1// Copyright 2011 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// Package ecdsa implements the Elliptic Curve Digital Signature Algorithm, as
6// defined in FIPS 186-4 and SEC 1, Version 2.0.
7//
8// Signatures generated by this package are not deterministic, but entropy is
9// mixed with the private key and the message, achieving the same level of
10// security in case of randomness source failure.
11//
12// Operations involving private keys are implemented using constant-time
13// algorithms, as long as an [elliptic.Curve] returned by [elliptic.P224],
14// [elliptic.P256], [elliptic.P384], or [elliptic.P521] is used.
15package ecdsa
16
17// [FIPS 186-4] references ANSI X9.62-2005 for the bulk of the ECDSA algorithm.
18// That standard is not freely available, which is a problem in an open source
19// implementation, because not only the implementer, but also any maintainer,
20// contributor, reviewer, auditor, and learner needs access to it. Instead, this
21// package references and follows the equivalent [SEC 1, Version 2.0].
22//
23// [FIPS 186-4]: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
24// [SEC 1, Version 2.0]: https://www.secg.org/sec1-v2.pdf
25
26import (
27	"bytes"
28	"crypto"
29	"crypto/aes"
30	"crypto/cipher"
31	"crypto/ecdh"
32	"crypto/elliptic"
33	"crypto/internal/bigmod"
34	"crypto/internal/boring"
35	"crypto/internal/boring/bbig"
36	"crypto/internal/nistec"
37	"crypto/internal/randutil"
38	"crypto/sha512"
39	"crypto/subtle"
40	"errors"
41	"io"
42	"math/big"
43	"sync"
44
45	"golang.org/x/crypto/cryptobyte"
46	"golang.org/x/crypto/cryptobyte/asn1"
47)
48
49// PublicKey represents an ECDSA public key.
50type PublicKey struct {
51	elliptic.Curve
52	X, Y *big.Int
53}
54
55// Any methods implemented on PublicKey might need to also be implemented on
56// PrivateKey, as the latter embeds the former and will expose its methods.
57
58// ECDH returns k as a [ecdh.PublicKey]. It returns an error if the key is
59// invalid according to the definition of [ecdh.Curve.NewPublicKey], or if the
60// Curve is not supported by crypto/ecdh.
61func (k *PublicKey) ECDH() (*ecdh.PublicKey, error) {
62	c := curveToECDH(k.Curve)
63	if c == nil {
64		return nil, errors.New("ecdsa: unsupported curve by crypto/ecdh")
65	}
66	if !k.Curve.IsOnCurve(k.X, k.Y) {
67		return nil, errors.New("ecdsa: invalid public key")
68	}
69	return c.NewPublicKey(elliptic.Marshal(k.Curve, k.X, k.Y))
70}
71
72// Equal reports whether pub and x have the same value.
73//
74// Two keys are only considered to have the same value if they have the same Curve value.
75// Note that for example [elliptic.P256] and elliptic.P256().Params() are different
76// values, as the latter is a generic not constant time implementation.
77func (pub *PublicKey) Equal(x crypto.PublicKey) bool {
78	xx, ok := x.(*PublicKey)
79	if !ok {
80		return false
81	}
82	return bigIntEqual(pub.X, xx.X) && bigIntEqual(pub.Y, xx.Y) &&
83		// Standard library Curve implementations are singletons, so this check
84		// will work for those. Other Curves might be equivalent even if not
85		// singletons, but there is no definitive way to check for that, and
86		// better to err on the side of safety.
87		pub.Curve == xx.Curve
88}
89
90// PrivateKey represents an ECDSA private key.
91type PrivateKey struct {
92	PublicKey
93	D *big.Int
94}
95
96// ECDH returns k as a [ecdh.PrivateKey]. It returns an error if the key is
97// invalid according to the definition of [ecdh.Curve.NewPrivateKey], or if the
98// Curve is not supported by [crypto/ecdh].
99func (k *PrivateKey) ECDH() (*ecdh.PrivateKey, error) {
100	c := curveToECDH(k.Curve)
101	if c == nil {
102		return nil, errors.New("ecdsa: unsupported curve by crypto/ecdh")
103	}
104	size := (k.Curve.Params().N.BitLen() + 7) / 8
105	if k.D.BitLen() > size*8 {
106		return nil, errors.New("ecdsa: invalid private key")
107	}
108	return c.NewPrivateKey(k.D.FillBytes(make([]byte, size)))
109}
110
111func curveToECDH(c elliptic.Curve) ecdh.Curve {
112	switch c {
113	case elliptic.P256():
114		return ecdh.P256()
115	case elliptic.P384():
116		return ecdh.P384()
117	case elliptic.P521():
118		return ecdh.P521()
119	default:
120		return nil
121	}
122}
123
124// Public returns the public key corresponding to priv.
