162   virtual Status EnableSoftwareBreakpoint(BreakpointSite *bp_site);
2163 
2164   // This is implemented completely using the lldb::Process API. Subclasses
2165   // don't need to implement this function unless the standard flow of
2166   // restoring original opcode in memory and verifying the restored opcode
2167   // doesn't work for a specific process plug-in.
2168   virtual Status DisableSoftwareBreakpoint(BreakpointSite *bp_site);
2169 
2170   StopPointSiteList<lldb_private::BreakpointSite> &GetBreakpointSiteList();
2171 
2172   const StopPointSiteList<lldb_private::BreakpointSite> &
2173   GetBreakpointSiteList() const;
2174 
2175   void DisableAllBreakpointSites();
2176 
2177   Status ClearBreakpointSiteByID(lldb::user_id_t break_id);
2178 
2179   lldb::break_id_t CreateBreakpointSite(const lldb::BreakpointLocationSP &owner,
2180                                         bool use_hardware);
2181 
2182   Status DisableBreakpointSiteByID(lldb::user_id_t break_id);
2183 
2184   Status EnableBreakpointSiteByID(lldb::user_id_t break_id);
2185 
2186   // BreakpointLocations use RemoveConstituentFromBreakpointSite to remove
2187   // themselves from the constituent's list of this breakpoint sites.
2188   void RemoveConstituentFromBreakpointSite(lldb::user_id_t site_id,
2189                                            lldb::user_id_t constituent_id,
2190                                            lldb::BreakpointSiteSP &bp_site_sp);
2191 
2192   // Process Watchpoints (optional)
2193   virtual Status EnableWatchpoint(lldb::WatchpointSP wp_sp, bool notify = true);
2194 
2195   virtual Status DisableWatchpoint(lldb::WatchpointSP wp_sp,
2196                                    bool notify = true);
2197 
2198   // Thread Queries
2199 
2200   /// Update the thread list.
2201   ///
2202   /// This method performs some general clean up before invoking
2203   /// \a DoUpdateThreadList, which should be implemented by each
2204   /// process plugin.
2205   ///
2206   /// \return
2207   ///     \b true if the new thread list could be generated, \b false otherwise.
2208   bool UpdateThreadList(ThreadList &old_thread_list,
2209                         ThreadList &new_thread_list);
2210 
2211   void UpdateThreadListIfNeeded();
2212 
GetThreadList()2213   ThreadList &GetThreadList() { return m_thread_list; }
2214 
2215   StopPointSiteList<lldb_private::WatchpointResource> &
GetWatchpointResourceList()2216   GetWatchpointResourceList() {
2217     return m_watchpoint_resource_list;
2218   }
2219 
2220   // When ExtendedBacktraces are requested, the HistoryThreads that are created
2221   // need an owner -- they're saved here in the Process.  The threads in this
2222   // list are not iterated over - driver programs need to request the extended
2223   // backtrace calls starting from a root concrete thread one by one.
GetExtendedThreadList()2224   ThreadList &GetExtendedThreadList() { return m_extended_thread_list; }
2225 
Threads()2226   ThreadList::ThreadIterable Threads() { return m_thread_list.Threads(); }
2227 
2228   uint32_t GetNextThreadIndexID(uint64_t thread_id);
2229 
2230   lldb::ThreadSP CreateOSPluginThread(lldb::tid_t tid, lldb::addr_t context);
2231 
2232   // Returns true if an index id has been assigned to a thread.
2233   bool HasAssignedIndexIDToThread(uint64_t sb_thread_id);
2234 
2235   // Given a thread_id, it will assign a more reasonable index id for display
2236   // to the user. If the thread_id has previously been assigned, the same index
2237   // id will be used.
2238   uint32_t AssignIndexIDToThread(uint64_t thread_id);
2239 
2240   // Queue Queries
2241 
2242   virtual void UpdateQueueListIfNeeded();
2243 
GetQueueList()2244   QueueList &GetQueueList() {
2245     UpdateQueueListIfNeeded();
2246     return m_queue_list;
2247   }
2248 
Queues()2249   QueueList::QueueIterable Queues() {
2250     UpdateQueueListIfNeeded();
2251     return m_queue_list.Queues();
2252   }
2253 
2254   // Event Handling
2255   lldb::StateType GetNextEvent(lldb::EventSP &event_sp);
2256 
2257   // Returns the process state when it is stopped. If specified, event_sp_ptr
2258   // is set to the event which triggered the stop. If wait_always = false, and
2259   // the process is already stopped, this function returns immediately. If the
2260   // process is hijacked and use_run_lock is true (the default), then this
2261   // function releases the run lock after the stop. Setting use_run_lock to
2262   // false will avoid this behavior.
2263   // If we are waiting to stop that will return control to the user,
2264   // then we also want to run SelectMostRelevantFrame, which is controlled
2265   // by "select_most_relevant".
2266   lldb::StateType
2267   WaitForProcessToStop(const Timeout<std::micro> &timeout,
2268                        lldb::EventSP *event_sp_ptr = nullptr,
2269                        bool wait_always = true,
2270                        lldb::ListenerSP hijack_listener = lldb::ListenerSP(),
2271                        Stream *stream = nullptr, bool use_run_lock = true,
2272                        SelectMostRelevant select_most_relevant =
2273                            DoNoSelectMostRelevantFrame);
2274 
GetIOHandlerID()2275   uint32_t GetIOHandlerID() const { return m_iohandler_sync.GetValue(); }
2276 
2277   /// Waits for the process state to be running within a given msec timeout.
2278   ///
2279   /// The main purpose of this is to implement an interlock waiting for
2280   /// HandlePrivateEvent to push an IOHandler.
2281   ///
2282   /// \param[in] timeout
2283   ///     The maximum time length to wait for the process to transition to the
2284   ///     eStateRunning state.
2285   void SyncIOHandler(uint32_t iohandler_id, const Timeout<std::micro> &timeout);
2286 
2287   lldb::StateType GetStateChangedEvents(
2288       lldb::EventSP &event_sp, const Timeout<std::micro> &timeout,
2289       lldb::ListenerSP
2290           hijack_listener); // Pass an empty ListenerSP to use builtin listener
2291 
2292   /// Centralize the code that handles and prints descriptions for process
2293   /// state changes.
