1// Copyright 2010 The Go Authors. All rights reserved. 2// Use of this source code is governed by a BSD-style 3// license that can be found in the LICENSE file. 4 5// TLS low level connection and record layer 6 7package tls 8 9import ( 10 "bytes" 11 "context" 12 "crypto/cipher" 13 "crypto/subtle" 14 "crypto/x509" 15 "errors" 16 "fmt" 17 "hash" 18 "internal/godebug" 19 "io" 20 "net" 21 "sync" 22 "sync/atomic" 23 "time" 24) 25 26// A Conn represents a secured connection. 27// It implements the net.Conn interface. 28type Conn struct { 29 // constant 30 conn net.Conn 31 isClient bool 32 handshakeFn func(context.Context) error // (*Conn).clientHandshake or serverHandshake 33 quic *quicState // nil for non-QUIC connections 34 35 // isHandshakeComplete is true if the connection is currently transferring 36 // application data (i.e. is not currently processing a handshake). 37 // isHandshakeComplete is true implies handshakeErr == nil. 38 isHandshakeComplete atomic.Bool 39 // constant after handshake; protected by handshakeMutex 40 handshakeMutex sync.Mutex 41 handshakeErr error // error resulting from handshake 42 vers uint16 // TLS version 43 haveVers bool // version has been negotiated 44 config *Config // configuration passed to constructor 45 // handshakes counts the number of handshakes performed on the 46 // connection so far. If renegotiation is disabled then this is either 47 // zero or one. 48 handshakes int 49 extMasterSecret bool 50 didResume bool // whether this connection was a session resumption 51 didHRR bool // whether a HelloRetryRequest was sent/received 52 cipherSuite uint16 53 curveID CurveID 54 ocspResponse []byte // stapled OCSP response 55 scts [][]byte // signed certificate timestamps from server 56 peerCertificates []*x509.Certificate 57 // activeCertHandles contains the cache handles to certificates in 58 // peerCertificates that are used to track active references. 59 activeCertHandles []*activeCert 60 // verifiedChains contains the certificate chains that we built, as 61 // opposed to the ones presented by the server. 62 verifiedChains [][]*x509.Certificate 63 // serverName contains the server name indicated by the client, if any. 64 serverName string 65 // secureRenegotiation is true if the server echoed the secure 66 // renegotiation extension. (This is meaningless as a server because 67 // renegotiation is not supported in that case.) 68 secureRenegotiation bool 69 // ekm is a closure for exporting keying material. 70 ekm func(label string, context []byte, length int) ([]byte, error) 71 // resumptionSecret is the resumption_master_secret for handling 72 // or sending NewSessionTicket messages. 73 resumptionSecret []byte 74 echAccepted bool 75 76 // ticketKeys is the set of active session ticket keys for this 77 // connection. The first one is used to encrypt new tickets and 78 // all are tried to decrypt tickets. 79 ticketKeys []ticketKey 80 81 // clientFinishedIsFirst is true if the client sent the first Finished 82 // message during the most recent handshake. This is recorded because 83 // the first transmitted Finished message is the tls-unique 84 // channel-binding value. 85 clientFinishedIsFirst bool 86 87 // closeNotifyErr is any error from sending the alertCloseNotify record. 88 closeNotifyErr error 89 // closeNotifySent is true if the Conn attempted to send an 90 // alertCloseNotify record. 91 closeNotifySent bool 92 93 // clientFinished and serverFinished contain the Finished message sent 94 // by the client or server in the most recent handshake. This is 95 // retained to support the renegotiation extension and tls-unique 96 // channel-binding. 97 clientFinished [12]byte 98 serverFinished [12]byte 99 100 // clientProtocol is the negotiated ALPN protocol. 101 clientProtocol string 102 103 // input/output 104 in, out halfConn 105 rawInput bytes.Buffer // raw input, starting with a record header 106 input bytes.Reader // application data waiting to be read, from rawInput.Next 107 hand bytes.Buffer // handshake data waiting to be read 108 buffering bool // whether records are buffered in sendBuf 109 sendBuf []byte // a buffer of records waiting to be sent 110 111 // bytesSent counts the bytes of application data sent. 112 // packetsSent counts packets. 113 bytesSent int64 114 packetsSent int64 115 116 // retryCount counts the number of consecutive non-advancing records 117 // received by Conn.readRecord. That is, records that neither advance the 118 // handshake, nor deliver application data. Protected by in.Mutex. 119 retryCount int 120 121 // activeCall indicates whether Close has been call in the low bit. 122 // the rest of the bits are the number of goroutines in Conn.Write. 123 activeCall atomic.Int32 124 125 tmp [16]byte 126} 127 128// Access to net.Conn methods. 129// Cannot just embed net.Conn because that would 130// export the struct field too. 131 132// LocalAddr returns the local network address. 133func (c *Conn) LocalAddr() net.Addr { 134 return c.conn.LocalAddr() 135} 136 137// RemoteAddr returns the remote network address. 138func (c *Conn) RemoteAddr() net.Addr { 139 return c.conn.RemoteAddr() 140} 141 142// SetDeadline sets the read and write deadlines associated with the connection. 143// A zero value for t means [Conn.Read] and [Conn.Write] will not time out. 144// After a Write has timed out, the TLS state is corrupt and all future writes will return the same error. 145func (c *Conn) SetDeadline(t time.Time) error { 146 return c.conn.SetDeadline(t) 147} 148 149// SetReadDeadline sets the read deadline on the underlying connection. 150// A zero value for t means [Conn.Read] will not time out. 151func (c *Conn) SetReadDeadline(t time.Time) error { 152 return c.conn.SetReadDeadline(t) 153} 154 155// SetWriteDeadline sets the write deadline on the underlying connection. 