125func (priv *PrivateKey) Public() crypto.PublicKey {
126	return &priv.PublicKey
127}
128
129// Equal reports whether priv and x have the same value.
130//
131// See [PublicKey.Equal] for details on how Curve is compared.
132func (priv *PrivateKey) Equal(x crypto.PrivateKey) bool {
133	xx, ok := x.(*PrivateKey)
134	if !ok {
135		return false
136	}
137	return priv.PublicKey.Equal(&xx.PublicKey) && bigIntEqual(priv.D, xx.D)
138}
139
140// bigIntEqual reports whether a and b are equal leaking only their bit length
141// through timing side-channels.
142func bigIntEqual(a, b *big.Int) bool {
143	return subtle.ConstantTimeCompare(a.Bytes(), b.Bytes()) == 1
144}
145
146// Sign signs digest with priv, reading randomness from rand. The opts argument
147// is not currently used but, in keeping with the crypto.Signer interface,
148// should be the hash function used to digest the message.
149//
150// This method implements crypto.Signer, which is an interface to support keys
151// where the private part is kept in, for example, a hardware module. Common
152// uses can use the [SignASN1] function in this package directly.
153func (priv *PrivateKey) Sign(rand io.Reader, digest []byte, opts crypto.SignerOpts) ([]byte, error) {
154	return SignASN1(rand, priv, digest)
155}
156
157// GenerateKey generates a new ECDSA private key for the specified curve.
158//
159// Most applications should use [crypto/rand.Reader] as rand. Note that the
160// returned key does not depend deterministically on the bytes read from rand,
161// and may change between calls and/or between versions.
162func GenerateKey(c elliptic.Curve, rand io.Reader) (*PrivateKey, error) {
163	randutil.MaybeReadByte(rand)
164
165	if boring.Enabled && rand == boring.RandReader {
166		x, y, d, err := boring.GenerateKeyECDSA(c.Params().Name)
167		if err != nil {
168			return nil, err
169		}
170		return &PrivateKey{PublicKey: PublicKey{Curve: c, X: bbig.Dec(x), Y: bbig.Dec(y)}, D: bbig.Dec(d)}, nil
171	}
172	boring.UnreachableExceptTests()
173
174	switch c.Params() {
175	case elliptic.P224().Params():
176		return generateNISTEC(p224(), rand)
177	case elliptic.P256().Params():
178		return generateNISTEC(p256(), rand)
179	case elliptic.P384().Params():
180		return generateNISTEC(p384(), rand)
181	case elliptic.P521().Params():
182		return generateNISTEC(p521(), rand)
183	default:
184		return generateLegacy(c, rand)
185	}
186}
187
188func generateNISTEC[Point nistPoint[Point]](c *nistCurve[Point], rand io.Reader) (*PrivateKey, error) {
189	k, Q, err := randomPoint(c, rand)
190	if err != nil {
191		return nil, err
192	}
193
194	priv := new(PrivateKey)
195	priv.PublicKey.Curve = c.curve
196	priv.D = new(big.Int).SetBytes(k.Bytes(c.N))
197	priv.PublicKey.X, priv.PublicKey.Y, err = c.pointToAffine(Q)
198	if err != nil {
199		return nil, err
200	}
201	return priv, nil
202}
203
204// randomPoint returns a random scalar and the corresponding point using the
205// procedure given in FIPS 186-4, Appendix B.5.2 (rejection sampling).
206func randomPoint[Point nistPoint[Point]](c *nistCurve[Point], rand io.Reader) (k *bigmod.Nat, p Point, err error) {
207	k = bigmod.NewNat()
208	for {
209		b := make([]byte, c.N.Size())
210		if _, err = io.ReadFull(rand, b); err != nil {
211			return
212		}
213
214		// Mask off any excess bits to increase the chance of hitting a value in
215		// (0, N). These are the most dangerous lines in the package and maybe in
216		// the library: a single bit of bias in the selection of nonces would likely
217		// lead to key recovery, but no tests would fail. Look but DO NOT TOUCH.
218		if excess := len(b)*8 - c.N.BitLen(); excess > 0 {
219			// Just to be safe, assert that this only happens for the one curve that
220			// doesn't have a round number of bits.
