1// Copyright 2009 The Go Authors. All rights reserved. 2// Use of this source code is governed by a BSD-style 3// license that can be found in the LICENSE file. 4 5package rsa 6 7import ( 8 "bytes" 9 "crypto" 10 "crypto/internal/boring" 11 "crypto/internal/randutil" 12 "crypto/subtle" 13 "errors" 14 "io" 15) 16 17// This file implements encryption and decryption using PKCS #1 v1.5 padding. 18 19// PKCS1v15DecryptOptions is for passing options to PKCS #1 v1.5 decryption using 20// the [crypto.Decrypter] interface. 21type PKCS1v15DecryptOptions struct { 22 // SessionKeyLen is the length of the session key that is being 23 // decrypted. If not zero, then a padding error during decryption will 24 // cause a random plaintext of this length to be returned rather than 25 // an error. These alternatives happen in constant time. 26 SessionKeyLen int 27} 28 29// EncryptPKCS1v15 encrypts the given message with RSA and the padding 30// scheme from PKCS #1 v1.5. The message must be no longer than the 31// length of the public modulus minus 11 bytes. 32// 33// The random parameter is used as a source of entropy to ensure that 34// encrypting the same message twice doesn't result in the same 35// ciphertext. Most applications should use [crypto/rand.Reader] 36// as random. Note that the returned ciphertext does not depend 37// deterministically on the bytes read from random, and may change 38// between calls and/or between versions. 39// 40// WARNING: use of this function to encrypt plaintexts other than 41// session keys is dangerous. Use RSA OAEP in new protocols. 42func EncryptPKCS1v15(random io.Reader, pub *PublicKey, msg []byte) ([]byte, error) { 43 randutil.MaybeReadByte(random) 44 45 if err := checkPub(pub); err != nil { 46 return nil, err 47 } 48 k := pub.Size() 49 if len(msg) > k-11 { 50 return nil, ErrMessageTooLong 51 } 52 53 if boring.Enabled && random == boring.RandReader { 54 bkey, err := boringPublicKey(pub) 55 if err != nil { 56 return nil, err 57 } 58 return boring.EncryptRSAPKCS1(bkey, msg) 59 } 60 boring.UnreachableExceptTests() 61 62 // EM = 0x00 || 0x02 || PS || 0x00 || M 63 em := make([]byte, k) 64 em[1] = 2 65 ps, mm := em[2:len(em)-len(msg)-1], em[len(em)-len(msg):] 66 err := nonZeroRandomBytes(ps, random) 67 if err != nil { 68 return nil, err 69 } 70 em[len(em)-len(msg)-1] = 0 71 copy(mm, msg) 72 73 if boring.Enabled { 74 var bkey *boring.PublicKeyRSA 75 bkey, err = boringPublicKey(pub) 76 if err != nil { 77 return nil, err 78 } 79 return boring.EncryptRSANoPadding(bkey, em) 80 } 81 82 return encrypt(pub, em) 83} 84 85// DecryptPKCS1v15 decrypts a plaintext using RSA and the padding scheme from PKCS #1 v1.5. 86// The random parameter is legacy and ignored, and it can be nil. 87// 88// Note that whether this function returns an error or not discloses secret 89// information. If an attacker can cause this function to run repeatedly and 90// learn whether each instance returned an error then they can decrypt and 91// forge signatures as if they had the private key. See 92// DecryptPKCS1v15SessionKey for a way of solving this problem. 93func DecryptPKCS1v15(random io.Reader, priv *PrivateKey, ciphertext []byte) ([]byte, error) { 94 if err := checkPub(&priv.PublicKey); err != nil { 95 return nil, err 96 } 97 98 if boring.Enabled { 99 bkey, err := boringPrivateKey(priv) 100 if err != nil { 101 return nil, err 102 } 103 out, err := boring.DecryptRSAPKCS1(bkey, ciphertext) 104 if err != nil { 105 return nil, ErrDecryption 106 } 107 return out, nil 108 } 109 110 valid, out, index, err := decryptPKCS1v15(priv, ciphertext) 111 if err != nil { 112 return nil, err 113 } 114 if valid == 0 { 115 return nil, ErrDecryption 116 } 117 return out[index:], nil 118} 119 120// DecryptPKCS1v15SessionKey decrypts a session key using RSA and the padding 121// scheme from PKCS #1 v1.5. The random parameter is legacy and ignored, and it 122// can be nil. 123// 124// DecryptPKCS1v15SessionKey returns an error if the ciphertext is the wrong 125// length or if the ciphertext is greater than the public modulus. Otherwise, no 126// error is returned. If the padding is valid, the resulting plaintext message 127// is copied into key. Otherwise, key is unchanged. These alternatives occur in 128// constant time. It is intended that the user of this function generate a 129// random session key beforehand and continue the protocol with the resulting 130// value. 