156// A zero value for t means [Conn.Write] will not time out. 157// After a [Conn.Write] has timed out, the TLS state is corrupt and all future writes will return the same error. 158func (c *Conn) SetWriteDeadline(t time.Time) error { 159 return c.conn.SetWriteDeadline(t) 160} 161 162// NetConn returns the underlying connection that is wrapped by c. 163// Note that writing to or reading from this connection directly will corrupt the 164// TLS session. 165func (c *Conn) NetConn() net.Conn { 166 return c.conn 167} 168 169// A halfConn represents one direction of the record layer 170// connection, either sending or receiving. 171type halfConn struct { 172 sync.Mutex 173 174 err error // first permanent error 175 version uint16 // protocol version 176 cipher any // cipher algorithm 177 mac hash.Hash 178 seq [8]byte // 64-bit sequence number 179 180 scratchBuf [13]byte // to avoid allocs; interface method args escape 181 182 nextCipher any // next encryption state 183 nextMac hash.Hash // next MAC algorithm 184 185 level QUICEncryptionLevel // current QUIC encryption level 186 trafficSecret []byte // current TLS 1.3 traffic secret 187} 188 189type permanentError struct { 190 err net.Error 191} 192 193func (e *permanentError) Error() string { return e.err.Error() } 194func (e *permanentError) Unwrap() error { return e.err } 195func (e *permanentError) Timeout() bool { return e.err.Timeout() } 196func (e *permanentError) Temporary() bool { return false } 197 198func (hc *halfConn) setErrorLocked(err error) error { 199 if e, ok := err.(net.Error); ok { 200 hc.err = &permanentError{err: e} 201 } else { 202 hc.err = err 203 } 204 return hc.err 205} 206 207// prepareCipherSpec sets the encryption and MAC states 208// that a subsequent changeCipherSpec will use. 209func (hc *halfConn) prepareCipherSpec(version uint16, cipher any, mac hash.Hash) { 210 hc.version = version 211 hc.nextCipher = cipher 212 hc.nextMac = mac 213} 214 215// changeCipherSpec changes the encryption and MAC states 216// to the ones previously passed to prepareCipherSpec. 217func (hc *halfConn) changeCipherSpec() error { 218 if hc.nextCipher == nil || hc.version == VersionTLS13 { 219 return alertInternalError 220 } 221 hc.cipher = hc.nextCipher 222 hc.mac = hc.nextMac 223 hc.nextCipher = nil 224 hc.nextMac = nil 225 for i := range hc.seq { 226 hc.seq[i] = 0 227 } 228 return nil 229} 230 231func (hc *halfConn) setTrafficSecret(suite *cipherSuiteTLS13, level QUICEncryptionLevel, secret []byte) { 232 hc.trafficSecret = secret 233 hc.level = level 234 key, iv := suite.trafficKey(secret) 235 hc.cipher = suite.aead(key, iv) 236 for i := range hc.seq { 237 hc.seq[i] = 0 238 } 239} 240 241// incSeq increments the sequence number. 242func (hc *halfConn) incSeq() { 243 for i := 7; i >= 0; i-- { 244 hc.seq[i]++ 245 if hc.seq[i] != 0 { 246 return 247 } 248 } 249 250 // Not allowed to let sequence number wrap. 251 // Instead, must renegotiate before it does. 252 // Not likely enough to bother. 253 panic("TLS: sequence number wraparound") 254} 255 256// explicitNonceLen returns the number of bytes of explicit nonce or IV included 257// in each record. Explicit nonces are present only in CBC modes after TLS 1.0 258// and in certain AEAD modes in TLS 1.2. 259func (hc *halfConn) explicitNonceLen() int { 260 if hc.cipher == nil { 261 return 0 262 } 263 264 switch c := hc.cipher.(type) { 265 case cipher.Stream: 266 return 0 267 case aead: 268 return c.explicitNonceLen() 269 case cbcMode: 270 // TLS 1.1 introduced a per-record explicit IV to fix the BEAST attack. 271 if hc.version >= VersionTLS11 { 272 return c.BlockSize() 273 } 274 return 0 275 default: 276 panic("unknown cipher type") 277 } 278} 279 280// extractPadding returns, in constant time, the length of the padding to remove 281// from the end of payload. It also returns a byte which is equal to 255 if the 282// padding was valid and 0 otherwise. See RFC 2246, Section 6.2.3.2. 283func extractPadding(payload []byte) (toRemove int, good byte) { 284 if len(payload) < 1 { 285 return 0, 0 286 } 287 288 paddingLen := payload[len(payload)-1] 289 t := uint(len(payload)-1) - uint(paddingLen) 290 // if len(payload) >= (paddingLen - 1) then the MSB of t is zero 291 good = byte(int32(^t) >> 31) 292 293 // The maximum possible padding length plus the actual length field 294 toCheck := 256 295 // The length of the padded data is public, so we can use an if here 296 if toCheck > len(payload) { 297 toCheck = len(payload) 298 } 299 300 for i := 0; i < toCheck; i++ { 301 t := uint(paddingLen) - uint(i) 302 // if i <= paddingLen then the MSB of t is zero 303 mask := byte(int32(^t) >> 31) 304 b := payload[len(payload)-1-i] 305 good &^= mask&paddingLen ^ mask&b 306 } 307 308 // We AND together the bits of good and replicate the result across 309 // all the bits. 310 good &= good << 4 311 good &= good << 2 312 good &= good << 1 313 good = uint8(int8(good) >> 7) 314 315 // Zero the padding length on error. This ensures any unchecked bytes 316 // are included in the MAC. Otherwise, an attacker that could 317 // distinguish MAC failures from padding failures could mount an attack 318 // similar to POODLE in SSL 3.0: given a good ciphertext that uses a 319 // full block's worth of padding, replace the final block with another 320 // block. If the MAC check passed but the padding check failed, the 321 // last byte of that block decrypted to the block size. 322 // 323 // See also macAndPaddingGood logic below. 324 paddingLen &= good 325 326 toRemove = int(paddingLen) + 1 327 return 328} 329 330func roundUp(a, b int) int { 331 return a + (b-a%b)%b 332} 333 334// cbcMode is an interface for block ciphers using cipher block chaining. 