1 //===- llvm/CodeGen/MachineFunction.h ---------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Collect native machine code for a function. This class contains a list of 10 // MachineBasicBlock instances that make up the current compiled function. 11 // 12 // This class also contains pointers to various classes which hold 13 // target-specific information about the generated code. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #ifndef LLVM_CODEGEN_MACHINEFUNCTION_H 18 #define LLVM_CODEGEN_MACHINEFUNCTION_H 19 20 #include "llvm/ADT/ArrayRef.h" 21 #include "llvm/ADT/BitVector.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/GraphTraits.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/ilist.h" 26 #include "llvm/ADT/iterator.h" 27 #include "llvm/CodeGen/MachineBasicBlock.h" 28 #include "llvm/CodeGen/MachineInstr.h" 29 #include "llvm/CodeGen/MachineMemOperand.h" 30 #include "llvm/IR/EHPersonalities.h" 31 #include "llvm/Support/Allocator.h" 32 #include "llvm/Support/ArrayRecycler.h" 33 #include "llvm/Support/AtomicOrdering.h" 34 #include "llvm/Support/Compiler.h" 35 #include "llvm/Support/Recycler.h" 36 #include "llvm/Target/TargetOptions.h" 37 #include <cassert> 38 #include <cstdint> 39 #include <memory> 40 #include <utility> 41 #include <variant> 42 #include <vector> 43 44 namespace llvm { 45 46 class BasicBlock; 47 class BlockAddress; 48 class DataLayout; 49 class DebugLoc; 50 struct DenormalMode; 51 class DIExpression; 52 class DILocalVariable; 53 class DILocation; 54 class Function; 55 class GISelChangeObserver; 56 class GlobalValue; 57 class LLVMTargetMachine; 58 class MachineConstantPool; 59 class MachineFrameInfo; 60 class MachineFunction; 61 class MachineJumpTableInfo; 62 class MachineModuleInfo; 63 class MachineRegisterInfo; 64 class MCContext; 65 class MCInstrDesc; 66 class MCSymbol; 67 class MCSection; 68 class Pass; 69 class PseudoSourceValueManager; 70 class raw_ostream; 71 class SlotIndexes; 72 class StringRef; 73 class TargetRegisterClass; 74 class TargetSubtargetInfo; 75 struct WasmEHFuncInfo; 76 struct WinEHFuncInfo; 77 78 template <> struct ilist_alloc_traits<MachineBasicBlock> { 79 void deleteNode(MachineBasicBlock *MBB); 80 }; 81 82 template <> struct ilist_callback_traits<MachineBasicBlock> { 83 void addNodeToList(MachineBasicBlock* N); 84 void removeNodeFromList(MachineBasicBlock* N); 85 86 template <class Iterator> 87 void transferNodesFromList(ilist_callback_traits &OldList, Iterator, Iterator) { 88 assert(this == &OldList && "never transfer MBBs between functions"); 89 } 90 }; 91 92 /// MachineFunctionInfo - This class can be derived from and used by targets to 93 /// hold private target-specific information for each MachineFunction. Objects 94 /// of type are accessed/created with MF::getInfo and destroyed when the 95 /// MachineFunction is destroyed. 96 struct MachineFunctionInfo { 97 virtual ~MachineFunctionInfo(); 98 99 /// Factory function: default behavior is to call new using the 100 /// supplied allocator. 101 /// 102 /// This function can be overridden in a derive class. 103 template <typename FuncInfoTy, typename SubtargetTy = TargetSubtargetInfo> 104 static FuncInfoTy *create(BumpPtrAllocator &Allocator, const Function &F, 105 const SubtargetTy *STI) { 106 return new (Allocator.Allocate<FuncInfoTy>()) FuncInfoTy(F, STI); 107 } 108 109 template <typename Ty> 110 static Ty *create(BumpPtrAllocator &Allocator, const Ty &MFI) { 111 return new (Allocator.Allocate<Ty>()) Ty(MFI); 112 } 113 114 /// Make a functionally equivalent copy of this MachineFunctionInfo in \p MF. 115 /// This requires remapping MachineBasicBlock references from the original 116 /// parent to values in the new function. Targets may assume that virtual 117 /// register and frame index values are preserved in the new function. 118 virtual MachineFunctionInfo * 119 clone(BumpPtrAllocator &Allocator, MachineFunction &DestMF, 120 const DenseMap<MachineBasicBlock *, MachineBasicBlock *> &Src2DstMBB) 121 const { 122 return nullptr; 123 } 124 }; 125 126 /// Properties which a MachineFunction may have at a given point in time. 127 /// Each of these has checking code in the MachineVerifier, and passes can 128 /// require that a property be set. 129 class MachineFunctionProperties { 130 // Possible TODO: Allow targets to extend this (perhaps by allowing the 131 // constructor to specify the size of the bit vector) 132 // Possible TODO: Allow requiring the negative (e.g. VRegsAllocated could be 133 // stated as the negative of "has vregs" 134 135 public: 136 // The properties are stated in "positive" form; i.e. a pass could require 137 // that the property hold, but not that it does not hold. 138 139 // Property descriptions: 140 // IsSSA: True when the machine function is in SSA form and virtual registers 141 // have a single def. 142 // NoPHIs: The machine function does not contain any PHI instruction. 143 // TracksLiveness: True when tracking register liveness accurately. 144 // While this property is set, register liveness information in basic block 145 // live-in lists and machine instruction operands (e.g. implicit defs) is 146 // accurate, kill flags are conservatively accurate (kill flag correctly 147 // indicates the last use of a register, an operand without kill flag may or 148 // may not be the last use of a register). This means it can be used to 149 // change the code in ways that affect the values in registers, for example 150 // by the register scavenger. 151 // When this property is cleared at a very late time, liveness is no longer 152 // reliable. 153 // NoVRegs: The machine function does not use any virtual registers. 154 // Legalized: In GlobalISel: the MachineLegalizer ran and all pre-isel generic 155 // instructions have been legalized; i.e., all instructions are now one of: 156 // - generic and always legal (e.g., COPY) 157 // - target-specific 158 // - legal pre-isel generic instructions. 159 // RegBankSelected: In GlobalISel: the RegBankSelect pass ran and all generic 160 // virtual registers have been assigned to a register bank. 161 // Selected: In GlobalISel: the InstructionSelect pass ran and all pre-isel 162 // generic instructions have been eliminated; i.e., all instructions are now 163 // target-specific or non-pre-isel generic instructions (e.g., COPY). 164 // Since only pre-isel generic instructions can have generic virtual register 165 // operands, this also means that all generic virtual registers have been 166 // constrained to virtual registers (assigned to register classes) and that 167 // all sizes attached to them have been eliminated. 168 // TiedOpsRewritten: The twoaddressinstruction pass will set this flag, it 169 // means that tied-def have been rewritten to meet the RegConstraint. 170 // FailsVerification: Means that the function is not expected to pass machine 171 // verification. This can be set by passes that introduce known problems that 172 // have not been fixed yet. 173 // TracksDebugUserValues: Without this property enabled, debug instructions 174 // such as DBG_VALUE are allowed to reference virtual registers even if those 175 // registers do not have a definition. With the property enabled virtual 176 // registers must only be used if they have a definition. This property 177 // allows earlier passes in the pipeline to skip updates of `DBG_VALUE` 178 // instructions to save compile time. 179 enum class Property : unsigned { 180 IsSSA, 181 NoPHIs, 182 TracksLiveness, 183 NoVRegs, 184 FailedISel, 185 Legalized, 186 RegBankSelected, 187 Selected, 188 TiedOpsRewritten, 189 FailsVerification, 190 TracksDebugUserValues, 191 LastProperty = TracksDebugUserValues, 192 }; 193 194 bool hasProperty(Property P) const { 195 return Properties[static_cast<unsigned>(P)]; 196 } 197 198 MachineFunctionProperties &set(Property P) { 199 Properties.set(static_cast<unsigned>(P)); 200 return *this; 201 } 202 203 MachineFunctionProperties &reset(Property P) { 204 Properties.reset(static_cast<unsigned>(P)); 205 return *this; 206 } 207 208 /// Reset all the properties. 