131// 132// Note that if the session key is too small then it may be possible for an 133// attacker to brute-force it. If they can do that then they can learn whether a 134// random value was used (because it'll be different for the same ciphertext) 135// and thus whether the padding was correct. This also defeats the point of this 136// function. Using at least a 16-byte key will protect against this attack. 137// 138// This method implements protections against Bleichenbacher chosen ciphertext 139// attacks [0] described in RFC 3218 Section 2.3.2 [1]. While these protections 140// make a Bleichenbacher attack significantly more difficult, the protections 141// are only effective if the rest of the protocol which uses 142// DecryptPKCS1v15SessionKey is designed with these considerations in mind. In 143// particular, if any subsequent operations which use the decrypted session key 144// leak any information about the key (e.g. whether it is a static or random 145// key) then the mitigations are defeated. This method must be used extremely 146// carefully, and typically should only be used when absolutely necessary for 147// compatibility with an existing protocol (such as TLS) that is designed with 148// these properties in mind. 149// 150// - [0] “Chosen Ciphertext Attacks Against Protocols Based on the RSA Encryption 151// Standard PKCS #1”, Daniel Bleichenbacher, Advances in Cryptology (Crypto '98) 152// - [1] RFC 3218, Preventing the Million Message Attack on CMS, 153// https://www.rfc-editor.org/rfc/rfc3218.html 154func DecryptPKCS1v15SessionKey(random io.Reader, priv *PrivateKey, ciphertext []byte, key []byte) error { 155 if err := checkPub(&priv.PublicKey); err != nil { 156 return err 157 } 158 k := priv.Size() 159 if k-(len(key)+3+8) < 0 { 160 return ErrDecryption 161 } 162 163 valid, em, index, err := decryptPKCS1v15(priv, ciphertext) 164 if err != nil { 165 return err 166 } 167 168 if len(em) != k { 169 // This should be impossible because decryptPKCS1v15 always 170 // returns the full slice. 171 return ErrDecryption 172 } 173 174 valid &= subtle.ConstantTimeEq(int32(len(em)-index), int32(len(key))) 175 subtle.ConstantTimeCopy(valid, key, em[len(em)-len(key):]) 176 return nil 177} 178 179// decryptPKCS1v15 decrypts ciphertext using priv. It returns one or zero in 180// valid that indicates whether the plaintext was correctly structured. 181// In either case, the plaintext is returned in em so that it may be read 182// independently of whether it was valid in order to maintain constant memory 183// access patterns. If the plaintext was valid then index contains the index of 184// the original message in em, to allow constant time padding removal. 185func decryptPKCS1v15(priv *PrivateKey, ciphertext []byte) (valid int, em []byte, index int, err error) { 186 k := priv.Size() 187 if k < 11 { 188 err = ErrDecryption 189 return 190 } 191 192 if boring.Enabled { 193 var bkey *boring.PrivateKeyRSA 194 bkey, err = boringPrivateKey(priv) 195 if err != nil { 196 return 197 } 198 em, err = boring.DecryptRSANoPadding(bkey, ciphertext) 199 if err != nil { 200 return 201 } 202 } else { 203 em, err = decrypt(priv, ciphertext, noCheck) 204 if err != nil { 205 return 206 } 207 } 208 209 firstByteIsZero := subtle.ConstantTimeByteEq(em[0], 0) 210 secondByteIsTwo := subtle.ConstantTimeByteEq(em[1], 2) 211 212 // The remainder of the plaintext must be a string of non-zero random 213 // octets, followed by a 0, followed by the message. 214 // lookingForIndex: 1 iff we are still looking for the zero. 215 // index: the offset of the first zero byte. 216 lookingForIndex := 1 217 218 for i := 2; i < len(em); i++ { 219 equals0 := subtle.ConstantTimeByteEq(em[i], 0) 220 index = subtle.ConstantTimeSelect(lookingForIndex&equals0, i, index) 221 lookingForIndex = subtle.ConstantTimeSelect(equals0, 0, lookingForIndex) 222 } 223 224 // The PS padding must be at least 8 bytes long, and it starts two 225 // bytes into em. 226 validPS := subtle.ConstantTimeLessOrEq(2+8, index) 227 228 valid = firstByteIsZero & secondByteIsTwo & (^lookingForIndex & 1) & validPS 229 index = subtle.ConstantTimeSelect(valid, index+1, 0) 230 return valid, em, index, nil 231} 232 233// nonZeroRandomBytes fills the given slice with non-zero random octets. 234func nonZeroRandomBytes(s []byte, random io.Reader) (err error) { 235 _, err = io.ReadFull(random, s) 236 if err != nil { 237 return 238 } 239 240 for i := 0; i < len(s); i++ { 241 for s[i] == 0 { 242 _, err = io.ReadFull(random, s[i:i+1]) 243 if err != nil { 244 return 245 } 246 // In tests, the PRNG may return all zeros so we do 247 // this to break the loop. 248 s[i] ^= 0x42 249 } 250 } 251 252 return 253} 254 255// These are ASN1 DER structures: 256// 257// DigestInfo ::= SEQUENCE { 258// digestAlgorithm AlgorithmIdentifier, 259// digest OCTET STRING 260// } 261// 262// For performance, we don't use the generic ASN1 encoder. Rather, we 263// precompute a prefix of the digest value that makes a valid ASN1 DER string 264// with the correct contents. 