1// Copyright 2009 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// Package flate implements the DEFLATE compressed data format, described in
6// RFC 1951.  The gzip and zlib packages implement access to DEFLATE-based file
7// formats.
8package flate
9
10import (
11	"bufio"
12	"io"
13	"math/bits"
14	"strconv"
15	"sync"
16)
17
18const (
19	maxCodeLen = 16 // max length of Huffman code
20	// The next three numbers come from the RFC section 3.2.7, with the
21	// additional proviso in section 3.2.5 which implies that distance codes
22	// 30 and 31 should never occur in compressed data.
23	maxNumLit  = 286
24	maxNumDist = 30
25	numCodes   = 19 // number of codes in Huffman meta-code
26)
27
28// Initialize the fixedHuffmanDecoder only once upon first use.
29var fixedOnce sync.Once
30var fixedHuffmanDecoder huffmanDecoder
31
32// A CorruptInputError reports the presence of corrupt input at a given offset.
33type CorruptInputError int64
34
35func (e CorruptInputError) Error() string {
36	return "flate: corrupt input before offset " + strconv.FormatInt(int64(e), 10)
37}
38
39// An InternalError reports an error in the flate code itself.
40type InternalError string
41
42func (e InternalError) Error() string { return "flate: internal error: " + string(e) }
43
44// A ReadError reports an error encountered while reading input.
45//
46// Deprecated: No longer returned.
47type ReadError struct {
48	Offset int64 // byte offset where error occurred
49	Err    error // error returned by underlying Read
50}
51
52func (e *ReadError) Error() string {
53	return "flate: read error at offset " + strconv.FormatInt(e.Offset, 10) + ": " + e.Err.Error()
54}
55
56// A WriteError reports an error encountered while writing output.
57//
58// Deprecated: No longer returned.
59type WriteError struct {
60	Offset int64 // byte offset where error occurred
61	Err    error // error returned by underlying Write
62}
63
64func (e *WriteError) Error() string {
65	return "flate: write error at offset " + strconv.FormatInt(e.Offset, 10) + ": " + e.Err.Error()
66}
67
68// Resetter resets a ReadCloser returned by [NewReader] or [NewReaderDict]
69// to switch to a new underlying [Reader]. This permits reusing a ReadCloser
70// instead of allocating a new one.
71type Resetter interface {
72	// Reset discards any buffered data and resets the Resetter as if it was
73	// newly initialized with the given reader.
74	Reset(r io.Reader, dict []byte) error
75}
76
77// The data structure for decoding Huffman tables is based on that of
78// zlib. There is a lookup table of a fixed bit width (huffmanChunkBits),
79// For codes smaller than the table width, there are multiple entries
80// (each combination of trailing bits has the same value). For codes
81// larger than the table width, the table contains a link to an overflow
82// table. The width of each entry in the link table is the maximum code
83// size minus the chunk width.
84//
85// Note that you can do a lookup in the table even without all bits
86// filled. Since the extra bits are zero, and the DEFLATE Huffman codes
87// have the property that shorter codes come before longer ones, the
88// bit length estimate in the result is a lower bound on the actual
89// number of bits.
90//
91// See the following:
92//	https://github.com/madler/zlib/raw/master/doc/algorithm.txt
93
94// chunk & 15 is number of bits
95// chunk >> 4 is value, including table link
96
97const (
98	huffmanChunkBits  = 9
99	huffmanNumChunks  = 1 << huffmanChunkBits
100	huffmanCountMask  = 15
101	huffmanValueShift = 4
102)
103
104type huffmanDecoder struct {
105	min      int                      // the minimum code length
106	chunks   [huffmanNumChunks]uint32 // chunks as described above
107	links    [][]uint32               // overflow links
108	linkMask uint32                   // mask the width of the link table
109}
110
111// Initialize Huffman decoding tables from array of code lengths.
112// Following this function, h is guaranteed to be initialized into a complete
113// tree (i.e., neither over-subscribed nor under-subscribed). The exception is a
114// degenerate case where the tree has only a single symbol with length 1. Empty
115// trees are permitted.
116func (h *huffmanDecoder) init(lengths []int) bool {
117	// Sanity enables additional runtime tests during Huffman
118	// table construction. It's intended to be used during
119	// development to supplement the currently ad-hoc unit tests.
120	const sanity = false
121
122	if h.min != 0 {
123		*h = huffmanDecoder{}
124	}
125
126	// Count number of codes of each length,
127	// compute min and max length.