209 MachineFunctionProperties &reset() { 210 Properties.reset(); 211 return *this; 212 } 213 214 MachineFunctionProperties &set(const MachineFunctionProperties &MFP) { 215 Properties |= MFP.Properties; 216 return *this; 217 } 218 219 MachineFunctionProperties &reset(const MachineFunctionProperties &MFP) { 220 Properties.reset(MFP.Properties); 221 return *this; 222 } 223 224 // Returns true if all properties set in V (i.e. required by a pass) are set 225 // in this. 226 bool verifyRequiredProperties(const MachineFunctionProperties &V) const { 227 return !V.Properties.test(Properties); 228 } 229 230 /// Print the MachineFunctionProperties in human-readable form. 231 void print(raw_ostream &OS) const; 232 233 private: 234 BitVector Properties = 235 BitVector(static_cast<unsigned>(Property::LastProperty)+1); 236 }; 237 238 struct SEHHandler { 239 /// Filter or finally function. Null indicates a catch-all. 240 const Function *FilterOrFinally; 241 242 /// Address of block to recover at. Null for a finally handler. 243 const BlockAddress *RecoverBA; 244 }; 245 246 /// This structure is used to retain landing pad info for the current function. 247 struct LandingPadInfo { 248 MachineBasicBlock *LandingPadBlock; // Landing pad block. 249 SmallVector<MCSymbol *, 1> BeginLabels; // Labels prior to invoke. 250 SmallVector<MCSymbol *, 1> EndLabels; // Labels after invoke. 251 SmallVector<SEHHandler, 1> SEHHandlers; // SEH handlers active at this lpad. 252 MCSymbol *LandingPadLabel = nullptr; // Label at beginning of landing pad. 253 std::vector<int> TypeIds; // List of type ids (filters negative). 254 255 explicit LandingPadInfo(MachineBasicBlock *MBB) 256 : LandingPadBlock(MBB) {} 257 }; 258 259 class LLVM_EXTERNAL_VISIBILITY MachineFunction { 260 Function &F; 261 const LLVMTargetMachine &Target; 262 const TargetSubtargetInfo *STI; 263 MCContext &Ctx; 264 MachineModuleInfo &MMI; 265 266 // RegInfo - Information about each register in use in the function. 267 MachineRegisterInfo *RegInfo; 268 269 // Used to keep track of target-specific per-machine-function information for 270 // the target implementation. 271 MachineFunctionInfo *MFInfo; 272 273 // Keep track of objects allocated on the stack. 274 MachineFrameInfo *FrameInfo; 275 276 // Keep track of constants which are spilled to memory 277 MachineConstantPool *ConstantPool; 278 279 // Keep track of jump tables for switch instructions 280 MachineJumpTableInfo *JumpTableInfo; 281 282 // Keep track of the function section. 283 MCSection *Section = nullptr; 284 285 // Catchpad unwind destination info for wasm EH. 286 // Keeps track of Wasm exception handling related data. This will be null for 287 // functions that aren't using a wasm EH personality. 288 WasmEHFuncInfo *WasmEHInfo = nullptr; 289 290 // Keeps track of Windows exception handling related data. This will be null 291 // for functions that aren't using a funclet-based EH personality. 292 WinEHFuncInfo *WinEHInfo = nullptr; 293 294 // Function-level unique numbering for MachineBasicBlocks. When a 295 // MachineBasicBlock is inserted into a MachineFunction is it automatically 296 // numbered and this vector keeps track of the mapping from ID's to MBB's. 297 std::vector<MachineBasicBlock*> MBBNumbering; 298 299 // Pool-allocate MachineFunction-lifetime and IR objects. 300 BumpPtrAllocator Allocator; 301 302 // Allocation management for instructions in function. 303 Recycler<MachineInstr> InstructionRecycler; 304 305 // Allocation management for operand arrays on instructions. 306 ArrayRecycler<MachineOperand> OperandRecycler; 307 308 // Allocation management for basic blocks in function. 309 Recycler<MachineBasicBlock> BasicBlockRecycler; 310 311 // List of machine basic blocks in function 312 using BasicBlockListType = ilist<MachineBasicBlock>; 313 BasicBlockListType BasicBlocks; 314 315 /// FunctionNumber - This provides a unique ID for each function emitted in 316 /// this translation unit. 317 /// 318 unsigned FunctionNumber; 319 320 /// Alignment - The alignment of the function. 321 Align Alignment; 322 323 /// ExposesReturnsTwice - True if the function calls setjmp or related 324 /// functions with attribute "returns twice", but doesn't have 325 /// the attribute itself. 326 /// This is used to limit optimizations which cannot reason 327 /// about the control flow of such functions. 328 bool ExposesReturnsTwice = false; 329 330 /// True if the function includes any inline assembly. 331 bool HasInlineAsm = false; 332 333 /// True if any WinCFI instruction have been emitted in this function. 334 bool HasWinCFI = false; 335 336 /// Current high-level properties of the IR of the function (e.g. is in SSA 337 /// form or whether registers have been allocated) 338 MachineFunctionProperties Properties; 339 340 // Allocation management for pseudo source values. 341 std::unique_ptr<PseudoSourceValueManager> PSVManager; 342 343 /// List of moves done by a function's prolog. Used to construct frame maps 344 /// by debug and exception handling consumers. 345 std::vector<MCCFIInstruction> FrameInstructions; 346 347 /// List of basic blocks immediately following calls to _setjmp. Used to 348 /// construct a table of valid longjmp targets for Windows Control Flow Guard. 349 std::vector<MCSymbol *> LongjmpTargets; 350 351 /// List of basic blocks that are the target of catchrets. Used to construct 352 /// a table of valid targets for Windows EHCont Guard. 353 std::vector<MCSymbol *> CatchretTargets; 354 355 /// \name Exception Handling 356 /// \{ 357 358 /// List of LandingPadInfo describing the landing pad information. 359 std::vector<LandingPadInfo> LandingPads; 360 361 /// Map a landing pad's EH symbol to the call site indexes. 362 DenseMap<MCSymbol*, SmallVector<unsigned, 4>> LPadToCallSiteMap; 363 364 /// Map a landing pad to its index. 365 DenseMap<const MachineBasicBlock *, unsigned> WasmLPadToIndexMap; 366 367 /// Map of invoke call site index values to associated begin EH_LABEL. 368 DenseMap<MCSymbol*, unsigned> CallSiteMap; 369 370 /// CodeView label annotations. 371 std::vector<std::pair<MCSymbol *, MDNode *>> CodeViewAnnotations; 372 373 bool CallsEHReturn = false; 374 bool CallsUnwindInit = false; 375 bool HasEHCatchret = false; 376 bool HasEHScopes = false; 377 bool HasEHFunclets = false; 378 bool IsOutlined = false; 379 380 /// BBID to assign to the next basic block of this function. 381 unsigned NextBBID = 0; 382 383 /// Section Type for basic blocks, only relevant with basic block sections. 384 BasicBlockSection BBSectionsType = BasicBlockSection::None; 385 386 /// List of C++ TypeInfo used. 387 std::vector<const GlobalValue *> TypeInfos; 388 389 /// List of typeids encoding filters used. 390 std::vector<unsigned> FilterIds; 391 392 /// List of the indices in FilterIds corresponding to filter terminators. 