265var hashPrefixes = map[crypto.Hash][]byte{ 266 crypto.MD5: {0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x02, 0x05, 0x05, 0x00, 0x04, 0x10}, 267 crypto.SHA1: {0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a, 0x05, 0x00, 0x04, 0x14}, 268 crypto.SHA224: {0x30, 0x2d, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x04, 0x05, 0x00, 0x04, 0x1c}, 269 crypto.SHA256: {0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05, 0x00, 0x04, 0x20}, 270 crypto.SHA384: {0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, 0x05, 0x00, 0x04, 0x30}, 271 crypto.SHA512: {0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 0x05, 0x00, 0x04, 0x40}, 272 crypto.MD5SHA1: {}, // A special TLS case which doesn't use an ASN1 prefix. 273 crypto.RIPEMD160: {0x30, 0x20, 0x30, 0x08, 0x06, 0x06, 0x28, 0xcf, 0x06, 0x03, 0x00, 0x31, 0x04, 0x14}, 274} 275 276// SignPKCS1v15 calculates the signature of hashed using 277// RSASSA-PKCS1-V1_5-SIGN from RSA PKCS #1 v1.5. Note that hashed must 278// be the result of hashing the input message using the given hash 279// function. If hash is zero, hashed is signed directly. This isn't 280// advisable except for interoperability. 281// 282// The random parameter is legacy and ignored, and it can be nil. 283// 284// This function is deterministic. Thus, if the set of possible 285// messages is small, an attacker may be able to build a map from 286// messages to signatures and identify the signed messages. As ever, 287// signatures provide authenticity, not confidentiality. 288func SignPKCS1v15(random io.Reader, priv *PrivateKey, hash crypto.Hash, hashed []byte) ([]byte, error) { 289 // pkcs1v15ConstructEM is called before boring.SignRSAPKCS1v15 to return 290 // consistent errors, including ErrMessageTooLong. 291 em, err := pkcs1v15ConstructEM(&priv.PublicKey, hash, hashed) 292 if err != nil { 293 return nil, err 294 } 295 296 if boring.Enabled { 297 bkey, err := boringPrivateKey(priv) 298 if err != nil { 299 return nil, err 300 } 301 return boring.SignRSAPKCS1v15(bkey, hash, hashed) 302 } 303 304 return decrypt(priv, em, withCheck) 305} 306 307func pkcs1v15ConstructEM(pub *PublicKey, hash crypto.Hash, hashed []byte) ([]byte, error) { 308 // Special case: crypto.Hash(0) is used to indicate that the data is 309 // signed directly. 310 var prefix []byte 311 if hash != 0 { 312 if len(hashed) != hash.Size() { 313 return nil, errors.New("crypto/rsa: input must be hashed message") 314 } 315 var ok bool 316 prefix, ok = hashPrefixes[hash] 317 if !ok { 318 return nil, errors.New("crypto/rsa: unsupported hash function") 319 } 320 } 321 322 // EM = 0x00 || 0x01 || PS || 0x00 || T 323 k := pub.Size() 324 if k < len(prefix)+len(hashed)+2+8+1 { 325 return nil, ErrMessageTooLong 326 } 327 em := make([]byte, k) 328 em[1] = 1 329 for i := 2; i < k-len(prefix)-len(hashed)-1; i++ { 330 em[i] = 0xff 331 } 332 copy(em[k-len(prefix)-len(hashed):], prefix) 333 copy(em[k-len(hashed):], hashed) 334 return em, nil 335} 336 337// VerifyPKCS1v15 verifies an RSA PKCS #1 v1.5 signature. 338// hashed is the result of hashing the input message using the given hash 339// function and sig is the signature. A valid signature is indicated by 340// returning a nil error. If hash is zero then hashed is used directly. This 341// isn't advisable except for interoperability. 342// 343// The inputs are not considered confidential, and may leak through timing side 344// channels, or if an attacker has control of part of the inputs. 345func VerifyPKCS1v15(pub *PublicKey, hash crypto.Hash, hashed []byte, sig []byte) error { 346 if boring.Enabled { 347 bkey, err := boringPublicKey(pub) 348 if err != nil { 349 return err 350 } 351 if err := boring.VerifyRSAPKCS1v15(bkey, hash, hashed, sig); err != nil { 352 return ErrVerification 353 } 354 return nil 355 } 356 357 // RFC 8017 Section 8.2.2: If the length of the signature S is not k 358 // octets (where k is the length in octets of the RSA modulus n), output 359 // "invalid signature" and stop. 360 if pub.Size() != len(sig) { 361 return ErrVerification 362 } 363 364 em, err := encrypt(pub, sig) 365 if err != nil { 366 return ErrVerification 367 } 368 369 expected, err := pkcs1v15ConstructEM(pub, hash, hashed) 370 if err != nil { 371 return ErrVerification 372 } 373 if !bytes.Equal(em, expected) { 374 return ErrVerification 375 } 376 377 return nil 378} 379