221			if excess != 0 && c.curve.Params().Name != "P-521" {
222				panic("ecdsa: internal error: unexpectedly masking off bits")
223			}
224			b[0] >>= excess
225		}
226
227		// FIPS 186-4 makes us check k <= N - 2 and then add one.
228		// Checking 0 < k <= N - 1 is strictly equivalent.
229		// None of this matters anyway because the chance of selecting
230		// zero is cryptographically negligible.
231		if _, err = k.SetBytes(b, c.N); err == nil && k.IsZero() == 0 {
232			break
233		}
234
235		if testingOnlyRejectionSamplingLooped != nil {
236			testingOnlyRejectionSamplingLooped()
237		}
238	}
239
240	p, err = c.newPoint().ScalarBaseMult(k.Bytes(c.N))
241	return
242}
243
244// testingOnlyRejectionSamplingLooped is called when rejection sampling in
245// randomPoint rejects a candidate for being higher than the modulus.
246var testingOnlyRejectionSamplingLooped func()
247
248// errNoAsm is returned by signAsm and verifyAsm when the assembly
249// implementation is not available.
250var errNoAsm = errors.New("no assembly implementation available")
251
252// SignASN1 signs a hash (which should be the result of hashing a larger message)
253// using the private key, priv. If the hash is longer than the bit-length of the
254// private key's curve order, the hash will be truncated to that length. It
255// returns the ASN.1 encoded signature.
256//
257// The signature is randomized. Most applications should use [crypto/rand.Reader]
258// as rand. Note that the returned signature does not depend deterministically on
259// the bytes read from rand, and may change between calls and/or between versions.
260func SignASN1(rand io.Reader, priv *PrivateKey, hash []byte) ([]byte, error) {
261	randutil.MaybeReadByte(rand)
262
263	if boring.Enabled && rand == boring.RandReader {
264		b, err := boringPrivateKey(priv)
265		if err != nil {
266			return nil, err
267		}
268		return boring.SignMarshalECDSA(b, hash)
269	}
270	boring.UnreachableExceptTests()
271
272	csprng, err := mixedCSPRNG(rand, priv, hash)
273	if err != nil {
274		return nil, err
275	}
276
277	if sig, err := signAsm(priv, csprng, hash); err != errNoAsm {
278		return sig, err
279	}
280
281	switch priv.Curve.Params() {
282	case elliptic.P224().Params():
283		return signNISTEC(p224(), priv, csprng, hash)
284	case elliptic.P256().Params():
285		return signNISTEC(p256(), priv, csprng, hash)
286	case elliptic.P384().Params():
287		return signNISTEC(p384(), priv, csprng, hash)
288	case elliptic.P521().Params():
289		return signNISTEC(p521(), priv, csprng, hash)
290	default:
291		return signLegacy(priv, csprng, hash)
292	}
293}
294
295func signNISTEC[Point nistPoint[Point]](c *nistCurve[Point], priv *PrivateKey, csprng io.Reader, hash []byte) (sig []byte, err error) {
296	// SEC 1, Version 2.0, Section 4.1.3
297
298	k, R, err := randomPoint(c, csprng)
299	if err != nil {
300		return nil, err
301	}
302
303	// kInv = k⁻¹
304	kInv := bigmod.NewNat()
305	inverse(c, kInv, k)
306
307	Rx, err := R.BytesX()
308	if err != nil {
309		return nil, err
310	}
311	r, err := bigmod.NewNat().SetOverflowingBytes(Rx, c.N)
312	if err != nil {
313		return nil, err
314	}
315
316	// The spec wants us to retry here, but the chance of hitting this condition
317	// on a large prime-order group like the NIST curves we support is
318	// cryptographically negligible. If we hit it, something is awfully wrong.
319	if r.IsZero() == 1 {
320		return nil, errors.New("ecdsa: internal error: r is zero")
321	}
322
323	e := bigmod.NewNat()
324	hashToNat(c, e, hash)
325
326	s, err := bigmod.NewNat().SetBytes(priv.D.Bytes(), c.N)
327	if err != nil {
328		return nil, err
329	}
330	s.Mul(r, c.N)
331	s.Add(e, c.N)
332	s.Mul(kInv, c.N)
333
334	// Again, the chance of this happening is cryptographically negligible.