335type cbcMode interface { 336 cipher.BlockMode 337 SetIV([]byte) 338} 339 340// decrypt authenticates and decrypts the record if protection is active at 341// this stage. The returned plaintext might overlap with the input. 342func (hc *halfConn) decrypt(record []byte) ([]byte, recordType, error) { 343 var plaintext []byte 344 typ := recordType(record[0]) 345 payload := record[recordHeaderLen:] 346 347 // In TLS 1.3, change_cipher_spec messages are to be ignored without being 348 // decrypted. See RFC 8446, Appendix D.4. 349 if hc.version == VersionTLS13 && typ == recordTypeChangeCipherSpec { 350 return payload, typ, nil 351 } 352 353 paddingGood := byte(255) 354 paddingLen := 0 355 356 explicitNonceLen := hc.explicitNonceLen() 357 358 if hc.cipher != nil { 359 switch c := hc.cipher.(type) { 360 case cipher.Stream: 361 c.XORKeyStream(payload, payload) 362 case aead: 363 if len(payload) < explicitNonceLen { 364 return nil, 0, alertBadRecordMAC 365 } 366 nonce := payload[:explicitNonceLen] 367 if len(nonce) == 0 { 368 nonce = hc.seq[:] 369 } 370 payload = payload[explicitNonceLen:] 371 372 var additionalData []byte 373 if hc.version == VersionTLS13 { 374 additionalData = record[:recordHeaderLen] 375 } else { 376 additionalData = append(hc.scratchBuf[:0], hc.seq[:]...) 377 additionalData = append(additionalData, record[:3]...) 378 n := len(payload) - c.Overhead() 379 additionalData = append(additionalData, byte(n>>8), byte(n)) 380 } 381 382 var err error 383 plaintext, err = c.Open(payload[:0], nonce, payload, additionalData) 384 if err != nil { 385 return nil, 0, alertBadRecordMAC 386 } 387 case cbcMode: 388 blockSize := c.BlockSize() 389 minPayload := explicitNonceLen + roundUp(hc.mac.Size()+1, blockSize) 390 if len(payload)%blockSize != 0 || len(payload) < minPayload { 391 return nil, 0, alertBadRecordMAC 392 } 393 394 if explicitNonceLen > 0 { 395 c.SetIV(payload[:explicitNonceLen]) 396 payload = payload[explicitNonceLen:] 397 } 398 c.CryptBlocks(payload, payload) 399 400 // In a limited attempt to protect against CBC padding oracles like 401 // Lucky13, the data past paddingLen (which is secret) is passed to 402 // the MAC function as extra data, to be fed into the HMAC after 403 // computing the digest. This makes the MAC roughly constant time as 404 // long as the digest computation is constant time and does not 405 // affect the subsequent write, modulo cache effects. 406 paddingLen, paddingGood = extractPadding(payload) 407 default: 408 panic("unknown cipher type") 409 } 410 411 if hc.version == VersionTLS13 { 412 if typ != recordTypeApplicationData { 413 return nil, 0, alertUnexpectedMessage 414 } 415 if len(plaintext) > maxPlaintext+1 { 416 return nil, 0, alertRecordOverflow 417 } 418 // Remove padding and find the ContentType scanning from the end. 419 for i := len(plaintext) - 1; i >= 0; i-- { 420 if plaintext[i] != 0 { 421 typ = recordType(plaintext[i]) 422 plaintext = plaintext[:i] 423 break 424 } 425 if i == 0 { 426 return nil, 0, alertUnexpectedMessage 427 } 428 } 429 } 430 } else { 431 plaintext = payload 432 } 433 434 if hc.mac != nil { 435 macSize := hc.mac.Size() 436 if len(payload) < macSize { 437 return nil, 0, alertBadRecordMAC 438 } 439 440 n := len(payload) - macSize - paddingLen 441 n = subtle.ConstantTimeSelect(int(uint32(n)>>31), 0, n) // if n < 0 { n = 0 } 442 record[3] = byte(n >> 8) 443 record[4] = byte(n) 444 remoteMAC := payload[n : n+macSize] 445 localMAC := tls10MAC(hc.mac, hc.scratchBuf[:0], hc.seq[:], record[:recordHeaderLen], payload[:n], payload[n+macSize:]) 446 447 // This is equivalent to checking the MACs and paddingGood 448 // separately, but in constant-time to prevent distinguishing 449 // padding failures from MAC failures. Depending on what value 450 // of paddingLen was returned on bad padding, distinguishing 451 // bad MAC from bad padding can lead to an attack. 452 // 453 // See also the logic at the end of extractPadding. 454 macAndPaddingGood := subtle.ConstantTimeCompare(localMAC, remoteMAC) & int(paddingGood) 455 if macAndPaddingGood != 1 { 456 return nil, 0, alertBadRecordMAC 457 } 458 459 plaintext = payload[:n] 460 } 461 462 hc.incSeq() 463 return plaintext, typ, nil 464} 465 466// sliceForAppend extends the input slice by n bytes. head is the full extended 467// slice, while tail is the appended part. If the original slice has sufficient 468// capacity no allocation is performed. 469func sliceForAppend(in []byte, n int) (head, tail []byte) { 470 if total := len(in) + n; cap(in) >= total { 471 head = in[:total] 472 } else { 473 head = make([]byte, total) 474 copy(head, in) 475 } 476 tail = head[len(in):] 477 return 478} 479 480// encrypt encrypts payload, adding the appropriate nonce and/or MAC, and 481// appends it to record, which must already contain the record header. 482func (hc *halfConn) encrypt(record, payload []byte, rand io.Reader) ([]byte, error) { 483 if hc.cipher == nil { 484 return append(record, payload...), nil 485 } 486 487 var explicitNonce []byte 488 if explicitNonceLen := hc.explicitNonceLen(); explicitNonceLen > 0 { 489 record, explicitNonce = sliceForAppend(record, explicitNonceLen) 490 if _, isCBC := hc.cipher.(cbcMode); !isCBC && explicitNonceLen < 16 { 491 // The AES-GCM construction in TLS has an explicit nonce so that the 492 // nonce can be random. However, the nonce is only 8 bytes which is 493 // too small for a secure, random nonce. Therefore we use the 494 // sequence number as the nonce. The 3DES-CBC construction also has 495 // an 8 bytes nonce but its nonces must be unpredictable (see RFC 496 // 5246, Appendix F.3), forcing us to use randomness. That's not 497 // 3DES' biggest problem anyway because the birthday bound on block 498 // collision is reached first due to its similarly small block size 499 // (see the Sweet32 attack). 