2294   ///
2295   /// \param[in] event_sp
2296   ///     The process state changed event
2297   ///
2298   /// \param[in] stream
2299   ///     The output stream to get the state change description
2300   ///
2301   /// \param[in,out] pop_process_io_handler
2302   ///     If this value comes in set to \b true, then pop the Process IOHandler
2303   ///     if needed.
2304   ///     Else this variable will be set to \b true or \b false to indicate if
2305   ///     the process
2306   ///     needs to have its process IOHandler popped.
2307   ///
2308   /// \return
2309   ///     \b true if the event describes a process state changed event, \b false
2310   ///     otherwise.
2311   static bool
2312   HandleProcessStateChangedEvent(const lldb::EventSP &event_sp, Stream *stream,
2313                                  SelectMostRelevant select_most_relevant,
2314                                  bool &pop_process_io_handler);
2315 
2316   Event *PeekAtStateChangedEvents();
2317 
2318   class ProcessEventHijacker {
2319   public:
ProcessEventHijacker(Process & process,lldb::ListenerSP listener_sp)2320     ProcessEventHijacker(Process &process, lldb::ListenerSP listener_sp)
2321         : m_process(process) {
2322       m_process.HijackProcessEvents(std::move(listener_sp));
2323     }
2324 
~ProcessEventHijacker()2325     ~ProcessEventHijacker() { m_process.RestoreProcessEvents(); }
2326 
2327   private:
2328     Process &m_process;
2329   };
2330 
2331   friend class ProcessEventHijacker;
2332   friend class ProcessProperties;
2333   /// If you need to ensure that you and only you will hear about some public
2334   /// event, then make a new listener, set to listen to process events, and
2335   /// then call this with that listener.  Then you will have to wait on that
2336   /// listener explicitly for events (rather than using the GetNextEvent &
2337   /// WaitFor* calls above.  Be sure to call RestoreProcessEvents when you are
2338   /// done.
2339   ///
2340   /// \param[in] listener_sp
2341   ///     This is the new listener to whom all process events will be delivered.
2342   ///
2343   /// \return
2344   ///     Returns \b true if the new listener could be installed,
2345   ///     \b false otherwise.
2346   bool HijackProcessEvents(lldb::ListenerSP listener_sp);
2347 
2348   /// Restores the process event broadcasting to its normal state.
2349   ///
2350   void RestoreProcessEvents();
2351 
2352   bool StateChangedIsHijackedForSynchronousResume();
2353 
2354   bool StateChangedIsExternallyHijacked();
2355 
2356   const lldb::ABISP &GetABI();
2357 
GetOperatingSystem()2358   OperatingSystem *GetOperatingSystem() { return m_os_up.get(); }
2359 
2360   std::vector<LanguageRuntime *> GetLanguageRuntimes();
2361 
2362   LanguageRuntime *GetLanguageRuntime(lldb::LanguageType language);
2363 
2364   bool IsPossibleDynamicValue(ValueObject &in_value);
2365 
2366   bool IsRunning() const;
2367 
GetDynamicCheckers()2368   DynamicCheckerFunctions *GetDynamicCheckers() {
2369     return m_dynamic_checkers_up.get();
2370   }
2371 
2372   void SetDynamicCheckers(DynamicCheckerFunctions *dynamic_checkers);
2373 
2374 /// Prune ThreadPlanStacks for unreported threads.
2375 ///
2376 /// \param[in] tid
2377 ///     The tid whose Plan Stack we are seeking to prune.
2378 ///
2379 /// \return
2380 ///     \b true if the TID is found or \b false if not.
2381 bool PruneThreadPlansForTID(lldb::tid_t tid);
2382 
2383 /// Prune ThreadPlanStacks for all unreported threads.
2384 void PruneThreadPlans();
2385 
2386   /// Find the thread plan stack associated with thread with \a tid.
2387   ///
2388   /// \param[in] tid
2389   ///     The tid whose Plan Stack we are seeking.
2390   ///
2391   /// \return
2392   ///     Returns a ThreadPlan if the TID is found or nullptr if not.
2393   ThreadPlanStack *FindThreadPlans(lldb::tid_t tid);
2394 
2395   /// Dump the thread plans associated with thread with \a tid.
2396   ///
2397   /// \param[in,out] strm
2398   ///     The stream to which to dump the output
2399   ///
2400   /// \param[in] tid
2401   ///     The tid whose Plan Stack we are dumping
2402   ///
2403   /// \param[in] desc_level
2404   ///     How much detail to dump
2405   ///
2406   /// \param[in] internal
2407   ///     If \b true dump all plans, if false only user initiated plans
2408   ///
2409   /// \param[in] condense_trivial
2410   ///     If true, only dump a header if the plan stack is just the base plan.
2411   ///
2412   /// \param[in] skip_unreported_plans
2413   ///     If true, only dump a plan if it is currently backed by an
2414   ///     lldb_private::Thread *.
2415   ///
2416   /// \return
2417   ///     Returns \b true if TID was found, \b false otherwise
2418   bool DumpThreadPlansForTID(Stream &strm, lldb::tid_t tid,
2419                              lldb::DescriptionLevel desc_level, bool internal,
2420                              bool condense_trivial, bool skip_unreported_plans);
2421 
2422   /// Dump all the thread plans for this process.
2423   ///
2424   /// \param[in,out] strm
2425   ///     The stream to which to dump the output
2426   ///
2427   /// \param[in] desc_level
2428   ///     How much detail to dump
2429   ///
2430   /// \param[in] internal
2431   ///     If \b true dump all plans, if false only user initiated plans
2432   ///
2433   /// \param[in] condense_trivial
2434   ///     If true, only dump a header if the plan stack is just the base plan.
2435   ///
2436   /// \param[in] skip_unreported_plans
2437   ///     If true, skip printing all thread plan stacks that don't currently
2438   ///     have a backing lldb_private::Thread *.
2439   void DumpThreadPlans(Stream &strm, lldb::DescriptionLevel desc_level,
2440                        bool internal, bool condense_trivial,
2441                        bool skip_unreported_plans);
2442 
2443   /// Call this to set the lldb in the mode where it breaks on new thread
2444   /// creations, and then auto-restarts.  This is useful when you are trying
2445   /// to run only one thread, but either that thread or the kernel is creating
2446   /// new threads in the process.  If you stop when the thread is created, you
2447   /// can immediately suspend it, and keep executing only the one thread you
2448   /// intend.