393 std::vector<unsigned> FilterEnds; 394 395 EHPersonality PersonalityTypeCache = EHPersonality::Unknown; 396 397 /// \} 398 399 /// Clear all the members of this MachineFunction, but the ones used 400 /// to initialize again the MachineFunction. 401 /// More specifically, this deallocates all the dynamically allocated 402 /// objects and get rid of all the XXXInfo data structure, but keep 403 /// unchanged the references to Fn, Target, MMI, and FunctionNumber. 404 void clear(); 405 /// Allocate and initialize the different members. 406 /// In particular, the XXXInfo data structure. 407 /// \pre Fn, Target, MMI, and FunctionNumber are properly set. 408 void init(); 409 410 public: 411 /// Description of the location of a variable whose Address is valid and 412 /// unchanging during function execution. The Address may be: 413 /// * A stack index, which can be negative for fixed stack objects. 414 /// * A MCRegister, whose entry value contains the address of the variable. 415 class VariableDbgInfo { 416 std::variant<int, MCRegister> Address; 417 418 public: 419 const DILocalVariable *Var; 420 const DIExpression *Expr; 421 const DILocation *Loc; 422 423 VariableDbgInfo(const DILocalVariable *Var, const DIExpression *Expr, 424 int Slot, const DILocation *Loc) 425 : Address(Slot), Var(Var), Expr(Expr), Loc(Loc) {} 426 427 VariableDbgInfo(const DILocalVariable *Var, const DIExpression *Expr, 428 MCRegister EntryValReg, const DILocation *Loc) 429 : Address(EntryValReg), Var(Var), Expr(Expr), Loc(Loc) {} 430 431 /// Return true if this variable is in a stack slot. 432 bool inStackSlot() const { return std::holds_alternative<int>(Address); } 433 434 /// Return true if this variable is in the entry value of a register. 435 bool inEntryValueRegister() const { 436 return std::holds_alternative<MCRegister>(Address); 437 } 438 439 /// Returns the stack slot of this variable, assuming `inStackSlot()` is 440 /// true. 441 int getStackSlot() const { return std::get<int>(Address); } 442 443 /// Returns the MCRegister of this variable, assuming 444 /// `inEntryValueRegister()` is true. 445 MCRegister getEntryValueRegister() const { 446 return std::get<MCRegister>(Address); 447 } 448 449 /// Updates the stack slot of this variable, assuming `inStackSlot()` is 450 /// true. 451 void updateStackSlot(int NewSlot) { 452 assert(inStackSlot()); 453 Address = NewSlot; 454 } 455 }; 456 457 class Delegate { 458 virtual void anchor(); 459 460 public: 461 virtual ~Delegate() = default; 462 /// Callback after an insertion. This should not modify the MI directly. 463 virtual void MF_HandleInsertion(MachineInstr &MI) = 0; 464 /// Callback before a removal. This should not modify the MI directly. 465 virtual void MF_HandleRemoval(MachineInstr &MI) = 0; 466 /// Callback before changing MCInstrDesc. This should not modify the MI 467 /// directly. 468 virtual void MF_HandleChangeDesc(MachineInstr &MI, const MCInstrDesc &TID) { 469 return; 470 } 471 }; 472 473 /// Structure used to represent pair of argument number after call lowering 474 /// and register used to transfer that argument. 475 /// For now we support only cases when argument is transferred through one 476 /// register. 477 struct ArgRegPair { 478 Register Reg; 479 uint16_t ArgNo; 480 ArgRegPair(Register R, unsigned Arg) : Reg(R), ArgNo(Arg) { 481 assert(Arg < (1 << 16) && "Arg out of range"); 482 } 483 }; 484 485 struct CallSiteInfo { 486 /// Vector of call argument and its forwarding register. 487 SmallVector<ArgRegPair, 1> ArgRegPairs; 488 }; 489 490 private: 491 Delegate *TheDelegate = nullptr; 492 GISelChangeObserver *Observer = nullptr; 493 494 using CallSiteInfoMap = DenseMap<const MachineInstr *, CallSiteInfo>; 495 /// Map a call instruction to call site arguments forwarding info. 496 CallSiteInfoMap CallSitesInfo; 497 498 /// A helper function that returns call site info for a give call 499 /// instruction if debug entry value support is enabled. 500 CallSiteInfoMap::iterator getCallSiteInfo(const MachineInstr *MI); 501 502 // Callbacks for insertion and removal. 503 void handleInsertion(MachineInstr &MI); 504 void handleRemoval(MachineInstr &MI); 505 friend struct ilist_traits<MachineInstr>; 506 507 public: 508 // Need to be accessed from MachineInstr::setDesc. 509 void handleChangeDesc(MachineInstr &MI, const MCInstrDesc &TID); 510 511 using VariableDbgInfoMapTy = SmallVector<VariableDbgInfo, 4>; 512 VariableDbgInfoMapTy VariableDbgInfos; 513 514 /// A count of how many instructions in the function have had numbers 515 /// assigned to them. Used for debug value tracking, to determine the 516 /// next instruction number. 517 unsigned DebugInstrNumberingCount = 0; 518 519 /// Set value of DebugInstrNumberingCount field. Avoid using this unless 520 /// you're deserializing this data. 521 void setDebugInstrNumberingCount(unsigned Num); 522 523 /// Pair of instruction number and operand number. 524 using DebugInstrOperandPair = std::pair<unsigned, unsigned>; 525 526 /// Replacement definition for a debug instruction reference. Made up of a 527 /// source instruction / operand pair, destination pair, and a qualifying 528 /// subregister indicating what bits in the operand make up the substitution. 529 // For example, a debug user 530 /// of %1: 531 /// %0:gr32 = someinst, debug-instr-number 1 532 /// %1:gr16 = %0.some_16_bit_subreg, debug-instr-number 2 533 /// Would receive the substitution {{2, 0}, {1, 0}, $subreg}, where $subreg is 534 /// the subregister number for some_16_bit_subreg. 535 class DebugSubstitution { 536 public: 537 DebugInstrOperandPair Src; ///< Source instruction / operand pair. 538 DebugInstrOperandPair Dest; ///< Replacement instruction / operand pair. 539 unsigned Subreg; ///< Qualifier for which part of Dest is read. 540 541 DebugSubstitution(const DebugInstrOperandPair &Src, 542 const DebugInstrOperandPair &Dest, unsigned Subreg) 543 : Src(Src), Dest(Dest), Subreg(Subreg) {} 544 545 /// Order only by source instruction / operand pair: there should never 546 /// be duplicate entries for the same source in any collection. 547 bool operator<(const DebugSubstitution &Other) const { 548 return Src < Other.Src; 549 } 550 }; 551 552 /// Debug value substitutions: a collection of DebugSubstitution objects, 553 /// recording changes in where a value is defined. For example, when one 554 /// instruction is substituted for another. Keeping a record allows recovery 555 /// of variable locations after compilation finishes. 556 SmallVector<DebugSubstitution, 8> DebugValueSubstitutions; 557 558 /// Location of a PHI instruction that is also a debug-info variable value, 559 /// for the duration of register allocation. Loaded by the PHI-elimination 560 /// pass, and emitted as DBG_PHI instructions during VirtRegRewriter, with 561 /// maintenance applied by intermediate passes that edit registers (such as 562 /// coalescing and the allocator passes). 563 class DebugPHIRegallocPos { 564 public: 565 MachineBasicBlock *MBB; ///< Block where this PHI was originally located. 566 Register Reg; ///< VReg where the control-flow-merge happens. 567 unsigned SubReg; ///< Optional subreg qualifier within Reg. 568 DebugPHIRegallocPos(MachineBasicBlock *MBB, Register Reg, unsigned SubReg) 569 : MBB(MBB), Reg(Reg), SubReg(SubReg) {} 570 }; 571 572 /// Map of debug instruction numbers to the position of their PHI instructions 573 /// during register allocation. See DebugPHIRegallocPos. 574 DenseMap<unsigned, DebugPHIRegallocPos> DebugPHIPositions; 575 576 /// Flag for whether this function contains DBG_VALUEs (false) or 577 /// DBG_INSTR_REF (true). 