335	if s.IsZero() == 1 {
336		return nil, errors.New("ecdsa: internal error: s is zero")
337	}
338
339	return encodeSignature(r.Bytes(c.N), s.Bytes(c.N))
340}
341
342func encodeSignature(r, s []byte) ([]byte, error) {
343	var b cryptobyte.Builder
344	b.AddASN1(asn1.SEQUENCE, func(b *cryptobyte.Builder) {
345		addASN1IntBytes(b, r)
346		addASN1IntBytes(b, s)
347	})
348	return b.Bytes()
349}
350
351// addASN1IntBytes encodes in ASN.1 a positive integer represented as
352// a big-endian byte slice with zero or more leading zeroes.
353func addASN1IntBytes(b *cryptobyte.Builder, bytes []byte) {
354	for len(bytes) > 0 && bytes[0] == 0 {
355		bytes = bytes[1:]
356	}
357	if len(bytes) == 0 {
358		b.SetError(errors.New("invalid integer"))
359		return
360	}
361	b.AddASN1(asn1.INTEGER, func(c *cryptobyte.Builder) {
362		if bytes[0]&0x80 != 0 {
363			c.AddUint8(0)
364		}
365		c.AddBytes(bytes)
366	})
367}
368
369// inverse sets kInv to the inverse of k modulo the order of the curve.
370func inverse[Point nistPoint[Point]](c *nistCurve[Point], kInv, k *bigmod.Nat) {
371	if c.curve.Params().Name == "P-256" {
372		kBytes, err := nistec.P256OrdInverse(k.Bytes(c.N))
373		// Some platforms don't implement P256OrdInverse, and always return an error.
374		if err == nil {
375			_, err := kInv.SetBytes(kBytes, c.N)
376			if err != nil {
377				panic("ecdsa: internal error: P256OrdInverse produced an invalid value")
378			}
379			return
380		}
381	}
382
383	// Calculate the inverse of s in GF(N) using Fermat's method
384	// (exponentiation modulo P - 2, per Euler's theorem)
385	kInv.Exp(k, c.nMinus2, c.N)
386}
387
388// hashToNat sets e to the left-most bits of hash, according to
389// SEC 1, Section 4.1.3, point 5 and Section 4.1.4, point 3.
390func hashToNat[Point nistPoint[Point]](c *nistCurve[Point], e *bigmod.Nat, hash []byte) {
391	// ECDSA asks us to take the left-most log2(N) bits of hash, and use them as
392	// an integer modulo N. This is the absolute worst of all worlds: we still
393	// have to reduce, because the result might still overflow N, but to take
394	// the left-most bits for P-521 we have to do a right shift.
395	if size := c.N.Size(); len(hash) >= size {
396		hash = hash[:size]
397		if excess := len(hash)*8 - c.N.BitLen(); excess > 0 {
398			hash = bytes.Clone(hash)
399			for i := len(hash) - 1; i >= 0; i-- {
400				hash[i] >>= excess
401				if i > 0 {
402					hash[i] |= hash[i-1] << (8 - excess)
403				}
404			}
405		}
406	}
407	_, err := e.SetOverflowingBytes(hash, c.N)
408	if err != nil {
409		panic("ecdsa: internal error: truncated hash is too long")
410	}
411}
412
413// mixedCSPRNG returns a CSPRNG that mixes entropy from rand with the message
414// and the private key, to protect the key in case rand fails. This is
415// equivalent in security to RFC 6979 deterministic nonce generation, but still
416// produces randomized signatures.
417func mixedCSPRNG(rand io.Reader, priv *PrivateKey, hash []byte) (io.Reader, error) {
418	// This implementation derives the nonce from an AES-CTR CSPRNG keyed by:
419	//
420	//    SHA2-512(priv.D || entropy || hash)[:32]
421	//
422	// The CSPRNG key is indifferentiable from a random oracle as shown in
423	// [Coron], the AES-CTR stream is indifferentiable from a random oracle
424	// under standard cryptographic assumptions (see [Larsson] for examples).
425	//
426	// [Coron]: https://cs.nyu.edu/~dodis/ps/merkle.pdf
427	// [Larsson]: https://web.archive.org/web/20040719170906/https://www.nada.kth.se/kurser/kth/2D1441/semteo03/lecturenotes/assump.pdf
428
429	// Get 256 bits of entropy from rand.
430	entropy := make([]byte, 32)
431	if _, err := io.ReadFull(rand, entropy); err != nil {
432		return nil, err
433	}
434
435	// Initialize an SHA-512 hash context; digest...