2449   ///
2450   /// \return
2451   ///     Returns \b true if we were able to start up the notification
2452   ///     \b false otherwise.
StartNoticingNewThreads()2453   virtual bool StartNoticingNewThreads() { return true; }
2454 
2455   /// Call this to turn off the stop & notice new threads mode.
2456   ///
2457   /// \return
2458   ///     Returns \b true if we were able to start up the notification
2459   ///     \b false otherwise.
StopNoticingNewThreads()2460   virtual bool StopNoticingNewThreads() { return true; }
2461 
2462   void SetRunningUserExpression(bool on);
2463   void SetRunningUtilityFunction(bool on);
2464 
2465   // lldb::ExecutionContextScope pure virtual functions
2466   lldb::TargetSP CalculateTarget() override;
2467 
CalculateProcess()2468   lldb::ProcessSP CalculateProcess() override { return shared_from_this(); }
2469 
CalculateThread()2470   lldb::ThreadSP CalculateThread() override { return lldb::ThreadSP(); }
2471 
CalculateStackFrame()2472   lldb::StackFrameSP CalculateStackFrame() override {
2473     return lldb::StackFrameSP();
2474   }
2475 
2476   void CalculateExecutionContext(ExecutionContext &exe_ctx) override;
2477 
2478   void SetSTDIOFileDescriptor(int file_descriptor);
2479 
2480   // Add a permanent region of memory that should never be read or written to.
2481   // This can be used to ensure that memory reads or writes to certain areas of
2482   // memory never end up being sent to the DoReadMemory or DoWriteMemory
2483   // functions which can improve performance.
2484   void AddInvalidMemoryRegion(const LoadRange &region);
2485 
2486   // Remove a permanent region of memory that should never be read or written
2487   // to that was previously added with AddInvalidMemoryRegion.
2488   bool RemoveInvalidMemoryRange(const LoadRange &region);
2489 
2490   // If the setup code of a thread plan needs to do work that might involve
2491   // calling a function in the target, it should not do that work directly in
2492   // one of the thread plan functions (DidPush/WillResume) because such work
2493   // needs to be handled carefully.  Instead, put that work in a
2494   // PreResumeAction callback, and register it with the process.  It will get
2495   // done before the actual "DoResume" gets called.
2496 
2497   typedef bool(PreResumeActionCallback)(void *);
2498 
2499   void AddPreResumeAction(PreResumeActionCallback callback, void *baton);
2500 
2501   bool RunPreResumeActions();
2502 
2503   void ClearPreResumeActions();
2504 
2505   void ClearPreResumeAction(PreResumeActionCallback callback, void *baton);
2506 
2507   ProcessRunLock &GetRunLock();
2508 
2509   bool CurrentThreadIsPrivateStateThread();
2510 
SendEventData(const char * data)2511   virtual Status SendEventData(const char *data) {
2512     Status return_error("Sending an event is not supported for this process.");
2513     return return_error;
2514   }
2515 
2516   lldb::ThreadCollectionSP GetHistoryThreads(lldb::addr_t addr);
2517 
2518   lldb::InstrumentationRuntimeSP
2519   GetInstrumentationRuntime(lldb::InstrumentationRuntimeType type);
2520 
2521   /// Try to fetch the module specification for a module with the given file
2522   /// name and architecture. Process sub-classes have to override this method
2523   /// if they support platforms where the Platform object can't get the module
2524   /// spec for all module.
2525   ///
2526   /// \param[in] module_file_spec
2527   ///     The file name of the module to get specification for.
2528   ///
2529   /// \param[in] arch
2530   ///     The architecture of the module to get specification for.
2531   ///
2532   /// \param[out] module_spec
2533   ///     The fetched module specification if the return value is
2534   ///     \b true, unchanged otherwise.
2535   ///
2536   /// \return
2537   ///     Returns \b true if the module spec fetched successfully,
2538   ///     \b false otherwise.
2539   virtual bool GetModuleSpec(const FileSpec &module_file_spec,
2540                              const ArchSpec &arch, ModuleSpec &module_spec);
2541 
PrefetchModuleSpecs(llvm::ArrayRef<FileSpec> module_file_specs,const llvm::Triple & triple)2542   virtual void PrefetchModuleSpecs(llvm::ArrayRef<FileSpec> module_file_specs,
2543                                    const llvm::Triple &triple) {}
2544 
2545   /// Try to find the load address of a file.
2546   /// The load address is defined as the address of the first memory region
2547   /// what contains data mapped from the specified file.
2548   ///
2549   /// \param[in] file
2550   ///     The name of the file whose load address we are looking for
2551   ///
2552   /// \param[out] is_loaded
2553   ///     \b True if the file is loaded into the memory and false
2554   ///     otherwise.
2555   ///
2556   /// \param[out] load_addr
2557   ///     The load address of the file if it is loaded into the
2558   ///     processes address space, LLDB_INVALID_ADDRESS otherwise.
GetFileLoadAddress(const FileSpec & file,bool & is_loaded,lldb::addr_t & load_addr)2559   virtual Status GetFileLoadAddress(const FileSpec &file, bool &is_loaded,
2560                                     lldb::addr_t &load_addr) {
2561     return Status("Not supported");
2562   }
2563 
2564   /// Fetch process defined metadata.
2565   ///
2566   /// \return
2567   ///     A StructuredDataSP object which, if non-empty, will contain the
2568   ///     information related to the process.
GetMetadata()2569   virtual StructuredData::DictionarySP GetMetadata() { return nullptr; }
2570 
2571   size_t AddImageToken(lldb::addr_t image_ptr);
2572 
2573   lldb::addr_t GetImagePtrFromToken(size_t token) const;
2574 
2575   void ResetImageToken(size_t token);
2576 
2577   /// Find the next branch instruction to set a breakpoint on
2578   ///
2579   /// When instruction stepping through a source line, instead of stepping
2580   /// through each instruction, we can put a breakpoint on the next branch
2581   /// instruction (within the range of instructions we are stepping through)
2582   /// and continue the process to there, yielding significant performance
2583   /// benefits over instruction stepping.
2584   ///
2585   /// \param[in] default_stop_addr
2586   ///     The address of the instruction where lldb would put a
2587   ///     breakpoint normally.
