1 //===-- ArchSpec.h ----------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #ifndef LLDB_UTILITY_ARCHSPEC_H
10 #define LLDB_UTILITY_ARCHSPEC_H
11 
12 #include "lldb/Utility/CompletionRequest.h"
13 #include "lldb/lldb-enumerations.h"
14 #include "lldb/lldb-forward.h"
15 #include "lldb/lldb-private-enumerations.h"
16 #include "llvm/ADT/StringRef.h"
17 #include "llvm/TargetParser/Triple.h"
18 #include <cstddef>
19 #include <cstdint>
20 #include <string>
21 
22 namespace lldb_private {
23 
24 /// \class ArchSpec ArchSpec.h "lldb/Utility/ArchSpec.h" An architecture
25 /// specification class.
26 ///
27 /// A class designed to be created from a cpu type and subtype, a
28 /// string representation, or an llvm::Triple.  Keeping all of the conversions
29 /// of strings to architecture enumeration values confined to this class
30 /// allows new architecture support to be added easily.
31 class ArchSpec {
32 public:
33   enum MIPSSubType {
34     eMIPSSubType_unknown,
35     eMIPSSubType_mips32,
36     eMIPSSubType_mips32r2,
37     eMIPSSubType_mips32r6,
38     eMIPSSubType_mips32el,
39     eMIPSSubType_mips32r2el,
40     eMIPSSubType_mips32r6el,
41     eMIPSSubType_mips64,
42     eMIPSSubType_mips64r2,
43     eMIPSSubType_mips64r6,
44     eMIPSSubType_mips64el,
45     eMIPSSubType_mips64r2el,
46     eMIPSSubType_mips64r6el,
47   };
48 
49   // Masks for the ases word of an ABI flags structure.
50   enum MIPSASE {
51     eMIPSAse_dsp = 0x00000001,       // DSP ASE
52     eMIPSAse_dspr2 = 0x00000002,     // DSP R2 ASE
53     eMIPSAse_eva = 0x00000004,       // Enhanced VA Scheme
54     eMIPSAse_mcu = 0x00000008,       // MCU (MicroController) ASE
55     eMIPSAse_mdmx = 0x00000010,      // MDMX ASE
56     eMIPSAse_mips3d = 0x00000020,    // MIPS-3D ASE
57     eMIPSAse_mt = 0x00000040,        // MT ASE
58     eMIPSAse_smartmips = 0x00000080, // SmartMIPS ASE
59     eMIPSAse_virt = 0x00000100,      // VZ ASE
60     eMIPSAse_msa = 0x00000200,       // MSA ASE
61     eMIPSAse_mips16 = 0x00000400,    // MIPS16 ASE
62     eMIPSAse_micromips = 0x00000800, // MICROMIPS ASE
63     eMIPSAse_xpa = 0x00001000,       // XPA ASE
64     eMIPSAse_mask = 0x00001fff,
65     eMIPSABI_O32 = 0x00002000,
66     eMIPSABI_N32 = 0x00004000,
67     eMIPSABI_N64 = 0x00008000,
68     eMIPSABI_O64 = 0x00020000,
69     eMIPSABI_EABI32 = 0x00040000,
70     eMIPSABI_EABI64 = 0x00080000,
71     eMIPSABI_mask = 0x000ff000
72   };
73 
74   // MIPS Floating point ABI Values
75   enum MIPS_ABI_FP {
76     eMIPS_ABI_FP_ANY = 0x00000000,
77     eMIPS_ABI_FP_DOUBLE = 0x00100000, // hard float / -mdouble-float
78     eMIPS_ABI_FP_SINGLE = 0x00200000, // hard float / -msingle-float
79     eMIPS_ABI_FP_SOFT = 0x00300000,   // soft float
80     eMIPS_ABI_FP_OLD_64 = 0x00400000, // -mips32r2 -mfp64
81     eMIPS_ABI_FP_XX = 0x00500000,     // -mfpxx
82     eMIPS_ABI_FP_64 = 0x00600000,     // -mips32r2 -mfp64
83     eMIPS_ABI_FP_64A = 0x00700000,    // -mips32r2 -mfp64 -mno-odd-spreg
84     eMIPS_ABI_FP_mask = 0x00700000
85   };
86 
87   // ARM specific e_flags
88   enum ARMeflags {
89     eARM_abi_soft_float = 0x00000200,
90     eARM_abi_hard_float = 0x00000400
91   };
92 
93   enum RISCVeflags {
94     eRISCV_rvc              = 0x00000001, /// RVC, +c
95     eRISCV_float_abi_soft   = 0x00000000, /// soft float
96     eRISCV_float_abi_single = 0x00000002, /// single precision floating point, +f
97     eRISCV_float_abi_double = 0x00000004, /// double precision floating point, +d
98     eRISCV_float_abi_quad   = 0x00000006, /// quad precision floating point, +q
