1// Derived from Inferno utils/6l/obj.c and utils/6l/span.c
2// https://bitbucket.org/inferno-os/inferno-os/src/master/utils/6l/obj.c
3// https://bitbucket.org/inferno-os/inferno-os/src/master/utils/6l/span.c
4//
5//	Copyright © 1994-1999 Lucent Technologies Inc.  All rights reserved.
6//	Portions Copyright © 1995-1997 C H Forsyth ([email protected])
7//	Portions Copyright © 1997-1999 Vita Nuova Limited
8//	Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com)
9//	Portions Copyright © 2004,2006 Bruce Ellis
10//	Portions Copyright © 2005-2007 C H Forsyth ([email protected])
11//	Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others
12//	Portions Copyright © 2009 The Go Authors. All rights reserved.
13//
14// Permission is hereby granted, free of charge, to any person obtaining a copy
15// of this software and associated documentation files (the "Software"), to deal
16// in the Software without restriction, including without limitation the rights
17// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
18// copies of the Software, and to permit persons to whom the Software is
19// furnished to do so, subject to the following conditions:
20//
21// The above copyright notice and this permission notice shall be included in
22// all copies or substantial portions of the Software.
23//
24// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
25// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
26// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
27// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
28// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
29// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
30// THE SOFTWARE.
31
32package ld
33
34import (
35	"bytes"
36	"cmd/internal/gcprog"
37	"cmd/internal/objabi"
38	"cmd/internal/sys"
39	"cmd/link/internal/loader"
40	"cmd/link/internal/loadpe"
41	"cmd/link/internal/sym"
42	"compress/zlib"
43	"debug/elf"
44	"encoding/binary"
45	"fmt"
46	"internal/abi"
47	"log"
48	"math/rand"
49	"os"
50	"sort"
51	"strconv"
52	"strings"
53	"sync"
54	"sync/atomic"
55)
56
57// isRuntimeDepPkg reports whether pkg is the runtime package or its dependency.
58func isRuntimeDepPkg(pkg string) bool {
59	switch pkg {
60	case "runtime",
61		"sync/atomic",          // runtime may call to sync/atomic, due to go:linkname
62		"internal/abi",         // used by reflectcall (and maybe more)
63		"internal/bytealg",     // for IndexByte
64		"internal/chacha8rand", // for rand
65		"internal/cpu":         // for cpu features
66		return true
67	}
68	return strings.HasPrefix(pkg, "runtime/internal/") && !strings.HasSuffix(pkg, "_test")
69}
70
71// Estimate the max size needed to hold any new trampolines created for this function. This
72// is used to determine when the section can be split if it becomes too large, to ensure that
73// the trampolines are in the same section as the function that uses them.
74func maxSizeTrampolines(ctxt *Link, ldr *loader.Loader, s loader.Sym, isTramp bool) uint64 {
75	// If thearch.Trampoline is nil, then trampoline support is not available on this arch.
76	// A trampoline does not need any dependent trampolines.
77	if thearch.Trampoline == nil || isTramp {
78		return 0
79	}
80
81	n := uint64(0)
82	relocs := ldr.Relocs(s)
83	for ri := 0; ri < relocs.Count(); ri++ {
84		r := relocs.At(ri)
85		if r.Type().IsDirectCallOrJump() {
86			n++
87		}
88	}
89
90	switch {
91	case ctxt.IsARM():
92		return n * 20 // Trampolines in ARM range from 3 to 5 instructions.
93	case ctxt.IsARM64():
94		return n * 12 // Trampolines in ARM64 are 3 instructions.
95	case ctxt.IsPPC64():
96		return n * 16 // Trampolines in PPC64 are 4 instructions.
97	case ctxt.IsRISCV64():
98		return n * 8 // Trampolines in RISCV64 are 2 instructions.
99	}
100	panic("unreachable")
101}
102
103// Detect too-far jumps in function s, and add trampolines if necessary.
104// ARM, PPC64, PPC64LE and RISCV64 support trampoline insertion for internal
105// and external linking. On PPC64 and PPC64LE the text sections might be split
106// but will still insert trampolines where necessary.
107func trampoline(ctxt *Link, s loader.Sym) {
108	if thearch.Trampoline == nil {
109		return // no need or no support of trampolines on this arch
110	}
111
112	ldr := ctxt.loader
113	relocs := ldr.Relocs(s)
114	for ri := 0; ri < relocs.Count(); ri++ {
115		r := relocs.At(ri)
116		rt := r.Type()
117		if !rt.IsDirectCallOrJump() && !isPLTCall(rt) {
118			continue
119		}
120		rs := r.Sym()
121		if !ldr.AttrReachable(rs) || ldr.SymType(rs) == sym.Sxxx {
122			continue // something is wrong. skip it here and we'll emit a better error later
123		}
124
125		if ldr.SymValue(rs) == 0 && ldr.SymType(rs) != sym.SDYNIMPORT && ldr.SymType(rs) != sym.SUNDEFEXT {
126			// Symbols in the same package are laid out together (if we
127			// don't randomize the function order).
128			// Except that if SymPkg(s) == "", it is a host object symbol
129			// which may call an external symbol via PLT.
130			if ldr.SymPkg(s) != "" && ldr.SymPkg(rs) == ldr.SymPkg(s) && *flagRandLayout == 0 {
131				// RISC-V is only able to reach +/-1MiB via a JAL instruction.
132				// We need to generate a trampoline when an address is
133				// currently unknown.
134				if !ctxt.Target.IsRISCV64() {
135					continue
136				}
137			}
138			// Runtime packages are laid out together.
139			if isRuntimeDepPkg(ldr.SymPkg(s)) && isRuntimeDepPkg(ldr.SymPkg(rs)) && *flagRandLayout == 0 {
140				continue
141			}
142		}
143		thearch.Trampoline(ctxt, ldr, ri, rs, s)
144	}
145}
146
147// whether rt is a (host object) relocation that will be turned into
148// a call to PLT.
149func isPLTCall(rt objabi.RelocType) bool {
150	const pcrel = 1
151	switch rt {
152	// ARM64
153	case objabi.ElfRelocOffset + objabi.RelocType(elf.R_AARCH64_CALL26),
154		objabi.ElfRelocOffset + objabi.RelocType(elf.R_AARCH64_JUMP26),
155		objabi.MachoRelocOffset + MACHO_ARM64_RELOC_BRANCH26*2 + pcrel:
156		return true
157
158	// ARM
159	case objabi.ElfRelocOffset + objabi.RelocType(elf.R_ARM_CALL),
160		objabi.ElfRelocOffset + objabi.RelocType(elf.R_ARM_PC24),
161		objabi.ElfRelocOffset + objabi.RelocType(elf.R_ARM_JUMP24):
162		return true
163	}
164	// TODO: other architectures.
165	return false
166}
167
168// FoldSubSymbolOffset computes the offset of symbol s to its top-level outer
169// symbol. Returns the top-level symbol and the offset.
170// This is used in generating external relocations.
171func FoldSubSymbolOffset(ldr *loader.Loader, s loader.Sym) (loader.Sym, int64) {
172	outer := ldr.OuterSym(s)
173	off := int64(0)
174	if outer != 0 {
175		off += ldr.SymValue(s) - ldr.SymValue(outer)
176		s = outer
177	}
178	return s, off
179}
180
181// relocsym resolve relocations in "s", updating the symbol's content
182// in "P".
183// The main loop walks through the list of relocations attached to "s"
184// and resolves them where applicable. Relocations are often
185// architecture-specific, requiring calls into the 'archreloc' and/or
186// 'archrelocvariant' functions for the architecture. When external
187// linking is in effect, it may not be  possible to completely resolve
188// the address/offset for a symbol, in which case the goal is to lay
189// the groundwork for turning a given relocation into an external reloc
190// (to be applied by the external linker). For more on how relocations
191// work in general, see
192//
193//	"Linkers and Loaders", by John R. Levine (Morgan Kaufmann, 1999), ch. 7
194//
195// This is a performance-critical function for the linker; be careful
196// to avoid introducing unnecessary allocations in the main loop.
197func (st *relocSymState) relocsym(s loader.Sym, P []byte) {
198	ldr := st.ldr
199	relocs := ldr.Relocs(s)
200	if relocs.Count() == 0 {
201		return
202	}
203	target := st.target
204	syms := st.syms
205	nExtReloc := 0 // number of external relocations
206	for ri := 0; ri < relocs.Count(); ri++ {
207		r := relocs.At(ri)
208		off := r.Off()
209		siz := int32(r.Siz())
210		rs := r.Sym()
211		rt := r.Type()
212		weak := r.Weak()
213		if off < 0 || off+siz > int32(len(P)) {
214			rname := ""
215			if rs != 0 {
216				rname = ldr.SymName(rs)
217			}
218			st.err.Errorf(s, "invalid relocation %s: %d+%d not in [%d,%d)", rname, off, siz, 0, len(P))
219			continue
220		}
221		if siz == 0 { // informational relocation - no work to do
222			continue
223		}
224
225		var rst sym.SymKind
226		if rs != 0 {
227			rst = ldr.SymType(rs)
228		}
229
230		if rs != 0 && (rst == sym.Sxxx || rst == sym.SXREF) {
231			// When putting the runtime but not main into a shared library
232			// these symbols are undefined and that's OK.
233			if target.IsShared() || target.IsPlugin() {
234				if ldr.SymName(rs) == "main.main" || (!target.IsPlugin() && ldr.SymName(rs) == "main..inittask") {
235					sb := ldr.MakeSymbolUpdater(rs)
236					sb.SetType(sym.SDYNIMPORT)
237				} else if strings.HasPrefix(ldr.SymName(rs), "go:info.") {
238					// Skip go.info symbols. They are only needed to communicate
239					// DWARF info between the compiler and linker.
240					continue
241				}
242			} else if target.IsPPC64() && ldr.SymName(rs) == ".TOC." {
243				// TOC symbol doesn't have a type but we do assign a value
244				// (see the address pass) and we can resolve it.
245				// TODO: give it a type.
246			} else {
247				st.err.errorUnresolved(ldr, s, rs)
248				continue
249			}
250		}
251
252		if rt >= objabi.ElfRelocOffset {
253			continue
254		}
255
256		// We need to be able to reference dynimport symbols when linking against
257		// shared libraries, and AIX, Darwin, OpenBSD and Solaris always need it.
258		if !target.IsAIX() && !target.IsDarwin() && !target.IsSolaris() && !target.IsOpenbsd() && rs != 0 && rst == sym.SDYNIMPORT && !target.IsDynlinkingGo() && !ldr.AttrSubSymbol(rs) {
259			if !(target.IsPPC64() && target.IsExternal() && ldr.SymName(rs) == ".TOC.") {
260				st.err.Errorf(s, "unhandled relocation for %s (type %d (%s) rtype %d (%s))", ldr.SymName(rs), rst, rst, rt, sym.RelocName(target.Arch, rt))
261			}
262		}
263		if rs != 0 && rst != sym.STLSBSS && !weak && rt != objabi.R_METHODOFF && !ldr.AttrReachable(rs) {
264			st.err.Errorf(s, "unreachable sym in relocation: %s", ldr.SymName(rs))
265		}
266
267		var rv sym.RelocVariant
268		if target.IsPPC64() || target.IsS390X() {
269			rv = ldr.RelocVariant(s, ri)
270		}
271
272		// TODO(mundaym): remove this special case - see issue 14218.
273		if target.IsS390X() {
274			switch rt {
275			case objabi.R_PCRELDBL:
276				rt = objabi.R_PCREL
277				rv = sym.RV_390_DBL
278			case objabi.R_CALL:
279				rv = sym.RV_390_DBL
280			}
281		}
282
283		var o int64
284		switch rt {
285		default:
286			switch siz {
287			default:
288				st.err.Errorf(s, "bad reloc size %#x for %s", uint32(siz), ldr.SymName(rs))
289			case 1:
290				o = int64(P[off])
291			case 2:
292				o = int64(target.Arch.ByteOrder.Uint16(P[off:]))
293			case 4:
294				o = int64(target.Arch.ByteOrder.Uint32(P[off:]))
295			case 8:
296				o = int64(target.Arch.ByteOrder.Uint64(P[off:]))
297			}
298			out, n, ok := thearch.Archreloc(target, ldr, syms, r, s, o)
299			if target.IsExternal() {
300				nExtReloc += n
301			}
302			if ok {
303				o = out
304			} else {
305				st.err.Errorf(s, "unknown reloc to %v: %d (%s)", ldr.SymName(rs), rt, sym.RelocName(target.Arch, rt))
306			}
307		case objabi.R_TLS_LE:
308			if target.IsExternal() && target.IsElf() {
309				nExtReloc++
310				o = 0
311				if !target.IsAMD64() {
312					o = r.Add()
313				}
314				break
315			}
316
317			if target.IsElf() && target.IsARM() {
318				// On ELF ARM, the thread pointer is 8 bytes before
319				// the start of the thread-local data block, so add 8
320				// to the actual TLS offset (r->sym->value).
321				// This 8 seems to be a fundamental constant of
322				// ELF on ARM (or maybe Glibc on ARM); it is not
323				// related to the fact that our own TLS storage happens
324				// to take up 8 bytes.
325				o = 8 + ldr.SymValue(rs)
326			} else if target.IsElf() || target.IsPlan9() || target.IsDarwin() {
327				o = int64(syms.Tlsoffset) + r.Add()
328			} else if target.IsWindows() {
329				o = r.Add()
330			} else {
331				log.Fatalf("unexpected R_TLS_LE relocation for %v", target.HeadType)
332			}
333		case objabi.R_TLS_IE:
334			if target.IsExternal() && target.IsElf() {
335				nExtReloc++
336				o = 0
337				if !target.IsAMD64() {
338					o = r.Add()
339				}
340				if target.Is386() {
341					nExtReloc++ // need two ELF relocations on 386, see ../x86/asm.go:elfreloc1
342				}
343				break
344			}
345			if target.IsPIE() && target.IsElf() {
346				// We are linking the final executable, so we
347				// can optimize any TLS IE relocation to LE.
348				if thearch.TLSIEtoLE == nil {
349					log.Fatalf("internal linking of TLS IE not supported on %v", target.Arch.Family)
350				}
351				thearch.TLSIEtoLE(P, int(off), int(siz))
352				o = int64(syms.Tlsoffset)
353			} else {
354				log.Fatalf("cannot handle R_TLS_IE (sym %s) when linking internally", ldr.SymName(s))
355			}
356		case objabi.R_ADDR, objabi.R_PEIMAGEOFF:
357			if weak && !ldr.AttrReachable(rs) {
358				// Redirect it to runtime.unreachableMethod, which will throw if called.
359				rs = syms.unreachableMethod
360			}
361			if target.IsExternal() {
362				nExtReloc++
363
364				// set up addend for eventual relocation via outer symbol.
365				rs := rs
366				rs, off := FoldSubSymbolOffset(ldr, rs)
367				xadd := r.Add() + off
368				rst := ldr.SymType(rs)
369				if rst != sym.SHOSTOBJ && rst != sym.SDYNIMPORT && rst != sym.SUNDEFEXT && ldr.SymSect(rs) == nil {
370					st.err.Errorf(s, "missing section for relocation target %s", ldr.SymName(rs))
371				}
372
373				o = xadd
374				if target.IsElf() {
375					if target.IsAMD64() {
376						o = 0
377					}
378				} else if target.IsDarwin() {
379					if ldr.SymType(s).IsDWARF() {
380						// We generally use symbol-targeted relocations.
381						// DWARF tools seem to only handle section-targeted relocations,
382						// so generate section-targeted relocations in DWARF sections.
383						// See also machoreloc1.
384						o += ldr.SymValue(rs)
385					}
386				} else if target.IsWindows() {
387					// nothing to do
388				} else if target.IsAIX() {
389					o = ldr.SymValue(rs) + xadd
390				} else {
391					st.err.Errorf(s, "unhandled pcrel relocation to %s on %v", ldr.SymName(rs), target.HeadType)
392				}
393
394				break
395			}
396
397			// On AIX, a second relocation must be done by the loader,
398			// as section addresses can change once loaded.
399			// The "default" symbol address is still needed by the loader so
400			// the current relocation can't be skipped.
401			if target.IsAIX() && rst != sym.SDYNIMPORT {
402				// It's not possible to make a loader relocation in a
403				// symbol which is not inside .data section.
404				// FIXME: It should be forbidden to have R_ADDR from a
405				// symbol which isn't in .data. However, as .text has the
406				// same address once loaded, this is possible.
407				if ldr.SymSect(s).Seg == &Segdata {
408					Xcoffadddynrel(target, ldr, syms, s, r, ri)
409				}
410			}
411
412			o = ldr.SymValue(rs) + r.Add()
413			if rt == objabi.R_PEIMAGEOFF {
414				// The R_PEIMAGEOFF offset is a RVA, so subtract
415				// the base address for the executable.