2588   ///
2589   /// \param[in] range_bounds
2590   ///     The range which the breakpoint must be contained within.
2591   ///     Typically a source line.
2592   ///
2593   /// \return
2594   ///     The address of the next branch instruction, or the end of
2595   ///     the range provided in range_bounds.  If there are any
2596   ///     problems with the disassembly or getting the instructions,
2597   ///     the original default_stop_addr will be returned.
2598   Address AdvanceAddressToNextBranchInstruction(Address default_stop_addr,
2599                                                 AddressRange range_bounds);
2600 
2601   /// Configure asynchronous structured data feature.
2602   ///
2603   /// Each Process type that supports using an asynchronous StructuredData
2604   /// feature should implement this to enable/disable/configure the feature.
2605   /// The default implementation here will always return an error indiciating
2606   /// the feature is unsupported.
2607   ///
2608   /// StructuredDataPlugin implementations will call this to configure a
2609   /// feature that has been reported as being supported.
2610   ///
2611   /// \param[in] type_name
2612   ///     The StructuredData type name as previously discovered by
2613   ///     the Process-derived instance.
2614   ///
2615   /// \param[in] config_sp
2616   ///     Configuration data for the feature being enabled.  This config
2617   ///     data, which may be null, will be passed along to the feature
2618   ///     to process.  The feature will dictate whether this is a dictionary,
2619   ///     an array or some other object.  If the feature needs to be
2620   ///     set up properly before it can be enabled, then the config should
2621   ///     also take an enable/disable flag.
2622   ///
2623   /// \return
2624   ///     Returns the result of attempting to configure the feature.
2625   virtual Status
2626   ConfigureStructuredData(llvm::StringRef type_name,
2627                           const StructuredData::ObjectSP &config_sp);
2628 
2629   /// Broadcasts the given structured data object from the given plugin.
2630   ///
2631   /// StructuredDataPlugin instances can use this to optionally broadcast any
2632   /// of their data if they want to make it available for clients.  The data
2633   /// will come in on the structured data event bit
2634   /// (eBroadcastBitStructuredData).
2635   ///
2636   /// \param[in] object_sp
2637   ///     The structured data object to broadcast.
2638   ///
2639   /// \param[in] plugin_sp
2640   ///     The plugin that will be reported in the event's plugin
2641   ///     parameter.
2642   void BroadcastStructuredData(const StructuredData::ObjectSP &object_sp,
2643                                const lldb::StructuredDataPluginSP &plugin_sp);
2644 
2645   /// Returns the StructuredDataPlugin associated with a given type name, if
2646   /// there is one.
2647   ///
2648   /// There will only be a plugin for a given StructuredDataType if the
2649   /// debugged process monitor claims that the feature is supported. This is
2650   /// one way to tell whether a feature is available.
2651   ///
2652   /// \return
2653   ///     The plugin if one is available for the specified feature;
2654   ///     otherwise, returns an empty shared pointer.
2655   lldb::StructuredDataPluginSP
2656   GetStructuredDataPlugin(llvm::StringRef type_name) const;
2657 
GetImplementation()2658   virtual void *GetImplementation() { return nullptr; }
2659 
ForceScriptedState(lldb::StateType state)2660   virtual void ForceScriptedState(lldb::StateType state) {}
2661 
GetSourceFileCache()2662   SourceManager::SourceFileCache &GetSourceFileCache() {
2663     return m_source_file_cache;
2664   }
2665 
2666 protected:
2667   friend class Trace;
2668 
2669   /// Construct with a shared pointer to a target, and the Process listener.
2670   /// Uses the Host UnixSignalsSP by default.
2671   Process(lldb::TargetSP target_sp, lldb::ListenerSP listener_sp);
2672 
2673   /// Construct with a shared pointer to a target, the Process listener, and
2674   /// the appropriate UnixSignalsSP for the process.
2675   Process(lldb::TargetSP target_sp, lldb::ListenerSP listener_sp,
2676           const lldb::UnixSignalsSP &unix_signals_sp);
2677 
2678   ///  Get the processor tracing type supported for this process.
2679   ///  Responses might be different depending on the architecture and
2680   ///  capabilities of the underlying OS.
2681   ///
2682   ///  \return
2683   ///     The supported trace type or an \a llvm::Error if tracing is
2684   ///     not supported for the inferior.
2685   virtual llvm::Expected<TraceSupportedResponse> TraceSupported();
2686 
2687   /// Start tracing a process or its threads.
2688   ///
2689   /// \param[in] request
2690   ///     JSON object with the information necessary to start tracing. In the
2691   ///     case of gdb-remote processes, this JSON object should conform to the
2692   ///     jLLDBTraceStart packet.
2693   ///
2694   /// \return
2695   ///     \a llvm::Error::success if the operation was successful, or
2696   ///     \a llvm::Error otherwise.
TraceStart(const llvm::json::Value & request)2697   virtual llvm::Error TraceStart(const llvm::json::Value &request) {
2698     return llvm::make_error<UnimplementedError>();
2699   }
2700 
2701   /// Stop tracing a live process or its threads.
2702   ///
2703   /// \param[in] request
2704   ///     The information determining which threads or process to stop tracing.
2705   ///
2706   /// \return
2707   ///     \a llvm::Error::success if the operation was successful, or
2708   ///     \a llvm::Error otherwise.
TraceStop(const TraceStopRequest & request)2709   virtual llvm::Error TraceStop(const TraceStopRequest &request) {
2710     return llvm::make_error<UnimplementedError>();
2711   }
2712 
2713   /// Get the current tracing state of the process and its threads.
2714   ///
2715   /// \param[in] type
2716   ///     Tracing technology type to consider.
2717   ///
2718   /// \return
2719   ///     A JSON object string with custom data depending on the trace
2720   ///     technology, or an \a llvm::Error in case of errors.
TraceGetState(llvm::StringRef type)2721   virtual llvm::Expected<std::string> TraceGetState(llvm::StringRef type) {
2722     return llvm::make_error<UnimplementedError>();
2723   }
2724 
2725   /// Get binary data given a trace technology and a data identifier.
2726   ///
2727   /// \param[in] request
2728   ///     Object with the params of the requested data.
2729   ///
2730   /// \return
2731   ///     A vector of bytes with the requested data, or an \a llvm::Error in
2732   ///     case of failures.
