1// Copyright 2009 The Go Authors. All rights reserved. 2// Use of this source code is governed by a BSD-style 3// license that can be found in the LICENSE file. 4 5package ssagen 6 7import ( 8 "fmt" 9 "internal/buildcfg" 10 "log" 11 "os" 12 "strings" 13 14 "cmd/compile/internal/abi" 15 "cmd/compile/internal/base" 16 "cmd/compile/internal/ir" 17 "cmd/compile/internal/objw" 18 "cmd/compile/internal/typecheck" 19 "cmd/compile/internal/types" 20 "cmd/internal/obj" 21 "cmd/internal/obj/wasm" 22) 23 24// SymABIs records information provided by the assembler about symbol 25// definition ABIs and reference ABIs. 26type SymABIs struct { 27 defs map[string]obj.ABI 28 refs map[string]obj.ABISet 29} 30 31func NewSymABIs() *SymABIs { 32 return &SymABIs{ 33 defs: make(map[string]obj.ABI), 34 refs: make(map[string]obj.ABISet), 35 } 36} 37 38// canonicalize returns the canonical name used for a linker symbol in 39// s's maps. Symbols in this package may be written either as "".X or 40// with the package's import path already in the symbol. This rewrites 41// both to use the full path, which matches compiler-generated linker 42// symbol names. 43func (s *SymABIs) canonicalize(linksym string) string { 44 if strings.HasPrefix(linksym, `"".`) { 45 panic("non-canonical symbol name: " + linksym) 46 } 47 return linksym 48} 49 50// ReadSymABIs reads a symabis file that specifies definitions and 51// references of text symbols by ABI. 52// 53// The symabis format is a set of lines, where each line is a sequence 54// of whitespace-separated fields. The first field is a verb and is 55// either "def" for defining a symbol ABI or "ref" for referencing a 56// symbol using an ABI. For both "def" and "ref", the second field is 57// the symbol name and the third field is the ABI name, as one of the 58// named cmd/internal/obj.ABI constants. 59func (s *SymABIs) ReadSymABIs(file string) { 60 data, err := os.ReadFile(file) 61 if err != nil { 62 log.Fatalf("-symabis: %v", err) 63 } 64 65 for lineNum, line := range strings.Split(string(data), "\n") { 66 lineNum++ // 1-based 67 line = strings.TrimSpace(line) 68 if line == "" || strings.HasPrefix(line, "#") { 69 continue 70 } 71 72 parts := strings.Fields(line) 73 switch parts[0] { 74 case "def", "ref": 75 // Parse line. 76 if len(parts) != 3 { 77 log.Fatalf(`%s:%d: invalid symabi: syntax is "%s sym abi"`, file, lineNum, parts[0]) 78 } 79 sym, abistr := parts[1], parts[2] 80 abi, valid := obj.ParseABI(abistr) 81 if !valid { 82 log.Fatalf(`%s:%d: invalid symabi: unknown abi "%s"`, file, lineNum, abistr) 83 } 84 85 sym = s.canonicalize(sym) 86 87 // Record for later. 88 if parts[0] == "def" { 89 s.defs[sym] = abi 90 } else { 91 s.refs[sym] |= obj.ABISetOf(abi) 92 } 93 default: 94 log.Fatalf(`%s:%d: invalid symabi type "%s"`, file, lineNum, parts[0]) 95 } 96 } 97} 98 99// GenABIWrappers applies ABI information to Funcs and generates ABI 100// wrapper functions where necessary. 101func (s *SymABIs) GenABIWrappers() { 102 // For cgo exported symbols, we tell the linker to export the 103 // definition ABI to C. That also means that we don't want to 104 // create ABI wrappers even if there's a linkname. 105 // 106 // TODO(austin): Maybe we want to create the ABI wrappers, but 107 // ensure the linker exports the right ABI definition under 108 // the unmangled name? 109 cgoExports := make(map[string][]*[]string) 110 for i, prag := range typecheck.Target.CgoPragmas { 111 switch prag[0] { 112 case "cgo_export_static", "cgo_export_dynamic": 113 symName := s.canonicalize(prag[1]) 114 pprag := &typecheck.Target.CgoPragmas[i] 115 cgoExports[symName] = append(cgoExports[symName], pprag) 116 } 117 } 118 119 // Apply ABI defs and refs to Funcs and generate wrappers. 