500 copy(explicitNonce, hc.seq[:]) 501 } else { 502 if _, err := io.ReadFull(rand, explicitNonce); err != nil { 503 return nil, err 504 } 505 } 506 } 507 508 var dst []byte 509 switch c := hc.cipher.(type) { 510 case cipher.Stream: 511 mac := tls10MAC(hc.mac, hc.scratchBuf[:0], hc.seq[:], record[:recordHeaderLen], payload, nil) 512 record, dst = sliceForAppend(record, len(payload)+len(mac)) 513 c.XORKeyStream(dst[:len(payload)], payload) 514 c.XORKeyStream(dst[len(payload):], mac) 515 case aead: 516 nonce := explicitNonce 517 if len(nonce) == 0 { 518 nonce = hc.seq[:] 519 } 520 521 if hc.version == VersionTLS13 { 522 record = append(record, payload...) 523 524 // Encrypt the actual ContentType and replace the plaintext one. 525 record = append(record, record[0]) 526 record[0] = byte(recordTypeApplicationData) 527 528 n := len(payload) + 1 + c.Overhead() 529 record[3] = byte(n >> 8) 530 record[4] = byte(n) 531 532 record = c.Seal(record[:recordHeaderLen], 533 nonce, record[recordHeaderLen:], record[:recordHeaderLen]) 534 } else { 535 additionalData := append(hc.scratchBuf[:0], hc.seq[:]...) 536 additionalData = append(additionalData, record[:recordHeaderLen]...) 537 record = c.Seal(record, nonce, payload, additionalData) 538 } 539 case cbcMode: 540 mac := tls10MAC(hc.mac, hc.scratchBuf[:0], hc.seq[:], record[:recordHeaderLen], payload, nil) 541 blockSize := c.BlockSize() 542 plaintextLen := len(payload) + len(mac) 543 paddingLen := blockSize - plaintextLen%blockSize 544 record, dst = sliceForAppend(record, plaintextLen+paddingLen) 545 copy(dst, payload) 546 copy(dst[len(payload):], mac) 547 for i := plaintextLen; i < len(dst); i++ { 548 dst[i] = byte(paddingLen - 1) 549 } 550 if len(explicitNonce) > 0 { 551 c.SetIV(explicitNonce) 552 } 553 c.CryptBlocks(dst, dst) 554 default: 555 panic("unknown cipher type") 556 } 557 558 // Update length to include nonce, MAC and any block padding needed. 559 n := len(record) - recordHeaderLen 560 record[3] = byte(n >> 8) 561 record[4] = byte(n) 562 hc.incSeq() 563 564 return record, nil 565} 566 567// RecordHeaderError is returned when a TLS record header is invalid. 568type RecordHeaderError struct { 569 // Msg contains a human readable string that describes the error. 570 Msg string 571 // RecordHeader contains the five bytes of TLS record header that 572 // triggered the error. 573 RecordHeader [5]byte 574 // Conn provides the underlying net.Conn in the case that a client 575 // sent an initial handshake that didn't look like TLS. 576 // It is nil if there's already been a handshake or a TLS alert has 577 // been written to the connection. 578 Conn net.Conn 579} 580 581func (e RecordHeaderError) Error() string { return "tls: " + e.Msg } 582 583func (c *Conn) newRecordHeaderError(conn net.Conn, msg string) (err RecordHeaderError) { 584 err.Msg = msg 585 err.Conn = conn 586 copy(err.RecordHeader[:], c.rawInput.Bytes()) 587 return err 588} 589 590func (c *Conn) readRecord() error { 591 return c.readRecordOrCCS(false) 592} 593 594func (c *Conn) readChangeCipherSpec() error { 595 return c.readRecordOrCCS(true) 596} 597 598// readRecordOrCCS reads one or more TLS records from the connection and 599// updates the record layer state. Some invariants: 600// - c.in must be locked 601// - c.input must be empty 602// 603// During the handshake one and only one of the following will happen: 604// - c.hand grows 605// - c.in.changeCipherSpec is called 606// - an error is returned 607// 608// After the handshake one and only one of the following will happen: 609// - c.hand grows 610// - c.input is set 611// - an error is returned 612func (c *Conn) readRecordOrCCS(expectChangeCipherSpec bool) error { 613 if c.in.err != nil { 614 return c.in.err 615 } 616 handshakeComplete := c.isHandshakeComplete.Load() 617 618 // This function modifies c.rawInput, which owns the c.input memory. 619 if c.input.Len() != 0 { 620 return c.in.setErrorLocked(errors.New("tls: internal error: attempted to read record with pending application data")) 621 } 622 c.input.Reset(nil) 623 624 if c.quic != nil { 625 return c.in.setErrorLocked(errors.New("tls: internal error: attempted to read record with QUIC transport")) 626 } 627 628 // Read header, payload. 629 if err := c.readFromUntil(c.conn, recordHeaderLen); err != nil { 630 // RFC 8446, Section 6.1 suggests that EOF without an alertCloseNotify 631 // is an error, but popular web sites seem to do this, so we accept it 632 // if and only if at the record boundary. 633 if err == io.ErrUnexpectedEOF && c.rawInput.Len() == 0 { 634 err = io.EOF 635 } 636 if e, ok := err.(net.Error); !ok || !e.Temporary() { 637 c.in.setErrorLocked(err) 638 } 639 return err 640 } 641 hdr := c.rawInput.Bytes()[:recordHeaderLen] 642 typ := recordType(hdr[0]) 643 644 // No valid TLS record has a type of 0x80, however SSLv2 handshakes 645 // start with a uint16 length where the MSB is set and the first record 646 // is always < 256 bytes long. Therefore typ == 0x80 strongly suggests 647 // an SSLv2 client. 648 if !handshakeComplete && typ == 0x80 { 649 c.sendAlert(alertProtocolVersion) 650 return c.in.setErrorLocked(c.newRecordHeaderError(nil, "unsupported SSLv2 handshake received")) 651 } 652 653 vers := uint16(hdr[1])<<8 | uint16(hdr[2]) 654 expectedVers := c.vers 655 if expectedVers == VersionTLS13 { 656 // All TLS 1.3 records are expected to have 0x0303 (1.2) after 657 // the initial hello (RFC 8446 Section 5.1). 