1// Copyright 2022 The Go Authors. All rights reserved. 2// Use of this source code is governed by a BSD-style 3// license that can be found in the LICENSE file. 4 5package ecdsa 6 7import ( 8 "crypto/elliptic" 9 "errors" 10 "io" 11 "math/big" 12 13 "golang.org/x/crypto/cryptobyte" 14 "golang.org/x/crypto/cryptobyte/asn1" 15) 16 17// This file contains a math/big implementation of ECDSA that is only used for 18// deprecated custom curves. 19 20func generateLegacy(c elliptic.Curve, rand io.Reader) (*PrivateKey, error) { 21 k, err := randFieldElement(c, rand) 22 if err != nil { 23 return nil, err 24 } 25 26 priv := new(PrivateKey) 27 priv.PublicKey.Curve = c 28 priv.D = k 29 priv.PublicKey.X, priv.PublicKey.Y = c.ScalarBaseMult(k.Bytes()) 30 return priv, nil 31} 32 33// hashToInt converts a hash value to an integer. Per FIPS 186-4, Section 6.4, 34// we use the left-most bits of the hash to match the bit-length of the order of 35// the curve. This also performs Step 5 of SEC 1, Version 2.0, Section 4.1.3. 36func hashToInt(hash []byte, c elliptic.Curve) *big.Int { 37 orderBits := c.Params().N.BitLen() 38 orderBytes := (orderBits + 7) / 8 39 if len(hash) > orderBytes { 40 hash = hash[:orderBytes] 41 } 42 43 ret := new(big.Int).SetBytes(hash) 44 excess := len(hash)*8 - orderBits 45 if excess > 0 { 46 ret.Rsh(ret, uint(excess)) 47 } 48 return ret 49} 50 51var errZeroParam = errors.New("zero parameter") 52 53// Sign signs a hash (which should be the result of hashing a larger message) 54// using the private key, priv. If the hash is longer than the bit-length of the 55// private key's curve order, the hash will be truncated to that length. It 56// returns the signature as a pair of integers. Most applications should use 57// [SignASN1] instead of dealing directly with r, s. 58func Sign(rand io.Reader, priv *PrivateKey, hash []byte) (r, s *big.Int, err error) { 59 sig, err := SignASN1(rand, priv, hash) 60 if err != nil { 61 return nil, nil, err 62 } 63 64 r, s = new(big.Int), new(big.Int) 65 var inner cryptobyte.String 66 input := cryptobyte.String(sig) 67 if !input.ReadASN1(&inner, asn1.SEQUENCE) || 68 !input.Empty() || 69 !inner.ReadASN1Integer(r) || 70 !inner.ReadASN1Integer(s) || 71 !inner.Empty() { 72 return nil, nil, errors.New("invalid ASN.1 from SignASN1") 73 } 74 return r, s, nil 75} 76 77func signLegacy(priv *PrivateKey, csprng io.Reader, hash []byte) (sig []byte, err error) { 78 c := priv.Curve 79 80 // SEC 1, Version 2.0, Section 4.1.3 81 N := c.Params().N 82 if N.Sign() == 0 { 83 return nil, errZeroParam 84 } 85 var k, kInv, r, s *big.Int 86 for { 87 for { 88 k, err = randFieldElement(c, csprng) 89 if err != nil { 90 return nil, err 91 } 92 93 kInv = new(big.Int).ModInverse(k, N) 94 95 r, _ = c.ScalarBaseMult(k.Bytes()) 96 r.Mod(r, N) 97 if r.Sign() != 0 { 98 break 99 } 100 } 101 102 e := hashToInt(hash, c) 103 s = new(big.Int).Mul(priv.D, r) 104 s.Add(s, e) 105 s.Mul(s, kInv) 106 s.Mod(s, N) // N != 0 107 if s.Sign() != 0 { 108 break 109 } 110 } 111 112 return encodeSignature(r.Bytes(), s.Bytes()) 113} 114 115// Verify verifies the signature in r, s of hash using the public key, pub. Its 116// return value records whether the signature is valid. Most applications should 117// use VerifyASN1 instead of dealing directly with r, s. 118// 119// The inputs are not considered confidential, and may leak through timing side 120// channels, or if an attacker has control of part of the inputs. 121func Verify(pub *PublicKey, hash []byte, r, s *big.Int) bool { 122 if r.Sign() <= 0 || s.Sign() <= 0 { 123 return false 124 } 125 sig, err := encodeSignature(r.Bytes(), s.Bytes()) 126 if err != nil { 127 return false 128 } 129 return VerifyASN1(pub, hash, sig) 130} 131 132func verifyLegacy(pub *PublicKey, hash []byte, sig []byte) bool { 133 rBytes, sBytes, err := parseSignature(sig) 134 if err != nil { 135 return false 136 } 137 r, s := new(big.Int).SetBytes(rBytes), new(big.Int).SetBytes(sBytes) 138 139 c := pub.Curve 140 N := c.Params().N 141 142 if r.Sign() <= 0 || s.Sign() <= 0 { 143 return false 144 } 145 if r.Cmp(N) >= 0 || s.Cmp(N) >= 0 { 146 return false 147 } 148 149 // SEC 1, Version 2.0, Section 4.1.4 150 e := hashToInt(hash, c) 151 w := new(big.Int).ModInverse(s, N) 152 153 u1 := e.Mul(e, w) 154 u1.Mod(u1, N) 155 u2 := w.Mul(r, w) 156 u2.Mod(u2, N) 157 158 x1, y1 := c.ScalarBaseMult(u1.Bytes()) 159 x2, y2 := c.ScalarMult(pub.X, pub.Y, u2.Bytes()) 160 x, y := c.Add(x1, y1, x2, y2) 161 162 if x.Sign() == 0 && y.Sign() == 0 { 163 return false 164 } 165 x.Mod(x, N) 166 return x.Cmp(r) == 0 167} 168 169var one = new(big.Int).SetInt64(1) 170 171// randFieldElement returns a random element of the order of the given 172// curve using the procedure given in FIPS 186-4, Appendix B.5.2. 173func randFieldElement(c elliptic.Curve, rand io.Reader) (k *big.Int, err error) { 174 // See randomPoint for notes on the algorithm. This has to match, or s390x 175 // signatures will come out different from other architectures, which will 176 // break TLS recorded tests. 177 for { 178 N := c.Params().N 179 b := make([]byte, (N.BitLen()+7)/8) 180 if _, err = io.ReadFull(rand, b); err != nil { 181 return 182 } 183 if excess := len(b)*8 - N.BitLen(); excess > 0 { 184 b[0] >>= excess 185 } 186 k = new(big.Int).SetBytes(b) 187 if k.Sign() != 0 && k.Cmp(N) < 0 { 188 return 189 } 190 } 191} 192