99     eRISCV_float_abi_mask   = 0x00000006,
100     eRISCV_rve              = 0x00000008, /// RVE, +e
101     eRISCV_tso              = 0x00000010, /// RVTSO (total store ordering)
102   };
103 
104   enum RISCVSubType {
105     eRISCVSubType_unknown,
106     eRISCVSubType_riscv32,
107     eRISCVSubType_riscv64,
108   };
109 
110   enum LoongArchSubType {
111     eLoongArchSubType_unknown,
112     eLoongArchSubType_loongarch32,
113     eLoongArchSubType_loongarch64,
114   };
115 
116   enum Core {
117     eCore_arm_generic,
118     eCore_arm_armv4,
119     eCore_arm_armv4t,
120     eCore_arm_armv5,
121     eCore_arm_armv5e,
122     eCore_arm_armv5t,
123     eCore_arm_armv6,
124     eCore_arm_armv6m,
125     eCore_arm_armv7,
126     eCore_arm_armv7a,
127     eCore_arm_armv7l,
128     eCore_arm_armv7f,
129     eCore_arm_armv7s,
130     eCore_arm_armv7k,
131     eCore_arm_armv7m,
132     eCore_arm_armv7em,
133     eCore_arm_xscale,
134 
135     eCore_thumb,
136     eCore_thumbv4t,
137     eCore_thumbv5,
138     eCore_thumbv5e,
139     eCore_thumbv6,
140     eCore_thumbv6m,
141     eCore_thumbv7,
142     eCore_thumbv7s,
143     eCore_thumbv7k,
144     eCore_thumbv7f,
145     eCore_thumbv7m,
146     eCore_thumbv7em,
147     eCore_arm_arm64,
148     eCore_arm_armv8,
149     eCore_arm_armv8a,
150     eCore_arm_armv8l,
151     eCore_arm_arm64e,
152     eCore_arm_arm64_32,
153     eCore_arm_aarch64,
154 
155     eCore_mips32,
156     eCore_mips32r2,
157     eCore_mips32r3,
158     eCore_mips32r5,
159     eCore_mips32r6,
160     eCore_mips32el,
161     eCore_mips32r2el,
162     eCore_mips32r3el,
163     eCore_mips32r5el,
164     eCore_mips32r6el,
165     eCore_mips64,
166     eCore_mips64r2,
167     eCore_mips64r3,
168     eCore_mips64r5,
169     eCore_mips64r6,
170     eCore_mips64el,
171     eCore_mips64r2el,
172     eCore_mips64r3el,
173     eCore_mips64r5el,
174     eCore_mips64r6el,
175 
176     eCore_msp430,
177 
178     eCore_ppc_generic,
179     eCore_ppc_ppc601,
180     eCore_ppc_ppc602,
181     eCore_ppc_ppc603,
182     eCore_ppc_ppc603e,
183     eCore_ppc_ppc603ev,
184     eCore_ppc_ppc604,
185     eCore_ppc_ppc604e,
186     eCore_ppc_ppc620,
187     eCore_ppc_ppc750,
188     eCore_ppc_ppc7400,
189     eCore_ppc_ppc7450,
190     eCore_ppc_ppc970,
191 
192     eCore_ppc64le_generic,
193     eCore_ppc64_generic,
194     eCore_ppc64_ppc970_64,
195 
196     eCore_s390x_generic,
197 
198     eCore_sparc_generic,
199 
200     eCore_sparc9_generic,
201 
202     eCore_x86_32_i386,
203     eCore_x86_32_i486,
204     eCore_x86_32_i486sx,
205     eCore_x86_32_i686,
206 
207     eCore_x86_64_x86_64,
208     eCore_x86_64_x86_64h, // Haswell enabled x86_64
209     eCore_hexagon_generic,
210     eCore_hexagon_hexagonv4,
211     eCore_hexagon_hexagonv5,
212 
213     eCore_riscv32,
214     eCore_riscv64,
215 
216     eCore_loongarch32,
217     eCore_loongarch64,
218 
219     eCore_uknownMach32,
220     eCore_uknownMach64,
221 
222     eCore_arc, // little endian ARC
223 
224     eCore_avr,
225 
226     eCore_wasm32,
227 
228     kNumCores,
229 
230     kCore_invalid,
231     // The following constants are used for wildcard matching only
232     kCore_any,
233     kCore_arm_any,
234     kCore_ppc_any,
235     kCore_ppc64_any,
236     kCore_x86_32_any,
237     kCore_x86_64_any,
238     kCore_hexagon_any,
239 
240     kCore_arm_first = eCore_arm_generic,
241     kCore_arm_last = eCore_arm_xscale,
242 
243     kCore_thumb_first = eCore_thumb,
244     kCore_thumb_last = eCore_thumbv7em,
245 
246     kCore_ppc_first = eCore_ppc_generic,
247     kCore_ppc_last = eCore_ppc_ppc970,