578 bool UseDebugInstrRef = false; 579 580 /// Create a substitution between one <instr,operand> value to a different, 581 /// new value. 582 void makeDebugValueSubstitution(DebugInstrOperandPair, DebugInstrOperandPair, 583 unsigned SubReg = 0); 584 585 /// Create substitutions for any tracked values in \p Old, to point at 586 /// \p New. Needed when we re-create an instruction during optimization, 587 /// which has the same signature (i.e., def operands in the same place) but 588 /// a modified instruction type, flags, or otherwise. An example: X86 moves 589 /// are sometimes transformed into equivalent LEAs. 590 /// If the two instructions are not the same opcode, limit which operands to 591 /// examine for substitutions to the first N operands by setting 592 /// \p MaxOperand. 593 void substituteDebugValuesForInst(const MachineInstr &Old, MachineInstr &New, 594 unsigned MaxOperand = UINT_MAX); 595 596 /// Find the underlying defining instruction / operand for a COPY instruction 597 /// while in SSA form. Copies do not actually define values -- they move them 598 /// between registers. Labelling a COPY-like instruction with an instruction 599 /// number is to be avoided as it makes value numbers non-unique later in 600 /// compilation. This method follows the definition chain for any sequence of 601 /// COPY-like instructions to find whatever non-COPY-like instruction defines 602 /// the copied value; or for parameters, creates a DBG_PHI on entry. 603 /// May insert instructions into the entry block! 604 /// \p MI The copy-like instruction to salvage. 605 /// \p DbgPHICache A container to cache already-solved COPYs. 606 /// \returns An instruction/operand pair identifying the defining value. 607 DebugInstrOperandPair 608 salvageCopySSA(MachineInstr &MI, 609 DenseMap<Register, DebugInstrOperandPair> &DbgPHICache); 610 611 DebugInstrOperandPair salvageCopySSAImpl(MachineInstr &MI); 612 613 /// Finalise any partially emitted debug instructions. These are DBG_INSTR_REF 614 /// instructions where we only knew the vreg of the value they use, not the 615 /// instruction that defines that vreg. Once isel finishes, we should have 616 /// enough information for every DBG_INSTR_REF to point at an instruction 617 /// (or DBG_PHI). 618 void finalizeDebugInstrRefs(); 619 620 /// Determine whether, in the current machine configuration, we should use 621 /// instruction referencing or not. 622 bool shouldUseDebugInstrRef() const; 623 624 /// Returns true if the function's variable locations are tracked with 625 /// instruction referencing. 626 bool useDebugInstrRef() const; 627 628 /// Set whether this function will use instruction referencing or not. 629 void setUseDebugInstrRef(bool UseInstrRef); 630 631 /// A reserved operand number representing the instructions memory operand, 632 /// for instructions that have a stack spill fused into them. 633 const static unsigned int DebugOperandMemNumber; 634 635 MachineFunction(Function &F, const LLVMTargetMachine &Target, 636 const TargetSubtargetInfo &STI, unsigned FunctionNum, 637 MachineModuleInfo &MMI); 638 MachineFunction(const MachineFunction &) = delete; 639 MachineFunction &operator=(const MachineFunction &) = delete; 640 ~MachineFunction(); 641 642 /// Reset the instance as if it was just created. 643 void reset() { 644 clear(); 645 init(); 646 } 647 648 /// Reset the currently registered delegate - otherwise assert. 649 void resetDelegate(Delegate *delegate) { 650 assert(TheDelegate == delegate && 651 "Only the current delegate can perform reset!"); 652 TheDelegate = nullptr; 653 } 654 655 /// Set the delegate. resetDelegate must be called before attempting 656 /// to set. 657 void setDelegate(Delegate *delegate) { 658 assert(delegate && !TheDelegate && 659 "Attempted to set delegate to null, or to change it without " 660 "first resetting it!"); 661 662 TheDelegate = delegate; 663 } 664 665 void setObserver(GISelChangeObserver *O) { Observer = O; } 666 667 GISelChangeObserver *getObserver() const { return Observer; } 668 669 MachineModuleInfo &getMMI() const { return MMI; } 670 MCContext &getContext() const { return Ctx; } 671 672 /// Returns the Section this function belongs to. 673 MCSection *getSection() const { return Section; } 674 675 /// Indicates the Section this function belongs to. 676 void setSection(MCSection *S) { Section = S; } 677 678 PseudoSourceValueManager &getPSVManager() const { return *PSVManager; } 679 680 /// Return the DataLayout attached to the Module associated to this MF. 681 const DataLayout &getDataLayout() const; 682 683 /// Return the LLVM function that this machine code represents 684 Function &getFunction() { return F; } 685 686 /// Return the LLVM function that this machine code represents 687 const Function &getFunction() const { return F; } 688 689 /// getName - Return the name of the corresponding LLVM function. 690 StringRef getName() const; 691 692 /// getFunctionNumber - Return a unique ID for the current function. 693 unsigned getFunctionNumber() const { return FunctionNumber; } 694 695 /// Returns true if this function has basic block sections enabled. 696 bool hasBBSections() const { 697 return (BBSectionsType == BasicBlockSection::All || 698 BBSectionsType == BasicBlockSection::List || 699 BBSectionsType == BasicBlockSection::Preset); 700 } 701 702 /// Returns true if basic block labels are to be generated for this function. 703 bool hasBBLabels() const { 704 return BBSectionsType == BasicBlockSection::Labels; 705 } 706 707 void setBBSectionsType(BasicBlockSection V) { BBSectionsType = V; } 708 709 /// Assign IsBeginSection IsEndSection fields for basic blocks in this 710 /// function. 711 void assignBeginEndSections(); 712 713 /// getTarget - Return the target machine this machine code is compiled with 714 const LLVMTargetMachine &getTarget() const { return Target; } 715 716 /// getSubtarget - Return the subtarget for which this machine code is being 717 /// compiled. 718 const TargetSubtargetInfo &getSubtarget() const { return *STI; } 719 720 /// getSubtarget - This method returns a pointer to the specified type of 721 /// TargetSubtargetInfo. In debug builds, it verifies that the object being 722 /// returned is of the correct type. 723 template<typename STC> const STC &getSubtarget() const { 724 return *static_cast<const STC *>(STI); 725 } 726 727 /// getRegInfo - Return information about the registers currently in use. 728 MachineRegisterInfo &getRegInfo() { return *RegInfo; } 729 const MachineRegisterInfo &getRegInfo() const { return *RegInfo; } 730 731 /// getFrameInfo - Return the frame info object for the current function. 732 /// This object contains information about objects allocated on the stack 733 /// frame of the current function in an abstract way. 734 MachineFrameInfo &getFrameInfo() { return *FrameInfo; } 735 const MachineFrameInfo &getFrameInfo() const { return *FrameInfo; } 736 737 /// getJumpTableInfo - Return the jump table info object for the current 738 /// function. This object contains information about jump tables in the 739 /// current function. If the current function has no jump tables, this will 740 /// return null. 741 const MachineJumpTableInfo *getJumpTableInfo() const { return JumpTableInfo; } 742 MachineJumpTableInfo *getJumpTableInfo() { return JumpTableInfo; } 743 744 /// getOrCreateJumpTableInfo - Get the JumpTableInfo for this function, if it 745 /// does already exist, allocate one. 746 MachineJumpTableInfo *getOrCreateJumpTableInfo(unsigned JTEntryKind); 747 748 /// getConstantPool - Return the constant pool object for the current 749 /// function. 