416				o -= PEBASE
417			}
418
419			// On amd64, 4-byte offsets will be sign-extended, so it is impossible to
420			// access more than 2GB of static data; fail at link time is better than
421			// fail at runtime. See https://golang.org/issue/7980.
422			// Instead of special casing only amd64, we treat this as an error on all
423			// 64-bit architectures so as to be future-proof.
424			if int32(o) < 0 && target.Arch.PtrSize > 4 && siz == 4 {
425				st.err.Errorf(s, "non-pc-relative relocation address for %s is too big: %#x (%#x + %#x)", ldr.SymName(rs), uint64(o), ldr.SymValue(rs), r.Add())
426				errorexit()
427			}
428		case objabi.R_DWARFSECREF:
429			if ldr.SymSect(rs) == nil {
430				st.err.Errorf(s, "missing DWARF section for relocation target %s", ldr.SymName(rs))
431			}
432
433			if target.IsExternal() {
434				// On most platforms, the external linker needs to adjust DWARF references
435				// as it combines DWARF sections. However, on Darwin, dsymutil does the
436				// DWARF linking, and it understands how to follow section offsets.
437				// Leaving in the relocation records confuses it (see
438				// https://golang.org/issue/22068) so drop them for Darwin.
439				if !target.IsDarwin() {
440					nExtReloc++
441				}
442
443				xadd := r.Add() + ldr.SymValue(rs) - int64(ldr.SymSect(rs).Vaddr)
444
445				o = xadd
446				if target.IsElf() && target.IsAMD64() {
447					o = 0
448				}
449				break
450			}
451			o = ldr.SymValue(rs) + r.Add() - int64(ldr.SymSect(rs).Vaddr)
452		case objabi.R_METHODOFF:
453			if !ldr.AttrReachable(rs) {
454				// Set it to a sentinel value. The runtime knows this is not pointing to
455				// anything valid.
456				o = -1
457				break
458			}
459			fallthrough
460		case objabi.R_ADDROFF:
461			if weak && !ldr.AttrReachable(rs) {
462				continue
463			}
464			sect := ldr.SymSect(rs)
465			if sect == nil {
466				if rst == sym.SDYNIMPORT {
467					st.err.Errorf(s, "cannot target DYNIMPORT sym in section-relative reloc: %s", ldr.SymName(rs))
468				} else if rst == sym.SUNDEFEXT {
469					st.err.Errorf(s, "undefined symbol in relocation: %s", ldr.SymName(rs))
470				} else {
471					st.err.Errorf(s, "missing section for relocation target %s", ldr.SymName(rs))
472				}
473				continue
474			}
475
476			// The method offset tables using this relocation expect the offset to be relative
477			// to the start of the first text section, even if there are multiple.
478			if sect.Name == ".text" {
479				o = ldr.SymValue(rs) - int64(Segtext.Sections[0].Vaddr) + r.Add()
480			} else {
481				o = ldr.SymValue(rs) - int64(ldr.SymSect(rs).Vaddr) + r.Add()
482			}
483
484		case objabi.R_ADDRCUOFF:
485			// debug_range and debug_loc elements use this relocation type to get an
486			// offset from the start of the compile unit.
487			o = ldr.SymValue(rs) + r.Add() - ldr.SymValue(loader.Sym(ldr.SymUnit(rs).Textp[0]))
488
489		// r.Sym() can be 0 when CALL $(constant) is transformed from absolute PC to relative PC call.
490		case objabi.R_GOTPCREL:
491			if target.IsDynlinkingGo() && target.IsDarwin() && rs != 0 {
492				nExtReloc++
493				o = r.Add()
494				break
495			}
496			if target.Is386() && target.IsExternal() && target.IsELF {
497				nExtReloc++ // need two ELF relocations on 386, see ../x86/asm.go:elfreloc1
498			}
499			fallthrough
500		case objabi.R_CALL, objabi.R_PCREL:
501			if target.IsExternal() && rs != 0 && rst == sym.SUNDEFEXT {
502				// pass through to the external linker.
503				nExtReloc++
504				o = 0
505				break
506			}
507			if target.IsExternal() && rs != 0 && (ldr.SymSect(rs) != ldr.SymSect(s) || rt == objabi.R_GOTPCREL) {
508				nExtReloc++
509
510				// set up addend for eventual relocation via outer symbol.
511				rs := rs
512				rs, off := FoldSubSymbolOffset(ldr, rs)
513				xadd := r.Add() + off - int64(siz) // relative to address after the relocated chunk
514				rst := ldr.SymType(rs)
515				if rst != sym.SHOSTOBJ && rst != sym.SDYNIMPORT && ldr.SymSect(rs) == nil {
516					st.err.Errorf(s, "missing section for relocation target %s", ldr.SymName(rs))
517				}
518
519				o = xadd
520				if target.IsElf() {
521					if target.IsAMD64() {
522						o = 0
523					}
524				} else if target.IsDarwin() {
525					if rt == objabi.R_CALL {
526						if target.IsExternal() && rst == sym.SDYNIMPORT {
527							if target.IsAMD64() {
528								// AMD64 dynamic relocations are relative to the end of the relocation.
529								o += int64(siz)
530							}
531						} else {
532							if rst != sym.SHOSTOBJ {
533								o += int64(uint64(ldr.SymValue(rs)) - ldr.SymSect(rs).Vaddr)
534							}
535							o -= int64(off) // relative to section offset, not symbol
536						}
537					} else {
538						o += int64(siz)
539					}
540				} else if target.IsWindows() && target.IsAMD64() { // only amd64 needs PCREL
541					// PE/COFF's PC32 relocation uses the address after the relocated
542					// bytes as the base. Compensate by skewing the addend.
543					o += int64(siz)
544				} else {
545					st.err.Errorf(s, "unhandled pcrel relocation to %s on %v", ldr.SymName(rs), target.HeadType)
546				}
547
548				break
549			}
550
551			o = 0
552			if rs != 0 {
553				o = ldr.SymValue(rs)
554			}
555
556			o += r.Add() - (ldr.SymValue(s) + int64(off) + int64(siz))
557		case objabi.R_SIZE:
558			o = ldr.SymSize(rs) + r.Add()
559
560		case objabi.R_XCOFFREF:
561			if !target.IsAIX() {
562				st.err.Errorf(s, "find XCOFF R_REF on non-XCOFF files")
563			}
564			if !target.IsExternal() {
565				st.err.Errorf(s, "find XCOFF R_REF with internal linking")
566			}
567			nExtReloc++
568			continue
569
570		case objabi.R_DWARFFILEREF:
571			// We don't renumber files in dwarf.go:writelines anymore.
572			continue
573
574		case objabi.R_CONST:
575			o = r.Add()
576
577		case objabi.R_GOTOFF:
578			o = ldr.SymValue(rs) + r.Add() - ldr.SymValue(syms.GOT)
579		}
580
581		if target.IsPPC64() || target.IsS390X() {
582			if rv != sym.RV_NONE {
583				o = thearch.Archrelocvariant(target, ldr, r, rv, s, o, P)
584			}
585		}
586
587		switch siz {
588		default:
589			st.err.Errorf(s, "bad reloc size %#x for %s", uint32(siz), ldr.SymName(rs))
590		case 1:
591			P[off] = byte(int8(o))
592		case 2:
593			if (rt == objabi.R_PCREL || rt == objabi.R_CALL) && o != int64(int16(o)) {
594				st.err.Errorf(s, "pc-relative relocation address for %s is too big: %#x", ldr.SymName(rs), o)
595			} else if o != int64(int16(o)) && o != int64(uint16(o)) {
596				st.err.Errorf(s, "non-pc-relative relocation address for %s is too big: %#x", ldr.SymName(rs), uint64(o))
597			}
598			target.Arch.ByteOrder.PutUint16(P[off:], uint16(o))
599		case 4:
600			if (rt == objabi.R_PCREL || rt == objabi.R_CALL) && o != int64(int32(o)) {
601				st.err.Errorf(s, "pc-relative relocation address for %s is too big: %#x", ldr.SymName(rs), o)
602			} else if o != int64(int32(o)) && o != int64(uint32(o)) {
603				st.err.Errorf(s, "non-pc-relative relocation address for %s is too big: %#x", ldr.SymName(rs), uint64(o))
604			}
605			target.Arch.ByteOrder.PutUint32(P[off:], uint32(o))
606		case 8:
607			target.Arch.ByteOrder.PutUint64(P[off:], uint64(o))
608		}
609	}
610	if target.IsExternal() {
611		// We'll stream out the external relocations in asmb2 (e.g. elfrelocsect)
612		// and we only need the count here.
613		atomic.AddUint32(&ldr.SymSect(s).Relcount, uint32(nExtReloc))
614	}
615}
616
617// Convert a Go relocation to an external relocation.
618func extreloc(ctxt *Link, ldr *loader.Loader, s loader.Sym, r loader.Reloc) (loader.ExtReloc, bool) {
619	var rr loader.ExtReloc
620	target := &ctxt.Target
621	siz := int32(r.Siz())
622	if siz == 0 { // informational relocation - no work to do
623		return rr, false
624	}
625
626	rt := r.Type()
627	if rt >= objabi.ElfRelocOffset {
628		return rr, false
629	}
630	rr.Type = rt
631	rr.Size = uint8(siz)
632
633	// TODO(mundaym): remove this special case - see issue 14218.
634	if target.IsS390X() {
635		switch rt {
636		case objabi.R_PCRELDBL:
637			rt = objabi.R_PCREL
638		}
639	}
640
641	switch rt {
642	default:
643		return thearch.Extreloc(target, ldr, r, s)
644
645	case objabi.R_TLS_LE, objabi.R_TLS_IE:
646		if target.IsElf() {
647			rs := r.Sym()
648			rr.Xsym = rs
649			if rr.Xsym == 0 {
650				rr.Xsym = ctxt.Tlsg
651			}
652			rr.Xadd = r.Add()
653			break
654		}
655		return rr, false
656
657	case objabi.R_ADDR, objabi.R_PEIMAGEOFF:
658		// set up addend for eventual relocation via outer symbol.
659		rs := r.Sym()
660		if r.Weak() && !ldr.AttrReachable(rs) {
661			rs = ctxt.ArchSyms.unreachableMethod
662		}
663		rs, off := FoldSubSymbolOffset(ldr, rs)
664		rr.Xadd = r.Add() + off
665		rr.Xsym = rs
666
667	case objabi.R_DWARFSECREF:
668		// On most platforms, the external linker needs to adjust DWARF references
669		// as it combines DWARF sections. However, on Darwin, dsymutil does the
670		// DWARF linking, and it understands how to follow section offsets.
671		// Leaving in the relocation records confuses it (see
672		// https://golang.org/issue/22068) so drop them for Darwin.
673		if target.IsDarwin() {
674			return rr, false
675		}
676		rs := r.Sym()
677		rr.Xsym = loader.Sym(ldr.SymSect(rs).Sym)
678		rr.Xadd = r.Add() + ldr.SymValue(rs) - int64(ldr.SymSect(rs).Vaddr)
679
680	// r.Sym() can be 0 when CALL $(constant) is transformed from absolute PC to relative PC call.
681	case objabi.R_GOTPCREL, objabi.R_CALL, objabi.R_PCREL:
682		rs := r.Sym()
683		if rt == objabi.R_GOTPCREL && target.IsDynlinkingGo() && target.IsDarwin() && rs != 0 {
684			rr.Xadd = r.Add()
685			rr.Xadd -= int64(siz) // relative to address after the relocated chunk
686			rr.Xsym = rs
687			break
688		}
689		if rs != 0 && ldr.SymType(rs) == sym.SUNDEFEXT {
690			// pass through to the external linker.
691			rr.Xadd = 0
692			if target.IsElf() {
693				rr.Xadd -= int64(siz)
694			}
695			rr.Xsym = rs
696			break
697		}
698		if rs != 0 && (ldr.SymSect(rs) != ldr.SymSect(s) || rt == objabi.R_GOTPCREL) {
699			// set up addend for eventual relocation via outer symbol.
700			rs := rs
701			rs, off := FoldSubSymbolOffset(ldr, rs)
702			rr.Xadd = r.Add() + off
703			rr.Xadd -= int64(siz) // relative to address after the relocated chunk
704			rr.Xsym = rs
705			break
706		}
707		return rr, false
708
709	case objabi.R_XCOFFREF:
710		return ExtrelocSimple(ldr, r), true
711
712	// These reloc types don't need external relocations.
713	case objabi.R_ADDROFF, objabi.R_METHODOFF, objabi.R_ADDRCUOFF,
714		objabi.R_SIZE, objabi.R_CONST, objabi.R_GOTOFF:
715		return rr, false
716	}
717	return rr, true
718}
719
720// ExtrelocSimple creates a simple external relocation from r, with the same
721// symbol and addend.
722func ExtrelocSimple(ldr *loader.Loader, r loader.Reloc) loader.ExtReloc {
723	var rr loader.ExtReloc
724	rs := r.Sym()
725	rr.Xsym = rs
726	rr.Xadd = r.Add()
727	rr.Type = r.Type()
728	rr.Size = r.Siz()
729	return rr
730}
731
732// ExtrelocViaOuterSym creates an external relocation from r targeting the
733// outer symbol and folding the subsymbol's offset into the addend.
734func ExtrelocViaOuterSym(ldr *loader.Loader, r loader.Reloc, s loader.Sym) loader.ExtReloc {
735	// set up addend for eventual relocation via outer symbol.
736	var rr loader.ExtReloc
737	rs := r.Sym()
738	rs, off := FoldSubSymbolOffset(ldr, rs)
739	rr.Xadd = r.Add() + off
740	rst := ldr.SymType(rs)
741	if rst != sym.SHOSTOBJ && rst != sym.SDYNIMPORT && rst != sym.SUNDEFEXT && ldr.SymSect(rs) == nil {
742		ldr.Errorf(s, "missing section for %s", ldr.SymName(rs))
743	}
744	rr.Xsym = rs
745	rr.Type = r.Type()
746	rr.Size = r.Siz()
747	return rr
748}
749
750// relocSymState hold state information needed when making a series of
751// successive calls to relocsym(). The items here are invariant
752// (meaning that they are set up once initially and then don't change
753// during the execution of relocsym), with the exception of a slice
754// used to facilitate batch allocation of external relocations. Calls
755// to relocsym happen in parallel; the assumption is that each
756// parallel thread will have its own state object.
757type relocSymState struct {
758	target *Target
759	ldr    *loader.Loader
760	err    *ErrorReporter
761	syms   *ArchSyms
762}
763
764// makeRelocSymState creates a relocSymState container object to
765// pass to relocsym(). If relocsym() calls happen in parallel,
766// each parallel thread should have its own state object.
767func (ctxt *Link) makeRelocSymState() *relocSymState {
768	return &relocSymState{
769		target: &ctxt.Target,
770		ldr:    ctxt.loader,
771		err:    &ctxt.ErrorReporter,
772		syms:   &ctxt.ArchSyms,
773	}
774}
775
776// windynrelocsym examines a text symbol 's' and looks for relocations
777// from it that correspond to references to symbols defined in DLLs,
778// then fixes up those relocations as needed. A reference to a symbol
779// XYZ from some DLL will fall into one of two categories: an indirect
780// ref via "__imp_XYZ", or a direct ref to "XYZ". Here's an example of
781// an indirect ref (this is an excerpt from objdump -ldr):
782//
783//	     1c1: 48 89 c6                     	movq	%rax, %rsi
784//	     1c4: ff 15 00 00 00 00            	callq	*(%rip)
785//			00000000000001c6:  IMAGE_REL_AMD64_REL32	__imp__errno
786//
787// In the assembly above, the code loads up the value of __imp_errno
788// and then does an indirect call to that value.
789//
790// Here is what a direct reference might look like:
791//
792//	     137: e9 20 06 00 00               	jmp	0x75c <pow+0x75c>
793//	     13c: e8 00 00 00 00               	callq	0x141 <pow+0x141>
794//			000000000000013d:  IMAGE_REL_AMD64_REL32	_errno
795//
796// The assembly below dispenses with the import symbol and just makes
797// a direct call to _errno.
798//
799// The code below handles indirect refs by redirecting the target of
800// the relocation from "__imp_XYZ" to "XYZ" (since the latter symbol
801// is what the Windows loader is expected to resolve). For direct refs
802// the call is redirected to a stub, where the stub first loads the
803// symbol and then direct an indirect call to that value.
804//
805// Note that for a given symbol (as above) it is perfectly legal to
806// have both direct and indirect references.