120 // 121 // This may generate new decls for the wrappers, but we 122 // specifically *don't* want to visit those, lest we create 123 // wrappers for wrappers. 124 for _, fn := range typecheck.Target.Funcs { 125 nam := fn.Nname 126 if ir.IsBlank(nam) { 127 continue 128 } 129 sym := nam.Sym() 130 131 symName := sym.Linkname 132 if symName == "" { 133 symName = sym.Pkg.Prefix + "." + sym.Name 134 } 135 symName = s.canonicalize(symName) 136 137 // Apply definitions. 138 defABI, hasDefABI := s.defs[symName] 139 if hasDefABI { 140 if len(fn.Body) != 0 { 141 base.ErrorfAt(fn.Pos(), 0, "%v defined in both Go and assembly", fn) 142 } 143 fn.ABI = defABI 144 } 145 146 if fn.Pragma&ir.CgoUnsafeArgs != 0 { 147 // CgoUnsafeArgs indicates the function (or its callee) uses 148 // offsets to dispatch arguments, which currently using ABI0 149 // frame layout. Pin it to ABI0. 150 fn.ABI = obj.ABI0 151 // Propagate linkname attribute, which was set on the ABIInternal 152 // symbol. 153 if sym.Linksym().IsLinkname() { 154 sym.LinksymABI(fn.ABI).Set(obj.AttrLinkname, true) 155 } 156 } 157 158 // If cgo-exported, add the definition ABI to the cgo 159 // pragmas. 160 cgoExport := cgoExports[symName] 161 for _, pprag := range cgoExport { 162 // The export pragmas have the form: 163 // 164 // cgo_export_* <local> [<remote>] 165 // 166 // If <remote> is omitted, it's the same as 167 // <local>. 168 // 169 // Expand to 170 // 171 // cgo_export_* <local> <remote> <ABI> 172 if len(*pprag) == 2 { 173 *pprag = append(*pprag, (*pprag)[1]) 174 } 175 // Add the ABI argument. 176 *pprag = append(*pprag, fn.ABI.String()) 177 } 178 179 // Apply references. 180 if abis, ok := s.refs[symName]; ok { 181 fn.ABIRefs |= abis 182 } 183 // Assume all functions are referenced at least as 184 // ABIInternal, since they may be referenced from 185 // other packages. 186 fn.ABIRefs.Set(obj.ABIInternal, true) 187 188 // If a symbol is defined in this package (either in 189 // Go or assembly) and given a linkname, it may be 190 // referenced from another package, so make it 191 // callable via any ABI. It's important that we know 192 // it's defined in this package since other packages 193 // may "pull" symbols using linkname and we don't want 194 // to create duplicate ABI wrappers. 195 // 196 // However, if it's given a linkname for exporting to 197 // C, then we don't make ABI wrappers because the cgo 198 // tool wants the original definition. 199 hasBody := len(fn.Body) != 0 200 if sym.Linkname != "" && (hasBody || hasDefABI) && len(cgoExport) == 0 { 201 fn.ABIRefs |= obj.ABISetCallable 202 } 203 204 // Double check that cgo-exported symbols don't get 205 // any wrappers. 206 if len(cgoExport) > 0 && fn.ABIRefs&^obj.ABISetOf(fn.ABI) != 0 { 207 base.Fatalf("cgo exported function %v cannot have ABI wrappers", fn) 208 } 209 210 if !buildcfg.Experiment.RegabiWrappers { 211 continue 212 } 213 214 forEachWrapperABI(fn, makeABIWrapper) 215 } 216} 217 218func forEachWrapperABI(fn *ir.Func, cb func(fn *ir.Func, wrapperABI obj.ABI)) { 219 need := fn.ABIRefs &^ obj.ABISetOf(fn.ABI) 220 if need == 0 { 221 return 222 } 223 224 for wrapperABI := obj.ABI(0); wrapperABI < obj.ABICount; wrapperABI++ { 225 if !need.Get(wrapperABI) { 226 continue 227 } 228 cb(fn, wrapperABI) 229 } 230} 231 232// makeABIWrapper creates a new function that will be called with 233// wrapperABI and calls "f" using f.ABI. 234func makeABIWrapper(f *ir.Func, wrapperABI obj.ABI) { 235 if base.Debug.ABIWrap != 0 { 236 fmt.Fprintf(os.Stderr, "=-= %v to %v wrapper for %v\n", wrapperABI, f.ABI, f) 237 } 238 239 // Q: is this needed? 240 savepos := base.Pos 241 savedcurfn := ir.CurFunc 242 243 pos := base.AutogeneratedPos 244 base.Pos = pos 245 246 // At the moment we don't support wrapping a method, we'd need machinery 247 // below to handle the receiver. Panic if we see this scenario. 