128	var count [maxCodeLen]int
129	var min, max int
130	for _, n := range lengths {
131		if n == 0 {
132			continue
133		}
134		if min == 0 || n < min {
135			min = n
136		}
137		if n > max {
138			max = n
139		}
140		count[n]++
141	}
142
143	// Empty tree. The decompressor.huffSym function will fail later if the tree
144	// is used. Technically, an empty tree is only valid for the HDIST tree and
145	// not the HCLEN and HLIT tree. However, a stream with an empty HCLEN tree
146	// is guaranteed to fail since it will attempt to use the tree to decode the
147	// codes for the HLIT and HDIST trees. Similarly, an empty HLIT tree is
148	// guaranteed to fail later since the compressed data section must be
149	// composed of at least one symbol (the end-of-block marker).
150	if max == 0 {
151		return true
152	}
153
154	code := 0
155	var nextcode [maxCodeLen]int
156	for i := min; i <= max; i++ {
157		code <<= 1
158		nextcode[i] = code
159		code += count[i]
160	}
161
162	// Check that the coding is complete (i.e., that we've
163	// assigned all 2-to-the-max possible bit sequences).
164	// Exception: To be compatible with zlib, we also need to
165	// accept degenerate single-code codings. See also
166	// TestDegenerateHuffmanCoding.
167	if code != 1<<uint(max) && !(code == 1 && max == 1) {
168		return false
169	}
170
171	h.min = min
172	if max > huffmanChunkBits {
173		numLinks := 1 << (uint(max) - huffmanChunkBits)
174		h.linkMask = uint32(numLinks - 1)
175
176		// create link tables
177		link := nextcode[huffmanChunkBits+1] >> 1
178		h.links = make([][]uint32, huffmanNumChunks-link)
179		for j := uint(link); j < huffmanNumChunks; j++ {
180			reverse := int(bits.Reverse16(uint16(j)))
181			reverse >>= uint(16 - huffmanChunkBits)
182			off := j - uint(link)
183			if sanity && h.chunks[reverse] != 0 {
184				panic("impossible: overwriting existing chunk")
185			}
186			h.chunks[reverse] = uint32(off<<huffmanValueShift | (huffmanChunkBits + 1))
187			h.links[off] = make([]uint32, numLinks)
188		}
189	}
190
191	for i, n := range lengths {
192		if n == 0 {
193			continue
194		}
195		code := nextcode[n]
196		nextcode[n]++
197		chunk := uint32(i<<huffmanValueShift | n)
198		reverse := int(bits.Reverse16(uint16(code)))
199		reverse >>= uint(16 - n)
200		if n <= huffmanChunkBits {
201			for off := reverse; off < len(h.chunks); off += 1 << uint(n) {
202				// We should never need to overwrite
203				// an existing chunk. Also, 0 is
204				// never a valid chunk, because the
205				// lower 4 "count" bits should be
206				// between 1 and 15.
207				if sanity && h.chunks[off] != 0 {
208					panic("impossible: overwriting existing chunk")
209				}
210				h.chunks[off] = chunk
211			}
212		} else {
213			j := reverse & (huffmanNumChunks - 1)
214			if sanity && h.chunks[j]&huffmanCountMask != huffmanChunkBits+1 {
215				// Longer codes should have been
216				// associated with a link table above.
217				panic("impossible: not an indirect chunk")
218			}
219			value := h.chunks[j] >> huffmanValueShift
220			linktab := h.links[value]
221			reverse >>= huffmanChunkBits
222			for off := reverse; off < len(linktab); off += 1 << uint(n-huffmanChunkBits) {
223				if sanity && linktab[off] != 0 {
224					panic("impossible: overwriting existing chunk")
225				}
226				linktab[off] = chunk
227			}
228		}
229	}
230
231	if sanity {
232		// Above we've sanity checked that we never overwrote
233		// an existing entry. Here we additionally check that
234		// we filled the tables completely.
235		for i, chunk := range h.chunks {
236			if chunk == 0 {
237				// As an exception, in the degenerate
238				// single-code case, we allow odd
239				// chunks to be missing.
240				if code == 1 && i%2 == 1 {
241					continue
242				}
243				panic("impossible: missing chunk")
244			}
245		}
246		for _, linktab := range h.links {
247			for _, chunk := range linktab {
248				if chunk == 0 {
249					panic("impossible: missing chunk")
250				}
251			}
252		}
253	}
254
255	return true
256}
257
258// The actual read interface needed by [NewReader].