807func windynrelocsym(ctxt *Link, rel *loader.SymbolBuilder, s loader.Sym) error {
808	var su *loader.SymbolBuilder
809	relocs := ctxt.loader.Relocs(s)
810	for ri := 0; ri < relocs.Count(); ri++ {
811		r := relocs.At(ri)
812		if r.IsMarker() {
813			continue // skip marker relocations
814		}
815		targ := r.Sym()
816		if targ == 0 {
817			continue
818		}
819		if !ctxt.loader.AttrReachable(targ) {
820			if r.Weak() {
821				continue
822			}
823			return fmt.Errorf("dynamic relocation to unreachable symbol %s",
824				ctxt.loader.SymName(targ))
825		}
826		tgot := ctxt.loader.SymGot(targ)
827		if tgot == loadpe.RedirectToDynImportGotToken {
828
829			// Consistency check: name should be __imp_X
830			sname := ctxt.loader.SymName(targ)
831			if !strings.HasPrefix(sname, "__imp_") {
832				return fmt.Errorf("internal error in windynrelocsym: redirect GOT token applied to non-import symbol %s", sname)
833			}
834
835			// Locate underlying symbol (which originally had type
836			// SDYNIMPORT but has since been retyped to SWINDOWS).
837			ds, err := loadpe.LookupBaseFromImport(targ, ctxt.loader, ctxt.Arch)
838			if err != nil {
839				return err
840			}
841			dstyp := ctxt.loader.SymType(ds)
842			if dstyp != sym.SWINDOWS {
843				return fmt.Errorf("internal error in windynrelocsym: underlying sym for %q has wrong type %s", sname, dstyp.String())
844			}
845
846			// Redirect relocation to the dynimport.
847			r.SetSym(ds)
848			continue
849		}
850
851		tplt := ctxt.loader.SymPlt(targ)
852		if tplt == loadpe.CreateImportStubPltToken {
853
854			// Consistency check: don't want to see both PLT and GOT tokens.
855			if tgot != -1 {
856				return fmt.Errorf("internal error in windynrelocsym: invalid GOT setting %d for reloc to %s", tgot, ctxt.loader.SymName(targ))
857			}
858
859			// make dynimport JMP table for PE object files.
860			tplt := int32(rel.Size())
861			ctxt.loader.SetPlt(targ, tplt)
862
863			if su == nil {
864				su = ctxt.loader.MakeSymbolUpdater(s)
865			}
866			r.SetSym(rel.Sym())
867			r.SetAdd(int64(tplt))
868
869			// jmp *addr
870			switch ctxt.Arch.Family {
871			default:
872				return fmt.Errorf("internal error in windynrelocsym: unsupported arch %v", ctxt.Arch.Family)
873			case sys.I386:
874				rel.AddUint8(0xff)
875				rel.AddUint8(0x25)
876				rel.AddAddrPlus(ctxt.Arch, targ, 0)
877				rel.AddUint8(0x90)
878				rel.AddUint8(0x90)
879			case sys.AMD64:
880				rel.AddUint8(0xff)
881				rel.AddUint8(0x24)
882				rel.AddUint8(0x25)
883				rel.AddAddrPlus4(ctxt.Arch, targ, 0)
884				rel.AddUint8(0x90)
885			}
886		} else if tplt >= 0 {
887			if su == nil {
888				su = ctxt.loader.MakeSymbolUpdater(s)
889			}
890			r.SetSym(rel.Sym())
891			r.SetAdd(int64(tplt))
892		}
893	}
894	return nil
895}
896
897// windynrelocsyms generates jump table to C library functions that will be
898// added later. windynrelocsyms writes the table into .rel symbol.
899func (ctxt *Link) windynrelocsyms() {
900	if !(ctxt.IsWindows() && iscgo && ctxt.IsInternal()) {
901		return
902	}
903
904	rel := ctxt.loader.CreateSymForUpdate(".rel", 0)
905	rel.SetType(sym.STEXT)
906
907	for _, s := range ctxt.Textp {
908		if err := windynrelocsym(ctxt, rel, s); err != nil {
909			ctxt.Errorf(s, "%v", err)
910		}
911	}
912
913	ctxt.Textp = append(ctxt.Textp, rel.Sym())
914}
915
916func dynrelocsym(ctxt *Link, s loader.Sym) {
917	target := &ctxt.Target
918	ldr := ctxt.loader
919	syms := &ctxt.ArchSyms
920	relocs := ldr.Relocs(s)
921	for ri := 0; ri < relocs.Count(); ri++ {
922		r := relocs.At(ri)
923		if r.IsMarker() {
924			continue // skip marker relocations
925		}
926		rSym := r.Sym()
927		if r.Weak() && !ldr.AttrReachable(rSym) {
928			continue
929		}
930		if ctxt.BuildMode == BuildModePIE && ctxt.LinkMode == LinkInternal {
931			// It's expected that some relocations will be done
932			// later by relocsym (R_TLS_LE, R_ADDROFF), so
933			// don't worry if Adddynrel returns false.
934			thearch.Adddynrel(target, ldr, syms, s, r, ri)
935			continue
936		}
937
938		if rSym != 0 && ldr.SymType(rSym) == sym.SDYNIMPORT || r.Type() >= objabi.ElfRelocOffset {
939			if rSym != 0 && !ldr.AttrReachable(rSym) {
940				ctxt.Errorf(s, "dynamic relocation to unreachable symbol %s", ldr.SymName(rSym))
941			}
942			if !thearch.Adddynrel(target, ldr, syms, s, r, ri) {
943				ctxt.Errorf(s, "unsupported dynamic relocation for symbol %s (type=%d (%s) stype=%d (%s))", ldr.SymName(rSym), r.Type(), sym.RelocName(ctxt.Arch, r.Type()), ldr.SymType(rSym), ldr.SymType(rSym))
944			}
945		}
946	}
947}
948
949func (state *dodataState) dynreloc(ctxt *Link) {
950	if ctxt.HeadType == objabi.Hwindows {
951		return
952	}
953	// -d suppresses dynamic loader format, so we may as well not
954	// compute these sections or mark their symbols as reachable.
955	if *FlagD {
956		return
957	}
958
959	for _, s := range ctxt.Textp {
960		dynrelocsym(ctxt, s)
961	}
962	for _, syms := range state.data {
963		for _, s := range syms {
964			dynrelocsym(ctxt, s)
965		}
966	}
967	if ctxt.IsELF {
968		elfdynhash(ctxt)
969	}
970}
971
972func CodeblkPad(ctxt *Link, out *OutBuf, addr int64, size int64, pad []byte) {
973	writeBlocks(ctxt, out, ctxt.outSem, ctxt.loader, ctxt.Textp, addr, size, pad)
974}
975
976const blockSize = 1 << 20 // 1MB chunks written at a time.
977
978// writeBlocks writes a specified chunk of symbols to the output buffer. It
979// breaks the write up into ≥blockSize chunks to write them out, and schedules
980// as many goroutines as necessary to accomplish this task. This call then
981// blocks, waiting on the writes to complete. Note that we use the sem parameter
982// to limit the number of concurrent writes taking place.
983func writeBlocks(ctxt *Link, out *OutBuf, sem chan int, ldr *loader.Loader, syms []loader.Sym, addr, size int64, pad []byte) {
984	for i, s := range syms {
985		if ldr.SymValue(s) >= addr && !ldr.AttrSubSymbol(s) {
986			syms = syms[i:]
987			break
988		}
989	}
990
991	var wg sync.WaitGroup
992	max, lastAddr, written := int64(blockSize), addr+size, int64(0)
993	for addr < lastAddr {
994		// Find the last symbol we'd write.
995		idx := -1
996		for i, s := range syms {
997			if ldr.AttrSubSymbol(s) {
998				continue
999			}
1000
1001			// If the next symbol's size would put us out of bounds on the total length,
1002			// stop looking.
1003			end := ldr.SymValue(s) + ldr.SymSize(s)
1004			if end > lastAddr {
1005				break
1006			}
1007
1008			// We're gonna write this symbol.
1009			idx = i
1010
1011			// If we cross over the max size, we've got enough symbols.
1012			if end > addr+max {
1013				break
1014			}
1015		}
1016
1017		// If we didn't find any symbols to write, we're done here.
1018		if idx < 0 {
1019			break
1020		}
1021
1022		// Compute the length to write, including padding.
1023		// We need to write to the end address (lastAddr), or the next symbol's
1024		// start address, whichever comes first. If there is no more symbols,
1025		// just write to lastAddr. This ensures we don't leave holes between the
1026		// blocks or at the end.
1027		length := int64(0)
1028		if idx+1 < len(syms) {
1029			// Find the next top-level symbol.
1030			// Skip over sub symbols so we won't split a container symbol
1031			// into two blocks.
1032			next := syms[idx+1]
1033			for ldr.AttrSubSymbol(next) {
1034				idx++
1035				next = syms[idx+1]
1036			}
1037			length = ldr.SymValue(next) - addr
1038		}
1039		if length == 0 || length > lastAddr-addr {
1040			length = lastAddr - addr
1041		}
1042
1043		// Start the block output operator.
1044		if o, err := out.View(uint64(out.Offset() + written)); err == nil {
1045			sem <- 1
1046			wg.Add(1)
1047			go func(o *OutBuf, ldr *loader.Loader, syms []loader.Sym, addr, size int64, pad []byte) {
1048				writeBlock(ctxt, o, ldr, syms, addr, size, pad)
1049				wg.Done()
1050				<-sem
1051			}(o, ldr, syms, addr, length, pad)
1052		} else { // output not mmaped, don't parallelize.
1053			writeBlock(ctxt, out, ldr, syms, addr, length, pad)
1054		}
1055
1056		// Prepare for the next loop.
1057		if idx != -1 {
1058			syms = syms[idx+1:]
1059		}
1060		written += length
1061		addr += length
1062	}
1063	wg.Wait()
1064}
1065
1066func writeBlock(ctxt *Link, out *OutBuf, ldr *loader.Loader, syms []loader.Sym, addr, size int64, pad []byte) {
1067
1068	st := ctxt.makeRelocSymState()
1069
1070	// This doesn't distinguish the memory size from the file
1071	// size, and it lays out the file based on Symbol.Value, which
1072	// is the virtual address. DWARF compression changes file sizes,
1073	// so dwarfcompress will fix this up later if necessary.
1074	eaddr := addr + size
1075	for _, s := range syms {
1076		if ldr.AttrSubSymbol(s) {
1077			continue
1078		}
1079		val := ldr.SymValue(s)
1080		if val >= eaddr {
1081			break
1082		}
1083		if val < addr {
1084			ldr.Errorf(s, "phase error: addr=%#x but val=%#x sym=%s type=%v sect=%v sect.addr=%#x", addr, val, ldr.SymName(s), ldr.SymType(s), ldr.SymSect(s).Name, ldr.SymSect(s).Vaddr)
1085			errorexit()
1086		}
1087		if addr < val {
1088			out.WriteStringPad("", int(val-addr), pad)
1089			addr = val
1090		}
1091		P := out.WriteSym(ldr, s)
1092		st.relocsym(s, P)
1093		if ldr.IsGeneratedSym(s) {
1094			f := ctxt.generatorSyms[s]
1095			f(ctxt, s)
1096		}
1097		addr += int64(len(P))
1098		siz := ldr.SymSize(s)
1099		if addr < val+siz {
1100			out.WriteStringPad("", int(val+siz-addr), pad)
1101			addr = val + siz
1102		}
1103		if addr != val+siz {
1104			ldr.Errorf(s, "phase error: addr=%#x value+size=%#x", addr, val+siz)
1105			errorexit()
1106		}
1107		if val+siz >= eaddr {
1108			break
1109		}
1110	}
1111
1112	if addr < eaddr {
1113		out.WriteStringPad("", int(eaddr-addr), pad)
1114	}
1115}
1116
1117type writeFn func(*Link, *OutBuf, int64, int64)
1118
1119// writeParallel handles scheduling parallel execution of data write functions.
1120func writeParallel(wg *sync.WaitGroup, fn writeFn, ctxt *Link, seek, vaddr, length uint64) {
1121	if out, err := ctxt.Out.View(seek); err != nil {
1122		ctxt.Out.SeekSet(int64(seek))
1123		fn(ctxt, ctxt.Out, int64(vaddr), int64(length))
1124	} else {
1125		wg.Add(1)
1126		go func() {
1127			defer wg.Done()
1128			fn(ctxt, out, int64(vaddr), int64(length))
1129		}()
1130	}
1131}
1132
1133func datblk(ctxt *Link, out *OutBuf, addr, size int64) {
1134	writeDatblkToOutBuf(ctxt, out, addr, size)
1135}
1136
1137// Used only on Wasm for now.
1138func DatblkBytes(ctxt *Link, addr int64, size int64) []byte {
1139	buf := make([]byte, size)
1140	out := &OutBuf{heap: buf}
1141	writeDatblkToOutBuf(ctxt, out, addr, size)
1142	return buf
1143}
1144
1145func writeDatblkToOutBuf(ctxt *Link, out *OutBuf, addr int64, size int64) {
1146	writeBlocks(ctxt, out, ctxt.outSem, ctxt.loader, ctxt.datap, addr, size, zeros[:])
1147}
1148
1149func dwarfblk(ctxt *Link, out *OutBuf, addr int64, size int64) {
1150	// Concatenate the section symbol lists into a single list to pass
1151	// to writeBlocks.
1152	//
1153	// NB: ideally we would do a separate writeBlocks call for each
1154	// section, but this would run the risk of undoing any file offset
1155	// adjustments made during layout.
1156	n := 0
1157	for i := range dwarfp {
1158		n += len(dwarfp[i].syms)
1159	}
1160	syms := make([]loader.Sym, 0, n)
1161	for i := range dwarfp {
1162		syms = append(syms, dwarfp[i].syms...)
1163	}
1164	writeBlocks(ctxt, out, ctxt.outSem, ctxt.loader, syms, addr, size, zeros[:])
1165}
1166
1167func pdatablk(ctxt *Link, out *OutBuf, addr int64, size int64) {
1168	writeBlocks(ctxt, out, ctxt.outSem, ctxt.loader, sehp.pdata, addr, size, zeros[:])
1169}
1170
1171func xdatablk(ctxt *Link, out *OutBuf, addr int64, size int64) {
1172	writeBlocks(ctxt, out, ctxt.outSem, ctxt.loader, sehp.xdata, addr, size, zeros[:])
1173}
1174
1175var covCounterDataStartOff, covCounterDataLen uint64
1176
1177var zeros [512]byte
1178
1179var (
1180	strdata  = make(map[string]string)
1181	strnames []string
1182)
1183
1184func addstrdata1(ctxt *Link, arg string) {
1185	eq := strings.Index(arg, "=")
1186	dot := strings.LastIndex(arg[:eq+1], ".")
1187	if eq < 0 || dot < 0 {
1188		Exitf("-X flag requires argument of the form importpath.name=value")
1189	}
1190	pkg := arg[:dot]
1191	if ctxt.BuildMode == BuildModePlugin && pkg == "main" {
1192		pkg = *flagPluginPath
1193	}
1194	pkg = objabi.PathToPrefix(pkg)
1195	name := pkg + arg[dot:eq]
1196	value := arg[eq+1:]
1197	if _, ok := strdata[name]; !ok {
1198		strnames = append(strnames, name)
1199	}
1200	strdata[name] = value
1201}
1202
1203// addstrdata sets the initial value of the string variable name to value.
1204func addstrdata(arch *sys.Arch, l *loader.Loader, name, value string) {
1205	s := l.Lookup(name, 0)
1206	if s == 0 {
1207		return
1208	}
1209	if goType := l.SymGoType(s); goType == 0 {
1210		return
1211	} else if typeName := l.SymName(goType); typeName != "type:string" {
1212		Errorf(nil, "%s: cannot set with -X: not a var of type string (%s)", name, typeName)
1213		return
1214	}
1215	if !l.AttrReachable(s) {
1216		return // don't bother setting unreachable variable
1217	}
1218	bld := l.MakeSymbolUpdater(s)
1219	if bld.Type() == sym.SBSS {
1220		bld.SetType(sym.SDATA)
1221	}
1222
1223	p := fmt.Sprintf("%s.str", name)
1224	sbld := l.CreateSymForUpdate(p, 0)
1225	sbld.Addstring(value)
1226	sbld.SetType(sym.SRODATA)
1227
1228	// Don't reset the variable's size. String variable usually has size of
1229	// 2*PtrSize, but in ASAN build it can be larger due to red zone.
1230	// (See issue 56175.)
1231	bld.SetData(make([]byte, arch.PtrSize*2))
1232	bld.SetReadOnly(false)
1233	bld.ResetRelocs()
1234	bld.SetAddrPlus(arch, 0, sbld.Sym(), 0)
1235	bld.SetUint(arch, int64(arch.PtrSize), uint64(len(value)))
1236}
1237
1238func (ctxt *Link) dostrdata() {
1239	for _, name := range strnames {
1240		addstrdata(ctxt.Arch, ctxt.loader, name, strdata[name])
1241	}
1242}
1243
1244// addgostring adds str, as a Go string value, to s. symname is the name of the
1245// symbol used to define the string data and must be unique per linked object.