248 ft := f.Nname.Type() 249 if ft.NumRecvs() != 0 { 250 base.ErrorfAt(f.Pos(), 0, "makeABIWrapper support for wrapping methods not implemented") 251 return 252 } 253 254 // Reuse f's types.Sym to create a new ODCLFUNC/function. 255 // TODO(mdempsky): Means we can't set sym.Def in Declfunc, ugh. 256 fn := ir.NewFunc(pos, pos, f.Sym(), types.NewSignature(nil, 257 typecheck.NewFuncParams(ft.Params()), 258 typecheck.NewFuncParams(ft.Results()))) 259 fn.ABI = wrapperABI 260 typecheck.DeclFunc(fn) 261 262 fn.SetABIWrapper(true) 263 fn.SetDupok(true) 264 265 // ABI0-to-ABIInternal wrappers will be mainly loading params from 266 // stack into registers (and/or storing stack locations back to 267 // registers after the wrapped call); in most cases they won't 268 // need to allocate stack space, so it should be OK to mark them 269 // as NOSPLIT in these cases. In addition, my assumption is that 270 // functions written in assembly are NOSPLIT in most (but not all) 271 // cases. In the case of an ABIInternal target that has too many 272 // parameters to fit into registers, the wrapper would need to 273 // allocate stack space, but this seems like an unlikely scenario. 274 // Hence: mark these wrappers NOSPLIT. 275 // 276 // ABIInternal-to-ABI0 wrappers on the other hand will be taking 277 // things in registers and pushing them onto the stack prior to 278 // the ABI0 call, meaning that they will always need to allocate 279 // stack space. If the compiler marks them as NOSPLIT this seems 280 // as though it could lead to situations where the linker's 281 // nosplit-overflow analysis would trigger a link failure. On the 282 // other hand if they not tagged NOSPLIT then this could cause 283 // problems when building the runtime (since there may be calls to 284 // asm routine in cases where it's not safe to grow the stack). In 285 // most cases the wrapper would be (in effect) inlined, but are 286 // there (perhaps) indirect calls from the runtime that could run 287 // into trouble here. 288 // FIXME: at the moment all.bash does not pass when I leave out 289 // NOSPLIT for these wrappers, so all are currently tagged with NOSPLIT. 290 fn.Pragma |= ir.Nosplit 291 292 // Generate call. Use tail call if no params and no returns, 293 // but a regular call otherwise. 294 // 295 // Note: ideally we would be using a tail call in cases where 296 // there are params but no returns for ABI0->ABIInternal wrappers, 297 // provided that all params fit into registers (e.g. we don't have 298 // to allocate any stack space). Doing this will require some 299 // extra work in typecheck/walk/ssa, might want to add a new node 300 // OTAILCALL or something to this effect. 301 tailcall := fn.Type().NumResults() == 0 && fn.Type().NumParams() == 0 && fn.Type().NumRecvs() == 0 302 if base.Ctxt.Arch.Name == "ppc64le" && base.Ctxt.Flag_dynlink { 303 // cannot tailcall on PPC64 with dynamic linking, as we need 304 // to restore R2 after call. 305 tailcall = false 306 } 307 if base.Ctxt.Arch.Name == "amd64" && wrapperABI == obj.ABIInternal { 308 // cannot tailcall from ABIInternal to ABI0 on AMD64, as we need 309 // to special registers (X15) when returning to ABIInternal. 310 tailcall = false 311 } 312 313 var tail ir.Node 314 call := ir.NewCallExpr(base.Pos, ir.OCALL, f.Nname, nil) 315 call.Args = ir.ParamNames(fn.Type()) 316 call.IsDDD = fn.Type().IsVariadic() 317 tail = call 318 if tailcall { 319 tail = ir.NewTailCallStmt(base.Pos, call) 320 } else if fn.Type().NumResults() > 0 { 321 n := ir.NewReturnStmt(base.Pos, nil) 322 n.Results = []ir.Node{call} 323 tail = n 324 } 325 fn.Body.Append(tail) 326 327 typecheck.FinishFuncBody() 328 329 ir.CurFunc = fn 330 typecheck.Stmts(fn.Body) 331 332 // Restore previous context. 