658 expectedVers = VersionTLS12 659 } 660 n := int(hdr[3])<<8 | int(hdr[4]) 661 if c.haveVers && vers != expectedVers { 662 c.sendAlert(alertProtocolVersion) 663 msg := fmt.Sprintf("received record with version %x when expecting version %x", vers, expectedVers) 664 return c.in.setErrorLocked(c.newRecordHeaderError(nil, msg)) 665 } 666 if !c.haveVers { 667 // First message, be extra suspicious: this might not be a TLS 668 // client. Bail out before reading a full 'body', if possible. 669 // The current max version is 3.3 so if the version is >= 16.0, 670 // it's probably not real. 671 if (typ != recordTypeAlert && typ != recordTypeHandshake) || vers >= 0x1000 { 672 return c.in.setErrorLocked(c.newRecordHeaderError(c.conn, "first record does not look like a TLS handshake")) 673 } 674 } 675 if c.vers == VersionTLS13 && n > maxCiphertextTLS13 || n > maxCiphertext { 676 c.sendAlert(alertRecordOverflow) 677 msg := fmt.Sprintf("oversized record received with length %d", n) 678 return c.in.setErrorLocked(c.newRecordHeaderError(nil, msg)) 679 } 680 if err := c.readFromUntil(c.conn, recordHeaderLen+n); err != nil { 681 if e, ok := err.(net.Error); !ok || !e.Temporary() { 682 c.in.setErrorLocked(err) 683 } 684 return err 685 } 686 687 // Process message. 688 record := c.rawInput.Next(recordHeaderLen + n) 689 data, typ, err := c.in.decrypt(record) 690 if err != nil { 691 return c.in.setErrorLocked(c.sendAlert(err.(alert))) 692 } 693 if len(data) > maxPlaintext { 694 return c.in.setErrorLocked(c.sendAlert(alertRecordOverflow)) 695 } 696 697 // Application Data messages are always protected. 698 if c.in.cipher == nil && typ == recordTypeApplicationData { 699 return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) 700 } 701 702 if typ != recordTypeAlert && typ != recordTypeChangeCipherSpec && len(data) > 0 { 703 // This is a state-advancing message: reset the retry count. 704 c.retryCount = 0 705 } 706 707 // Handshake messages MUST NOT be interleaved with other record types in TLS 1.3. 708 if c.vers == VersionTLS13 && typ != recordTypeHandshake && c.hand.Len() > 0 { 709 return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) 710 } 711 712 switch typ { 713 default: 714 return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) 715 716 case recordTypeAlert: 717 if c.quic != nil { 718 return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) 719 } 720 if len(data) != 2 { 721 return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) 722 } 723 if alert(data[1]) == alertCloseNotify { 724 return c.in.setErrorLocked(io.EOF) 725 } 726 if c.vers == VersionTLS13 { 727 return c.in.setErrorLocked(&net.OpError{Op: "remote error", Err: alert(data[1])}) 728 } 729 switch data[0] { 730 case alertLevelWarning: 731 // Drop the record on the floor and retry. 732 return c.retryReadRecord(expectChangeCipherSpec) 733 case alertLevelError: 734 return c.in.setErrorLocked(&net.OpError{Op: "remote error", Err: alert(data[1])}) 735 default: 736 return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) 737 } 738 739 case recordTypeChangeCipherSpec: 740 if len(data) != 1 || data[0] != 1 { 741 return c.in.setErrorLocked(c.sendAlert(alertDecodeError)) 742 } 743 // Handshake messages are not allowed to fragment across the CCS. 744 if c.hand.Len() > 0 { 745 return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) 746 } 747 // In TLS 1.3, change_cipher_spec records are ignored until the 748 // Finished. See RFC 8446, Appendix D.4. Note that according to Section 749 // 5, a server can send a ChangeCipherSpec before its ServerHello, when 750 // c.vers is still unset. That's not useful though and suspicious if the 751 // server then selects a lower protocol version, so don't allow that. 752 if c.vers == VersionTLS13 { 753 return c.retryReadRecord(expectChangeCipherSpec) 754 } 755 if !expectChangeCipherSpec { 756 return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) 757 } 758 if err := c.in.changeCipherSpec(); err != nil { 759 return c.in.setErrorLocked(c.sendAlert(err.(alert))) 760 } 761 762 case recordTypeApplicationData: 763 if !handshakeComplete || expectChangeCipherSpec { 764 return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) 765 } 766 // Some OpenSSL servers send empty records in order to randomize the 767 // CBC IV. Ignore a limited number of empty records. 768 if len(data) == 0 { 769 return c.retryReadRecord(expectChangeCipherSpec) 770 } 771 // Note that data is owned by c.rawInput, following the Next call above, 772 // to avoid copying the plaintext. This is safe because c.rawInput is 773 // not read from or written to until c.input is drained. 774 c.input.Reset(data) 775 776 case recordTypeHandshake: 777 if len(data) == 0 || expectChangeCipherSpec { 778 return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) 779 } 780 c.hand.Write(data) 781 } 782 783 return nil 784} 785 786// retryReadRecord recurs into readRecordOrCCS to drop a non-advancing record, like 787// a warning alert, empty application_data, or a change_cipher_spec in TLS 1.3. 788func (c *Conn) retryReadRecord(expectChangeCipherSpec bool) error { 789 c.retryCount++ 790 if c.retryCount > maxUselessRecords { 791 c.sendAlert(alertUnexpectedMessage) 792 return c.in.setErrorLocked(errors.New("tls: too many ignored records")) 793 } 794 return c.readRecordOrCCS(expectChangeCipherSpec) 795} 796 797// atLeastReader reads from R, stopping with EOF once at least N bytes have been 798// read. It is different from an io.LimitedReader in that it doesn't cut short 799// the last Read call, and in that it considers an early EOF an error. 800type atLeastReader struct { 801 R io.Reader 802 N int64 803} 804 805func (r *atLeastReader) Read(p []byte) (int, error) { 806 if r.N <= 0 { 807 return 0, io.EOF 808 } 809 n, err := r.R.Read(p) 810 r.N -= int64(n) // won't underflow unless len(p) >= n > 9223372036854775809 811 if r.N > 0 && err == io.EOF { 812 return n, io.ErrUnexpectedEOF 813 } 814 if r.N <= 0 && err == nil { 815 return n, io.EOF 816 } 817 return n, err 818} 819 820// readFromUntil reads from r into c.rawInput until c.rawInput contains 821// at least n bytes or else returns an error. 