259// If the passed in io.Reader does not also have ReadByte,
260// the [NewReader] will introduce its own buffering.
261type Reader interface {
262	io.Reader
263	io.ByteReader
264}
265
266// Decompress state.
267type decompressor struct {
268	// Input source.
269	r       Reader
270	rBuf    *bufio.Reader // created if provided io.Reader does not implement io.ByteReader
271	roffset int64
272
273	// Input bits, in top of b.
274	b  uint32
275	nb uint
276
277	// Huffman decoders for literal/length, distance.
278	h1, h2 huffmanDecoder
279
280	// Length arrays used to define Huffman codes.
281	bits     *[maxNumLit + maxNumDist]int
282	codebits *[numCodes]int
283
284	// Output history, buffer.
285	dict dictDecoder
286
287	// Temporary buffer (avoids repeated allocation).
288	buf [4]byte
289
290	// Next step in the decompression,
291	// and decompression state.
292	step      func(*decompressor)
293	stepState int
294	final     bool
295	err       error
296	toRead    []byte
297	hl, hd    *huffmanDecoder
298	copyLen   int
299	copyDist  int
300}
301
302func (f *decompressor) nextBlock() {
303	for f.nb < 1+2 {
304		if f.err = f.moreBits(); f.err != nil {
305			return
306		}
307	}
308	f.final = f.b&1 == 1
309	f.b >>= 1
310	typ := f.b & 3
311	f.b >>= 2
312	f.nb -= 1 + 2
313	switch typ {
314	case 0:
315		f.dataBlock()
316	case 1:
317		// compressed, fixed Huffman tables
318		f.hl = &fixedHuffmanDecoder
319		f.hd = nil
320		f.huffmanBlock()
321	case 2:
322		// compressed, dynamic Huffman tables
323		if f.err = f.readHuffman(); f.err != nil {
324			break
325		}
326		f.hl = &f.h1
327		f.hd = &f.h2
328		f.huffmanBlock()
329	default:
330		// 3 is reserved.
331		f.err = CorruptInputError(f.roffset)
332	}
333}
334
335func (f *decompressor) Read(b []byte) (int, error) {
336	for {
337		if len(f.toRead) > 0 {
338			n := copy(b, f.toRead)
339			f.toRead = f.toRead[n:]
340			if len(f.toRead) == 0 {
341				return n, f.err
342			}
343			return n, nil
344		}
345		if f.err != nil {
346			return 0, f.err
347		}
348		f.step(f)
349		if f.err != nil && len(f.toRead) == 0 {
350			f.toRead = f.dict.readFlush() // Flush what's left in case of error
351		}
352	}
353}
354
355func (f *decompressor) Close() error {
356	if f.err == io.EOF {
357		return nil
358	}
359	return f.err
360}
361
362// RFC 1951 section 3.2.7.
363// Compression with dynamic Huffman codes
364
365var codeOrder = [...]int{16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}
366
367func (f *decompressor) readHuffman() error {
368	// HLIT[5], HDIST[5], HCLEN[4].
369	for f.nb < 5+5+4 {
370		if err := f.moreBits(); err != nil {
371			return err
372		}
373	}
374	nlit := int(f.b&0x1F) + 257
375	if nlit > maxNumLit {
376		return CorruptInputError(f.roffset)
377	}
378	f.b >>= 5
379	ndist := int(f.b&0x1F) + 1
380	if ndist > maxNumDist {
381		return CorruptInputError(f.roffset)
382	}
383	f.b >>= 5
384	nclen := int(f.b&0xF) + 4
385	// numCodes is 19, so nclen is always valid.
386	f.b >>= 4
387	f.nb -= 5 + 5 + 4
388
389	// (HCLEN+4)*3 bits: code lengths in the magic codeOrder order.
390	for i := 0; i < nclen; i++ {
391		for f.nb < 3 {
392			if err := f.moreBits(); err != nil {
393				return err
394			}
395		}
396		f.codebits[codeOrder[i]] = int(f.b & 0x7)
397		f.b >>= 3
398		f.nb -= 3
399	}
400	for i := nclen; i < len(codeOrder); i++ {
401		f.codebits[codeOrder[i]] = 0
402	}
403	if !f.h1.init(f.codebits[0:]) {
404		return CorruptInputError(f.roffset)
405	}
406
407	// HLIT + 257 code lengths, HDIST + 1 code lengths,
408	// using the code length Huffman code.