248 
249     kCore_ppc64_first = eCore_ppc64_generic,
250     kCore_ppc64_last = eCore_ppc64_ppc970_64,
251 
252     kCore_x86_32_first = eCore_x86_32_i386,
253     kCore_x86_32_last = eCore_x86_32_i686,
254 
255     kCore_x86_64_first = eCore_x86_64_x86_64,
256     kCore_x86_64_last = eCore_x86_64_x86_64h,
257 
258     kCore_hexagon_first = eCore_hexagon_generic,
259     kCore_hexagon_last = eCore_hexagon_hexagonv5,
260 
261     kCore_mips32_first = eCore_mips32,
262     kCore_mips32_last = eCore_mips32r6,
263 
264     kCore_mips32el_first = eCore_mips32el,
265     kCore_mips32el_last = eCore_mips32r6el,
266 
267     kCore_mips64_first = eCore_mips64,
268     kCore_mips64_last = eCore_mips64r6,
269 
270     kCore_mips64el_first = eCore_mips64el,
271     kCore_mips64el_last = eCore_mips64r6el,
272 
273     kCore_mips_first = eCore_mips32,
274     kCore_mips_last = eCore_mips64r6el
275 
276   };
277 
278   /// Default constructor.
279   ///
280   /// Default constructor that initializes the object with invalid cpu type
281   /// and subtype values.
282   ArchSpec();
283 
284   /// Constructor over triple.
285   ///
286   /// Constructs an ArchSpec with properties consistent with the given Triple.
287   explicit ArchSpec(const llvm::Triple &triple);
288   explicit ArchSpec(const char *triple_cstr);
289   explicit ArchSpec(llvm::StringRef triple_str);
290   /// Constructor over architecture name.
291   ///
292   /// Constructs an ArchSpec with properties consistent with the given object
293   /// type and architecture name.
294   explicit ArchSpec(ArchitectureType arch_type, uint32_t cpu_type,
295                     uint32_t cpu_subtype);
296 
297   /// Destructor.
298   ~ArchSpec();
299 
300   /// Returns true if the OS, vendor and environment fields of the triple are
301   /// unset. The triple is expected to be normalized
302   /// (llvm::Triple::normalize).
303   static bool ContainsOnlyArch(const llvm::Triple &normalized_triple);
304 
305   static void ListSupportedArchNames(StringList &list);
306   static void AutoComplete(CompletionRequest &request);
307 
308   /// Returns a static string representing the current architecture.
309   ///
310   /// \return A static string corresponding to the current
311   ///         architecture.
312   const char *GetArchitectureName() const;
313 
314   /// if MIPS architecture return true.
315   ///
316   ///  \return a boolean value.
317   bool IsMIPS() const;
318 
319   /// Returns a string representing current architecture as a target CPU for
320   /// tools like compiler, disassembler etc.
321   ///
322   /// \return A string representing target CPU for the current
323   ///         architecture.
324   std::string GetClangTargetCPU() const;
325 
326   /// Return a string representing target application ABI.
327   ///
328   /// \return A string representing target application ABI.
329   std::string GetTargetABI() const;
330 
331   /// Clears the object state.
332   ///
333   /// Clears the object state back to a default invalid state.
334   void Clear();
335 
336   /// Returns the size in bytes of an address of the current architecture.
337   ///
338   /// \return The byte size of an address of the current architecture.
339   uint32_t GetAddressByteSize() const;
340 
341   /// Returns a machine family for the current architecture.
342   ///
343   /// \return An LLVM arch type.
344   llvm::Triple::ArchType GetMachine() const;
345 
346   /// Tests if this ArchSpec is valid.
347   ///
348   /// \return True if the current architecture is valid, false
349   ///         otherwise.