822func (c *Conn) readFromUntil(r io.Reader, n int) error { 823 if c.rawInput.Len() >= n { 824 return nil 825 } 826 needs := n - c.rawInput.Len() 827 // There might be extra input waiting on the wire. Make a best effort 828 // attempt to fetch it so that it can be used in (*Conn).Read to 829 // "predict" closeNotify alerts. 830 c.rawInput.Grow(needs + bytes.MinRead) 831 _, err := c.rawInput.ReadFrom(&atLeastReader{r, int64(needs)}) 832 return err 833} 834 835// sendAlertLocked sends a TLS alert message. 836func (c *Conn) sendAlertLocked(err alert) error { 837 if c.quic != nil { 838 return c.out.setErrorLocked(&net.OpError{Op: "local error", Err: err}) 839 } 840 841 switch err { 842 case alertNoRenegotiation, alertCloseNotify: 843 c.tmp[0] = alertLevelWarning 844 default: 845 c.tmp[0] = alertLevelError 846 } 847 c.tmp[1] = byte(err) 848 849 _, writeErr := c.writeRecordLocked(recordTypeAlert, c.tmp[0:2]) 850 if err == alertCloseNotify { 851 // closeNotify is a special case in that it isn't an error. 852 return writeErr 853 } 854 855 return c.out.setErrorLocked(&net.OpError{Op: "local error", Err: err}) 856} 857 858// sendAlert sends a TLS alert message. 859func (c *Conn) sendAlert(err alert) error { 860 c.out.Lock() 861 defer c.out.Unlock() 862 return c.sendAlertLocked(err) 863} 864 865const ( 866 // tcpMSSEstimate is a conservative estimate of the TCP maximum segment 867 // size (MSS). A constant is used, rather than querying the kernel for 868 // the actual MSS, to avoid complexity. The value here is the IPv6 869 // minimum MTU (1280 bytes) minus the overhead of an IPv6 header (40 870 // bytes) and a TCP header with timestamps (32 bytes). 871 tcpMSSEstimate = 1208 872 873 // recordSizeBoostThreshold is the number of bytes of application data 874 // sent after which the TLS record size will be increased to the 875 // maximum. 876 recordSizeBoostThreshold = 128 * 1024 877) 878 879// maxPayloadSizeForWrite returns the maximum TLS payload size to use for the 880// next application data record. There is the following trade-off: 881// 882// - For latency-sensitive applications, such as web browsing, each TLS 883// record should fit in one TCP segment. 884// - For throughput-sensitive applications, such as large file transfers, 885// larger TLS records better amortize framing and encryption overheads. 886// 887// A simple heuristic that works well in practice is to use small records for 888// the first 1MB of data, then use larger records for subsequent data, and 889// reset back to smaller records after the connection becomes idle. See "High 890// Performance Web Networking", Chapter 4, or: 891// https://www.igvita.com/2013/10/24/optimizing-tls-record-size-and-buffering-latency/ 892// 893// In the interests of simplicity and determinism, this code does not attempt 894// to reset the record size once the connection is idle, however. 895func (c *Conn) maxPayloadSizeForWrite(typ recordType) int { 896 if c.config.DynamicRecordSizingDisabled || typ != recordTypeApplicationData { 897 return maxPlaintext 898 } 899 900 if c.bytesSent >= recordSizeBoostThreshold { 901 return maxPlaintext 902 } 903 904 // Subtract TLS overheads to get the maximum payload size. 905 payloadBytes := tcpMSSEstimate - recordHeaderLen - c.out.explicitNonceLen() 906 if c.out.cipher != nil { 907 switch ciph := c.out.cipher.(type) { 908 case cipher.Stream: 909 payloadBytes -= c.out.mac.Size() 910 case cipher.AEAD: 911 payloadBytes -= ciph.Overhead() 912 case cbcMode: 913 blockSize := ciph.BlockSize() 914 // The payload must fit in a multiple of blockSize, with 915 // room for at least one padding byte. 916 payloadBytes = (payloadBytes & ^(blockSize - 1)) - 1 917 // The MAC is appended before padding so affects the 918 // payload size directly. 919 payloadBytes -= c.out.mac.Size() 920 default: 921 panic("unknown cipher type") 922 } 923 } 924 if c.vers == VersionTLS13 { 925 payloadBytes-- // encrypted ContentType 926 } 927 928 // Allow packet growth in arithmetic progression up to max. 929 pkt := c.packetsSent 930 c.packetsSent++ 931 if pkt > 1000 { 932 return maxPlaintext // avoid overflow in multiply below 933 } 934 935 n := payloadBytes * int(pkt+1) 936 if n > maxPlaintext { 937 n = maxPlaintext 938 } 939 return n 940} 941 942func (c *Conn) write(data []byte) (int, error) { 943 if c.buffering { 944 c.sendBuf = append(c.sendBuf, data...) 945 return len(data), nil 946 } 947 948 n, err := c.conn.Write(data) 949 c.bytesSent += int64(n) 950 return n, err 951} 952 953func (c *Conn) flush() (int, error) { 954 if len(c.sendBuf) == 0 { 955 return 0, nil 956 } 957 958 n, err := c.conn.Write(c.sendBuf) 959 c.bytesSent += int64(n) 960 c.sendBuf = nil 961 c.buffering = false 962 return n, err 963} 964 965// outBufPool pools the record-sized scratch buffers used by writeRecordLocked. 966var outBufPool = sync.Pool{ 967 New: func() any { 968 return new([]byte) 969 }, 970} 971 972// writeRecordLocked writes a TLS record with the given type and payload to the 973// connection and updates the record layer state. 974func (c *Conn) writeRecordLocked(typ recordType, data []byte) (int, error) { 975 if c.quic != nil { 976 if typ != recordTypeHandshake { 977 return 0, errors.New("tls: internal error: sending non-handshake message to QUIC transport") 978 } 979 c.quicWriteCryptoData(c.out.level, data) 980 if !c.buffering { 981 if _, err := c.flush(); err != nil { 982 return 0, err 983 } 984 } 985 return len(data), nil 986 } 987 988 outBufPtr := outBufPool.Get().