1246func addgostring(ctxt *Link, ldr *loader.Loader, s *loader.SymbolBuilder, symname, str string) {
1247	sdata := ldr.CreateSymForUpdate(symname, 0)
1248	if sdata.Type() != sym.Sxxx {
1249		ctxt.Errorf(s.Sym(), "duplicate symname in addgostring: %s", symname)
1250	}
1251	sdata.SetLocal(true)
1252	sdata.SetType(sym.SRODATA)
1253	sdata.SetSize(int64(len(str)))
1254	sdata.SetData([]byte(str))
1255	s.AddAddr(ctxt.Arch, sdata.Sym())
1256	s.AddUint(ctxt.Arch, uint64(len(str)))
1257}
1258
1259func addinitarrdata(ctxt *Link, ldr *loader.Loader, s loader.Sym) {
1260	p := ldr.SymName(s) + ".ptr"
1261	sp := ldr.CreateSymForUpdate(p, 0)
1262	sp.SetType(sym.SINITARR)
1263	sp.SetSize(0)
1264	sp.SetDuplicateOK(true)
1265	sp.AddAddr(ctxt.Arch, s)
1266}
1267
1268// symalign returns the required alignment for the given symbol s.
1269func symalign(ldr *loader.Loader, s loader.Sym) int32 {
1270	min := int32(thearch.Minalign)
1271	align := ldr.SymAlign(s)
1272	if align >= min {
1273		return align
1274	} else if align != 0 {
1275		return min
1276	}
1277	align = int32(thearch.Maxalign)
1278	ssz := ldr.SymSize(s)
1279	for int64(align) > ssz && align > min {
1280		align >>= 1
1281	}
1282	ldr.SetSymAlign(s, align)
1283	return align
1284}
1285
1286func aligndatsize(state *dodataState, datsize int64, s loader.Sym) int64 {
1287	return Rnd(datsize, int64(symalign(state.ctxt.loader, s)))
1288}
1289
1290const debugGCProg = false
1291
1292type GCProg struct {
1293	ctxt *Link
1294	sym  *loader.SymbolBuilder
1295	w    gcprog.Writer
1296}
1297
1298func (p *GCProg) Init(ctxt *Link, name string) {
1299	p.ctxt = ctxt
1300	p.sym = ctxt.loader.CreateSymForUpdate(name, 0)
1301	p.w.Init(p.writeByte())
1302	if debugGCProg {
1303		fmt.Fprintf(os.Stderr, "ld: start GCProg %s\n", name)
1304		p.w.Debug(os.Stderr)
1305	}
1306}
1307
1308func (p *GCProg) writeByte() func(x byte) {
1309	return func(x byte) {
1310		p.sym.AddUint8(x)
1311	}
1312}
1313
1314func (p *GCProg) End(size int64) {
1315	p.w.ZeroUntil(size / int64(p.ctxt.Arch.PtrSize))
1316	p.w.End()
1317	if debugGCProg {
1318		fmt.Fprintf(os.Stderr, "ld: end GCProg\n")
1319	}
1320}
1321
1322func (p *GCProg) AddSym(s loader.Sym) {
1323	ldr := p.ctxt.loader
1324	typ := ldr.SymGoType(s)
1325
1326	// Things without pointers should be in sym.SNOPTRDATA or sym.SNOPTRBSS;
1327	// everything we see should have pointers and should therefore have a type.
1328	if typ == 0 {
1329		switch ldr.SymName(s) {
1330		case "runtime.data", "runtime.edata", "runtime.bss", "runtime.ebss":
1331			// Ignore special symbols that are sometimes laid out
1332			// as real symbols. See comment about dyld on darwin in
1333			// the address function.
1334			return
1335		}
1336		p.ctxt.Errorf(p.sym.Sym(), "missing Go type information for global symbol %s: size %d", ldr.SymName(s), ldr.SymSize(s))
1337		return
1338	}
1339
1340	ptrsize := int64(p.ctxt.Arch.PtrSize)
1341	typData := ldr.Data(typ)
1342	nptr := decodetypePtrdata(p.ctxt.Arch, typData) / ptrsize
1343
1344	if debugGCProg {
1345		fmt.Fprintf(os.Stderr, "gcprog sym: %s at %d (ptr=%d+%d)\n", ldr.SymName(s), ldr.SymValue(s), ldr.SymValue(s)/ptrsize, nptr)
1346	}
1347
1348	sval := ldr.SymValue(s)
1349	if !decodetypeUsegcprog(p.ctxt.Arch, typData) {
1350		// Copy pointers from mask into program.
1351		mask := decodetypeGcmask(p.ctxt, typ)
1352		for i := int64(0); i < nptr; i++ {
1353			if (mask[i/8]>>uint(i%8))&1 != 0 {
1354				p.w.Ptr(sval/ptrsize + i)
1355			}
1356		}
1357		return
1358	}
1359
1360	// Copy program.
1361	prog := decodetypeGcprog(p.ctxt, typ)
1362	p.w.ZeroUntil(sval / ptrsize)
1363	p.w.Append(prog[4:], nptr)
1364}
1365
1366// cutoff is the maximum data section size permitted by the linker
1367// (see issue #9862).
1368const cutoff = 2e9 // 2 GB (or so; looks better in errors than 2^31)
1369
1370// check accumulated size of data sections
1371func (state *dodataState) checkdatsize(symn sym.SymKind) {
1372	if state.datsize > cutoff {
1373		Errorf(nil, "too much data, last section %v (%d, over %v bytes)", symn, state.datsize, cutoff)
1374	}
1375}
1376
1377func checkSectSize(sect *sym.Section) {
1378	// TODO: consider using 4 GB size limit for DWARF sections, and
1379	// make sure we generate unsigned offset in relocations and check
1380	// for overflow.
1381	if sect.Length > cutoff {
1382		Errorf(nil, "too much data in section %s (%d, over %v bytes)", sect.Name, sect.Length, cutoff)
1383	}
1384}
1385
1386// fixZeroSizedSymbols gives a few special symbols with zero size some space.
1387func fixZeroSizedSymbols(ctxt *Link) {
1388	// The values in moduledata are filled out by relocations
1389	// pointing to the addresses of these special symbols.
1390	// Typically these symbols have no size and are not laid
1391	// out with their matching section.
1392	//
1393	// However on darwin, dyld will find the special symbol
1394	// in the first loaded module, even though it is local.
1395	//
1396	// (An hypothesis, formed without looking in the dyld sources:
1397	// these special symbols have no size, so their address
1398	// matches a real symbol. The dynamic linker assumes we
1399	// want the normal symbol with the same address and finds
1400	// it in the other module.)
1401	//
1402	// To work around this we lay out the symbls whose
1403	// addresses are vital for multi-module programs to work
1404	// as normal symbols, and give them a little size.
1405	//
1406	// On AIX, as all DATA sections are merged together, ld might not put
1407	// these symbols at the beginning of their respective section if there
1408	// aren't real symbols, their alignment might not match the
1409	// first symbol alignment. Therefore, there are explicitly put at the
1410	// beginning of their section with the same alignment.
1411	if !(ctxt.DynlinkingGo() && ctxt.HeadType == objabi.Hdarwin) && !(ctxt.HeadType == objabi.Haix && ctxt.LinkMode == LinkExternal) {
1412		return
1413	}
1414
1415	ldr := ctxt.loader
1416	bss := ldr.CreateSymForUpdate("runtime.bss", 0)
1417	bss.SetSize(8)
1418	ldr.SetAttrSpecial(bss.Sym(), false)
1419
1420	ebss := ldr.CreateSymForUpdate("runtime.ebss", 0)
1421	ldr.SetAttrSpecial(ebss.Sym(), false)
1422
1423	data := ldr.CreateSymForUpdate("runtime.data", 0)
1424	data.SetSize(8)
1425	ldr.SetAttrSpecial(data.Sym(), false)
1426
1427	edata := ldr.CreateSymForUpdate("runtime.edata", 0)
1428	ldr.SetAttrSpecial(edata.Sym(), false)
1429
1430	if ctxt.HeadType == objabi.Haix {
1431		// XCOFFTOC symbols are part of .data section.
1432		edata.SetType(sym.SXCOFFTOC)
1433	}
1434
1435	noptrbss := ldr.CreateSymForUpdate("runtime.noptrbss", 0)
1436	noptrbss.SetSize(8)
1437	ldr.SetAttrSpecial(noptrbss.Sym(), false)
1438
1439	enoptrbss := ldr.CreateSymForUpdate("runtime.enoptrbss", 0)
1440	ldr.SetAttrSpecial(enoptrbss.Sym(), false)
1441
1442	noptrdata := ldr.CreateSymForUpdate("runtime.noptrdata", 0)
1443	noptrdata.SetSize(8)
1444	ldr.SetAttrSpecial(noptrdata.Sym(), false)
1445
1446	enoptrdata := ldr.CreateSymForUpdate("runtime.enoptrdata", 0)
1447	ldr.SetAttrSpecial(enoptrdata.Sym(), false)
1448
1449	types := ldr.CreateSymForUpdate("runtime.types", 0)
1450	types.SetType(sym.STYPE)
1451	types.SetSize(8)
1452	ldr.SetAttrSpecial(types.Sym(), false)
1453
1454	etypes := ldr.CreateSymForUpdate("runtime.etypes", 0)
1455	etypes.SetType(sym.SFUNCTAB)
1456	ldr.SetAttrSpecial(etypes.Sym(), false)
1457
1458	if ctxt.HeadType == objabi.Haix {
1459		rodata := ldr.CreateSymForUpdate("runtime.rodata", 0)
1460		rodata.SetType(sym.SSTRING)
1461		rodata.SetSize(8)
1462		ldr.SetAttrSpecial(rodata.Sym(), false)
1463
1464		erodata := ldr.CreateSymForUpdate("runtime.erodata", 0)
1465		ldr.SetAttrSpecial(erodata.Sym(), false)
1466	}
1467}
1468
1469// makeRelroForSharedLib creates a section of readonly data if necessary.
1470func (state *dodataState) makeRelroForSharedLib(target *Link) {
1471	if !target.UseRelro() {
1472		return
1473	}
1474
1475	// "read only" data with relocations needs to go in its own section
1476	// when building a shared library. We do this by boosting objects of
1477	// type SXXX with relocations to type SXXXRELRO.
1478	ldr := target.loader
1479	for _, symnro := range sym.ReadOnly {
1480		symnrelro := sym.RelROMap[symnro]
1481
1482		ro := []loader.Sym{}
1483		relro := state.data[symnrelro]
1484
1485		for _, s := range state.data[symnro] {
1486			relocs := ldr.Relocs(s)
1487			isRelro := relocs.Count() > 0
1488			switch state.symType(s) {
1489			case sym.STYPE, sym.STYPERELRO, sym.SGOFUNCRELRO:
1490				// Symbols are not sorted yet, so it is possible
1491				// that an Outer symbol has been changed to a
1492				// relro Type before it reaches here.
1493				isRelro = true
1494			case sym.SFUNCTAB:
1495				if ldr.SymName(s) == "runtime.etypes" {
1496					// runtime.etypes must be at the end of
1497					// the relro data.
1498					isRelro = true
1499				}
1500			case sym.SGOFUNC:
1501				// The only SGOFUNC symbols that contain relocations are .stkobj,
1502				// and their relocations are of type objabi.R_ADDROFF,
1503				// which always get resolved during linking.
1504				isRelro = false
1505			}
1506			if isRelro {
1507				state.setSymType(s, symnrelro)
1508				if outer := ldr.OuterSym(s); outer != 0 {
1509					state.setSymType(outer, symnrelro)
1510				}
1511				relro = append(relro, s)
1512			} else {
1513				ro = append(ro, s)
1514			}
1515		}
1516
1517		// Check that we haven't made two symbols with the same .Outer into
1518		// different types (because references two symbols with non-nil Outer
1519		// become references to the outer symbol + offset it's vital that the
1520		// symbol and the outer end up in the same section).
1521		for _, s := range relro {
1522			if outer := ldr.OuterSym(s); outer != 0 {
1523				st := state.symType(s)
1524				ost := state.symType(outer)
1525				if st != ost {
1526					state.ctxt.Errorf(s, "inconsistent types for symbol and its Outer %s (%v != %v)",
1527						ldr.SymName(outer), st, ost)
1528				}
1529			}
1530		}
1531
1532		state.data[symnro] = ro
1533		state.data[symnrelro] = relro
1534	}
1535}
1536
1537// dodataState holds bits of state information needed by dodata() and the
1538// various helpers it calls. The lifetime of these items should not extend
1539// past the end of dodata().
1540type dodataState struct {
1541	// Link context
1542	ctxt *Link
1543	// Data symbols bucketed by type.
1544	data [sym.SXREF][]loader.Sym
1545	// Max alignment for each flavor of data symbol.
1546	dataMaxAlign [sym.SXREF]int32
1547	// Overridden sym type
1548	symGroupType []sym.SymKind
1549	// Current data size so far.
1550	datsize int64
1551}
1552
1553// A note on symType/setSymType below:
1554//
1555// In the legacy linker, the types of symbols (notably data symbols) are
1556// changed during the symtab() phase so as to insure that similar symbols
1557// are bucketed together, then their types are changed back again during
1558// dodata. Symbol to section assignment also plays tricks along these lines
1559// in the case where a relro segment is needed.
1560//
1561// The value returned from setType() below reflects the effects of
1562// any overrides made by symtab and/or dodata.
1563
1564// symType returns the (possibly overridden) type of 's'.
1565func (state *dodataState) symType(s loader.Sym) sym.SymKind {
1566	if int(s) < len(state.symGroupType) {
1567		if override := state.symGroupType[s]; override != 0 {
1568			return override
1569		}
1570	}
1571	return state.ctxt.loader.SymType(s)
1572}
1573
1574// setSymType sets a new override type for 's'.
1575func (state *dodataState) setSymType(s loader.Sym, kind sym.SymKind) {
1576	if s == 0 {
1577		panic("bad")
1578	}
1579	if int(s) < len(state.symGroupType) {
1580		state.symGroupType[s] = kind
1581	} else {
1582		su := state.ctxt.loader.MakeSymbolUpdater(s)
1583		su.SetType(kind)
1584	}
1585}
1586
1587func (ctxt *Link) dodata(symGroupType []sym.SymKind) {
1588
1589	// Give zeros sized symbols space if necessary.
1590	fixZeroSizedSymbols(ctxt)
1591
1592	// Collect data symbols by type into data.
1593	state := dodataState{ctxt: ctxt, symGroupType: symGroupType}
1594	ldr := ctxt.loader
1595	for s := loader.Sym(1); s < loader.Sym(ldr.NSym()); s++ {
1596		if !ldr.AttrReachable(s) || ldr.AttrSpecial(s) || ldr.AttrSubSymbol(s) ||
1597			!ldr.TopLevelSym(s) {
1598			continue
1599		}
1600
1601		st := state.symType(s)
1602
1603		if st <= sym.STEXT || st >= sym.SXREF {
1604			continue
1605		}
1606		state.data[st] = append(state.data[st], s)
1607
1608		// Similarly with checking the onlist attr.
1609		if ldr.AttrOnList(s) {
1610			log.Fatalf("symbol %s listed multiple times", ldr.SymName(s))
1611		}
1612		ldr.SetAttrOnList(s, true)
1613	}
1614
1615	// Now that we have the data symbols, but before we start
1616	// to assign addresses, record all the necessary
1617	// dynamic relocations. These will grow the relocation
1618	// symbol, which is itself data.
1619	//
1620	// On darwin, we need the symbol table numbers for dynreloc.
1621	if ctxt.HeadType == objabi.Hdarwin {
1622		machosymorder(ctxt)
1623	}
1624	state.dynreloc(ctxt)
1625
1626	// Move any RO data with relocations to a separate section.
1627	state.makeRelroForSharedLib(ctxt)
1628
1629	// Set alignment for the symbol with the largest known index,
1630	// so as to trigger allocation of the loader's internal
1631	// alignment array. This will avoid data races in the parallel
1632	// section below.
1633	lastSym := loader.Sym(ldr.NSym() - 1)
1634	ldr.SetSymAlign(lastSym, ldr.SymAlign(lastSym))
1635
1636	// Sort symbols.
1637	var wg sync.WaitGroup
1638	for symn := range state.data {
1639		symn := sym.SymKind(symn)
1640		wg.Add(1)
1641		go func() {
1642			state.data[symn], state.dataMaxAlign[symn] = state.dodataSect(ctxt, symn, state.data[symn])
1643			wg.Done()
1644		}()
1645	}
1646	wg.Wait()
1647
1648	if ctxt.IsELF {
1649		// Make .rela and .rela.plt contiguous, the ELF ABI requires this
1650		// and Solaris actually cares.
1651		syms := state.data[sym.SELFROSECT]
1652		reli, plti := -1, -1
1653		for i, s := range syms {
1654			switch ldr.SymName(s) {
1655			case ".rel.plt", ".rela.plt":
1656				plti = i
1657			case ".rel", ".rela":
1658				reli = i
1659			}
1660		}
1661		if reli >= 0 && plti >= 0 && plti != reli+1 {
1662			var first, second int
1663			if plti > reli {
1664				first, second = reli, plti
1665			} else {
1666				first, second = plti, reli
1667			}
1668			rel, plt := syms[reli], syms[plti]
1669			copy(syms[first+2:], syms[first+1:second])
1670			syms[first+0] = rel
1671			syms[first+1] = plt
1672
1673			// Make sure alignment doesn't introduce a gap.