436	md := sha512.New()
437	md.Write(priv.D.Bytes()) // the private key,
438	md.Write(entropy)        // the entropy,
439	md.Write(hash)           // and the input hash;
440	key := md.Sum(nil)[:32]  // and compute ChopMD-256(SHA-512),
441	// which is an indifferentiable MAC.
442
443	// Create an AES-CTR instance to use as a CSPRNG.
444	block, err := aes.NewCipher(key)
445	if err != nil {
446		return nil, err
447	}
448
449	// Create a CSPRNG that xors a stream of zeros with
450	// the output of the AES-CTR instance.
451	const aesIV = "IV for ECDSA CTR"
452	return &cipher.StreamReader{
453		R: zeroReader,
454		S: cipher.NewCTR(block, []byte(aesIV)),
455	}, nil
456}
457
458type zr struct{}
459
460var zeroReader = zr{}
461
462// Read replaces the contents of dst with zeros. It is safe for concurrent use.
463func (zr) Read(dst []byte) (n int, err error) {
464	clear(dst)
465	return len(dst), nil
466}
467
468// VerifyASN1 verifies the ASN.1 encoded signature, sig, of hash using the
469// public key, pub. Its return value records whether the signature is valid.
470//
471// The inputs are not considered confidential, and may leak through timing side
472// channels, or if an attacker has control of part of the inputs.
473func VerifyASN1(pub *PublicKey, hash, sig []byte) bool {
474	if boring.Enabled {
475		key, err := boringPublicKey(pub)
476		if err != nil {
477			return false
478		}
479		return boring.VerifyECDSA(key, hash, sig)
480	}
481	boring.UnreachableExceptTests()
482
483	if err := verifyAsm(pub, hash, sig); err != errNoAsm {
484		return err == nil
485	}
486
487	switch pub.Curve.Params() {
488	case elliptic.P224().Params():
489		return verifyNISTEC(p224(), pub, hash, sig)
490	case elliptic.P256().Params():
491		return verifyNISTEC(p256(), pub, hash, sig)
492	case elliptic.P384().Params():
493		return verifyNISTEC(p384(), pub, hash, sig)
494	case elliptic.P521().Params():
495		return verifyNISTEC(p521(), pub, hash, sig)
496	default:
497		return verifyLegacy(pub, hash, sig)
498	}
499}
500
501func verifyNISTEC[Point nistPoint[Point]](c *nistCurve[Point], pub *PublicKey, hash, sig []byte) bool {
502	rBytes, sBytes, err := parseSignature(sig)
503	if err != nil {
504		return false
505	}
506
507	Q, err := c.pointFromAffine(pub.X, pub.Y)
508	if err != nil {
509		return false
510	}
511
512	// SEC 1, Version 2.0, Section 4.1.4
513
514	r, err := bigmod.NewNat().SetBytes(rBytes, c.N)
515	if err != nil || r.IsZero() == 1 {
516		return false
517	}
518	s, err := bigmod.NewNat().SetBytes(sBytes, c.N)
519	if err != nil || s.IsZero() == 1 {
520		return false
521	}
522
523	e := bigmod.NewNat()
524	hashToNat(c, e, hash)
525
526	// w = s⁻¹
527	w := bigmod.NewNat()
528	inverse(c, w, s)
529
530	// p₁ = [e * s⁻¹]G
531	p1, err := c.newPoint().ScalarBaseMult(e.Mul(w, c.N).Bytes(c.N))
532	if err != nil {
533		return false
534	}
535	// p₂ = [r * s⁻¹]Q
536	p2, err := Q.ScalarMult(Q, w.Mul(r, c.N).Bytes(c.N))
537	if err != nil {
538		return false
539	}
540	// BytesX returns an error for the point at infinity.
541	Rx, err := p1.Add(p1, p2).BytesX()
542	if err != nil {
543		return false
544	}
545
546	v, err := bigmod.NewNat().SetOverflowingBytes(Rx, c.N)
547	if err != nil {
548		return false
549	}
550
551	return v.Equal(r) == 1
552}
553
554func parseSignature(sig []byte) (r, s []byte, err error) {
555	var inner cryptobyte.String
556	input := cryptobyte.String(sig)
557	if !input.ReadASN1(&inner, asn1.SEQUENCE) ||
558		!input.Empty() ||
559		!inner.ReadASN1Integer(&r) ||
560		!inner.ReadASN1Integer(&s) ||
561		!inner.Empty() {
562		return nil, nil, errors.New("invalid ASN.1")
563	}
564	return r, s, nil
565}
566
567type nistCurve[Point nistPoint[Point]] struct {
568	newPoint func() Point
569	curve    elliptic.Curve
570	N        *bigmod.Modulus
571	nMinus2  []byte
572}
573
574// nistPoint is a generic constraint for the nistec Point types.