(*[]byte) 989 outBuf := *outBufPtr 990 defer func() { 991 // You might be tempted to simplify this by just passing &outBuf to Put, 992 // but that would make the local copy of the outBuf slice header escape 993 // to the heap, causing an allocation. Instead, we keep around the 994 // pointer to the slice header returned by Get, which is already on the 995 // heap, and overwrite and return that. 996 *outBufPtr = outBuf 997 outBufPool.Put(outBufPtr) 998 }() 999 1000 var n int 1001 for len(data) > 0 { 1002 m := len(data) 1003 if maxPayload := c.maxPayloadSizeForWrite(typ); m > maxPayload { 1004 m = maxPayload 1005 } 1006 1007 _, outBuf = sliceForAppend(outBuf[:0], recordHeaderLen) 1008 outBuf[0] = byte(typ) 1009 vers := c.vers 1010 if vers == 0 { 1011 // Some TLS servers fail if the record version is 1012 // greater than TLS 1.0 for the initial ClientHello. 1013 vers = VersionTLS10 1014 } else if vers == VersionTLS13 { 1015 // TLS 1.3 froze the record layer version to 1.2. 1016 // See RFC 8446, Section 5.1. 1017 vers = VersionTLS12 1018 } 1019 outBuf[1] = byte(vers >> 8) 1020 outBuf[2] = byte(vers) 1021 outBuf[3] = byte(m >> 8) 1022 outBuf[4] = byte(m) 1023 1024 var err error 1025 outBuf, err = c.out.encrypt(outBuf, data[:m], c.config.rand()) 1026 if err != nil { 1027 return n, err 1028 } 1029 if _, err := c.write(outBuf); err != nil { 1030 return n, err 1031 } 1032 n += m 1033 data = data[m:] 1034 } 1035 1036 if typ == recordTypeChangeCipherSpec && c.vers != VersionTLS13 { 1037 if err := c.out.changeCipherSpec(); err != nil { 1038 return n, c.sendAlertLocked(err.(alert)) 1039 } 1040 } 1041 1042 return n, nil 1043} 1044 1045// writeHandshakeRecord writes a handshake message to the connection and updates 1046// the record layer state. If transcript is non-nil the marshaled message is 1047// written to it. 1048func (c *Conn) writeHandshakeRecord(msg handshakeMessage, transcript transcriptHash) (int, error) { 1049 c.out.Lock() 1050 defer c.out.Unlock() 1051 1052 data, err := msg.marshal() 1053 if err != nil { 1054 return 0, err 1055 } 1056 if transcript != nil { 1057 transcript.Write(data) 1058 } 1059 1060 return c.writeRecordLocked(recordTypeHandshake, data) 1061} 1062 1063// writeChangeCipherRecord writes a ChangeCipherSpec message to the connection and 1064// updates the record layer state. 1065func (c *Conn) writeChangeCipherRecord() error { 1066 c.out.Lock() 1067 defer c.out.Unlock() 1068 _, err := c.writeRecordLocked(recordTypeChangeCipherSpec, []byte{1}) 1069 return err 1070} 1071 1072// readHandshakeBytes reads handshake data until c.hand contains at least n bytes. 1073func (c *Conn) readHandshakeBytes(n int) error { 1074 if c.quic != nil { 1075 return c.quicReadHandshakeBytes(n) 1076 } 1077 for c.hand.Len() < n { 1078 if err := c.readRecord(); err != nil { 1079 return err 1080 } 1081 } 1082 return nil 1083} 1084 1085// readHandshake reads the next handshake message from 1086// the record layer. If transcript is non-nil, the message 1087// is written to the passed transcriptHash. 1088func (c *Conn) readHandshake(transcript transcriptHash) (any, error) { 1089 if err := c.readHandshakeBytes(4); err != nil { 1090 return nil, err 1091 } 1092 data := c.hand.Bytes() 1093 1094 maxHandshakeSize := maxHandshake 1095 // hasVers indicates we're past the first message, forcing someone trying to 1096 // make us just allocate a large buffer to at least do the initial part of 1097 // the handshake first. 1098 if c.haveVers && data[0] == typeCertificate { 1099 // Since certificate messages are likely to be the only messages that 1100 // can be larger than maxHandshake, we use a special limit for just 1101 // those messages. 1102 maxHandshakeSize = maxHandshakeCertificateMsg 1103 } 1104 1105 n := int(data[1])<<16 | int(data[2])<<8 | int(data[3]) 1106 if n > maxHandshakeSize { 1107 c.sendAlertLocked(alertInternalError) 1108 return nil, c.in.setErrorLocked(fmt.Errorf("tls: handshake message of length %d bytes exceeds maximum of %d bytes", n, maxHandshakeSize)) 1109 } 1110 if err := c.readHandshakeBytes(4 + n); err != nil { 1111 return nil, err 1112 } 1113 data = c.hand.Next(4 + n) 1114 return c.unmarshalHandshakeMessage(data, transcript) 1115} 1116 1117func (c *Conn) unmarshalHandshakeMessage(data []byte, transcript transcriptHash) (handshakeMessage, error) { 1118 var m handshakeMessage 1119 switch data[0] { 1120 case typeHelloRequest: 1121 m = new(helloRequestMsg) 1122 case typeClientHello: 1123 m = new(clientHelloMsg) 1124 case typeServerHello: 1125 m = new(serverHelloMsg) 1126 case typeNewSessionTicket: 1127 if c.vers == VersionTLS13 { 1128 m = new(newSessionTicketMsgTLS13) 1129 } else { 1130 m = new(newSessionTicketMsg) 1131 } 1132 case typeCertificate: 1133 if c.vers == VersionTLS13 { 1134 m = new(certificateMsgTLS13) 1135 } else { 1136 m = new(certificateMsg) 1137 } 1138 case typeCertificateRequest: 1139 if c.vers == VersionTLS13 { 1140 m = new(certificateRequestMsgTLS13) 1141 } else { 1142 m = &certificateRequestMsg{ 1143 hasSignatureAlgorithm: c.vers >= VersionTLS12, 1144 } 1145 } 1146 case typeCertificateStatus: 1147 m = new(certificateStatusMsg) 1148 case typeServerKeyExchange: 1149 m = new(serverKeyExchangeMsg) 1150 case typeServerHelloDone: 1151 m = new(serverHelloDoneMsg) 1152 case typeClientKeyExchange: 1153 m = new(clientKeyExchangeMsg) 1154 case typeCertificateVerify: 1155 m = &certificateVerifyMsg{ 1156 hasSignatureAlgorithm: c.vers >= VersionTLS12, 1157 } 1158 case typeFinished: 1159 m = new(finishedMsg) 1160 case typeEncryptedExtensions: 1161 m = new(encryptedExtensionsMsg) 1162 case typeEndOfEarlyData: 1163 m = new(endOfEarlyDataMsg) 1164 case typeKeyUpdate: 1165 m = new(keyUpdateMsg) 1166 default: 1167 return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) 1168 } 1169 1170 // The handshake message unmarshalers 1171 // expect to be able to keep references to data, 1172 // so pass in a fresh copy that won't be overwritten. 