409	for i, n := 0, nlit+ndist; i < n; {
410		x, err := f.huffSym(&f.h1)
411		if err != nil {
412			return err
413		}
414		if x < 16 {
415			// Actual length.
416			f.bits[i] = x
417			i++
418			continue
419		}
420		// Repeat previous length or zero.
421		var rep int
422		var nb uint
423		var b int
424		switch x {
425		default:
426			return InternalError("unexpected length code")
427		case 16:
428			rep = 3
429			nb = 2
430			if i == 0 {
431				return CorruptInputError(f.roffset)
432			}
433			b = f.bits[i-1]
434		case 17:
435			rep = 3
436			nb = 3
437			b = 0
438		case 18:
439			rep = 11
440			nb = 7
441			b = 0
442		}
443		for f.nb < nb {
444			if err := f.moreBits(); err != nil {
445				return err
446			}
447		}
448		rep += int(f.b & uint32(1<<nb-1))
449		f.b >>= nb
450		f.nb -= nb
451		if i+rep > n {
452			return CorruptInputError(f.roffset)
453		}
454		for j := 0; j < rep; j++ {
455			f.bits[i] = b
456			i++
457		}
458	}
459
460	if !f.h1.init(f.bits[0:nlit]) || !f.h2.init(f.bits[nlit:nlit+ndist]) {
461		return CorruptInputError(f.roffset)
462	}
463
464	// As an optimization, we can initialize the min bits to read at a time
465	// for the HLIT tree to the length of the EOB marker since we know that
466	// every block must terminate with one. This preserves the property that
467	// we never read any extra bytes after the end of the DEFLATE stream.
468	if f.h1.min < f.bits[endBlockMarker] {
469		f.h1.min = f.bits[endBlockMarker]
470	}
471
472	return nil
473}
474
475// Decode a single Huffman block from f.
476// hl and hd are the Huffman states for the lit/length values
477// and the distance values, respectively. If hd == nil, using the
478// fixed distance encoding associated with fixed Huffman blocks.
479func (f *decompressor) huffmanBlock() {
480	const (
481		stateInit = iota // Zero value must be stateInit
482		stateDict
483	)
484
485	switch f.stepState {
486	case stateInit:
487		goto readLiteral
488	case stateDict:
489		goto copyHistory
490	}
491
492readLiteral:
493	// Read literal and/or (length, distance) according to RFC section 3.2.3.
494	{
495		v, err := f.huffSym(f.hl)
496		if err != nil {
497			f.err = err
498			return
499		}
500		var n uint // number of bits extra
501		var length int
502		switch {
503		case v < 256:
504			f.dict.writeByte(byte(v))
505			if f.dict.availWrite() == 0 {
506				f.toRead = f.dict.readFlush()
507				f.step = (*decompressor).huffmanBlock
508				f.stepState = stateInit
509				return
510			}
511			goto readLiteral
512		case v == 256:
513			f.finishBlock()
514			return
515		// otherwise, reference to older data
516		case v < 265:
517			length = v - (257 - 3)
518			n = 0
519		case v < 269:
520			length = v*2 - (265*2 - 11)
521			n = 1
522		case v < 273:
523			length = v*4 - (269*4 - 19)
524			n = 2
525		case v < 277:
526			length = v*8 - (273*8 - 35)
527			n = 3
528		case v < 281:
529			length = v*16 - (277*16 - 67)
530			n = 4
531		case v < 285:
532			length = v*32 - (281*32 - 131)
533			n = 5
534		case v < maxNumLit:
535			length = 258
536			n = 0
537		default:
538			f.err = CorruptInputError(f.roffset)
539			return
540		}
541		if n > 0 {
542			for f.nb < n {
543				if err = f.moreBits(); err != nil {
544					f.err = err
545					return
546				}
547			}
548			length += int(f.b & uint32(1<<n-1))
549			f.b >>= n
550			f.nb -= n
551		}
552
553		var dist int
554		if f.hd == nil {
555			for f.nb < 5 {
556				if err = f.moreBits(); err != nil {
557					f.err = err
558					return
559				}
560			}
561			dist = int(bits.Reverse8(uint8(f.b & 0x1F << 3)))
562			f.b >>= 5
563			f.nb -= 5
564		} else {
565			if dist, err = f.huffSym(f.hd); err != nil {
566				f.err = err
567				return
568			}
569		}
570
571		switch {
572		case dist < 4:
573			dist++
574		case dist < maxNumDist:
575			nb := uint(dist-2) >> 1
576			// have 1 bit in bottom of dist, need nb more.