750 MachineConstantPool *getConstantPool() { return ConstantPool; } 751 const MachineConstantPool *getConstantPool() const { return ConstantPool; } 752 753 /// getWasmEHFuncInfo - Return information about how the current function uses 754 /// Wasm exception handling. Returns null for functions that don't use wasm 755 /// exception handling. 756 const WasmEHFuncInfo *getWasmEHFuncInfo() const { return WasmEHInfo; } 757 WasmEHFuncInfo *getWasmEHFuncInfo() { return WasmEHInfo; } 758 759 /// getWinEHFuncInfo - Return information about how the current function uses 760 /// Windows exception handling. Returns null for functions that don't use 761 /// funclets for exception handling. 762 const WinEHFuncInfo *getWinEHFuncInfo() const { return WinEHInfo; } 763 WinEHFuncInfo *getWinEHFuncInfo() { return WinEHInfo; } 764 765 /// getAlignment - Return the alignment of the function. 766 Align getAlignment() const { return Alignment; } 767 768 /// setAlignment - Set the alignment of the function. 769 void setAlignment(Align A) { Alignment = A; } 770 771 /// ensureAlignment - Make sure the function is at least A bytes aligned. 772 void ensureAlignment(Align A) { 773 if (Alignment < A) 774 Alignment = A; 775 } 776 777 /// exposesReturnsTwice - Returns true if the function calls setjmp or 778 /// any other similar functions with attribute "returns twice" without 779 /// having the attribute itself. 780 bool exposesReturnsTwice() const { 781 return ExposesReturnsTwice; 782 } 783 784 /// setCallsSetJmp - Set a flag that indicates if there's a call to 785 /// a "returns twice" function. 786 void setExposesReturnsTwice(bool B) { 787 ExposesReturnsTwice = B; 788 } 789 790 /// Returns true if the function contains any inline assembly. 791 bool hasInlineAsm() const { 792 return HasInlineAsm; 793 } 794 795 /// Set a flag that indicates that the function contains inline assembly. 796 void setHasInlineAsm(bool B) { 797 HasInlineAsm = B; 798 } 799 800 bool hasWinCFI() const { 801 return HasWinCFI; 802 } 803 void setHasWinCFI(bool v) { HasWinCFI = v; } 804 805 /// True if this function needs frame moves for debug or exceptions. 806 bool needsFrameMoves() const; 807 808 /// Get the function properties 809 const MachineFunctionProperties &getProperties() const { return Properties; } 810 MachineFunctionProperties &getProperties() { return Properties; } 811 812 /// getInfo - Keep track of various per-function pieces of information for 813 /// backends that would like to do so. 814 /// 815 template<typename Ty> 816 Ty *getInfo() { 817 return static_cast<Ty*>(MFInfo); 818 } 819 820 template<typename Ty> 821 const Ty *getInfo() const { 822 return static_cast<const Ty *>(MFInfo); 823 } 824 825 template <typename Ty> Ty *cloneInfo(const Ty &Old) { 826 assert(!MFInfo); 827 MFInfo = Ty::template create<Ty>(Allocator, Old); 828 return static_cast<Ty *>(MFInfo); 829 } 830 831 /// Initialize the target specific MachineFunctionInfo 832 void initTargetMachineFunctionInfo(const TargetSubtargetInfo &STI); 833 834 MachineFunctionInfo *cloneInfoFrom( 835 const MachineFunction &OrigMF, 836 const DenseMap<MachineBasicBlock *, MachineBasicBlock *> &Src2DstMBB) { 837 assert(!MFInfo && "new function already has MachineFunctionInfo"); 838 if (!OrigMF.MFInfo) 839 return nullptr; 840 return OrigMF.MFInfo->clone(Allocator, *this, Src2DstMBB); 841 } 842 843 /// Returns the denormal handling type for the default rounding mode of the 844 /// function. 845 DenormalMode getDenormalMode(const fltSemantics &FPType) const; 846 847 /// getBlockNumbered - MachineBasicBlocks are automatically numbered when they 848 /// are inserted into the machine function. The block number for a machine 849 /// basic block can be found by using the MBB::getNumber method, this method 850 /// provides the inverse mapping. 851 MachineBasicBlock *getBlockNumbered(unsigned N) const { 852 assert(N < MBBNumbering.size() && "Illegal block number"); 853 assert(MBBNumbering[N] && "Block was removed from the machine function!"); 854 return MBBNumbering[N]; 855 } 856 857 /// Should we be emitting segmented stack stuff for the function 858 bool shouldSplitStack() const; 859 860 /// getNumBlockIDs - Return the number of MBB ID's allocated. 861 unsigned getNumBlockIDs() const { return (unsigned)MBBNumbering.size(); } 862 863 /// RenumberBlocks - This discards all of the MachineBasicBlock numbers and 864 /// recomputes them. This guarantees that the MBB numbers are sequential, 865 /// dense, and match the ordering of the blocks within the function. If a 866 /// specific MachineBasicBlock is specified, only that block and those after 867 /// it are renumbered. 868 void RenumberBlocks(MachineBasicBlock *MBBFrom = nullptr); 869 870 /// print - Print out the MachineFunction in a format suitable for debugging 871 /// to the specified stream. 872 void print(raw_ostream &OS, const SlotIndexes* = nullptr) const; 873 874 /// viewCFG - This function is meant for use from the debugger. You can just 875 /// say 'call F->viewCFG()' and a ghostview window should pop up from the 876 /// program, displaying the CFG of the current function with the code for each 877 /// basic block inside. This depends on there being a 'dot' and 'gv' program 878 /// in your path. 879 void viewCFG() const; 880 881 /// viewCFGOnly - This function is meant for use from the debugger. It works 882 /// just like viewCFG, but it does not include the contents of basic blocks 883 /// into the nodes, just the label. If you are only interested in the CFG 884 /// this can make the graph smaller. 885 /// 886 void viewCFGOnly() const; 887 888 /// dump - Print the current MachineFunction to cerr, useful for debugger use. 889 void dump() const; 890 891 /// Run the current MachineFunction through the machine code verifier, useful 892 /// for debugger use. 893 /// \returns true if no problems were found. 894 bool verify(Pass *p = nullptr, const char *Banner = nullptr, 895 bool AbortOnError = true) const; 896 897 /// Run the current MachineFunction through the machine code verifier, useful 898 /// for debugger use. 899 /// \returns true if no problems were found. 900 bool verify(LiveIntervals *LiveInts, SlotIndexes *Indexes, 901 const char *Banner = nullptr, bool AbortOnError = true) const; 902 903 // Provide accessors for the MachineBasicBlock list... 904 using iterator = BasicBlockListType::iterator; 905 using const_iterator = BasicBlockListType::const_iterator; 906 using const_reverse_iterator = BasicBlockListType::const_reverse_iterator; 907 using reverse_iterator = BasicBlockListType::reverse_iterator; 908 909 /// Support for MachineBasicBlock::getNextNode(). 910 static BasicBlockListType MachineFunction::* 911 getSublistAccess(MachineBasicBlock *) { 912 return &MachineFunction::BasicBlocks; 913 } 914 915 /// addLiveIn - Add the specified physical register as a live-in value and 916 /// create a corresponding virtual register for it. 917 Register addLiveIn(MCRegister PReg, const TargetRegisterClass *RC); 918 919 //===--------------------------------------------------------------------===// 920 // BasicBlock accessor functions. 