1674			// Setting the alignment explicitly prevents
1675			// symalign from basing it on the size and
1676			// getting it wrong.
1677			ldr.SetSymAlign(rel, int32(ctxt.Arch.RegSize))
1678			ldr.SetSymAlign(plt, int32(ctxt.Arch.RegSize))
1679		}
1680		state.data[sym.SELFROSECT] = syms
1681	}
1682
1683	if ctxt.HeadType == objabi.Haix && ctxt.LinkMode == LinkExternal {
1684		// These symbols must have the same alignment as their section.
1685		// Otherwise, ld might change the layout of Go sections.
1686		ldr.SetSymAlign(ldr.Lookup("runtime.data", 0), state.dataMaxAlign[sym.SDATA])
1687		ldr.SetSymAlign(ldr.Lookup("runtime.bss", 0), state.dataMaxAlign[sym.SBSS])
1688	}
1689
1690	// Create *sym.Section objects and assign symbols to sections for
1691	// data/rodata (and related) symbols.
1692	state.allocateDataSections(ctxt)
1693
1694	state.allocateSEHSections(ctxt)
1695
1696	// Create *sym.Section objects and assign symbols to sections for
1697	// DWARF symbols.
1698	state.allocateDwarfSections(ctxt)
1699
1700	/* number the sections */
1701	n := int16(1)
1702
1703	for _, sect := range Segtext.Sections {
1704		sect.Extnum = n
1705		n++
1706	}
1707	for _, sect := range Segrodata.Sections {
1708		sect.Extnum = n
1709		n++
1710	}
1711	for _, sect := range Segrelrodata.Sections {
1712		sect.Extnum = n
1713		n++
1714	}
1715	for _, sect := range Segdata.Sections {
1716		sect.Extnum = n
1717		n++
1718	}
1719	for _, sect := range Segdwarf.Sections {
1720		sect.Extnum = n
1721		n++
1722	}
1723	for _, sect := range Segpdata.Sections {
1724		sect.Extnum = n
1725		n++
1726	}
1727	for _, sect := range Segxdata.Sections {
1728		sect.Extnum = n
1729		n++
1730	}
1731}
1732
1733// allocateDataSectionForSym creates a new sym.Section into which a
1734// single symbol will be placed. Here "seg" is the segment into which
1735// the section will go, "s" is the symbol to be placed into the new
1736// section, and "rwx" contains permissions for the section.
1737func (state *dodataState) allocateDataSectionForSym(seg *sym.Segment, s loader.Sym, rwx int) *sym.Section {
1738	ldr := state.ctxt.loader
1739	sname := ldr.SymName(s)
1740	if strings.HasPrefix(sname, "go:") {
1741		sname = ".go." + sname[len("go:"):]
1742	}
1743	sect := addsection(ldr, state.ctxt.Arch, seg, sname, rwx)
1744	sect.Align = symalign(ldr, s)
1745	state.datsize = Rnd(state.datsize, int64(sect.Align))
1746	sect.Vaddr = uint64(state.datsize)
1747	return sect
1748}
1749
1750// allocateNamedDataSection creates a new sym.Section for a category
1751// of data symbols. Here "seg" is the segment into which the section
1752// will go, "sName" is the name to give to the section, "types" is a
1753// range of symbol types to be put into the section, and "rwx"
1754// contains permissions for the section.
1755func (state *dodataState) allocateNamedDataSection(seg *sym.Segment, sName string, types []sym.SymKind, rwx int) *sym.Section {
1756	sect := addsection(state.ctxt.loader, state.ctxt.Arch, seg, sName, rwx)
1757	if len(types) == 0 {
1758		sect.Align = 1
1759	} else if len(types) == 1 {
1760		sect.Align = state.dataMaxAlign[types[0]]
1761	} else {
1762		for _, symn := range types {
1763			align := state.dataMaxAlign[symn]
1764			if sect.Align < align {
1765				sect.Align = align
1766			}
1767		}
1768	}
1769	state.datsize = Rnd(state.datsize, int64(sect.Align))
1770	sect.Vaddr = uint64(state.datsize)
1771	return sect
1772}
1773
1774// assignDsymsToSection assigns a collection of data symbols to a
1775// newly created section. "sect" is the section into which to place
1776// the symbols, "syms" holds the list of symbols to assign,
1777// "forceType" (if non-zero) contains a new sym type to apply to each
1778// sym during the assignment, and "aligner" is a hook to call to
1779// handle alignment during the assignment process.
1780func (state *dodataState) assignDsymsToSection(sect *sym.Section, syms []loader.Sym, forceType sym.SymKind, aligner func(state *dodataState, datsize int64, s loader.Sym) int64) {
1781	ldr := state.ctxt.loader
1782	for _, s := range syms {
1783		state.datsize = aligner(state, state.datsize, s)
1784		ldr.SetSymSect(s, sect)
1785		if forceType != sym.Sxxx {
1786			state.setSymType(s, forceType)
1787		}
1788		ldr.SetSymValue(s, int64(uint64(state.datsize)-sect.Vaddr))
1789		state.datsize += ldr.SymSize(s)
1790	}
1791	sect.Length = uint64(state.datsize) - sect.Vaddr
1792}
1793
1794func (state *dodataState) assignToSection(sect *sym.Section, symn sym.SymKind, forceType sym.SymKind) {
1795	state.assignDsymsToSection(sect, state.data[symn], forceType, aligndatsize)
1796	state.checkdatsize(symn)
1797}
1798
1799// allocateSingleSymSections walks through the bucketed data symbols
1800// with type 'symn', creates a new section for each sym, and assigns
1801// the sym to a newly created section. Section name is set from the
1802// symbol name. "Seg" is the segment into which to place the new
1803// section, "forceType" is the new sym.SymKind to assign to the symbol
1804// within the section, and "rwx" holds section permissions.
1805func (state *dodataState) allocateSingleSymSections(seg *sym.Segment, symn sym.SymKind, forceType sym.SymKind, rwx int) {
1806	ldr := state.ctxt.loader
1807	for _, s := range state.data[symn] {
1808		sect := state.allocateDataSectionForSym(seg, s, rwx)
1809		ldr.SetSymSect(s, sect)
1810		state.setSymType(s, forceType)
1811		ldr.SetSymValue(s, int64(uint64(state.datsize)-sect.Vaddr))
1812		state.datsize += ldr.SymSize(s)
1813		sect.Length = uint64(state.datsize) - sect.Vaddr
1814	}
1815	state.checkdatsize(symn)
1816}
1817
1818// allocateNamedSectionAndAssignSyms creates a new section with the
1819// specified name, then walks through the bucketed data symbols with
1820// type 'symn' and assigns each of them to this new section. "Seg" is
1821// the segment into which to place the new section, "secName" is the
1822// name to give to the new section, "forceType" (if non-zero) contains
1823// a new sym type to apply to each sym during the assignment, and
1824// "rwx" holds section permissions.
1825func (state *dodataState) allocateNamedSectionAndAssignSyms(seg *sym.Segment, secName string, symn sym.SymKind, forceType sym.SymKind, rwx int) *sym.Section {
1826
1827	sect := state.allocateNamedDataSection(seg, secName, []sym.SymKind{symn}, rwx)
1828	state.assignDsymsToSection(sect, state.data[symn], forceType, aligndatsize)
1829	return sect
1830}
1831
1832// allocateDataSections allocates sym.Section objects for data/rodata
1833// (and related) symbols, and then assigns symbols to those sections.
1834func (state *dodataState) allocateDataSections(ctxt *Link) {
1835	// Allocate sections.
1836	// Data is processed before segtext, because we need
1837	// to see all symbols in the .data and .bss sections in order
1838	// to generate garbage collection information.
1839
1840	// Writable data sections that do not need any specialized handling.
1841	writable := []sym.SymKind{
1842		sym.SBUILDINFO,
1843		sym.SELFSECT,
1844		sym.SMACHO,
1845		sym.SMACHOGOT,
1846		sym.SWINDOWS,
1847	}
1848	for _, symn := range writable {
1849		state.allocateSingleSymSections(&Segdata, symn, sym.SDATA, 06)
1850	}
1851	ldr := ctxt.loader
1852
1853	// writable .got (note that for PIE binaries .got goes in relro)
1854	if len(state.data[sym.SELFGOT]) > 0 {
1855		state.allocateNamedSectionAndAssignSyms(&Segdata, ".got", sym.SELFGOT, sym.SDATA, 06)
1856	}
1857
1858	/* pointer-free data */
1859	sect := state.allocateNamedSectionAndAssignSyms(&Segdata, ".noptrdata", sym.SNOPTRDATA, sym.SDATA, 06)
1860	ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.noptrdata", 0), sect)
1861	ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.enoptrdata", 0), sect)
1862
1863	hasinitarr := ctxt.linkShared
1864
1865	/* shared library initializer */
1866	switch ctxt.BuildMode {
1867	case BuildModeCArchive, BuildModeCShared, BuildModeShared, BuildModePlugin:
1868		hasinitarr = true
1869	}
1870
1871	if ctxt.HeadType == objabi.Haix {
1872		if len(state.data[sym.SINITARR]) > 0 {
1873			Errorf(nil, "XCOFF format doesn't allow .init_array section")
1874		}
1875	}
1876
1877	if hasinitarr && len(state.data[sym.SINITARR]) > 0 {
1878		state.allocateNamedSectionAndAssignSyms(&Segdata, ".init_array", sym.SINITARR, sym.Sxxx, 06)
1879	}
1880
1881	/* data */
1882	sect = state.allocateNamedSectionAndAssignSyms(&Segdata, ".data", sym.SDATA, sym.SDATA, 06)
1883	ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.data", 0), sect)
1884	ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.edata", 0), sect)
1885	dataGcEnd := state.datsize - int64(sect.Vaddr)
1886
1887	// On AIX, TOC entries must be the last of .data
1888	// These aren't part of gc as they won't change during the runtime.
1889	state.assignToSection(sect, sym.SXCOFFTOC, sym.SDATA)
1890	state.checkdatsize(sym.SDATA)
1891	sect.Length = uint64(state.datsize) - sect.Vaddr
1892
1893	/* bss */
1894	sect = state.allocateNamedSectionAndAssignSyms(&Segdata, ".bss", sym.SBSS, sym.Sxxx, 06)
1895	ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.bss", 0), sect)
1896	ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.ebss", 0), sect)
1897	bssGcEnd := state.datsize - int64(sect.Vaddr)
1898
1899	// Emit gcdata for bss symbols now that symbol values have been assigned.
1900	gcsToEmit := []struct {
1901		symName string
1902		symKind sym.SymKind
1903		gcEnd   int64
1904	}{
1905		{"runtime.gcdata", sym.SDATA, dataGcEnd},
1906		{"runtime.gcbss", sym.SBSS, bssGcEnd},
1907	}
1908	for _, g := range gcsToEmit {
1909		var gc GCProg
1910		gc.Init(ctxt, g.symName)
1911		for _, s := range state.data[g.symKind] {
1912			gc.AddSym(s)
1913		}
1914		gc.End(g.gcEnd)
1915	}
1916
1917	/* pointer-free bss */
1918	sect = state.allocateNamedSectionAndAssignSyms(&Segdata, ".noptrbss", sym.SNOPTRBSS, sym.Sxxx, 06)
1919	ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.noptrbss", 0), sect)
1920	ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.enoptrbss", 0), sect)
1921
1922	// Code coverage counters are assigned to the .noptrbss section.
1923	// We assign them in a separate pass so that they stay aggregated
1924	// together in a single blob (coverage runtime depends on this).
1925	covCounterDataStartOff = sect.Length
1926	state.assignToSection(sect, sym.SCOVERAGE_COUNTER, sym.SNOPTRBSS)
1927	covCounterDataLen = sect.Length - covCounterDataStartOff
1928	ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.covctrs", 0), sect)
1929	ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.ecovctrs", 0), sect)
1930
1931	// Coverage instrumentation counters for libfuzzer.
1932	if len(state.data[sym.SLIBFUZZER_8BIT_COUNTER]) > 0 {
1933		sect := state.allocateNamedSectionAndAssignSyms(&Segdata, ".go.fuzzcntrs", sym.SLIBFUZZER_8BIT_COUNTER, sym.Sxxx, 06)
1934		ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.__start___sancov_cntrs", 0), sect)
1935		ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.__stop___sancov_cntrs", 0), sect)
1936		ldr.SetSymSect(ldr.LookupOrCreateSym("internal/fuzz._counters", 0), sect)
1937		ldr.SetSymSect(ldr.LookupOrCreateSym("internal/fuzz._ecounters", 0), sect)
1938	}
1939
1940	// Assign runtime.end to the last section of data segment.
1941	ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.end", 0), Segdata.Sections[len(Segdata.Sections)-1])
1942
1943	if len(state.data[sym.STLSBSS]) > 0 {
1944		var sect *sym.Section
1945		// FIXME: not clear why it is sometimes necessary to suppress .tbss section creation.
1946		if (ctxt.IsELF || ctxt.HeadType == objabi.Haix) && (ctxt.LinkMode == LinkExternal || !*FlagD) {
1947			sect = addsection(ldr, ctxt.Arch, &Segdata, ".tbss", 06)
1948			sect.Align = int32(ctxt.Arch.PtrSize)
1949			// FIXME: why does this need to be set to zero?
1950			sect.Vaddr = 0
1951		}
1952		state.datsize = 0
1953
1954		for _, s := range state.data[sym.STLSBSS] {
1955			state.datsize = aligndatsize(state, state.datsize, s)
1956			if sect != nil {
1957				ldr.SetSymSect(s, sect)
1958			}
1959			ldr.SetSymValue(s, state.datsize)
1960			state.datsize += ldr.SymSize(s)
1961		}
1962		state.checkdatsize(sym.STLSBSS)
1963
1964		if sect != nil {
1965			sect.Length = uint64(state.datsize)
1966		}
1967	}
1968
1969	/*
1970	 * We finished data, begin read-only data.
1971	 * Not all systems support a separate read-only non-executable data section.
1972	 * ELF and Windows PE systems do.
1973	 * OS X and Plan 9 do not.
1974	 * And if we're using external linking mode, the point is moot,
1975	 * since it's not our decision; that code expects the sections in
1976	 * segtext.
1977	 */
1978	var segro *sym.Segment
1979	if ctxt.IsELF && ctxt.LinkMode == LinkInternal {
1980		segro = &Segrodata
1981	} else if ctxt.HeadType == objabi.Hwindows {
1982		segro = &Segrodata
1983	} else {
1984		segro = &Segtext
1985	}
1986
1987	state.datsize = 0
1988
1989	/* read-only executable ELF, Mach-O sections */
1990	if len(state.data[sym.STEXT]) != 0 {
1991		culprit := ldr.SymName(state.data[sym.STEXT][0])
1992		Errorf(nil, "dodata found an sym.STEXT symbol: %s", culprit)
1993	}
1994	state.allocateSingleSymSections(&Segtext, sym.SELFRXSECT, sym.SRODATA, 05)
1995	state.allocateSingleSymSections(&Segtext, sym.SMACHOPLT, sym.SRODATA, 05)
1996
1997	/* read-only data */
1998	sect = state.allocateNamedDataSection(segro, ".rodata", sym.ReadOnly, 04)
1999	ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.rodata", 0), sect)
2000	ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.erodata", 0), sect)
2001	if !ctxt.UseRelro() {
2002		ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.types", 0), sect)
2003		ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.etypes", 0), sect)
2004	}
2005	for _, symn := range sym.ReadOnly {
2006		symnStartValue := state.datsize
2007		if len(state.data[symn]) != 0 {
2008			symnStartValue = aligndatsize(state, symnStartValue, state.data[symn][0])
2009		}
2010		state.assignToSection(sect, symn, sym.SRODATA)
2011		setCarrierSize(symn, state.datsize-symnStartValue)
2012		if ctxt.HeadType == objabi.Haix {
2013			// Read-only symbols might be wrapped inside their outer
2014			// symbol.
2015			// XCOFF symbol table needs to know the size of
2016			// these outer symbols.
2017			xcoffUpdateOuterSize(ctxt, state.datsize-symnStartValue, symn)
2018		}
2019	}
2020
2021	/* read-only ELF, Mach-O sections */
2022	state.allocateSingleSymSections(segro, sym.SELFROSECT, sym.SRODATA, 04)
2023
2024	// There is some data that are conceptually read-only but are written to by
2025	// relocations. On GNU systems, we can arrange for the dynamic linker to
2026	// mprotect sections after relocations are applied by giving them write
2027	// permissions in the object file and calling them ".data.rel.ro.FOO". We
2028	// divide the .rodata section between actual .rodata and .data.rel.ro.rodata,
2029	// but for the other sections that this applies to, we just write a read-only
2030	// .FOO section or a read-write .data.rel.ro.FOO section depending on the
2031	// situation.