2733   virtual llvm::Expected<std::vector<uint8_t>>
TraceGetBinaryData(const TraceGetBinaryDataRequest & request)2734   TraceGetBinaryData(const TraceGetBinaryDataRequest &request) {
2735     return llvm::make_error<UnimplementedError>();
2736   }
2737 
2738   // This calls a function of the form "void * (*)(void)".
2739   bool CallVoidArgVoidPtrReturn(const Address *address,
2740                                 lldb::addr_t &returned_func,
2741                                 bool trap_exceptions = false);
2742 
2743   /// Update the thread list following process plug-in's specific logic.
2744   ///
2745   /// This method should only be invoked by \a UpdateThreadList.
2746   ///
2747   /// \return
2748   ///     \b true if the new thread list could be generated, \b false otherwise.
2749   virtual bool DoUpdateThreadList(ThreadList &old_thread_list,
2750                                   ThreadList &new_thread_list) = 0;
2751 
2752   /// Actually do the reading of memory from a process.
2753   ///
2754   /// Subclasses must override this function and can return fewer bytes than
2755   /// requested when memory requests are too large. This class will break up
2756   /// the memory requests and keep advancing the arguments along as needed.
2757   ///
2758   /// \param[in] vm_addr
2759   ///     A virtual load address that indicates where to start reading
2760   ///     memory from.
2761   ///
2762   /// \param[in] size
2763   ///     The number of bytes to read.
2764   ///
2765   /// \param[out] buf
2766   ///     A byte buffer that is at least \a size bytes long that
2767   ///     will receive the memory bytes.
2768   ///
2769   /// \param[out] error
2770   ///     An error that indicates the success or failure of this
2771   ///     operation. If error indicates success (error.Success()),
2772   ///     then the value returned can be trusted, otherwise zero
2773   ///     will be returned.
2774   ///
2775   /// \return
2776   ///     The number of bytes that were actually read into \a buf.
2777   ///     Zero is returned in the case of an error.
2778   virtual size_t DoReadMemory(lldb::addr_t vm_addr, void *buf, size_t size,
2779                               Status &error) = 0;
2780 
2781   /// DoGetMemoryRegionInfo is called by GetMemoryRegionInfo after it has
2782   /// removed non address bits from load_addr. Override this method in
2783   /// subclasses of Process.
2784   ///
2785   /// See GetMemoryRegionInfo for details of the logic.
2786   ///
2787   /// \param[in] load_addr
2788   ///     The load address to query the range_info for. (non address bits
2789   ///     removed)
2790   ///
2791   /// \param[out] range_info
2792   ///     An range_info value containing the details of the range.
2793   ///
2794   /// \return
2795   ///     An error value.
DoGetMemoryRegionInfo(lldb::addr_t load_addr,MemoryRegionInfo & range_info)2796   virtual Status DoGetMemoryRegionInfo(lldb::addr_t load_addr,
2797                                        MemoryRegionInfo &range_info) {
2798     return Status("Process::DoGetMemoryRegionInfo() not supported");
2799   }
2800 
2801   /// Provide an override value in the subclass for lldb's
2802   /// CPU-based logic for whether watchpoint exceptions are
2803   /// received before or after an instruction executes.
2804   ///
2805   /// If a Process subclass needs to override this architecture-based
2806   /// result, it may do so by overriding this method.
2807   ///
2808   /// \return
2809   ///     No boolean returned means there is no override of the
2810   ///     default architecture-based behavior.
2811   ///     true is returned for targets where watchpoints are reported
2812   ///     after the instruction has completed.
2813   ///     false is returned for targets where watchpoints are reported
2814   ///     before the instruction executes.
DoGetWatchpointReportedAfter()2815   virtual std::optional<bool> DoGetWatchpointReportedAfter() {
2816     return std::nullopt;
2817   }
2818 
2819   lldb::StateType GetPrivateState();
2820 
2821   /// The "private" side of resuming a process.  This doesn't alter the state
2822   /// of m_run_lock, but just causes the process to resume.
2823   ///
2824   /// \return
2825   ///     An Status object describing the success or failure of the resume.
2826   Status PrivateResume();
2827 
2828   // Called internally
2829   void CompleteAttach();
2830 
2831   // NextEventAction provides a way to register an action on the next event
2832   // that is delivered to this process.  There is currently only one next event
2833   // action allowed in the process at one time.  If a new "NextEventAction" is
2834   // added while one is already present, the old action will be discarded (with
2835   // HandleBeingUnshipped called after it is discarded.)
2836   //
2837   // If you want to resume the process as a result of a resume action, call
2838   // RequestResume, don't call Resume directly.
2839   class NextEventAction {
2840   public:
2841     enum EventActionResult {
2842       eEventActionSuccess,
2843       eEventActionRetry,
2844       eEventActionExit
2845     };
2846 
NextEventAction(Process * process)2847     NextEventAction(Process *process) : m_process(process) {}
2848 
2849     virtual ~NextEventAction() = default;
2850 
2851     virtual EventActionResult PerformAction(lldb::EventSP &event_sp) = 0;
HandleBeingUnshipped()2852     virtual void HandleBeingUnshipped() {}
2853     virtual EventActionResult HandleBeingInterrupted() = 0;
2854     virtual const char *GetExitString() = 0;
RequestResume()2855     void RequestResume() { m_process->m_resume_requested = true; }
2856 
2857   protected:
2858     Process *m_process;
2859   };
2860 
SetNextEventAction(Process::NextEventAction * next_event_action)2861   void SetNextEventAction(Process::NextEventAction *next_event_action) {
2862     if (m_next_event_action_up)
2863       m_next_event_action_up->HandleBeingUnshipped();
2864 
2865     m_next_event_action_up.reset(next_event_action);
2866   }
2867 
2868   // This is the completer for Attaching:
2869   class AttachCompletionHandler : public NextEventAction {
2870   public:
2871     AttachCompletionHandler(Process *process, uint32_t exec_count);
2872 
2873     ~AttachCompletionHandler() override = default;
2874 
2875     EventActionResult PerformAction(lldb::EventSP &event_sp) override;
2876     EventActionResult HandleBeingInterrupted() override;
2877     const char *GetExitString() override;
2878 
2879   private:
2880     uint32_t m_exec_count;
2881     std::string m_exit_string;
2882   };
2883 
PrivateStateThreadIsValid()2884   bool PrivateStateThreadIsValid() const {
2885     lldb::StateType state = m_private_state.GetValue();
2886     return state != lldb::eStateInvalid && state != lldb::eStateDetached &&
2887            state != lldb::eStateExited && m_private_state_thread.IsJoinable();
2888   }
2889 
ForceNextEventDelivery()2890   void ForceNextEventDelivery() { m_force_next_event_delivery = true; }
2891 
2892   /// Loads any plugins associated with asynchronous structured data and maps
2893   /// the relevant supported type name to the plugin.