921 // 922 iterator begin() { return BasicBlocks.begin(); } 923 const_iterator begin() const { return BasicBlocks.begin(); } 924 iterator end () { return BasicBlocks.end(); } 925 const_iterator end () const { return BasicBlocks.end(); } 926 927 reverse_iterator rbegin() { return BasicBlocks.rbegin(); } 928 const_reverse_iterator rbegin() const { return BasicBlocks.rbegin(); } 929 reverse_iterator rend () { return BasicBlocks.rend(); } 930 const_reverse_iterator rend () const { return BasicBlocks.rend(); } 931 932 unsigned size() const { return (unsigned)BasicBlocks.size();} 933 bool empty() const { return BasicBlocks.empty(); } 934 const MachineBasicBlock &front() const { return BasicBlocks.front(); } 935 MachineBasicBlock &front() { return BasicBlocks.front(); } 936 const MachineBasicBlock & back() const { return BasicBlocks.back(); } 937 MachineBasicBlock & back() { return BasicBlocks.back(); } 938 939 void push_back (MachineBasicBlock *MBB) { BasicBlocks.push_back (MBB); } 940 void push_front(MachineBasicBlock *MBB) { BasicBlocks.push_front(MBB); } 941 void insert(iterator MBBI, MachineBasicBlock *MBB) { 942 BasicBlocks.insert(MBBI, MBB); 943 } 944 void splice(iterator InsertPt, iterator MBBI) { 945 BasicBlocks.splice(InsertPt, BasicBlocks, MBBI); 946 } 947 void splice(iterator InsertPt, MachineBasicBlock *MBB) { 948 BasicBlocks.splice(InsertPt, BasicBlocks, MBB); 949 } 950 void splice(iterator InsertPt, iterator MBBI, iterator MBBE) { 951 BasicBlocks.splice(InsertPt, BasicBlocks, MBBI, MBBE); 952 } 953 954 void remove(iterator MBBI) { BasicBlocks.remove(MBBI); } 955 void remove(MachineBasicBlock *MBBI) { BasicBlocks.remove(MBBI); } 956 void erase(iterator MBBI) { BasicBlocks.erase(MBBI); } 957 void erase(MachineBasicBlock *MBBI) { BasicBlocks.erase(MBBI); } 958 959 template <typename Comp> 960 void sort(Comp comp) { 961 BasicBlocks.sort(comp); 962 } 963 964 /// Return the number of \p MachineInstrs in this \p MachineFunction. 965 unsigned getInstructionCount() const { 966 unsigned InstrCount = 0; 967 for (const MachineBasicBlock &MBB : BasicBlocks) 968 InstrCount += MBB.size(); 969 return InstrCount; 970 } 971 972 //===--------------------------------------------------------------------===// 973 // Internal functions used to automatically number MachineBasicBlocks 974 975 /// Adds the MBB to the internal numbering. Returns the unique number 976 /// assigned to the MBB. 977 unsigned addToMBBNumbering(MachineBasicBlock *MBB) { 978 MBBNumbering.push_back(MBB); 979 return (unsigned)MBBNumbering.size()-1; 980 } 981 982 /// removeFromMBBNumbering - Remove the specific machine basic block from our 983 /// tracker, this is only really to be used by the MachineBasicBlock 984 /// implementation. 985 void removeFromMBBNumbering(unsigned N) { 986 assert(N < MBBNumbering.size() && "Illegal basic block #"); 987 MBBNumbering[N] = nullptr; 988 } 989 990 /// CreateMachineInstr - Allocate a new MachineInstr. Use this instead 991 /// of `new MachineInstr'. 992 MachineInstr *CreateMachineInstr(const MCInstrDesc &MCID, DebugLoc DL, 993 bool NoImplicit = false); 994 995 /// Create a new MachineInstr which is a copy of \p Orig, identical in all 996 /// ways except the instruction has no parent, prev, or next. Bundling flags 997 /// are reset. 998 /// 999 /// Note: Clones a single instruction, not whole instruction bundles. 1000 /// Does not perform target specific adjustments; consider using 1001 /// TargetInstrInfo::duplicate() instead. 1002 MachineInstr *CloneMachineInstr(const MachineInstr *Orig); 1003 1004 /// Clones instruction or the whole instruction bundle \p Orig and insert 1005 /// into \p MBB before \p InsertBefore. 1006 /// 1007 /// Note: Does not perform target specific adjustments; consider using 1008 /// TargetInstrInfo::duplicate() intead. 1009 MachineInstr & 1010 cloneMachineInstrBundle(MachineBasicBlock &MBB, 1011 MachineBasicBlock::iterator InsertBefore, 1012 const MachineInstr &Orig); 1013 1014 /// DeleteMachineInstr - Delete the given MachineInstr. 1015 void deleteMachineInstr(MachineInstr *MI); 1016 1017 /// CreateMachineBasicBlock - Allocate a new MachineBasicBlock. Use this 1018 /// instead of `new MachineBasicBlock'. Sets `MachineBasicBlock::BBID` if 1019 /// basic-block-sections is enabled for the function. 1020 MachineBasicBlock * 1021 CreateMachineBasicBlock(const BasicBlock *BB = nullptr, 1022 std::optional<UniqueBBID> BBID = std::nullopt); 1023 1024 /// DeleteMachineBasicBlock - Delete the given MachineBasicBlock. 1025 void deleteMachineBasicBlock(MachineBasicBlock *MBB); 1026 1027 /// getMachineMemOperand - Allocate a new MachineMemOperand. 1028 /// MachineMemOperands are owned by the MachineFunction and need not be 1029 /// explicitly deallocated. 1030 MachineMemOperand *getMachineMemOperand( 1031 MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, 1032 Align base_alignment, const AAMDNodes &AAInfo = AAMDNodes(), 1033 const MDNode *Ranges = nullptr, SyncScope::ID SSID = SyncScope::System, 1034 AtomicOrdering Ordering = AtomicOrdering::NotAtomic, 1035 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic); 1036 MachineMemOperand *getMachineMemOperand( 1037 MachinePointerInfo PtrInfo, MachineMemOperand::Flags F, LocationSize Size, 1038 Align BaseAlignment, const AAMDNodes &AAInfo = AAMDNodes(), 1039 const MDNode *Ranges = nullptr, SyncScope::ID SSID = SyncScope::System, 1040 AtomicOrdering Ordering = AtomicOrdering::NotAtomic, 1041 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic); 1042 MachineMemOperand *getMachineMemOperand( 1043 MachinePointerInfo PtrInfo, MachineMemOperand::Flags F, uint64_t Size, 1044 Align BaseAlignment, const AAMDNodes &AAInfo = AAMDNodes(), 1045 const MDNode *Ranges = nullptr, SyncScope::ID SSID = SyncScope::System, 1046 AtomicOrdering Ordering = AtomicOrdering::NotAtomic, 1047 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic) { 1048 return getMachineMemOperand(PtrInfo, F, LocationSize::precise(Size), 1049 BaseAlignment, AAInfo, Ranges, SSID, Ordering, 1050 FailureOrdering); 1051 } 1052 1053 /// getMachineMemOperand - Allocate a new MachineMemOperand by copying 1054 /// an existing one, adjusting by an offset and using the given size. 1055 /// MachineMemOperands are owned by the MachineFunction and need not be 1056 /// explicitly deallocated. 1057 MachineMemOperand *getMachineMemOperand(const MachineMemOperand *MMO, 1058 int64_t Offset, LLT Ty); 1059 MachineMemOperand *getMachineMemOperand(const MachineMemOperand *MMO, 1060 int64_t Offset, LocationSize Size) { 1061 return getMachineMemOperand( 1062 MMO, Offset, 1063 !Size.hasValue() ? LLT() 1064 : Size.isScalable() 1065 ? LLT::scalable_vector(1, 8 * Size.getValue().getKnownMinValue()) 1066 : LLT::scalar(8 * Size.getValue().getKnownMinValue())); 1067 } 1068 MachineMemOperand *getMachineMemOperand(const MachineMemOperand *MMO, 1069 int64_t Offset, uint64_t Size) { 1070 return getMachineMemOperand(MMO, Offset, LocationSize::precise(Size)); 1071 } 1072 1073 /// getMachineMemOperand - Allocate a new MachineMemOperand by copying 1074 /// an existing one, replacing only the MachinePointerInfo and size. 1075 /// MachineMemOperands are owned by the MachineFunction and need not be 1076 /// explicitly deallocated. 1077 MachineMemOperand *getMachineMemOperand(const MachineMemOperand *MMO, 1078 const MachinePointerInfo &PtrInfo, 1079 LocationSize Size); 1080 MachineMemOperand *getMachineMemOperand(const MachineMemOperand *MMO, 1081 const MachinePointerInfo &PtrInfo, 1082 LLT Ty); 1083 MachineMemOperand *getMachineMemOperand(const MachineMemOperand *MMO, 1084 const MachinePointerInfo &PtrInfo, 1085 uint64_t Size) { 1086 return getMachineMemOperand(MMO, PtrInfo, LocationSize::precise(Size)); 1087 } 1088 1089 /// Allocate a new MachineMemOperand by copying an existing one, 1090 /// replacing only AliasAnalysis information. MachineMemOperands are owned 1091 /// by the MachineFunction and need not be explicitly deallocated. 