1// Copyright 2016 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5package rsa_test
6
7import (
8	"crypto"
9	"crypto/aes"
10	"crypto/cipher"
11	"crypto/rand"
12	"crypto/rsa"
13	"crypto/sha256"
14	"encoding/hex"
15	"fmt"
16	"os"
17)
18
19// RSA is able to encrypt only a very limited amount of data. In order
20// to encrypt reasonable amounts of data a hybrid scheme is commonly
21// used: RSA is used to encrypt a key for a symmetric primitive like
22// AES-GCM.
23//
24// Before encrypting, data is “padded” by embedding it in a known
25// structure. This is done for a number of reasons, but the most
26// obvious is to ensure that the value is large enough that the
27// exponentiation is larger than the modulus. (Otherwise it could be
28// decrypted with a square-root.)
29//
30// In these designs, when using PKCS #1 v1.5, it's vitally important to
31// avoid disclosing whether the received RSA message was well-formed
32// (that is, whether the result of decrypting is a correctly padded
33// message) because this leaks secret information.
34// DecryptPKCS1v15SessionKey is designed for this situation and copies
35// the decrypted, symmetric key (if well-formed) in constant-time over
36// a buffer that contains a random key. Thus, if the RSA result isn't
37// well-formed, the implementation uses a random key in constant time.
38func ExampleDecryptPKCS1v15SessionKey() {
39	// The hybrid scheme should use at least a 16-byte symmetric key. Here
40	// we read the random key that will be used if the RSA decryption isn't
41	// well-formed.
42	key := make([]byte, 32)
43	if _, err := rand.Read(key); err != nil {
44		panic("RNG failure")
45	}
46
47	rsaCiphertext, _ := hex.DecodeString("aabbccddeeff")
48
49	if err := rsa.DecryptPKCS1v15SessionKey(nil, rsaPrivateKey, rsaCiphertext, key); err != nil {
50		// Any errors that result will be “public” – meaning that they
51		// can be determined without any secret information. (For
52		// instance, if the length of key is impossible given the RSA
53		// public key.)
54		fmt.Fprintf(os.Stderr, "Error from RSA decryption: %s\n", err)
55		return
56	}
57
58	// Given the resulting key, a symmetric scheme can be used to decrypt a
59	// larger ciphertext.
60	block, err := aes.NewCipher(key)
61	if err != nil {
62		panic("aes.NewCipher failed: " + err.Error())
63	}
64
65	// Since the key is random, using a fixed nonce is acceptable as the
66	// (key, nonce) pair will still be unique, as required.
67	var zeroNonce [12]byte
68	aead, err := cipher.NewGCM(block)
69	if err != nil {
70		panic("cipher.NewGCM failed: " + err.Error())
71	}
72	ciphertext, _ := hex.DecodeString("00112233445566")
73	plaintext, err := aead.Open(nil, zeroNonce[:], ciphertext, nil)
74	if err != nil {
75		// The RSA ciphertext was badly formed; the decryption will
76		// fail here because the AES-GCM key will be incorrect.
77		fmt.Fprintf(os.Stderr, "Error decrypting: %s\n", err)
78		return
79	}
80
81	fmt.Printf("Plaintext: %s\n", plaintext)
82}
83
84func ExampleSignPKCS1v15() {
85	message := []byte("message to be signed")
86
87	// Only small messages can be signed directly; thus the hash of a
88	// message, rather than the message itself, is signed. This requires
89	// that the hash function be collision resistant. SHA-256 is the
90	// least-strong hash function that should be used for this at the time
91	// of writing (2016).
92	hashed := sha256.Sum256(message)
93
94	signature, err := rsa.SignPKCS1v15(nil, rsaPrivateKey, crypto.SHA256, hashed[:])
95	if err != nil {
96		fmt.Fprintf(os.Stderr, "Error from signing: %s\n", err)
97		return
98	}
99
100	fmt.Printf("Signature: %x\n", signature)
101}
102
103func ExampleVerifyPKCS1v15() {
104	message := []byte("message to be signed")
105	signature, _ := hex.DecodeString("ad2766728615cc7a746cc553916380ca7bfa4f8983b990913bc69eb0556539a350ff0f8fe65ddfd3ebe91fe1c299c2fac135bc8c61e26be44ee259f2f80c1530")
106
107	// Only small messages can be signed directly; thus the hash of a
108	// message, rather than the message itself, is signed. This requires
109	// that the hash function be collision resistant. SHA-256 is the
110	// least-strong hash function that should be used for this at the time
111	// of writing (2016).
112	hashed := sha256.Sum256(message)
113
114	err := rsa.VerifyPKCS1v15(&rsaPrivateKey.PublicKey, crypto.SHA256, hashed[:], signature)
115	if err != nil {
116		fmt.Fprintf(os.Stderr, "Error from verification: %s\n", err)
117		return
118	}
119
120	// signature is a valid signature of message from the public key.
121}
122
123func ExampleEncryptOAEP() {
124	secretMessage := []byte("send reinforcements, we're going to advance")
125	label := []byte("orders")
126
127	// crypto/rand.Reader is a good source of entropy for randomizing the
128	// encryption function.
129	rng := rand.Reader
130
131	ciphertext, err := rsa.EncryptOAEP(sha256.New(), rng, &test2048Key.PublicKey, secretMessage, label)
132	if err != nil {
133		fmt.Fprintf(os.Stderr, "Error from encryption: %s\n", err)
134		return
135	}
136
137	// Since encryption is a randomized function, ciphertext will be
138	// different each time.
139	fmt.Printf("Ciphertext: %x\n", ciphertext)
140}
141
142func ExampleDecryptOAEP() {
143	ciphertext, _ := hex.DecodeString("4d1ee10e8f286390258c51a5e80802844c3e6358ad6690b7285218a7c7ed7fc3a4c7b950fbd04d4b0239cc060dcc7065ca6f84c1756deb71ca5685cadbb82be025e16449b905c568a19c088a1abfad54bf7ecc67a7df39943ec511091a34c0f2348d04e058fcff4d55644de3cd1d580791d4524b92f3e91695582e6e340a1c50b6c6d78e80b4e42c5b4d45e479b492de42bbd39cc642ebb80226bb5200020d501b24a37bcc2ec7f34e596b4fd6b063de4858dbf5a4e3dd18e262eda0ec2d19dbd8e890d672b63d368768360b20c0b6b8592a438fa275e5fa7f60bef0dd39673fd3989cc54d2cb80c08fcd19dacbc265ee1c6014616b0e04ea0328c2a04e73460")
144	label := []byte("orders")
145
146	plaintext, err := rsa.DecryptOAEP(sha256.New(), nil, test2048Key, ciphertext, label)
147	if err != nil {
148		fmt.Fprintf(os.Stderr, "Error from decryption: %s\n", err)
149		return
150	}
151
152	fmt.Printf("Plaintext: %s\n", plaintext)
153
154	// Remember that encryption only provides confidentiality. The
155	// ciphertext should be signed before authenticity is assumed and, even
156	// then, consider that messages might be reordered.
157}
158