577			extra := (dist & 1) << nb
578			for f.nb < nb {
579				if err = f.moreBits(); err != nil {
580					f.err = err
581					return
582				}
583			}
584			extra |= int(f.b & uint32(1<<nb-1))
585			f.b >>= nb
586			f.nb -= nb
587			dist = 1<<(nb+1) + 1 + extra
588		default:
589			f.err = CorruptInputError(f.roffset)
590			return
591		}
592
593		// No check on length; encoding can be prescient.
594		if dist > f.dict.histSize() {
595			f.err = CorruptInputError(f.roffset)
596			return
597		}
598
599		f.copyLen, f.copyDist = length, dist
600		goto copyHistory
601	}
602
603copyHistory:
604	// Perform a backwards copy according to RFC section 3.2.3.
605	{
606		cnt := f.dict.tryWriteCopy(f.copyDist, f.copyLen)
607		if cnt == 0 {
608			cnt = f.dict.writeCopy(f.copyDist, f.copyLen)
609		}
610		f.copyLen -= cnt
611
612		if f.dict.availWrite() == 0 || f.copyLen > 0 {
613			f.toRead = f.dict.readFlush()
614			f.step = (*decompressor).huffmanBlock // We need to continue this work
615			f.stepState = stateDict
616			return
617		}
618		goto readLiteral
619	}
620}
621
622// Copy a single uncompressed data block from input to output.
623func (f *decompressor) dataBlock() {
624	// Uncompressed.
625	// Discard current half-byte.
626	f.nb = 0
627	f.b = 0
628
629	// Length then ones-complement of length.
630	nr, err := io.ReadFull(f.r, f.buf[0:4])
631	f.roffset += int64(nr)
632	if err != nil {
633		f.err = noEOF(err)
634		return
635	}
636	n := int(f.buf[0]) | int(f.buf[1])<<8
637	nn := int(f.buf[2]) | int(f.buf[3])<<8
638	if uint16(nn) != uint16(^n) {
639		f.err = CorruptInputError(f.roffset)
640		return
641	}
642
643	if n == 0 {
644		f.toRead = f.dict.readFlush()
645		f.finishBlock()
646		return
647	}
648
649	f.copyLen = n
650	f.copyData()
651}
652
653// copyData copies f.copyLen bytes from the underlying reader into f.hist.
654// It pauses for reads when f.hist is full.
655func (f *decompressor) copyData() {
656	buf := f.dict.writeSlice()
657	if len(buf) > f.copyLen {
658		buf = buf[:f.copyLen]
659	}
660
661	cnt, err := io.ReadFull(f.r, buf)
662	f.roffset += int64(cnt)
663	f.copyLen -= cnt
664	f.dict.writeMark(cnt)
665	if err != nil {
666		f.err = noEOF(err)
667		return
668	}
669
670	if f.dict.availWrite() == 0 || f.copyLen > 0 {
671		f.toRead = f.dict.readFlush()
672		f.step = (*decompressor).copyData
673		return
674	}
675	f.finishBlock()
676}
677
678func (f *decompressor) finishBlock() {
679	if f.final {
680		if f.dict.availRead() > 0 {
681			f.toRead = f.dict.readFlush()
682		}
683		f.err = io.EOF
684	}
685	f.step = (*decompressor).nextBlock
686}
687
688// noEOF returns err, unless err == io.EOF, in which case it returns io.ErrUnexpectedEOF.
689func noEOF(e error) error {
690	if e == io.EOF {
691		return io.ErrUnexpectedEOF
692	}
693	return e
694}
695
696func (f *decompressor) moreBits() error {
697	c, err := f.r.ReadByte()
698	if err != nil {
699		return noEOF(err)
700	}
701	f.roffset++
702	f.b |= uint32(c) << f.nb
703	f.nb += 8
704	return nil
705}
706
707// Read the next Huffman-encoded symbol from f according to h.
708func (f *decompressor) huffSym(h *huffmanDecoder) (int, error) {
709	// Since a huffmanDecoder can be empty or be composed of a degenerate tree
710	// with single element, huffSym must error on these two edge cases. In both
711	// cases, the chunks slice will be 0 for the invalid sequence, leading it
712	// satisfy the n == 0 check below.