1092 MachineMemOperand *getMachineMemOperand(const MachineMemOperand *MMO, 1093 const AAMDNodes &AAInfo); 1094 1095 /// Allocate a new MachineMemOperand by copying an existing one, 1096 /// replacing the flags. MachineMemOperands are owned 1097 /// by the MachineFunction and need not be explicitly deallocated. 1098 MachineMemOperand *getMachineMemOperand(const MachineMemOperand *MMO, 1099 MachineMemOperand::Flags Flags); 1100 1101 using OperandCapacity = ArrayRecycler<MachineOperand>::Capacity; 1102 1103 /// Allocate an array of MachineOperands. This is only intended for use by 1104 /// internal MachineInstr functions. 1105 MachineOperand *allocateOperandArray(OperandCapacity Cap) { 1106 return OperandRecycler.allocate(Cap, Allocator); 1107 } 1108 1109 /// Dellocate an array of MachineOperands and recycle the memory. This is 1110 /// only intended for use by internal MachineInstr functions. 1111 /// Cap must be the same capacity that was used to allocate the array. 1112 void deallocateOperandArray(OperandCapacity Cap, MachineOperand *Array) { 1113 OperandRecycler.deallocate(Cap, Array); 1114 } 1115 1116 /// Allocate and initialize a register mask with @p NumRegister bits. 1117 uint32_t *allocateRegMask(); 1118 1119 ArrayRef<int> allocateShuffleMask(ArrayRef<int> Mask); 1120 1121 /// Allocate and construct an extra info structure for a `MachineInstr`. 1122 /// 1123 /// This is allocated on the function's allocator and so lives the life of 1124 /// the function. 1125 MachineInstr::ExtraInfo *createMIExtraInfo( 1126 ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol = nullptr, 1127 MCSymbol *PostInstrSymbol = nullptr, MDNode *HeapAllocMarker = nullptr, 1128 MDNode *PCSections = nullptr, uint32_t CFIType = 0, 1129 MDNode *MMRAs = nullptr); 1130 1131 /// Allocate a string and populate it with the given external symbol name. 1132 const char *createExternalSymbolName(StringRef Name); 1133 1134 //===--------------------------------------------------------------------===// 1135 // Label Manipulation. 1136 1137 /// getJTISymbol - Return the MCSymbol for the specified non-empty jump table. 1138 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a 1139 /// normal 'L' label is returned. 1140 MCSymbol *getJTISymbol(unsigned JTI, MCContext &Ctx, 1141 bool isLinkerPrivate = false) const; 1142 1143 /// getPICBaseSymbol - Return a function-local symbol to represent the PIC 1144 /// base. 1145 MCSymbol *getPICBaseSymbol() const; 1146 1147 /// Returns a reference to a list of cfi instructions in the function's 1148 /// prologue. Used to construct frame maps for debug and exception handling 1149 /// comsumers. 1150 const std::vector<MCCFIInstruction> &getFrameInstructions() const { 1151 return FrameInstructions; 1152 } 1153 1154 [[nodiscard]] unsigned addFrameInst(const MCCFIInstruction &Inst); 1155 1156 /// Returns a reference to a list of symbols immediately following calls to 1157 /// _setjmp in the function. Used to construct the longjmp target table used 1158 /// by Windows Control Flow Guard. 1159 const std::vector<MCSymbol *> &getLongjmpTargets() const { 1160 return LongjmpTargets; 1161 } 1162 1163 /// Add the specified symbol to the list of valid longjmp targets for Windows 1164 /// Control Flow Guard. 1165 void addLongjmpTarget(MCSymbol *Target) { LongjmpTargets.push_back(Target); } 1166 1167 /// Returns a reference to a list of symbols that we have catchrets. 1168 /// Used to construct the catchret target table used by Windows EHCont Guard. 1169 const std::vector<MCSymbol *> &getCatchretTargets() const { 1170 return CatchretTargets; 1171 } 1172 1173 /// Add the specified symbol to the list of valid catchret targets for Windows 1174 /// EHCont Guard. 1175 void addCatchretTarget(MCSymbol *Target) { 1176 CatchretTargets.push_back(Target); 1177 } 1178 1179 /// \name Exception Handling 1180 /// \{ 1181 1182 bool callsEHReturn() const { return CallsEHReturn; } 1183 void setCallsEHReturn(bool b) { CallsEHReturn = b; } 1184 1185 bool callsUnwindInit() const { return CallsUnwindInit; } 1186 void setCallsUnwindInit(bool b) { CallsUnwindInit = b; } 1187 1188 bool hasEHCatchret() const { return HasEHCatchret; } 1189 void setHasEHCatchret(bool V) { HasEHCatchret = V; } 1190 1191 bool hasEHScopes() const { return HasEHScopes; } 1192 void setHasEHScopes(bool V) { HasEHScopes = V; } 1193 1194 bool hasEHFunclets() const { return HasEHFunclets; } 1195 void setHasEHFunclets(bool V) { HasEHFunclets = V; } 1196 1197 bool isOutlined() const { return IsOutlined; } 1198 void setIsOutlined(bool V) { IsOutlined = V; } 1199 1200 /// Find or create an LandingPadInfo for the specified MachineBasicBlock. 1201 LandingPadInfo &getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad); 1202 1203 /// Return a reference to the landing pad info for the current function. 1204 const std::vector<LandingPadInfo> &getLandingPads() const { 1205 return LandingPads; 1206 } 1207 1208 /// Provide the begin and end labels of an invoke style call and associate it 1209 /// with a try landing pad block. 1210 void addInvoke(MachineBasicBlock *LandingPad, 1211 MCSymbol *BeginLabel, MCSymbol *EndLabel); 1212 1213 /// Add a new panding pad, and extract the exception handling information from 1214 /// the landingpad instruction. Returns the label ID for the landing pad 1215 /// entry. 1216 MCSymbol *addLandingPad(MachineBasicBlock *LandingPad); 1217 1218 /// Return the type id for the specified typeinfo. This is function wide. 1219 unsigned getTypeIDFor(const GlobalValue *TI); 1220 1221 /// Return the id of the filter encoded by TyIds. This is function wide. 1222 int getFilterIDFor(ArrayRef<unsigned> TyIds); 1223 1224 /// Map the landing pad's EH symbol to the call site indexes. 1225 void setCallSiteLandingPad(MCSymbol *Sym, ArrayRef<unsigned> Sites); 1226 1227 /// Return if there is any wasm exception handling. 1228 bool hasAnyWasmLandingPadIndex() const { 1229 return !WasmLPadToIndexMap.empty(); 1230 } 1231 1232 /// Map the landing pad to its index. Used for Wasm exception handling. 1233 void setWasmLandingPadIndex(const MachineBasicBlock *LPad, unsigned Index) { 1234 WasmLPadToIndexMap[LPad] = Index; 1235 } 1236 1237 /// Returns true if the landing pad has an associate index in wasm EH. 1238 bool hasWasmLandingPadIndex(const MachineBasicBlock *LPad) const { 1239 return WasmLPadToIndexMap.count(LPad); 1240 } 1241 1242 /// Get the index in wasm EH for a given landing pad. 1243 unsigned getWasmLandingPadIndex(const MachineBasicBlock *LPad) const { 1244 assert(hasWasmLandingPadIndex(LPad)); 1245 return WasmLPadToIndexMap.lookup(LPad); 1246 } 1247 1248 bool hasAnyCallSiteLandingPad() const { 1249 return !LPadToCallSiteMap.empty(); 1250 } 1251 1252 /// Get the call site indexes for a landing pad EH symbol. 1253 SmallVectorImpl<unsigned> &getCallSiteLandingPad(MCSymbol *Sym) { 1254 assert(hasCallSiteLandingPad(Sym) && 1255 "missing call site number for landing pad!"); 1256 return LPadToCallSiteMap[Sym]; 1257 } 1258 1259 /// Return true if the landing pad Eh symbol has an associated call site. 1260 bool hasCallSiteLandingPad(MCSymbol *Sym) { 1261 return !LPadToCallSiteMap[Sym].empty(); 1262 } 1263 1264 bool hasAnyCallSiteLabel() const { 1265 return !CallSiteMap.empty(); 1266 } 1267 1268 /// Map the begin label for a call site. 1269 void setCallSiteBeginLabel(MCSymbol *BeginLabel, unsigned Site) { 1270 CallSiteMap[BeginLabel] = Site; 1271 } 1272 1273 /// Get the call site number for a begin label. 