1// Copyright 2009 The Go Authors. All rights reserved. 2// Use of this source code is governed by a BSD-style 3// license that can be found in the LICENSE file. 4 5// Package heap provides heap operations for any type that implements 6// heap.Interface. A heap is a tree with the property that each node is the 7// minimum-valued node in its subtree. 8// 9// The minimum element in the tree is the root, at index 0. 10// 11// A heap is a common way to implement a priority queue. To build a priority 12// queue, implement the Heap interface with the (negative) priority as the 13// ordering for the Less method, so Push adds items while Pop removes the 14// highest-priority item from the queue. The Examples include such an 15// implementation; the file example_pq_test.go has the complete source. 16package heap 17 18import "sort" 19 20// The Interface type describes the requirements 21// for a type using the routines in this package. 22// Any type that implements it may be used as a 23// min-heap with the following invariants (established after 24// [Init] has been called or if the data is empty or sorted): 25// 26// !h.Less(j, i) for 0 <= i < h.Len() and 2*i+1 <= j <= 2*i+2 and j < h.Len() 27// 28// Note that [Push] and [Pop] in this interface are for package heap's 29// implementation to call. To add and remove things from the heap, 30// use [heap.Push] and [heap.Pop]. 31type Interface interface { 32 sort.Interface 33 Push(x any) // add x as element Len() 34 Pop() any // remove and return element Len() - 1. 35} 36 37// Init establishes the heap invariants required by the other routines in this package. 38// Init is idempotent with respect to the heap invariants 39// and may be called whenever the heap invariants may have been invalidated. 40// The complexity is O(n) where n = h.Len(). 41func Init(h Interface) { 42 // heapify 43 n := h.Len() 44 for i := n/2 - 1; i >= 0; i-- { 45 down(h, i, n) 46 } 47} 48 49// Push pushes the element x onto the heap. 50// The complexity is O(log n) where n = h.Len(). 51func Push(h Interface, x any) { 52 h.Push(x) 53 up(h, h.Len()-1) 54} 55 56// Pop removes and returns the minimum element (according to Less) from the heap. 57// The complexity is O(log n) where n = h.Len(). 58// Pop is equivalent to [Remove](h, 0). 59func Pop(h Interface) any { 60 n := h.Len() - 1 61 h.Swap(0, n) 62 down(h, 0, n) 63 return h.Pop() 64} 65 66// Remove removes and returns the element at index i from the heap. 67// The complexity is O(log n) where n = h.Len(). 68func Remove(h Interface, i int) any { 69 n := h.Len() - 1 70 if n != i { 71 h.Swap(i, n) 72 if !down(h, i, n) { 73 up(h, i) 74 } 75 } 76 return h.Pop() 77} 78 79// Fix re-establishes the heap ordering after the element at index i has changed its value. 80// Changing the value of the element at index i and then calling Fix is equivalent to, 81// but less expensive than, calling [Remove](h, i) followed by a Push of the new value. 82// The complexity is O(log n) where n = h.Len(). 83func Fix(h Interface, i int) { 84 if !down(h, i, h.Len()) { 85 up(h, i) 86 } 87} 88 89func up(h Interface, j int) { 90 for { 91 i := (j - 1) / 2 // parent 92 if i == j || !h.Less(j, i) { 93 break 94 } 95 h.Swap(i, j) 96 j = i 97 } 98} 99 100func down(h Interface, i0, n int) bool { 101 i := i0 102 for { 103 j1 := 2*i + 1 104 if j1 >= n || j1 < 0 { // j1 < 0 after int overflow 105 break 106 } 107 j := j1 // left child 108 if j2 := j1 + 1; j2 < n && h.Less(j2, j1) { 109 j = j2 // = 2*i + 2 // right child 110 } 111 if !h.Less(j, i) { 112 break 113 } 114 h.Swap(i, j) 115 i = j 116 } 117 return i > i0 118} 119