2894   ///
2895   /// Processes can receive asynchronous structured data from the process
2896   /// monitor.  This method will load and map any structured data plugins that
2897   /// support the given set of supported type names. Later, if any of these
2898   /// features are enabled, the process monitor is free to generate
2899   /// asynchronous structured data.  The data must come in as a single \b
2900   /// StructuredData::Dictionary.  That dictionary must have a string field
2901   /// named 'type', with a value that equals the relevant type name string
2902   /// (one of the values in \b supported_type_names).
2903   ///
2904   /// \param[in] supported_type_names
2905   ///     An array of zero or more type names.  Each must be unique.
2906   ///     For each entry in the list, a StructuredDataPlugin will be
2907   ///     searched for that supports the structured data type name.
2908   void MapSupportedStructuredDataPlugins(
2909       const StructuredData::Array &supported_type_names);
2910 
2911   /// Route the incoming structured data dictionary to the right plugin.
2912   ///
2913   /// The incoming structured data must be a dictionary, and it must have a
2914   /// key named 'type' that stores a string value.  The string value must be
2915   /// the name of the structured data feature that knows how to handle it.
2916   ///
2917   /// \param[in] object_sp
2918   ///     When non-null and pointing to a dictionary, the 'type'
2919   ///     key's string value is used to look up the plugin that
2920   ///     was registered for that structured data type.  It then
2921   ///     calls the following method on the StructuredDataPlugin
2922   ///     instance:
2923   ///
2924   ///     virtual void
2925   ///     HandleArrivalOfStructuredData(Process &process,
2926   ///                                   llvm::StringRef type_name,
2927   ///                                   const StructuredData::ObjectSP
2928   ///                                   &object_sp)
2929   ///
2930   /// \return
2931   ///     True if the structured data was routed to a plugin; otherwise,
2932   ///     false.
2933   bool RouteAsyncStructuredData(const StructuredData::ObjectSP object_sp);
2934 
2935   /// Check whether the process supports memory tagging.
2936   ///
2937   /// \return
2938   ///     true if the process supports memory tagging,
2939   ///     false otherwise.
SupportsMemoryTagging()2940   virtual bool SupportsMemoryTagging() { return false; }
2941 
2942   /// Does the final operation to read memory tags. E.g. sending a GDB packet.
2943   /// It assumes that ReadMemoryTags has checked that memory tagging is enabled
2944   /// and has expanded the memory range as needed.
2945   ///
2946   /// \param[in] addr
2947   ///    Start of address range to read memory tags for.
2948   ///
2949   /// \param[in] len
2950   ///    Length of the memory range to read tags for (in bytes).
2951   ///
2952   /// \param[in] type
2953   ///    Type of tags to read (get this from a MemoryTagManager)
2954   ///
2955   /// \return
2956   ///     The packed tag data received from the remote or an error
2957   ///     if the read failed.
2958   virtual llvm::Expected<std::vector<uint8_t>>
DoReadMemoryTags(lldb::addr_t addr,size_t len,int32_t type)2959   DoReadMemoryTags(lldb::addr_t addr, size_t len, int32_t type) {
2960     return llvm::createStringError(
2961         llvm::inconvertibleErrorCode(),
2962         llvm::formatv("{0} does not support reading memory tags",
2963                       GetPluginName()));
2964   }
2965 
2966   /// Does the final operation to write memory tags. E.g. sending a GDB packet.
2967   /// It assumes that WriteMemoryTags has checked that memory tagging is enabled
2968   /// and has packed the tag data.
2969   ///
2970   /// \param[in] addr
2971   ///    Start of address range to write memory tags for.
2972   ///
2973   /// \param[in] len
2974   ///    Length of the memory range to write tags for (in bytes).
2975   ///
2976   /// \param[in] type
2977   ///    Type of tags to read (get this from a MemoryTagManager)
2978   ///
2979   /// \param[in] tags
2980   ///    Packed tags to be written.
2981   ///
2982   /// \return
2983   ///     Status telling you whether the write succeeded.
DoWriteMemoryTags(lldb::addr_t addr,size_t len,int32_t type,const std::vector<uint8_t> & tags)2984   virtual Status DoWriteMemoryTags(lldb::addr_t addr, size_t len, int32_t type,
2985                                    const std::vector<uint8_t> &tags) {
2986     Status status;
2987     status.SetErrorStringWithFormatv("{0} does not support writing memory tags",
2988                                      GetPluginName());
2989     return status;
2990   }
2991 
2992   // Type definitions
2993   typedef std::map<lldb::LanguageType, lldb::LanguageRuntimeSP>
2994       LanguageRuntimeCollection;
2995 
2996   struct PreResumeCallbackAndBaton {
2997     bool (*callback)(void *);
2998     void *baton;
PreResumeCallbackAndBatonPreResumeCallbackAndBaton2999     PreResumeCallbackAndBaton(PreResumeActionCallback in_callback,
3000                               void *in_baton)
3001         : callback(in_callback), baton(in_baton) {}
3002     bool operator== (const PreResumeCallbackAndBaton &rhs) {
3003       return callback == rhs.callback && baton == rhs.baton;
3004     }
3005   };
3006 
3007   // Member variables
3008   std::weak_ptr<Target> m_target_wp; ///< The target that owns this process.
3009   lldb::pid_t m_pid = LLDB_INVALID_PROCESS_ID;
3010   ThreadSafeValue<lldb::StateType> m_public_state;
3011   ThreadSafeValue<lldb::StateType>
3012       m_private_state;                     // The actual state of our process
3013   Broadcaster m_private_state_broadcaster; // This broadcaster feeds state
3014                                            // changed events into the private
3015                                            // state thread's listener.