2032	// TODO(mwhudson): It would make sense to do this more widely, but it makes
2033	// the system linker segfault on darwin.
2034	const relroPerm = 06
2035	const fallbackPerm = 04
2036	relroSecPerm := fallbackPerm
2037	genrelrosecname := func(suffix string) string {
2038		if suffix == "" {
2039			return ".rodata"
2040		}
2041		return suffix
2042	}
2043	seg := segro
2044
2045	if ctxt.UseRelro() {
2046		segrelro := &Segrelrodata
2047		if ctxt.LinkMode == LinkExternal && !ctxt.IsAIX() && !ctxt.IsDarwin() {
2048			// Using a separate segment with an external
2049			// linker results in some programs moving
2050			// their data sections unexpectedly, which
2051			// corrupts the moduledata. So we use the
2052			// rodata segment and let the external linker
2053			// sort out a rel.ro segment.
2054			segrelro = segro
2055		} else {
2056			// Reset datsize for new segment.
2057			state.datsize = 0
2058		}
2059
2060		if !ctxt.IsDarwin() { // We don't need the special names on darwin.
2061			genrelrosecname = func(suffix string) string {
2062				return ".data.rel.ro" + suffix
2063			}
2064		}
2065
2066		relroReadOnly := []sym.SymKind{}
2067		for _, symnro := range sym.ReadOnly {
2068			symn := sym.RelROMap[symnro]
2069			relroReadOnly = append(relroReadOnly, symn)
2070		}
2071		seg = segrelro
2072		relroSecPerm = relroPerm
2073
2074		/* data only written by relocations */
2075		sect = state.allocateNamedDataSection(segrelro, genrelrosecname(""), relroReadOnly, relroSecPerm)
2076
2077		ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.types", 0), sect)
2078		ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.etypes", 0), sect)
2079
2080		for i, symnro := range sym.ReadOnly {
2081			if i == 0 && symnro == sym.STYPE && ctxt.HeadType != objabi.Haix {
2082				// Skip forward so that no type
2083				// reference uses a zero offset.
2084				// This is unlikely but possible in small
2085				// programs with no other read-only data.
2086				state.datsize++
2087			}
2088
2089			symn := sym.RelROMap[symnro]
2090			symnStartValue := state.datsize
2091			if len(state.data[symn]) != 0 {
2092				symnStartValue = aligndatsize(state, symnStartValue, state.data[symn][0])
2093			}
2094
2095			for _, s := range state.data[symn] {
2096				outer := ldr.OuterSym(s)
2097				if s != 0 && ldr.SymSect(outer) != nil && ldr.SymSect(outer) != sect {
2098					ctxt.Errorf(s, "s.Outer (%s) in different section from s, %s != %s", ldr.SymName(outer), ldr.SymSect(outer).Name, sect.Name)
2099				}
2100			}
2101			state.assignToSection(sect, symn, sym.SRODATA)
2102			setCarrierSize(symn, state.datsize-symnStartValue)
2103			if ctxt.HeadType == objabi.Haix {
2104				// Read-only symbols might be wrapped inside their outer
2105				// symbol.
2106				// XCOFF symbol table needs to know the size of
2107				// these outer symbols.
2108				xcoffUpdateOuterSize(ctxt, state.datsize-symnStartValue, symn)
2109			}
2110		}
2111		sect.Length = uint64(state.datsize) - sect.Vaddr
2112
2113		state.allocateSingleSymSections(segrelro, sym.SELFRELROSECT, sym.SRODATA, relroSecPerm)
2114	}
2115
2116	/* typelink */
2117	sect = state.allocateNamedDataSection(seg, genrelrosecname(".typelink"), []sym.SymKind{sym.STYPELINK}, relroSecPerm)
2118
2119	typelink := ldr.CreateSymForUpdate("runtime.typelink", 0)
2120	ldr.SetSymSect(typelink.Sym(), sect)
2121	typelink.SetType(sym.SRODATA)
2122	state.datsize += typelink.Size()
2123	state.checkdatsize(sym.STYPELINK)
2124	sect.Length = uint64(state.datsize) - sect.Vaddr
2125
2126	/* itablink */
2127	sect = state.allocateNamedDataSection(seg, genrelrosecname(".itablink"), []sym.SymKind{sym.SITABLINK}, relroSecPerm)
2128
2129	itablink := ldr.CreateSymForUpdate("runtime.itablink", 0)
2130	ldr.SetSymSect(itablink.Sym(), sect)
2131	itablink.SetType(sym.SRODATA)
2132	state.datsize += itablink.Size()
2133	state.checkdatsize(sym.SITABLINK)
2134	sect.Length = uint64(state.datsize) - sect.Vaddr
2135
2136	/* gosymtab */
2137	sect = state.allocateNamedSectionAndAssignSyms(seg, genrelrosecname(".gosymtab"), sym.SSYMTAB, sym.SRODATA, relroSecPerm)
2138	ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.symtab", 0), sect)
2139	ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.esymtab", 0), sect)
2140
2141	/* gopclntab */
2142	sect = state.allocateNamedSectionAndAssignSyms(seg, genrelrosecname(".gopclntab"), sym.SPCLNTAB, sym.SRODATA, relroSecPerm)
2143	ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.pclntab", 0), sect)
2144	ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.pcheader", 0), sect)
2145	ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.funcnametab", 0), sect)
2146	ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.cutab", 0), sect)
2147	ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.filetab", 0), sect)
2148	ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.pctab", 0), sect)
2149	ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.functab", 0), sect)
2150	ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.epclntab", 0), sect)
2151	setCarrierSize(sym.SPCLNTAB, int64(sect.Length))
2152	if ctxt.HeadType == objabi.Haix {
2153		xcoffUpdateOuterSize(ctxt, int64(sect.Length), sym.SPCLNTAB)
2154	}
2155
2156	// 6g uses 4-byte relocation offsets, so the entire segment must fit in 32 bits.
2157	if state.datsize != int64(uint32(state.datsize)) {
2158		Errorf(nil, "read-only data segment too large: %d", state.datsize)
2159	}
2160
2161	siz := 0
2162	for symn := sym.SELFRXSECT; symn < sym.SXREF; symn++ {
2163		siz += len(state.data[symn])
2164	}
2165	ctxt.datap = make([]loader.Sym, 0, siz)
2166	for symn := sym.SELFRXSECT; symn < sym.SXREF; symn++ {
2167		ctxt.datap = append(ctxt.datap, state.data[symn]...)
2168	}
2169}
2170
2171// allocateDwarfSections allocates sym.Section objects for DWARF
2172// symbols, and assigns symbols to sections.
2173func (state *dodataState) allocateDwarfSections(ctxt *Link) {
2174
2175	alignOne := func(state *dodataState, datsize int64, s loader.Sym) int64 { return datsize }
2176
2177	ldr := ctxt.loader
2178	for i := 0; i < len(dwarfp); i++ {
2179		// First the section symbol.
2180		s := dwarfp[i].secSym()
2181		sect := state.allocateNamedDataSection(&Segdwarf, ldr.SymName(s), []sym.SymKind{}, 04)
2182		ldr.SetSymSect(s, sect)
2183		sect.Sym = sym.LoaderSym(s)
2184		curType := ldr.SymType(s)
2185		state.setSymType(s, sym.SRODATA)
2186		ldr.SetSymValue(s, int64(uint64(state.datsize)-sect.Vaddr))
2187		state.datsize += ldr.SymSize(s)
2188
2189		// Then any sub-symbols for the section symbol.
2190		subSyms := dwarfp[i].subSyms()
2191		state.assignDsymsToSection(sect, subSyms, sym.SRODATA, alignOne)
2192
2193		for j := 0; j < len(subSyms); j++ {
2194			s := subSyms[j]
2195			if ctxt.HeadType == objabi.Haix && curType == sym.SDWARFLOC {
2196				// Update the size of .debug_loc for this symbol's
2197				// package.
2198				addDwsectCUSize(".debug_loc", ldr.SymPkg(s), uint64(ldr.SymSize(s)))
2199			}
2200		}
2201		sect.Length = uint64(state.datsize) - sect.Vaddr
2202		checkSectSize(sect)
2203	}
2204}
2205
2206// allocateSEHSections allocate a sym.Section object for SEH
2207// symbols, and assigns symbols to sections.
2208func (state *dodataState) allocateSEHSections(ctxt *Link) {
2209	if len(sehp.pdata) > 0 {
2210		sect := state.allocateNamedDataSection(&Segpdata, ".pdata", []sym.SymKind{}, 04)
2211		state.assignDsymsToSection(sect, sehp.pdata, sym.SRODATA, aligndatsize)
2212		state.checkdatsize(sym.SSEHSECT)
2213	}
2214	if len(sehp.xdata) > 0 {
2215		sect := state.allocateNamedDataSection(&Segxdata, ".xdata", []sym.SymKind{}, 04)
2216		state.assignDsymsToSection(sect, sehp.xdata, sym.SRODATA, aligndatsize)
2217		state.checkdatsize(sym.SSEHSECT)
2218	}
2219}
2220
2221type symNameSize struct {
2222	name string
2223	sz   int64
2224	val  int64
2225	sym  loader.Sym
2226}
2227
2228func (state *dodataState) dodataSect(ctxt *Link, symn sym.SymKind, syms []loader.Sym) (result []loader.Sym, maxAlign int32) {
2229	var head, tail, zerobase loader.Sym
2230	ldr := ctxt.loader
2231	sl := make([]symNameSize, len(syms))
2232
2233	// For ppc64, we want to interleave the .got and .toc sections
2234	// from input files. Both are type sym.SELFGOT, so in that case
2235	// we skip size comparison and do the name comparison instead
2236	// (conveniently, .got sorts before .toc).
2237	checkSize := symn != sym.SELFGOT
2238
2239	for k, s := range syms {
2240		ss := ldr.SymSize(s)
2241		sl[k] = symNameSize{sz: ss, sym: s}
2242		if !checkSize {
2243			sl[k].name = ldr.SymName(s)
2244		}
2245		ds := int64(len(ldr.Data(s)))
2246		switch {
2247		case ss < ds:
2248			ctxt.Errorf(s, "initialize bounds (%d < %d)", ss, ds)
2249		case ss < 0:
2250			ctxt.Errorf(s, "negative size (%d bytes)", ss)
2251		case ss > cutoff:
2252			ctxt.Errorf(s, "symbol too large (%d bytes)", ss)
2253		}
2254
2255		// If the usually-special section-marker symbols are being laid
2256		// out as regular symbols, put them either at the beginning or
2257		// end of their section.
2258		if (ctxt.DynlinkingGo() && ctxt.HeadType == objabi.Hdarwin) || (ctxt.HeadType == objabi.Haix && ctxt.LinkMode == LinkExternal) {
2259			switch ldr.SymName(s) {
2260			case "runtime.text", "runtime.bss", "runtime.data", "runtime.types", "runtime.rodata",
2261				"runtime.noptrdata", "runtime.noptrbss":
2262				head = s
2263				continue
2264			case "runtime.etext", "runtime.ebss", "runtime.edata", "runtime.etypes", "runtime.erodata",
2265				"runtime.enoptrdata", "runtime.enoptrbss":
2266				tail = s
2267				continue
2268			}
2269		}
2270	}
2271	zerobase = ldr.Lookup("runtime.zerobase", 0)
2272
2273	// Perform the sort.
2274	if symn != sym.SPCLNTAB {
2275		sort.Slice(sl, func(i, j int) bool {
2276			si, sj := sl[i].sym, sl[j].sym
2277			isz, jsz := sl[i].sz, sl[j].sz
2278			switch {
2279			case si == head, sj == tail:
2280				return true
2281			case sj == head, si == tail:
2282				return false
2283			// put zerobase right after all the zero-sized symbols,
2284			// so zero-sized symbols have the same address as zerobase.
2285			case si == zerobase:
2286				return jsz != 0 // zerobase < nonzero-sized
2287			case sj == zerobase:
2288				return isz == 0 // 0-sized < zerobase
2289			}
2290			if checkSize {
2291				if isz != jsz {
2292					return isz < jsz
2293				}
2294			} else {
2295				iname := sl[i].name
2296				jname := sl[j].name
2297				if iname != jname {
2298					return iname < jname
2299				}
2300			}
2301			return si < sj
2302		})
2303	} else {
2304		// PCLNTAB was built internally, and already has the proper order.
2305	}
2306
2307	// Set alignment, construct result
2308	syms = syms[:0]
2309	for k := range sl {
2310		s := sl[k].sym
2311		if s != head && s != tail {
2312			align := symalign(ldr, s)
2313			if maxAlign < align {
2314				maxAlign = align
2315			}
2316		}
2317		syms = append(syms, s)
2318	}
2319
2320	return syms, maxAlign
2321}
2322
2323// Add buildid to beginning of text segment, on non-ELF systems.
2324// Non-ELF binary formats are not always flexible enough to
2325// give us a place to put the Go build ID. On those systems, we put it
2326// at the very beginning of the text segment.
2327// This “header” is read by cmd/go.
2328func (ctxt *Link) textbuildid() {
2329	if ctxt.IsELF || *flagBuildid == "" {
2330		return
2331	}
2332
2333	ldr := ctxt.loader
2334	s := ldr.CreateSymForUpdate("go:buildid", 0)
2335	// The \xff is invalid UTF-8, meant to make it less likely
2336	// to find one of these accidentally.
2337	data := "\xff Go build ID: " + strconv.Quote(*flagBuildid) + "\n \xff"
2338	s.SetType(sym.STEXT)
2339	s.SetData([]byte(data))
2340	s.SetSize(int64(len(data)))
2341
2342	ctxt.Textp = append(ctxt.Textp, 0)
2343	copy(ctxt.Textp[1:], ctxt.Textp)
2344	ctxt.Textp[0] = s.Sym()
2345}
2346
2347func (ctxt *Link) buildinfo() {
2348	// Write the buildinfo symbol, which go version looks for.
2349	// The code reading this data is in package debug/buildinfo.
2350	ldr := ctxt.loader
2351	s := ldr.CreateSymForUpdate("go:buildinfo", 0)
2352	s.SetType(sym.SBUILDINFO)
2353	s.SetAlign(16)
2354	// The \xff is invalid UTF-8, meant to make it less likely
2355	// to find one of these accidentally.
2356	const prefix = "\xff Go buildinf:" // 14 bytes, plus 2 data bytes filled in below
2357	data := make([]byte, 32)
2358	copy(data, prefix)
2359	data[len(prefix)] = byte(ctxt.Arch.PtrSize)
2360	data[len(prefix)+1] = 0
2361	if ctxt.Arch.ByteOrder == binary.BigEndian {
2362		data[len(prefix)+1] = 1
2363	}
2364	data[len(prefix)+1] |= 2 // signals new pointer-free format
2365	data = appendString(data, strdata["runtime.buildVersion"])
2366	data = appendString(data, strdata["runtime.modinfo"])
2367	// MacOS linker gets very upset if the size os not a multiple of alignment.
2368	for len(data)%16 != 0 {
2369		data = append(data, 0)
2370	}
2371	s.SetData(data)
2372	s.SetSize(int64(len(data)))
2373
2374	// Add reference to go:buildinfo from the rodata section,
2375	// so that external linking with -Wl,--gc-sections does not
2376	// delete the build info.
2377	sr := ldr.CreateSymForUpdate("go:buildinfo.ref", 0)
2378	sr.SetType(sym.SRODATA)
2379	sr.SetAlign(int32(ctxt.Arch.PtrSize))
2380	sr.AddAddr(ctxt.Arch, s.Sym())
2381}
2382
2383// appendString appends s to data, prefixed by its varint-encoded length.
2384func appendString(data []byte, s string) []byte {
2385	var v [binary.MaxVarintLen64]byte
2386	n := binary.PutUvarint(v[:], uint64(len(s)))
2387	data = append(data, v[:n]...)
2388	data = append(data, s...)
2389	return data
2390}
2391
2392// assign addresses to text
2393func (ctxt *Link) textaddress() {
2394	addsection(ctxt.loader, ctxt.Arch, &Segtext, ".text", 05)
2395
2396	// Assign PCs in text segment.
2397	// Could parallelize, by assigning to text
2398	// and then letting threads copy down, but probably not worth it.
2399	sect := Segtext.Sections[0]
2400
2401	sect.Align = int32(Funcalign)
2402
2403	ldr := ctxt.loader
2404
2405	if *flagRandLayout != 0 {
2406		r := rand.New(rand.NewSource(*flagRandLayout))
2407		textp := ctxt.Textp
2408		i := 0
2409		// don't move the buildid symbol
2410		if len(textp) > 0 && ldr.SymName(textp[0]) == "go:buildid" {
2411			i++
2412		}
2413		// Skip over C symbols, as functions in a (C object) section must stay together.