1274 unsigned getCallSiteBeginLabel(MCSymbol *BeginLabel) const { 1275 assert(hasCallSiteBeginLabel(BeginLabel) && 1276 "Missing call site number for EH_LABEL!"); 1277 return CallSiteMap.lookup(BeginLabel); 1278 } 1279 1280 /// Return true if the begin label has a call site number associated with it. 1281 bool hasCallSiteBeginLabel(MCSymbol *BeginLabel) const { 1282 return CallSiteMap.count(BeginLabel); 1283 } 1284 1285 /// Record annotations associated with a particular label. 1286 void addCodeViewAnnotation(MCSymbol *Label, MDNode *MD) { 1287 CodeViewAnnotations.push_back({Label, MD}); 1288 } 1289 1290 ArrayRef<std::pair<MCSymbol *, MDNode *>> getCodeViewAnnotations() const { 1291 return CodeViewAnnotations; 1292 } 1293 1294 /// Return a reference to the C++ typeinfo for the current function. 1295 const std::vector<const GlobalValue *> &getTypeInfos() const { 1296 return TypeInfos; 1297 } 1298 1299 /// Return a reference to the typeids encoding filters used in the current 1300 /// function. 1301 const std::vector<unsigned> &getFilterIds() const { 1302 return FilterIds; 1303 } 1304 1305 /// \} 1306 1307 /// Collect information used to emit debugging information of a variable in a 1308 /// stack slot. 1309 void setVariableDbgInfo(const DILocalVariable *Var, const DIExpression *Expr, 1310 int Slot, const DILocation *Loc) { 1311 VariableDbgInfos.emplace_back(Var, Expr, Slot, Loc); 1312 } 1313 1314 /// Collect information used to emit debugging information of a variable in 1315 /// the entry value of a register. 1316 void setVariableDbgInfo(const DILocalVariable *Var, const DIExpression *Expr, 1317 MCRegister Reg, const DILocation *Loc) { 1318 VariableDbgInfos.emplace_back(Var, Expr, Reg, Loc); 1319 } 1320 1321 VariableDbgInfoMapTy &getVariableDbgInfo() { return VariableDbgInfos; } 1322 const VariableDbgInfoMapTy &getVariableDbgInfo() const { 1323 return VariableDbgInfos; 1324 } 1325 1326 /// Returns the collection of variables for which we have debug info and that 1327 /// have been assigned a stack slot. 1328 auto getInStackSlotVariableDbgInfo() { 1329 return make_filter_range(getVariableDbgInfo(), [](auto &VarInfo) { 1330 return VarInfo.inStackSlot(); 1331 }); 1332 } 1333 1334 /// Returns the collection of variables for which we have debug info and that 1335 /// have been assigned a stack slot. 1336 auto getInStackSlotVariableDbgInfo() const { 1337 return make_filter_range(getVariableDbgInfo(), [](const auto &VarInfo) { 1338 return VarInfo.inStackSlot(); 1339 }); 1340 } 1341 1342 /// Returns the collection of variables for which we have debug info and that 1343 /// have been assigned an entry value register. 1344 auto getEntryValueVariableDbgInfo() const { 1345 return make_filter_range(getVariableDbgInfo(), [](const auto &VarInfo) { 1346 return VarInfo.inEntryValueRegister(); 1347 }); 1348 } 1349 1350 /// Start tracking the arguments passed to the call \p CallI. 1351 void addCallSiteInfo(const MachineInstr *CallI, CallSiteInfo &&CallInfo) { 1352 assert(CallI->isCandidateForCallSiteEntry()); 1353 bool Inserted = 1354 CallSitesInfo.try_emplace(CallI, std::move(CallInfo)).second; 1355 (void)Inserted; 1356 assert(Inserted && "Call site info not unique"); 1357 } 1358 1359 const CallSiteInfoMap &getCallSitesInfo() const { 1360 return CallSitesInfo; 1361 } 1362 1363 /// Following functions update call site info. They should be called before 1364 /// removing, replacing or copying call instruction. 1365 1366 /// Erase the call site info for \p MI. It is used to remove a call 1367 /// instruction from the instruction stream. 1368 void eraseCallSiteInfo(const MachineInstr *MI); 1369 /// Copy the call site info from \p Old to \ New. Its usage is when we are 1370 /// making a copy of the instruction that will be inserted at different point 1371 /// of the instruction stream. 1372 void copyCallSiteInfo(const MachineInstr *Old, 1373 const MachineInstr *New); 1374 1375 /// Move the call site info from \p Old to \New call site info. This function 1376 /// is used when we are replacing one call instruction with another one to 1377 /// the same callee. 1378 void moveCallSiteInfo(const MachineInstr *Old, 1379 const MachineInstr *New); 1380 1381 unsigned getNewDebugInstrNum() { 1382 return ++DebugInstrNumberingCount; 1383 } 1384 }; 1385 1386 //===--------------------------------------------------------------------===// 1387 // GraphTraits specializations for function basic block graphs (CFGs) 1388 //===--------------------------------------------------------------------===// 1389 1390 // Provide specializations of GraphTraits to be able to treat a 1391 // machine function as a graph of machine basic blocks... these are 1392 // the same as the machine basic block iterators, except that the root 1393 // node is implicitly the first node of the function. 1394 // 1395 template <> struct GraphTraits<MachineFunction*> : 1396 public GraphTraits<MachineBasicBlock*> { 1397 static NodeRef getEntryNode(MachineFunction *F) { return &F->front(); } 1398 1399 // nodes_iterator/begin/end - Allow iteration over all nodes in the graph 1400 using nodes_iterator = pointer_iterator<MachineFunction::iterator>; 1401 1402 static nodes_iterator nodes_begin(MachineFunction *F) { 1403 return nodes_iterator(F->begin()); 1404 } 1405 1406 static nodes_iterator nodes_end(MachineFunction *F) { 1407 return nodes_iterator(F->end()); 1408 } 1409 1410 static unsigned size (MachineFunction *F) { return F->size(); } 1411 }; 1412 template <> struct GraphTraits<const MachineFunction*> : 1413 public GraphTraits<const MachineBasicBlock*> { 1414 static NodeRef getEntryNode(const MachineFunction *F) { return &F->front(); } 1415 1416 // nodes_iterator/begin/end - Allow iteration over all nodes in the graph 1417 using nodes_iterator = pointer_iterator<MachineFunction::const_iterator>; 1418 1419 static nodes_iterator nodes_begin(const MachineFunction *F) { 1420 return nodes_iterator(F->begin()); 1421 } 1422 1423 static nodes_iterator nodes_end (const MachineFunction *F) { 1424 return nodes_iterator(F->end()); 1425 } 1426 1427 static unsigned size (const MachineFunction *F) { 1428 return F->size(); 1429 } 1430 }; 1431 1432 // Provide specializations of GraphTraits to be able to treat a function as a 1433 // graph of basic blocks... and to walk it in inverse order. Inverse order for 1434 // a function is considered to be when traversing the predecessor edges of a BB 1435 // instead of the successor edges. 1436 // 1437 template <> struct GraphTraits<Inverse<MachineFunction*>> : 1438 public GraphTraits<Inverse<MachineBasicBlock*>> { 1439 static NodeRef getEntryNode(Inverse<MachineFunction *> G) { 1440 return &G.Graph->front(); 1441 } 1442 }; 1443 template <> struct GraphTraits<Inverse<const MachineFunction*>> : 1444 public GraphTraits<Inverse<const MachineBasicBlock*>> { 1445 static NodeRef getEntryNode(Inverse<const MachineFunction *> G) { 1446 return &G.Graph->front(); 1447 } 1448 }; 1449 1450 void verifyMachineFunction(const std::string &Banner, 1451 const MachineFunction &MF); 1452 1453 } // end namespace llvm 1454 1455 #endif // LLVM_CODEGEN_MACHINEFUNCTION_H 1456