333 base.Pos = savepos 334 ir.CurFunc = savedcurfn 335} 336 337// CreateWasmImportWrapper creates a wrapper for imported WASM functions to 338// adapt them to the Go calling convention. The body for this function is 339// generated in cmd/internal/obj/wasm/wasmobj.go 340func CreateWasmImportWrapper(fn *ir.Func) bool { 341 if fn.WasmImport == nil { 342 return false 343 } 344 if buildcfg.GOARCH != "wasm" { 345 base.FatalfAt(fn.Pos(), "CreateWasmImportWrapper call not supported on %s: func was %v", buildcfg.GOARCH, fn) 346 } 347 348 ir.InitLSym(fn, true) 349 350 setupWasmABI(fn) 351 352 pp := objw.NewProgs(fn, 0) 353 defer pp.Free() 354 pp.Text.To.Type = obj.TYPE_TEXTSIZE 355 pp.Text.To.Val = int32(types.RoundUp(fn.Type().ArgWidth(), int64(types.RegSize))) 356 // Wrapper functions never need their own stack frame 357 pp.Text.To.Offset = 0 358 pp.Flush() 359 360 return true 361} 362 363func paramsToWasmFields(f *ir.Func, result *abi.ABIParamResultInfo, abiParams []abi.ABIParamAssignment) []obj.WasmField { 364 wfs := make([]obj.WasmField, len(abiParams)) 365 for i, p := range abiParams { 366 t := p.Type 367 switch t.Kind() { 368 case types.TINT32, types.TUINT32: 369 wfs[i].Type = obj.WasmI32 370 case types.TINT64, types.TUINT64: 371 wfs[i].Type = obj.WasmI64 372 case types.TFLOAT32: 373 wfs[i].Type = obj.WasmF32 374 case types.TFLOAT64: 375 wfs[i].Type = obj.WasmF64 376 case types.TUNSAFEPTR: 377 wfs[i].Type = obj.WasmPtr 378 default: 379 base.ErrorfAt(f.Pos(), 0, "go:wasmimport %s %s: unsupported parameter type %s", f.WasmImport.Module, f.WasmImport.Name, t.String()) 380 } 381 wfs[i].Offset = p.FrameOffset(result) 382 } 383 return wfs 384} 385 386func resultsToWasmFields(f *ir.Func, result *abi.ABIParamResultInfo, abiParams []abi.ABIParamAssignment) []obj.WasmField { 387 if len(abiParams) > 1 { 388 base.ErrorfAt(f.Pos(), 0, "go:wasmimport %s %s: too many return values", f.WasmImport.Module, f.WasmImport.Name) 389 return nil 390 } 391 wfs := make([]obj.WasmField, len(abiParams)) 392 for i, p := range abiParams { 393 t := p.Type 394 switch t.Kind() { 395 case types.TINT32, types.TUINT32: 396 wfs[i].Type = obj.WasmI32 397 case types.TINT64, types.TUINT64: 398 wfs[i].Type = obj.WasmI64 399 case types.TFLOAT32: 400 wfs[i].Type = obj.WasmF32 401 case types.TFLOAT64: 402 wfs[i].Type = obj.WasmF64 403 default: 404 base.ErrorfAt(f.Pos(), 0, "go:wasmimport %s %s: unsupported result type %s", f.WasmImport.Module, f.WasmImport.Name, t.String()) 405 } 406 wfs[i].Offset = p.FrameOffset(result) 407 } 408 return wfs 409} 410 411// setupWasmABI calculates the params and results in terms of WebAssembly values for the given function. 412func setupWasmABI(f *ir.Func) { 413 wi := obj.WasmImport{ 414 Module: f.WasmImport.Module, 415 Name: f.WasmImport.Name, 416 } 417 if wi.Module == wasm.GojsModule { 418 // Functions that are imported from the "gojs" module use a special 419 // ABI that just accepts the stack pointer. 420 // Example: 421 // 422 // //go:wasmimport gojs add 423 // func importedAdd(a, b uint) uint 424 // 425 // will roughly become 426 // 427 // (import "gojs" "add" (func (param i32))) 428 wi.Params = []obj.WasmField{{Type: obj.WasmI32}} 429 } else { 430 // All other imported functions use the normal WASM ABI. 431 // Example: 432 // 433 // //go:wasmimport a_module add 434 // func importedAdd(a, b uint) uint 435 // 436 // will roughly become 437 // 438 // (import "a_module" "add" (func (param i32 i32) (result i32))) 439 abiConfig := AbiForBodylessFuncStackMap(f) 440 abiInfo := abiConfig.ABIAnalyzeFuncType(f.Type()) 441 wi.Params = paramsToWasmFields(f, abiInfo, abiInfo.InParams()) 442 wi.Results = resultsToWasmFields(f, abiInfo, abiInfo.OutParams()) 443 } 444 f.LSym.Func().WasmImport = &wi 445} 446