2414		// TODO: maybe we can move a section as a whole.
2415		// Note: we load C symbols before Go symbols, so we can scan from the start.
2416		for i < len(textp) && (ldr.SubSym(textp[i]) != 0 || ldr.AttrSubSymbol(textp[i])) {
2417			i++
2418		}
2419		textp = textp[i:]
2420		r.Shuffle(len(textp), func(i, j int) {
2421			textp[i], textp[j] = textp[j], textp[i]
2422		})
2423	}
2424
2425	text := ctxt.xdefine("runtime.text", sym.STEXT, 0)
2426	etext := ctxt.xdefine("runtime.etext", sym.STEXT, 0)
2427	ldr.SetSymSect(text, sect)
2428	if ctxt.IsAIX() && ctxt.IsExternal() {
2429		// Setting runtime.text has a real symbol prevents ld to
2430		// change its base address resulting in wrong offsets for
2431		// reflect methods.
2432		u := ldr.MakeSymbolUpdater(text)
2433		u.SetAlign(sect.Align)
2434		u.SetSize(8)
2435	}
2436
2437	if (ctxt.DynlinkingGo() && ctxt.IsDarwin()) || (ctxt.IsAIX() && ctxt.IsExternal()) {
2438		ldr.SetSymSect(etext, sect)
2439		ctxt.Textp = append(ctxt.Textp, etext, 0)
2440		copy(ctxt.Textp[1:], ctxt.Textp)
2441		ctxt.Textp[0] = text
2442	}
2443
2444	start := uint64(Rnd(*FlagTextAddr, int64(Funcalign)))
2445	va := start
2446	n := 1
2447	sect.Vaddr = va
2448
2449	limit := thearch.TrampLimit
2450	if limit == 0 {
2451		limit = 1 << 63 // unlimited
2452	}
2453	if *FlagDebugTextSize != 0 {
2454		limit = uint64(*FlagDebugTextSize)
2455	}
2456	if *FlagDebugTramp > 1 {
2457		limit = 1 // debug mode, force generating trampolines for everything
2458	}
2459
2460	if ctxt.IsAIX() && ctxt.IsExternal() {
2461		// On AIX, normally we won't generate direct calls to external symbols,
2462		// except in one test, cmd/go/testdata/script/link_syso_issue33139.txt.
2463		// That test doesn't make much sense, and I'm not sure it ever works.
2464		// Just generate trampoline for now (which will turn a direct call to
2465		// an indirect call, which at least builds).
2466		limit = 1
2467	}
2468
2469	// First pass: assign addresses assuming the program is small and will
2470	// not require trampoline generation.
2471	big := false
2472	for _, s := range ctxt.Textp {
2473		sect, n, va = assignAddress(ctxt, sect, n, s, va, false, big)
2474		if va-start >= limit {
2475			big = true
2476			break
2477		}
2478	}
2479
2480	// Second pass: only if it is too big, insert trampolines for too-far
2481	// jumps and targets with unknown addresses.
2482	if big {
2483		// reset addresses
2484		for _, s := range ctxt.Textp {
2485			if s != text {
2486				resetAddress(ctxt, s)
2487			}
2488		}
2489		va = start
2490
2491		ntramps := 0
2492		var curPkg string
2493		for i, s := range ctxt.Textp {
2494			// When we find the first symbol in a package, perform a
2495			// single iteration that assigns temporary addresses to all
2496			// of the text in the same package, using the maximum possible
2497			// number of trampolines. This allows for better decisions to
2498			// be made regarding reachability and the need for trampolines.
2499			if symPkg := ldr.SymPkg(s); symPkg != "" && curPkg != symPkg {
2500				curPkg = symPkg
2501				vaTmp := va
2502				for j := i; j < len(ctxt.Textp); j++ {
2503					curSym := ctxt.Textp[j]
2504					if symPkg := ldr.SymPkg(curSym); symPkg == "" || curPkg != symPkg {
2505						break
2506					}
2507					// We do not pass big to assignAddress here, as this
2508					// can result in side effects such as section splitting.
2509					sect, n, vaTmp = assignAddress(ctxt, sect, n, curSym, vaTmp, false, false)
2510					vaTmp += maxSizeTrampolines(ctxt, ldr, curSym, false)
2511				}
2512			}
2513
2514			// Reset address for current symbol.
2515			if s != text {
2516				resetAddress(ctxt, s)
2517			}
2518
2519			// Assign actual address for current symbol.
2520			sect, n, va = assignAddress(ctxt, sect, n, s, va, false, big)
2521
2522			// Resolve jumps, adding trampolines if they are needed.
2523			trampoline(ctxt, s)
2524
2525			// lay down trampolines after each function
2526			for ; ntramps < len(ctxt.tramps); ntramps++ {
2527				tramp := ctxt.tramps[ntramps]
2528				if ctxt.IsAIX() && strings.HasPrefix(ldr.SymName(tramp), "runtime.text.") {
2529					// Already set in assignAddress
2530					continue
2531				}
2532				sect, n, va = assignAddress(ctxt, sect, n, tramp, va, true, big)
2533			}
2534		}
2535
2536		// merge tramps into Textp, keeping Textp in address order
2537		if ntramps != 0 {
2538			newtextp := make([]loader.Sym, 0, len(ctxt.Textp)+ntramps)
2539			i := 0
2540			for _, s := range ctxt.Textp {
2541				for ; i < ntramps && ldr.SymValue(ctxt.tramps[i]) < ldr.SymValue(s); i++ {
2542					newtextp = append(newtextp, ctxt.tramps[i])
2543				}
2544				newtextp = append(newtextp, s)
2545			}
2546			newtextp = append(newtextp, ctxt.tramps[i:ntramps]...)
2547
2548			ctxt.Textp = newtextp
2549		}
2550	}
2551
2552	// Add MinLC size after etext, so it won't collide with the next symbol
2553	// (which may confuse some symbolizer).
2554	sect.Length = va - sect.Vaddr + uint64(ctxt.Arch.MinLC)
2555	ldr.SetSymSect(etext, sect)
2556	if ldr.SymValue(etext) == 0 {
2557		// Set the address of the start/end symbols, if not already
2558		// (i.e. not darwin+dynlink or AIX+external, see above).
2559		ldr.SetSymValue(etext, int64(va))
2560		ldr.SetSymValue(text, int64(Segtext.Sections[0].Vaddr))
2561	}
2562}
2563
2564// assigns address for a text symbol, returns (possibly new) section, its number, and the address.
2565func assignAddress(ctxt *Link, sect *sym.Section, n int, s loader.Sym, va uint64, isTramp, big bool) (*sym.Section, int, uint64) {
2566	ldr := ctxt.loader
2567	if thearch.AssignAddress != nil {
2568		return thearch.AssignAddress(ldr, sect, n, s, va, isTramp)
2569	}
2570
2571	ldr.SetSymSect(s, sect)
2572	if ldr.AttrSubSymbol(s) {
2573		return sect, n, va
2574	}
2575
2576	align := ldr.SymAlign(s)
2577	if align == 0 {
2578		align = int32(Funcalign)
2579	}
2580	va = uint64(Rnd(int64(va), int64(align)))
2581	if sect.Align < align {
2582		sect.Align = align
2583	}
2584
2585	funcsize := uint64(abi.MINFUNC) // spacing required for findfunctab
2586	if ldr.SymSize(s) > abi.MINFUNC {
2587		funcsize = uint64(ldr.SymSize(s))
2588	}
2589
2590	// If we need to split text sections, and this function doesn't fit in the current
2591	// section, then create a new one.
2592	//
2593	// Only break at outermost syms.
2594	if big && splitTextSections(ctxt) && ldr.OuterSym(s) == 0 {
2595		// For debugging purposes, allow text size limit to be cranked down,
2596		// so as to stress test the code that handles multiple text sections.
2597		var textSizelimit uint64 = thearch.TrampLimit
2598		if *FlagDebugTextSize != 0 {
2599			textSizelimit = uint64(*FlagDebugTextSize)
2600		}
2601
2602		// Sanity check: make sure the limit is larger than any
2603		// individual text symbol.
2604		if funcsize > textSizelimit {
2605			panic(fmt.Sprintf("error: text size limit %d less than text symbol %s size of %d", textSizelimit, ldr.SymName(s), funcsize))
2606		}
2607
2608		if va-sect.Vaddr+funcsize+maxSizeTrampolines(ctxt, ldr, s, isTramp) > textSizelimit {
2609			sectAlign := int32(thearch.Funcalign)
2610			if ctxt.IsPPC64() {
2611				// Align the next text section to the worst case function alignment likely
2612				// to be encountered when processing function symbols. The start address
2613				// is rounded against the final alignment of the text section later on in
2614				// (*Link).address. This may happen due to usage of PCALIGN directives
2615				// larger than Funcalign, or usage of ISA 3.1 prefixed instructions
2616				// (see ISA 3.1 Book I 1.9).
2617				const ppc64maxFuncalign = 64
2618				sectAlign = ppc64maxFuncalign
2619				va = uint64(Rnd(int64(va), ppc64maxFuncalign))
2620			}
2621
2622			// Set the length for the previous text section
2623			sect.Length = va - sect.Vaddr
2624
2625			// Create new section, set the starting Vaddr
2626			sect = addsection(ctxt.loader, ctxt.Arch, &Segtext, ".text", 05)
2627
2628			sect.Vaddr = va
2629			sect.Align = sectAlign
2630			ldr.SetSymSect(s, sect)
2631
2632			// Create a symbol for the start of the secondary text sections
2633			ntext := ldr.CreateSymForUpdate(fmt.Sprintf("runtime.text.%d", n), 0)
2634			ntext.SetSect(sect)
2635			if ctxt.IsAIX() {
2636				// runtime.text.X must be a real symbol on AIX.
2637				// Assign its address directly in order to be the
2638				// first symbol of this new section.
2639				ntext.SetType(sym.STEXT)
2640				ntext.SetSize(int64(abi.MINFUNC))
2641				ntext.SetOnList(true)
2642				ntext.SetAlign(sectAlign)
2643				ctxt.tramps = append(ctxt.tramps, ntext.Sym())
2644
2645				ntext.SetValue(int64(va))
2646				va += uint64(ntext.Size())
2647
2648				if align := ldr.SymAlign(s); align != 0 {
2649					va = uint64(Rnd(int64(va), int64(align)))
2650				} else {
2651					va = uint64(Rnd(int64(va), int64(Funcalign)))
2652				}
2653			}
2654			n++
2655		}
2656	}
2657
2658	ldr.SetSymValue(s, 0)
2659	for sub := s; sub != 0; sub = ldr.SubSym(sub) {
2660		ldr.SetSymValue(sub, ldr.SymValue(sub)+int64(va))
2661		if ctxt.Debugvlog > 2 {
2662			fmt.Println("assign text address:", ldr.SymName(sub), ldr.SymValue(sub))
2663		}
2664	}
2665
2666	va += funcsize
2667
2668	return sect, n, va
2669}
2670
2671func resetAddress(ctxt *Link, s loader.Sym) {
2672	ldr := ctxt.loader
2673	if ldr.OuterSym(s) != 0 {
2674		return
2675	}
2676	oldv := ldr.SymValue(s)
2677	for sub := s; sub != 0; sub = ldr.SubSym(sub) {
2678		ldr.SetSymValue(sub, ldr.SymValue(sub)-oldv)
2679	}
2680}
2681
2682// Return whether we may need to split text sections.
2683//
2684// On PPC64x, when external linking, a text section should not be
2685// larger than 2^25 bytes due to the size of call target offset field
2686// in the 'bl' instruction. Splitting into smaller text sections
2687// smaller than this limit allows the system linker to modify the long
2688// calls appropriately. The limit allows for the space needed for
2689// tables inserted by the linker.
2690//
2691// The same applies to Darwin/ARM64, with 2^27 byte threshold.
2692//
2693// Similarly for ARM, we split sections (at 2^25 bytes) to avoid
2694// inconsistencies between the Go linker's reachability calculations
2695// (e.g. will direct call from X to Y need a trampoline) and similar
2696// machinery in the external linker; see #58425 for more on the
2697// history here.
2698func splitTextSections(ctxt *Link) bool {
2699	return (ctxt.IsARM() || ctxt.IsPPC64() || (ctxt.IsARM64() && ctxt.IsDarwin())) && ctxt.IsExternal()
2700}
2701
2702// On Wasm, we reserve 4096 bytes for zero page, then 8192 bytes for wasm_exec.js
2703// to store command line args and environment variables.
2704// Data sections starts from at least address 12288.
2705// Keep in sync with wasm_exec.js.
2706const wasmMinDataAddr = 4096 + 8192
2707
2708// address assigns virtual addresses to all segments and sections and
2709// returns all segments in file order.
2710func (ctxt *Link) address() []*sym.Segment {
2711	var order []*sym.Segment // Layout order
2712
2713	va := uint64(*FlagTextAddr)
2714	order = append(order, &Segtext)
2715	Segtext.Rwx = 05
2716	Segtext.Vaddr = va
2717	for i, s := range Segtext.Sections {
2718		va = uint64(Rnd(int64(va), int64(s.Align)))
2719		s.Vaddr = va
2720		va += s.Length
2721
2722		if ctxt.IsWasm() && i == 0 && va < wasmMinDataAddr {
2723			va = wasmMinDataAddr
2724		}
2725	}
2726
2727	Segtext.Length = va - uint64(*FlagTextAddr)
2728
2729	if len(Segrodata.Sections) > 0 {
2730		// align to page boundary so as not to mix
2731		// rodata and executable text.
2732		//
2733		// Note: gold or GNU ld will reduce the size of the executable
2734		// file by arranging for the relro segment to end at a page
2735		// boundary, and overlap the end of the text segment with the
2736		// start of the relro segment in the file.  The PT_LOAD segments
2737		// will be such that the last page of the text segment will be
2738		// mapped twice, once r-x and once starting out rw- and, after
2739		// relocation processing, changed to r--.
2740		//
2741		// Ideally the last page of the text segment would not be
2742		// writable even for this short period.
2743		va = uint64(Rnd(int64(va), *FlagRound))
2744
2745		order = append(order, &Segrodata)
2746		Segrodata.Rwx = 04
2747		Segrodata.Vaddr = va
2748		for _, s := range Segrodata.Sections {
2749			va = uint64(Rnd(int64(va), int64(s.Align)))
2750			s.Vaddr = va
2751			va += s.Length
2752		}
2753
2754		Segrodata.Length = va - Segrodata.Vaddr
2755	}
2756	if len(Segrelrodata.Sections) > 0 {
2757		// align to page boundary so as not to mix
2758		// rodata, rel-ro data, and executable text.
2759		va = uint64(Rnd(int64(va), *FlagRound))
2760		if ctxt.HeadType == objabi.Haix {
2761			// Relro data are inside data segment on AIX.
2762			va += uint64(XCOFFDATABASE) - uint64(XCOFFTEXTBASE)
2763		}
2764
2765		order = append(order, &Segrelrodata)
2766		Segrelrodata.Rwx = 06
2767		Segrelrodata.Vaddr = va
2768		for _, s := range Segrelrodata.Sections {
2769			va = uint64(Rnd(int64(va), int64(s.Align)))
2770			s.Vaddr = va
2771			va += s.Length
2772		}
2773
2774		Segrelrodata.Length = va - Segrelrodata.Vaddr
2775	}
2776
2777	va = uint64(Rnd(int64(va), *FlagRound))
2778	if ctxt.HeadType == objabi.Haix && len(Segrelrodata.Sections) == 0 {
2779		// Data sections are moved to an unreachable segment
2780		// to ensure that they are position-independent.
2781		// Already done if relro sections exist.
2782		va += uint64(XCOFFDATABASE) - uint64(XCOFFTEXTBASE)
2783	}
2784	order = append(order, &Segdata)
2785	Segdata.Rwx = 06
2786	Segdata.Vaddr = va
2787	var data *sym.Section
2788	var noptr *sym.Section
2789	var bss *sym.Section
2790	var noptrbss *sym.Section
2791	var fuzzCounters *sym.Section
2792	for i, s := range Segdata.Sections {
2793		if (ctxt.IsELF || ctxt.HeadType == objabi.Haix) && s.Name == ".tbss" {
2794			continue
2795		}
2796		vlen := int64(s.Length)
2797		if i+1 < len(Segdata.Sections) && !((ctxt.IsELF || ctxt.HeadType == objabi.Haix) && Segdata.Sections[i+1].Name == ".tbss") {
2798			vlen = int64(Segdata.Sections[i+1].Vaddr - s.Vaddr)
2799		}
2800		s.Vaddr = va
2801		va += uint64(vlen)
2802		Segdata.Length = va - Segdata.Vaddr
2803		switch s.Name {
2804		case ".data":
2805			data = s
2806		case ".noptrdata":
2807			noptr = s
2808		case ".bss":
2809			bss = s
2810		case ".noptrbss":
2811			noptrbss = s
2812		case ".go.fuzzcntrs":
2813			fuzzCounters = s
2814		}
2815	}
2816
2817	// Assign Segdata's Filelen omitting the BSS. We do this here
2818	// simply because right now we know where the BSS starts.