3016   Broadcaster m_private_state_control_broadcaster; // This is the control
3017                                                    // broadcaster, used to
3018                                                    // pause, resume & stop the
3019                                                    // private state thread.
3020   lldb::ListenerSP m_private_state_listener_sp; // This is the listener for the
3021                                                 // private state thread.
3022   HostThread m_private_state_thread; ///< Thread ID for the thread that watches
3023                                      ///internal state events
3024   ProcessModID m_mod_id; ///< Tracks the state of the process over stops and
3025                          ///other alterations.
3026   uint32_t m_process_unique_id; ///< Each lldb_private::Process class that is
3027                                 ///created gets a unique integer ID that
3028                                 ///increments with each new instance
3029   uint32_t m_thread_index_id;   ///< Each thread is created with a 1 based index
3030                                 ///that won't get re-used.
3031   std::map<uint64_t, uint32_t> m_thread_id_to_index_id_map;
3032   int m_exit_status; ///< The exit status of the process, or -1 if not set.
3033   std::string m_exit_string; ///< A textual description of why a process exited.
3034   std::mutex m_exit_status_mutex; ///< Mutex so m_exit_status m_exit_string can
3035                                   ///be safely accessed from multiple threads
3036   std::recursive_mutex m_thread_mutex;
3037   ThreadList m_thread_list_real; ///< The threads for this process as are known
3038                                  ///to the protocol we are debugging with
3039   ThreadList m_thread_list; ///< The threads for this process as the user will
3040                             ///see them. This is usually the same as
3041   ///< m_thread_list_real, but might be different if there is an OS plug-in
3042   ///creating memory threads
3043   ThreadPlanStackMap m_thread_plans; ///< This is the list of thread plans for
3044                                      /// threads in m_thread_list, as well as
3045                                      /// threads we knew existed, but haven't
3046                                      /// determined that they have died yet.
3047   ThreadList
3048       m_extended_thread_list; ///< Constituent for extended threads that may be
3049                               /// generated, cleared on natural stops
3050   uint32_t m_extended_thread_stop_id; ///< The natural stop id when
3051                                       ///extended_thread_list was last updated
3052   QueueList
3053       m_queue_list; ///< The list of libdispatch queues at a given stop point
3054   uint32_t m_queue_list_stop_id; ///< The natural stop id when queue list was
3055                                  ///last fetched
3056   StopPointSiteList<lldb_private::WatchpointResource>
3057       m_watchpoint_resource_list; ///< Watchpoint resources currently in use.
3058   std::vector<Notifications> m_notifications; ///< The list of notifications
3059                                               ///that this process can deliver.
3060   std::vector<lldb::addr_t> m_image_tokens;
3061   StopPointSiteList<lldb_private::BreakpointSite>
3062       m_breakpoint_site_list; ///< This is the list of breakpoint
3063                               /// locations we intend to insert in
3064                               /// the target.
3065   lldb::DynamicLoaderUP m_dyld_up;
3066   lldb::JITLoaderListUP m_jit_loaders_up;
3067   lldb::DynamicCheckerFunctionsUP m_dynamic_checkers_up; ///< The functions used
3068                                                          /// by the expression
3069                                                          /// parser to validate
3070                                                          /// data that
3071                                                          /// expressions use.
3072   lldb::OperatingSystemUP m_os_up;
3073   lldb::SystemRuntimeUP m_system_runtime_up;
3074   lldb::UnixSignalsSP
3075       m_unix_signals_sp; /// This is the current signal set for this process.
3076   lldb::ABISP m_abi_sp;
3077   lldb::IOHandlerSP m_process_input_reader;
3078   mutable std::mutex m_process_input_reader_mutex;
3079   ThreadedCommunication m_stdio_communication;
3080   std::recursive_mutex m_stdio_communication_mutex;
3081   bool m_stdin_forward; /// Remember if stdin must be forwarded to remote debug
3082                         /// server
3083   std::string m_stdout_data;
3084   std::string m_stderr_data;
3085   std::recursive_mutex m_profile_data_comm_mutex;
3086   std::vector<std::string> m_profile_data;
3087   Predicate<uint32_t> m_iohandler_sync;
3088   MemoryCache m_memory_cache;
3089   AllocatedMemoryCache m_allocated_memory_cache;
3090   bool m_should_detach; /// Should we detach if the process object goes away
3091                         /// with an explicit call to Kill or Detach?
3092   LanguageRuntimeCollection m_language_runtimes;
3093   std::recursive_mutex m_language_runtimes_mutex;
3094   InstrumentationRuntimeCollection m_instrumentation_runtimes;
3095   std::unique_ptr<NextEventAction> m_next_event_action_up;
3096   std::vector<PreResumeCallbackAndBaton> m_pre_resume_actions;
3097   ProcessRunLock m_public_run_lock;
3098   ProcessRunLock m_private_run_lock;
3099   bool m_currently_handling_do_on_removals;
3100   bool m_resume_requested; // If m_currently_handling_event or
3101                            // m_currently_handling_do_on_removals are true,
3102                            // Resume will only request a resume, using this
3103                            // flag to check.
3104 
3105   /// This is set at the beginning of Process::Finalize() to stop functions
3106   /// from looking up or creating things during or after a finalize call.
3107   std::atomic<bool> m_finalizing;
3108   // When we are "Finalizing" we need to do some cleanup.  But if the Finalize
3109   // call is coming in the Destructor, we can't do any actual work in the
3110   // process because that is likely to call "shared_from_this" which crashes
3111   // if run while destructing.  We use this flag to determine that.
3112   std::atomic<bool> m_destructing;
3113 
3114   /// Mask for code an data addresses.
3115   /// The default value LLDB_INVALID_ADDRESS_MASK means no mask has been set,
3116   /// and addresses values should not be modified.
3117   /// In these masks, the bits are set to 1 indicate bits that are not
3118   /// significant for addressing.
3119   /// The highmem masks are for targets where we may have different masks
3120   /// for low memory versus high memory addresses, and they will be left
3121   /// as LLDB_INVALID_ADDRESS_MASK normally, meaning the base masks
3122   /// should be applied to all addresses.