IsValid()350   bool IsValid() const {
351     return m_core >= eCore_arm_generic && m_core < kNumCores;
352   }
353   explicit operator bool() const { return IsValid(); }
354 
TripleVendorWasSpecified()355   bool TripleVendorWasSpecified() const {
356     return !m_triple.getVendorName().empty();
357   }
358 
TripleOSWasSpecified()359   bool TripleOSWasSpecified() const { return !m_triple.getOSName().empty(); }
360 
TripleEnvironmentWasSpecified()361   bool TripleEnvironmentWasSpecified() const {
362     return m_triple.hasEnvironment();
363   }
364 
365   /// Merges fields from another ArchSpec into this ArchSpec.
366   ///
367   /// This will use the supplied ArchSpec to fill in any fields of the triple
368   /// in this ArchSpec which were unspecified.  This can be used to refine a
369   /// generic ArchSpec with a more specific one. For example, if this
370   /// ArchSpec's triple is something like i386-unknown-unknown-unknown, and we
371   /// have a triple which is x64-pc-windows-msvc, then merging that triple
372   /// into this one will result in the triple i386-pc-windows-msvc.
373   ///
374   void MergeFrom(const ArchSpec &other);
375 
376   /// Change the architecture object type, CPU type and OS type.
377   ///
378   /// \param[in] arch_type The object type of this ArchSpec.
379   ///
380   /// \param[in] cpu The required CPU type.
381   ///
382   /// \param[in] os The optional OS type
383   /// The default value of 0 was chosen to from the ELF spec value
384   /// ELFOSABI_NONE.  ELF is the only one using this parameter.  If another
385   /// format uses this parameter and 0 does not work, use a value over
386   /// 255 because in the ELF header this is value is only a byte.
387   ///
388   /// \return True if the object, and CPU were successfully set.
389   ///
390   /// As a side effect, the vendor value is usually set to unknown. The
391   /// exceptions are
392   ///   aarch64-apple-ios
393   ///   arm-apple-ios
394   ///   thumb-apple-ios
395   ///   x86-apple-
396   ///   x86_64-apple-
397   ///
398   /// As a side effect, the os value is usually set to unknown The exceptions
399   /// are
400   ///   *-*-aix
401   ///   aarch64-apple-ios
402   ///   arm-apple-ios
403   ///   thumb-apple-ios
404   ///   powerpc-apple-darwin
405   ///   *-*-freebsd
406   ///   *-*-linux
407   ///   *-*-netbsd
408   ///   *-*-openbsd
409   ///   *-*-solaris
410   bool SetArchitecture(ArchitectureType arch_type, uint32_t cpu, uint32_t sub,
411                        uint32_t os = 0);
412 
413   /// Returns the byte order for the architecture specification.
414   ///
415   /// \return The endian enumeration for the current endianness of
416   ///     the architecture specification
417   lldb::ByteOrder GetByteOrder() const;
418 
419   /// Sets this ArchSpec's byte order.
420   ///
421   /// In the common case there is no need to call this method as the byte
422   /// order can almost always be determined by the architecture. However, many
423   /// CPU's are bi-endian (ARM, Alpha, PowerPC, etc) and the default/assumed
424   /// byte order may be incorrect.
SetByteOrder(lldb::ByteOrder byte_order)425   void SetByteOrder(lldb::ByteOrder byte_order) { m_byte_order = byte_order; }
426 
427   uint32_t GetMinimumOpcodeByteSize() const;
428 
429   uint32_t GetMaximumOpcodeByteSize() const;
430 
GetCore()431   Core GetCore() const { return m_core; }
432 
433   uint32_t GetMachOCPUType() const;
434 
435   uint32_t GetMachOCPUSubType() const;
436 
437   /// Architecture data byte width accessor
438   ///
439   /// \return the size in 8-bit (host) bytes of a minimum addressable unit
440   /// from the Architecture's data bus
441   uint32_t GetDataByteSize() const;
442 
443   /// Architecture code byte width accessor
444   ///
445   /// \return the size in 8-bit (host) bytes of a minimum addressable unit
446   /// from the Architecture's code bus
447   uint32_t GetCodeByteSize() const;
448 
449   /// Architecture triple accessor.
450   ///
451   /// \return A triple describing this ArchSpec.
GetTriple()452   llvm::Triple &GetTriple() { return m_triple; }
453 
454   /// Architecture triple accessor.
455   ///
456   /// \return A triple describing this ArchSpec.
GetTriple()457   const llvm::Triple &GetTriple() const { return m_triple; }
458 
459   void DumpTriple(llvm::raw_ostream &s) const;
460 
461   /// Architecture triple setter.