713	n := uint(h.min)
714	// Optimization. Compiler isn't smart enough to keep f.b,f.nb in registers,
715	// but is smart enough to keep local variables in registers, so use nb and b,
716	// inline call to moreBits and reassign b,nb back to f on return.
717	nb, b := f.nb, f.b
718	for {
719		for nb < n {
720			c, err := f.r.ReadByte()
721			if err != nil {
722				f.b = b
723				f.nb = nb
724				return 0, noEOF(err)
725			}
726			f.roffset++
727			b |= uint32(c) << (nb & 31)
728			nb += 8
729		}
730		chunk := h.chunks[b&(huffmanNumChunks-1)]
731		n = uint(chunk & huffmanCountMask)
732		if n > huffmanChunkBits {
733			chunk = h.links[chunk>>huffmanValueShift][(b>>huffmanChunkBits)&h.linkMask]
734			n = uint(chunk & huffmanCountMask)
735		}
736		if n <= nb {
737			if n == 0 {
738				f.b = b
739				f.nb = nb
740				f.err = CorruptInputError(f.roffset)
741				return 0, f.err
742			}
743			f.b = b >> (n & 31)
744			f.nb = nb - n
745			return int(chunk >> huffmanValueShift), nil
746		}
747	}
748}
749
750func (f *decompressor) makeReader(r io.Reader) {
751	if rr, ok := r.(Reader); ok {
752		f.rBuf = nil
753		f.r = rr
754		return
755	}
756	// Reuse rBuf if possible. Invariant: rBuf is always created (and owned) by decompressor.
757	if f.rBuf != nil {
758		f.rBuf.Reset(r)
759	} else {
760		// bufio.NewReader will not return r, as r does not implement flate.Reader, so it is not bufio.Reader.
761		f.rBuf = bufio.NewReader(r)
762	}
763	f.r = f.rBuf
764}
765
766func fixedHuffmanDecoderInit() {
767	fixedOnce.Do(func() {
768		// These come from the RFC section 3.2.6.
769		var bits [288]int
770		for i := 0; i < 144; i++ {
771			bits[i] = 8
772		}
773		for i := 144; i < 256; i++ {
774			bits[i] = 9
775		}
776		for i := 256; i < 280; i++ {
777			bits[i] = 7
778		}
779		for i := 280; i < 288; i++ {
780			bits[i] = 8
781		}
782		fixedHuffmanDecoder.init(bits[:])
783	})
784}
785
786func (f *decompressor) Reset(r io.Reader, dict []byte) error {
787	*f = decompressor{
788		rBuf:     f.rBuf,
789		bits:     f.bits,
790		codebits: f.codebits,
791		dict:     f.dict,
792		step:     (*decompressor).nextBlock,
793	}
794	f.makeReader(r)
795	f.dict.init(maxMatchOffset, dict)
796	return nil
797}
798
799// NewReader returns a new ReadCloser that can be used
800// to read the uncompressed version of r.
801// If r does not also implement [io.ByteReader],
802// the decompressor may read more data than necessary from r.
803// The reader returns [io.EOF] after the final block in the DEFLATE stream has
804// been encountered. Any trailing data after the final block is ignored.
805//
806// The [io.ReadCloser] returned by NewReader also implements [Resetter].
807func NewReader(r io.Reader) io.ReadCloser {
808	fixedHuffmanDecoderInit()
809
810	var f decompressor
811	f.makeReader(r)
812	f.bits = new([maxNumLit + maxNumDist]int)
813	f.codebits = new([numCodes]int)
814	f.step = (*decompressor).nextBlock
815	f.dict.init(maxMatchOffset, nil)
816	return &f
817}
818
819// NewReaderDict is like [NewReader] but initializes the reader
820// with a preset dictionary. The returned [Reader] behaves as if
821// the uncompressed data stream started with the given dictionary,
822// which has already been read. NewReaderDict is typically used
823// to read data compressed by NewWriterDict.
824//
825// The ReadCloser returned by NewReaderDict also implements [Resetter].
826func NewReaderDict(r io.Reader, dict []byte) io.ReadCloser {
827	fixedHuffmanDecoderInit()
828
829	var f decompressor
830	f.makeReader(r)
831	f.bits = new([maxNumLit + maxNumDist]int)
832	f.codebits = new([numCodes]int)
833	f.step = (*decompressor).nextBlock
834	f.dict.init(maxMatchOffset, dict)
835	return &f
836}
837