2819	Segdata.Filelen = bss.Vaddr - Segdata.Vaddr
2820
2821	if len(Segpdata.Sections) > 0 {
2822		va = uint64(Rnd(int64(va), *FlagRound))
2823		order = append(order, &Segpdata)
2824		Segpdata.Rwx = 04
2825		Segpdata.Vaddr = va
2826		// Segpdata.Sections is intended to contain just one section.
2827		// Loop through the slice anyway for consistency.
2828		for _, s := range Segpdata.Sections {
2829			va = uint64(Rnd(int64(va), int64(s.Align)))
2830			s.Vaddr = va
2831			va += s.Length
2832		}
2833		Segpdata.Length = va - Segpdata.Vaddr
2834	}
2835
2836	if len(Segxdata.Sections) > 0 {
2837		va = uint64(Rnd(int64(va), *FlagRound))
2838		order = append(order, &Segxdata)
2839		Segxdata.Rwx = 04
2840		Segxdata.Vaddr = va
2841		// Segxdata.Sections is intended to contain just one section.
2842		// Loop through the slice anyway for consistency.
2843		for _, s := range Segxdata.Sections {
2844			va = uint64(Rnd(int64(va), int64(s.Align)))
2845			s.Vaddr = va
2846			va += s.Length
2847		}
2848		Segxdata.Length = va - Segxdata.Vaddr
2849	}
2850
2851	va = uint64(Rnd(int64(va), *FlagRound))
2852	order = append(order, &Segdwarf)
2853	Segdwarf.Rwx = 06
2854	Segdwarf.Vaddr = va
2855	for i, s := range Segdwarf.Sections {
2856		vlen := int64(s.Length)
2857		if i+1 < len(Segdwarf.Sections) {
2858			vlen = int64(Segdwarf.Sections[i+1].Vaddr - s.Vaddr)
2859		}
2860		s.Vaddr = va
2861		va += uint64(vlen)
2862		if ctxt.HeadType == objabi.Hwindows {
2863			va = uint64(Rnd(int64(va), PEFILEALIGN))
2864		}
2865		Segdwarf.Length = va - Segdwarf.Vaddr
2866	}
2867
2868	ldr := ctxt.loader
2869	var (
2870		rodata  = ldr.SymSect(ldr.LookupOrCreateSym("runtime.rodata", 0))
2871		symtab  = ldr.SymSect(ldr.LookupOrCreateSym("runtime.symtab", 0))
2872		pclntab = ldr.SymSect(ldr.LookupOrCreateSym("runtime.pclntab", 0))
2873		types   = ldr.SymSect(ldr.LookupOrCreateSym("runtime.types", 0))
2874	)
2875
2876	for _, s := range ctxt.datap {
2877		if sect := ldr.SymSect(s); sect != nil {
2878			ldr.AddToSymValue(s, int64(sect.Vaddr))
2879		}
2880		v := ldr.SymValue(s)
2881		for sub := ldr.SubSym(s); sub != 0; sub = ldr.SubSym(sub) {
2882			ldr.AddToSymValue(sub, v)
2883		}
2884	}
2885
2886	for _, si := range dwarfp {
2887		for _, s := range si.syms {
2888			if sect := ldr.SymSect(s); sect != nil {
2889				ldr.AddToSymValue(s, int64(sect.Vaddr))
2890			}
2891			sub := ldr.SubSym(s)
2892			if sub != 0 {
2893				panic(fmt.Sprintf("unexpected sub-sym for %s %s", ldr.SymName(s), ldr.SymType(s).String()))
2894			}
2895			v := ldr.SymValue(s)
2896			for ; sub != 0; sub = ldr.SubSym(sub) {
2897				ldr.AddToSymValue(s, v)
2898			}
2899		}
2900	}
2901
2902	for _, s := range sehp.pdata {
2903		if sect := ldr.SymSect(s); sect != nil {
2904			ldr.AddToSymValue(s, int64(sect.Vaddr))
2905		}
2906	}
2907	for _, s := range sehp.xdata {
2908		if sect := ldr.SymSect(s); sect != nil {
2909			ldr.AddToSymValue(s, int64(sect.Vaddr))
2910		}
2911	}
2912
2913	if ctxt.BuildMode == BuildModeShared {
2914		s := ldr.LookupOrCreateSym("go:link.abihashbytes", 0)
2915		sect := ldr.SymSect(ldr.LookupOrCreateSym(".note.go.abihash", 0))
2916		ldr.SetSymSect(s, sect)
2917		ldr.SetSymValue(s, int64(sect.Vaddr+16))
2918	}
2919
2920	// If there are multiple text sections, create runtime.text.n for
2921	// their section Vaddr, using n for index
2922	n := 1
2923	for _, sect := range Segtext.Sections[1:] {
2924		if sect.Name != ".text" {
2925			break
2926		}
2927		symname := fmt.Sprintf("runtime.text.%d", n)
2928		if ctxt.HeadType != objabi.Haix || ctxt.LinkMode != LinkExternal {
2929			// Addresses are already set on AIX with external linker
2930			// because these symbols are part of their sections.
2931			ctxt.xdefine(symname, sym.STEXT, int64(sect.Vaddr))
2932		}
2933		n++
2934	}
2935
2936	ctxt.xdefine("runtime.rodata", sym.SRODATA, int64(rodata.Vaddr))
2937	ctxt.xdefine("runtime.erodata", sym.SRODATA, int64(rodata.Vaddr+rodata.Length))
2938	ctxt.xdefine("runtime.types", sym.SRODATA, int64(types.Vaddr))
2939	ctxt.xdefine("runtime.etypes", sym.SRODATA, int64(types.Vaddr+types.Length))
2940
2941	s := ldr.Lookup("runtime.gcdata", 0)
2942	ldr.SetAttrLocal(s, true)
2943	ctxt.xdefine("runtime.egcdata", sym.SRODATA, ldr.SymAddr(s)+ldr.SymSize(s))
2944	ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.egcdata", 0), ldr.SymSect(s))
2945
2946	s = ldr.LookupOrCreateSym("runtime.gcbss", 0)
2947	ldr.SetAttrLocal(s, true)
2948	ctxt.xdefine("runtime.egcbss", sym.SRODATA, ldr.SymAddr(s)+ldr.SymSize(s))
2949	ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.egcbss", 0), ldr.SymSect(s))
2950
2951	ctxt.xdefine("runtime.symtab", sym.SRODATA, int64(symtab.Vaddr))
2952	ctxt.xdefine("runtime.esymtab", sym.SRODATA, int64(symtab.Vaddr+symtab.Length))
2953	ctxt.xdefine("runtime.pclntab", sym.SRODATA, int64(pclntab.Vaddr))
2954	ctxt.defineInternal("runtime.pcheader", sym.SRODATA)
2955	ctxt.defineInternal("runtime.funcnametab", sym.SRODATA)
2956	ctxt.defineInternal("runtime.cutab", sym.SRODATA)
2957	ctxt.defineInternal("runtime.filetab", sym.SRODATA)
2958	ctxt.defineInternal("runtime.pctab", sym.SRODATA)
2959	ctxt.defineInternal("runtime.functab", sym.SRODATA)
2960	ctxt.xdefine("runtime.epclntab", sym.SRODATA, int64(pclntab.Vaddr+pclntab.Length))
2961	ctxt.xdefine("runtime.noptrdata", sym.SNOPTRDATA, int64(noptr.Vaddr))
2962	ctxt.xdefine("runtime.enoptrdata", sym.SNOPTRDATA, int64(noptr.Vaddr+noptr.Length))
2963	ctxt.xdefine("runtime.bss", sym.SBSS, int64(bss.Vaddr))
2964	ctxt.xdefine("runtime.ebss", sym.SBSS, int64(bss.Vaddr+bss.Length))
2965	ctxt.xdefine("runtime.data", sym.SDATA, int64(data.Vaddr))
2966	ctxt.xdefine("runtime.edata", sym.SDATA, int64(data.Vaddr+data.Length))
2967	ctxt.xdefine("runtime.noptrbss", sym.SNOPTRBSS, int64(noptrbss.Vaddr))
2968	ctxt.xdefine("runtime.enoptrbss", sym.SNOPTRBSS, int64(noptrbss.Vaddr+noptrbss.Length))
2969	ctxt.xdefine("runtime.covctrs", sym.SCOVERAGE_COUNTER, int64(noptrbss.Vaddr+covCounterDataStartOff))
2970	ctxt.xdefine("runtime.ecovctrs", sym.SCOVERAGE_COUNTER, int64(noptrbss.Vaddr+covCounterDataStartOff+covCounterDataLen))
2971	ctxt.xdefine("runtime.end", sym.SBSS, int64(Segdata.Vaddr+Segdata.Length))
2972
2973	if fuzzCounters != nil {
2974		ctxt.xdefine("runtime.__start___sancov_cntrs", sym.SLIBFUZZER_8BIT_COUNTER, int64(fuzzCounters.Vaddr))
2975		ctxt.xdefine("runtime.__stop___sancov_cntrs", sym.SLIBFUZZER_8BIT_COUNTER, int64(fuzzCounters.Vaddr+fuzzCounters.Length))
2976		ctxt.xdefine("internal/fuzz._counters", sym.SLIBFUZZER_8BIT_COUNTER, int64(fuzzCounters.Vaddr))
2977		ctxt.xdefine("internal/fuzz._ecounters", sym.SLIBFUZZER_8BIT_COUNTER, int64(fuzzCounters.Vaddr+fuzzCounters.Length))
2978	}
2979
2980	if ctxt.IsSolaris() {
2981		// On Solaris, in the runtime it sets the external names of the
2982		// end symbols. Unset them and define separate symbols, so we
2983		// keep both.
2984		etext := ldr.Lookup("runtime.etext", 0)
2985		edata := ldr.Lookup("runtime.edata", 0)
2986		end := ldr.Lookup("runtime.end", 0)
2987		ldr.SetSymExtname(etext, "runtime.etext")
2988		ldr.SetSymExtname(edata, "runtime.edata")
2989		ldr.SetSymExtname(end, "runtime.end")
2990		ctxt.xdefine("_etext", ldr.SymType(etext), ldr.SymValue(etext))
2991		ctxt.xdefine("_edata", ldr.SymType(edata), ldr.SymValue(edata))
2992		ctxt.xdefine("_end", ldr.SymType(end), ldr.SymValue(end))
2993		ldr.SetSymSect(ldr.Lookup("_etext", 0), ldr.SymSect(etext))
2994		ldr.SetSymSect(ldr.Lookup("_edata", 0), ldr.SymSect(edata))
2995		ldr.SetSymSect(ldr.Lookup("_end", 0), ldr.SymSect(end))
2996	}
2997
2998	if ctxt.IsPPC64() && ctxt.IsElf() {
2999		// Resolve .TOC. symbols for all objects. Only one TOC region is supported. If a
3000		// GOT section is present, compute it as suggested by the ELFv2 ABI. Otherwise,
3001		// choose a similar offset from the start of the data segment.
3002		tocAddr := int64(Segdata.Vaddr) + 0x8000
3003		if gotAddr := ldr.SymValue(ctxt.GOT); gotAddr != 0 {
3004			tocAddr = gotAddr + 0x8000
3005		}
3006		for i := range ctxt.DotTOC {
3007			if i >= sym.SymVerABICount && i < sym.SymVerStatic { // these versions are not used currently
3008				continue
3009			}
3010			if toc := ldr.Lookup(".TOC.", i); toc != 0 {
3011				ldr.SetSymValue(toc, tocAddr)
3012			}
3013		}
3014	}
3015
3016	return order
3017}
3018
3019// layout assigns file offsets and lengths to the segments in order.
3020// Returns the file size containing all the segments.
3021func (ctxt *Link) layout(order []*sym.Segment) uint64 {
3022	var prev *sym.Segment
3023	for _, seg := range order {
3024		if prev == nil {
3025			seg.Fileoff = uint64(HEADR)
3026		} else {
3027			switch ctxt.HeadType {
3028			default:
3029				// Assuming the previous segment was
3030				// aligned, the following rounding
3031				// should ensure that this segment's
3032				// VA ≡ Fileoff mod FlagRound.
3033				seg.Fileoff = uint64(Rnd(int64(prev.Fileoff+prev.Filelen), *FlagRound))
3034				if seg.Vaddr%uint64(*FlagRound) != seg.Fileoff%uint64(*FlagRound) {
3035					Exitf("bad segment rounding (Vaddr=%#x Fileoff=%#x FlagRound=%#x)", seg.Vaddr, seg.Fileoff, *FlagRound)
3036				}
3037			case objabi.Hwindows:
3038				seg.Fileoff = prev.Fileoff + uint64(Rnd(int64(prev.Filelen), PEFILEALIGN))
3039			case objabi.Hplan9:
3040				seg.Fileoff = prev.Fileoff + prev.Filelen
3041			}
3042		}
3043		if seg != &Segdata {
3044			// Link.address already set Segdata.Filelen to
3045			// account for BSS.
3046			seg.Filelen = seg.Length
3047		}
3048		prev = seg
3049	}
3050	return prev.Fileoff + prev.Filelen
3051}
3052
3053// add a trampoline with symbol s (to be laid down after the current function)
3054func (ctxt *Link) AddTramp(s *loader.SymbolBuilder) {
3055	s.SetType(sym.STEXT)
3056	s.SetReachable(true)
3057	s.SetOnList(true)
3058	ctxt.tramps = append(ctxt.tramps, s.Sym())
3059	if *FlagDebugTramp > 0 && ctxt.Debugvlog > 0 {
3060		ctxt.Logf("trampoline %s inserted\n", s.Name())
3061	}
3062}
3063
3064// compressSyms compresses syms and returns the contents of the
3065// compressed section. If the section would get larger, it returns nil.
3066func compressSyms(ctxt *Link, syms []loader.Sym) []byte {
3067	ldr := ctxt.loader
3068	var total int64
3069	for _, sym := range syms {
3070		total += ldr.SymSize(sym)
3071	}
3072
3073	var buf bytes.Buffer
3074	if ctxt.IsELF {
3075		switch ctxt.Arch.PtrSize {
3076		case 8:
3077			binary.Write(&buf, ctxt.Arch.ByteOrder, elf.Chdr64{
3078				Type:      uint32(elf.COMPRESS_ZLIB),
3079				Size:      uint64(total),
3080				Addralign: uint64(ctxt.Arch.Alignment),
3081			})
3082		case 4:
3083			binary.Write(&buf, ctxt.Arch.ByteOrder, elf.Chdr32{
3084				Type:      uint32(elf.COMPRESS_ZLIB),
3085				Size:      uint32(total),
3086				Addralign: uint32(ctxt.Arch.Alignment),
3087			})
3088		default:
3089			log.Fatalf("can't compress header size:%d", ctxt.Arch.PtrSize)
3090		}
3091	} else {
3092		buf.Write([]byte("ZLIB"))
3093		var sizeBytes [8]byte
3094		binary.BigEndian.PutUint64(sizeBytes[:], uint64(total))
3095		buf.Write(sizeBytes[:])
3096	}
3097
3098	var relocbuf []byte // temporary buffer for applying relocations
3099
3100	// Using zlib.BestSpeed achieves very nearly the same
3101	// compression levels of zlib.DefaultCompression, but takes
3102	// substantially less time. This is important because DWARF
3103	// compression can be a significant fraction of link time.
3104	z, err := zlib.NewWriterLevel(&buf, zlib.BestSpeed)
3105	if err != nil {
3106		log.Fatalf("NewWriterLevel failed: %s", err)
3107	}
3108	st := ctxt.makeRelocSymState()
3109	for _, s := range syms {
3110		// Symbol data may be read-only. Apply relocations in a
3111		// temporary buffer, and immediately write it out.
3112		P := ldr.Data(s)
3113		relocs := ldr.Relocs(s)
3114		if relocs.Count() != 0 {
3115			relocbuf = append(relocbuf[:0], P...)
3116			P = relocbuf
3117			st.relocsym(s, P)
3118		}
3119		if _, err := z.Write(P); err != nil {
3120			log.Fatalf("compression failed: %s", err)
3121		}
3122		for i := ldr.SymSize(s) - int64(len(P)); i > 0; {
3123			b := zeros[:]
3124			if i < int64(len(b)) {
3125				b = b[:i]
3126			}
3127			n, err := z.Write(b)
3128			if err != nil {
3129				log.Fatalf("compression failed: %s", err)
3130			}
3131			i -= int64(n)
3132		}
3133	}
3134	if err := z.Close(); err != nil {
3135		log.Fatalf("compression failed: %s", err)
3136	}
3137	if int64(buf.Len()) >= total {
3138		// Compression didn't save any space.
3139		return nil
3140	}
3141	return buf.Bytes()
3142}
3143