462   ///
463   /// Configures this ArchSpec according to the given triple.  If the triple
464   /// has unknown components in all of the vendor, OS, and the optional
465   /// environment field (i.e. "i386-unknown-unknown") then default values are
466   /// taken from the host.  Architecture and environment components are used
467   /// to further resolve the CPU type and subtype, endian characteristics,
468   /// etc.
469   ///
470   /// \return A triple describing this ArchSpec.
471   bool SetTriple(const llvm::Triple &triple);
472 
473   bool SetTriple(llvm::StringRef triple_str);
474 
475   /// Returns the default endianness of the architecture.
476   ///
477   /// \return The endian enumeration for the default endianness of
478   ///         the architecture.
479   lldb::ByteOrder GetDefaultEndian() const;
480 
481   /// Returns true if 'char' is a signed type by default in the architecture
482   /// false otherwise
483   ///
484   /// \return True if 'char' is a signed type by default on the
485   ///         architecture and false otherwise.
486   bool CharIsSignedByDefault() const;
487 
488   enum MatchType : bool { CompatibleMatch, ExactMatch };
489 
490   /// Compare this ArchSpec to another ArchSpec. \a match specifies the kind of
491   /// matching that is to be done. CompatibleMatch requires only a compatible
492   /// cpu type (e.g., armv7s is compatible with armv7). ExactMatch requires an
493   /// exact match (armv7s is not an exact match with armv7).
494   ///
495   /// \return true if the two ArchSpecs match.
496   bool IsMatch(const ArchSpec &rhs, MatchType match) const;
497 
498   /// Shorthand for IsMatch(rhs, ExactMatch).
IsExactMatch(const ArchSpec & rhs)499   bool IsExactMatch(const ArchSpec &rhs) const {
500     return IsMatch(rhs, ExactMatch);
501   }
502 
503   /// Shorthand for IsMatch(rhs, CompatibleMatch).
IsCompatibleMatch(const ArchSpec & rhs)504   bool IsCompatibleMatch(const ArchSpec &rhs) const {
505     return IsMatch(rhs, CompatibleMatch);
506   }
507 
508   bool IsFullySpecifiedTriple() const;
509 
510   /// Detect whether this architecture uses thumb code exclusively
511   ///
512   /// Some embedded ARM chips (e.g. the ARM Cortex M0-7 line) can only execute
513   /// the Thumb instructions, never Arm.  We should normally pick up
514   /// arm/thumbness from their the processor status bits (cpsr/xpsr) or hints
515   /// on each function - but when doing bare-boards low level debugging
516   /// (especially common with these embedded processors), we may not have
517   /// those things easily accessible.
518   ///
519   /// \return true if this is an arm ArchSpec which can only execute Thumb
520   ///         instructions
521   bool IsAlwaysThumbInstructions() const;
522 
GetFlags()523   uint32_t GetFlags() const { return m_flags; }
524 
SetFlags(uint32_t flags)525   void SetFlags(uint32_t flags) { m_flags = flags; }
526 
527   void SetFlags(const std::string &elf_abi);
528 
529 protected:
530   void UpdateCore();
531 
532   llvm::Triple m_triple;
533   Core m_core = kCore_invalid;
534   lldb::ByteOrder m_byte_order = lldb::eByteOrderInvalid;
535 
536   // Additional arch flags which we cannot get from triple and core For MIPS
537   // these are application specific extensions like micromips, mips16 etc.
538   uint32_t m_flags = 0;
539 
540   // Called when m_def or m_entry are changed.  Fills in all remaining members
541   // with default values.
542   void CoreUpdated(bool update_triple);
543 };
544 
545 /// \fn bool operator< (const ArchSpec& lhs, const ArchSpec& rhs) Less than
546 /// operator.
547 ///
548 /// Tests two ArchSpec objects to see if \a lhs is less than \a rhs.
549 ///
550 /// \param[in] lhs The Left Hand Side ArchSpec object to compare. \param[in]
551 /// rhs The Left Hand Side ArchSpec object to compare.
552 ///
553 /// \return true if \a lhs is less than \a rhs
554 bool operator<(const ArchSpec &lhs, const ArchSpec &rhs);
555 bool operator==(const ArchSpec &lhs, const ArchSpec &rhs);
556 
557 bool ParseMachCPUDashSubtypeTriple(llvm::StringRef triple_str, ArchSpec &arch);
558 
559 } // namespace lldb_private
560 
561 #endif // LLDB_UTILITY_ARCHSPEC_H
562