575type nistPoint[T any] interface {
576	Bytes() []byte
577	BytesX() ([]byte, error)
578	SetBytes([]byte) (T, error)
579	Add(T, T) T
580	ScalarMult(T, []byte) (T, error)
581	ScalarBaseMult([]byte) (T, error)
582}
583
584// pointFromAffine is used to convert the PublicKey to a nistec Point.
585func (curve *nistCurve[Point]) pointFromAffine(x, y *big.Int) (p Point, err error) {
586	bitSize := curve.curve.Params().BitSize
587	// Reject values that would not get correctly encoded.
588	if x.Sign() < 0 || y.Sign() < 0 {
589		return p, errors.New("negative coordinate")
590	}
591	if x.BitLen() > bitSize || y.BitLen() > bitSize {
592		return p, errors.New("overflowing coordinate")
593	}
594	// Encode the coordinates and let SetBytes reject invalid points.
595	byteLen := (bitSize + 7) / 8
596	buf := make([]byte, 1+2*byteLen)
597	buf[0] = 4 // uncompressed point
598	x.FillBytes(buf[1 : 1+byteLen])
599	y.FillBytes(buf[1+byteLen : 1+2*byteLen])
600	return curve.newPoint().SetBytes(buf)
601}
602
603// pointToAffine is used to convert a nistec Point to a PublicKey.
604func (curve *nistCurve[Point]) pointToAffine(p Point) (x, y *big.Int, err error) {
605	out := p.Bytes()
606	if len(out) == 1 && out[0] == 0 {
607		// This is the encoding of the point at infinity.
608		return nil, nil, errors.New("ecdsa: public key point is the infinity")
609	}
610	byteLen := (curve.curve.Params().BitSize + 7) / 8
611	x = new(big.Int).SetBytes(out[1 : 1+byteLen])
612	y = new(big.Int).SetBytes(out[1+byteLen:])
613	return x, y, nil
614}
615
616var p224Once sync.Once
617var _p224 *nistCurve[*nistec.P224Point]
618
619func p224() *nistCurve[*nistec.P224Point] {
620	p224Once.Do(func() {
621		_p224 = &nistCurve[*nistec.P224Point]{
622			newPoint: func() *nistec.P224Point { return nistec.NewP224Point() },
623		}
624		precomputeParams(_p224, elliptic.P224())
625	})
626	return _p224
627}
628
629var p256Once sync.Once
630var _p256 *nistCurve[*nistec.P256Point]
631
632func p256() *nistCurve[*nistec.P256Point] {
633	p256Once.Do(func() {
634		_p256 = &nistCurve[*nistec.P256Point]{
635			newPoint: func() *nistec.P256Point { return nistec.NewP256Point() },
636		}
637		precomputeParams(_p256, elliptic.P256())
638	})
639	return _p256
640}
641
642var p384Once sync.Once
643var _p384 *nistCurve[*nistec.P384Point]
644
645func p384() *nistCurve[*nistec.P384Point] {
646	p384Once.Do(func() {
647		_p384 = &nistCurve[*nistec.P384Point]{
648			newPoint: func() *nistec.P384Point { return nistec.NewP384Point() },
649		}
650		precomputeParams(_p384, elliptic.P384())
651	})
652	return _p384
653}
654
655var p521Once sync.Once
656var _p521 *nistCurve[*nistec.P521Point]
657
658func p521() *nistCurve[*nistec.P521Point] {
659	p521Once.Do(func() {
660		_p521 = &nistCurve[*nistec.P521Point]{
661			newPoint: func() *nistec.P521Point { return nistec.NewP521Point() },
662		}
663		precomputeParams(_p521, elliptic.P521())
664	})
665	return _p521
666}
667
668func precomputeParams[Point nistPoint[Point]](c *nistCurve[Point], curve elliptic.Curve) {
669	params := curve.Params()
670	c.curve = curve
671	var err error
672	c.N, err = bigmod.NewModulusFromBig(params.N)
673	if err != nil {
674		panic(err)
675	}
676	c.nMinus2 = new(big.Int).Sub(params.N, big.NewInt(2)).Bytes()
677}
678