3123   /// @{
3124   lldb::addr_t m_code_address_mask = LLDB_INVALID_ADDRESS_MASK;
3125   lldb::addr_t m_data_address_mask = LLDB_INVALID_ADDRESS_MASK;
3126   lldb::addr_t m_highmem_code_address_mask = LLDB_INVALID_ADDRESS_MASK;
3127   lldb::addr_t m_highmem_data_address_mask = LLDB_INVALID_ADDRESS_MASK;
3128   /// @}
3129 
3130   bool m_clear_thread_plans_on_stop;
3131   bool m_force_next_event_delivery;
3132   lldb::StateType m_last_broadcast_state; /// This helps with the Public event
3133                                           /// coalescing in
3134                                           /// ShouldBroadcastEvent.
3135   std::map<lldb::addr_t, lldb::addr_t> m_resolved_indirect_addresses;
3136   bool m_destroy_in_process;
3137   bool m_can_interpret_function_calls; // Some targets, e.g the OSX kernel,
3138                                        // don't support the ability to modify
3139                                        // the stack.
3140   std::mutex m_run_thread_plan_lock;
3141   llvm::StringMap<lldb::StructuredDataPluginSP> m_structured_data_plugin_map;
3142 
3143   enum { eCanJITDontKnow = 0, eCanJITYes, eCanJITNo } m_can_jit;
3144 
3145   std::unique_ptr<UtilityFunction> m_dlopen_utility_func_up;
3146   llvm::once_flag m_dlopen_utility_func_flag_once;
3147 
3148   /// Per process source file cache.
3149   SourceManager::SourceFileCache m_source_file_cache;
3150 
3151   size_t RemoveBreakpointOpcodesFromBuffer(lldb::addr_t addr, size_t size,
3152                                            uint8_t *buf) const;
3153 
3154   void SynchronouslyNotifyStateChanged(lldb::StateType state);
3155 
3156   void SetPublicState(lldb::StateType new_state, bool restarted);
3157 
3158   void SetPrivateState(lldb::StateType state);
3159 
3160   bool StartPrivateStateThread(bool is_secondary_thread = false);
3161 
3162   void StopPrivateStateThread();
3163 
3164   void PausePrivateStateThread();
3165 
3166   void ResumePrivateStateThread();
3167 
3168 private:
3169   // The starts up the private state thread that will watch for events from the
3170   // debugee. Pass true for is_secondary_thread in the case where you have to
3171   // temporarily spin up a secondary state thread to handle events from a hand-
3172   // called function on the primary private state thread.
3173 
3174   lldb::thread_result_t RunPrivateStateThread(bool is_secondary_thread);
3175 
3176 protected:
3177   void HandlePrivateEvent(lldb::EventSP &event_sp);
3178 
3179   Status HaltPrivate();
3180 
3181   lldb::StateType WaitForProcessStopPrivate(lldb::EventSP &event_sp,
3182                                             const Timeout<std::micro> &timeout);
3183 
3184   // This waits for both the state change broadcaster, and the control
3185   // broadcaster. If control_only, it only waits for the control broadcaster.
3186 
3187   bool GetEventsPrivate(lldb::EventSP &event_sp,
3188                         const Timeout<std::micro> &timeout, bool control_only);
3189 
3190   lldb::StateType
3191   GetStateChangedEventsPrivate(lldb::EventSP &event_sp,
3192                                const Timeout<std::micro> &timeout);
3193 
3194   size_t WriteMemoryPrivate(lldb::addr_t addr, const void *buf, size_t size,
3195                             Status &error);
3196 
3197   void AppendSTDOUT(const char *s, size_t len);
3198 
3199   void AppendSTDERR(const char *s, size_t len);
3200 
3201   void BroadcastAsyncProfileData(const std::string &one_profile_data);
3202 
3203   static void STDIOReadThreadBytesReceived(void *baton, const void *src,
3204                                            size_t src_len);
3205 
3206   bool PushProcessIOHandler();
3207 
3208   bool PopProcessIOHandler();
3209 
3210   bool ProcessIOHandlerIsActive();
3211 
ProcessIOHandlerExists()3212   bool ProcessIOHandlerExists() const {
3213     std::lock_guard<std::mutex> guard(m_process_input_reader_mutex);
3214     return static_cast<bool>(m_process_input_reader);
3215   }
3216 
3217   Status StopForDestroyOrDetach(lldb::EventSP &exit_event_sp);
3218 
3219   virtual Status UpdateAutomaticSignalFiltering();
3220 
3221   void LoadOperatingSystemPlugin(bool flush);
3222 
3223   void SetAddressableBitMasks(AddressableBits bit_masks);
3224 
3225 private:
3226   Status DestroyImpl(bool force_kill);
3227 
3228   /// This is the part of the event handling that for a process event. It
3229   /// decides what to do with the event and returns true if the event needs to
3230   /// be propagated to the user, and false otherwise. If the event is not
3231   /// propagated, this call will most likely set the target to executing
3232   /// again. There is only one place where this call should be called,
3233   /// HandlePrivateEvent. Don't call it from anywhere else...
3234   ///
3235   /// \param[in] event_ptr
3236   ///     This is the event we are handling.
3237   ///
3238   /// \return
3239   ///     Returns \b true if the event should be reported to the
3240   ///     user, \b false otherwise.
3241   bool ShouldBroadcastEvent(Event *event_ptr);
3242 
3243   void ControlPrivateStateThread(uint32_t signal);
3244 
3245   Status LaunchPrivate(ProcessLaunchInfo &launch_info, lldb::StateType &state,
3246                        lldb::EventSP &event_sp);
3247 
3248   lldb::EventSP CreateEventFromProcessState(uint32_t event_type);
3249 
3250   Process(const Process &) = delete;
3251   const Process &operator=(const Process &) = delete;
3252 };
3253 
3254 /// RAII guard that should be acquired when an utility function is called within
3255 /// a given process.
3256 class UtilityFunctionScope {
3257   Process *m_process;
3258 
3259 public:
UtilityFunctionScope(Process * p)3260   UtilityFunctionScope(Process *p) : m_process(p) {
3261     if (m_process)
3262       m_process->SetRunningUtilityFunction(true);
3263   }
~UtilityFunctionScope()3264   ~UtilityFunctionScope() {
3265     if (m_process)
3266       m_process->SetRunningUtilityFunction(false);
3267   }
3268 };
3269 
3270 } // namespace lldb_private
3271 
3272 #endif // LLDB_TARGET_PROCESS_H
3273