1173 data = append([]byte(nil), data...) 1174 1175 if !m.unmarshal(data) { 1176 return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) 1177 } 1178 1179 if transcript != nil { 1180 transcript.Write(data) 1181 } 1182 1183 return m, nil 1184} 1185 1186var ( 1187 errShutdown = errors.New("tls: protocol is shutdown") 1188) 1189 1190// Write writes data to the connection. 1191// 1192// As Write calls [Conn.Handshake], in order to prevent indefinite blocking a deadline 1193// must be set for both [Conn.Read] and Write before Write is called when the handshake 1194// has not yet completed. See [Conn.SetDeadline], [Conn.SetReadDeadline], and 1195// [Conn.SetWriteDeadline]. 1196func (c *Conn) Write(b []byte) (int, error) { 1197 // interlock with Close below 1198 for { 1199 x := c.activeCall.Load() 1200 if x&1 != 0 { 1201 return 0, net.ErrClosed 1202 } 1203 if c.activeCall.CompareAndSwap(x, x+2) { 1204 break 1205 } 1206 } 1207 defer c.activeCall.Add(-2) 1208 1209 if err := c.Handshake(); err != nil { 1210 return 0, err 1211 } 1212 1213 c.out.Lock() 1214 defer c.out.Unlock() 1215 1216 if err := c.out.err; err != nil { 1217 return 0, err 1218 } 1219 1220 if !c.isHandshakeComplete.Load() { 1221 return 0, alertInternalError 1222 } 1223 1224 if c.closeNotifySent { 1225 return 0, errShutdown 1226 } 1227 1228 // TLS 1.0 is susceptible to a chosen-plaintext 1229 // attack when using block mode ciphers due to predictable IVs. 1230 // This can be prevented by splitting each Application Data 1231 // record into two records, effectively randomizing the IV. 1232 // 1233 // https://www.openssl.org/~bodo/tls-cbc.txt 1234 // https://bugzilla.mozilla.org/show_bug.cgi?id=665814 1235 // https://www.imperialviolet.org/2012/01/15/beastfollowup.html 1236 1237 var m int 1238 if len(b) > 1 && c.vers == VersionTLS10 { 1239 if _, ok := c.out.cipher.(cipher.BlockMode); ok { 1240 n, err := c.writeRecordLocked(recordTypeApplicationData, b[:1]) 1241 if err != nil { 1242 return n, c.out.setErrorLocked(err) 1243 } 1244 m, b = 1, b[1:] 1245 } 1246 } 1247 1248 n, err := c.writeRecordLocked(recordTypeApplicationData, b) 1249 return n + m, c.out.setErrorLocked(err) 1250} 1251 1252// handleRenegotiation processes a HelloRequest handshake message. 1253func (c *Conn) handleRenegotiation() error { 1254 if c.vers == VersionTLS13 { 1255 return errors.New("tls: internal error: unexpected renegotiation") 1256 } 1257 1258 msg, err := c.readHandshake(nil) 1259 if err != nil { 1260 return err 1261 } 1262 1263 helloReq, ok := msg.(*helloRequestMsg) 1264 if !ok { 1265 c.sendAlert(alertUnexpectedMessage) 1266 return unexpectedMessageError(helloReq, msg) 1267 } 1268 1269 if !c.isClient { 1270 return c.sendAlert(alertNoRenegotiation) 1271 } 1272 1273 switch c.config.Renegotiation { 1274 case RenegotiateNever: 1275 return c.sendAlert(alertNoRenegotiation) 1276 case RenegotiateOnceAsClient: 1277 if c.handshakes > 1 { 1278 return c.sendAlert(alertNoRenegotiation) 1279 } 1280 case RenegotiateFreelyAsClient: 1281 // Ok. 1282 default: 1283 c.sendAlert(alertInternalError) 1284 return errors.New("tls: unknown Renegotiation value") 1285 } 1286 1287 c.handshakeMutex.Lock() 1288 defer c.handshakeMutex.Unlock() 1289 1290 c.isHandshakeComplete.Store(false) 1291 if c.handshakeErr = c.clientHandshake(context.Background()); c.handshakeErr == nil { 1292 c.handshakes++ 1293 } 1294 return c.handshakeErr 1295} 1296 1297// handlePostHandshakeMessage processes a handshake message arrived after the 1298// handshake is complete. Up to TLS 1.2, it indicates the start of a renegotiation. 1299func (c *Conn) handlePostHandshakeMessage() error { 1300 if c.vers != VersionTLS13 { 1301 return c.handleRenegotiation() 1302 } 1303 1304 msg, err := c.readHandshake(nil) 1305 if err != nil { 1306 return err 1307 } 1308 c.retryCount++ 1309 if c.retryCount > maxUselessRecords { 1310 c.sendAlert(alertUnexpectedMessage) 1311 return c.in.setErrorLocked(errors.New("tls: too many non-advancing records")) 1312 } 1313 1314 switch msg := msg.(type) { 1315 case *newSessionTicketMsgTLS13: 1316 return c.handleNewSessionTicket(msg) 1317 case *keyUpdateMsg: 1318 return c.handleKeyUpdate(msg) 1319 } 1320 // The QUIC layer is supposed to treat an unexpected post-handshake CertificateRequest 1321 // as a QUIC-level PROTOCOL_VIOLATION error (RFC 9001, Section 4.4). Returning an 1322 // unexpected_message alert here doesn't provide it with enough information to distinguish 1323 // this condition from other unexpected messages. This is probably fine. 1324 c.sendAlert(alertUnexpectedMessage) 1325 return fmt.Errorf("tls: received unexpected handshake message of type %T", msg) 1326} 1327 1328func (c *Conn) handleKeyUpdate(keyUpdate *keyUpdateMsg) error { 1329 if c.quic != nil { 1330 c.sendAlert(alertUnexpectedMessage) 1331 return c.in.setErrorLocked(errors.New("tls: received unexpected key update message")) 1332 } 1333 1334 cipherSuite := cipherSuiteTLS13ByID(c.cipherSuite) 1335 if cipherSuite == nil { 1336 return c.in.setErrorLocked(c.sendAlert(alertInternalError)) 1337 } 1338 1339 newSecret := cipherSuite.nextTrafficSecret(c.in.trafficSecret) 1340 c.in.setTrafficSecret(cipherSuite, QUICEncryptionLevelInitial, newSecret) 1341 1342 if keyUpdate.updateRequested { 1343 c.out.Lock() 1344 defer c.out.Unlock() 1345 1346 msg := &keyUpdateMsg{} 1347 msgBytes, err := msg.marshal() 1348 if err != nil { 1349 return err 1350 } 1351 _, err = c.writeRecordLocked(recordTypeHandshake, msgBytes) 1352 if err != nil { 1353 // Surface the error at the next write. 1354 c.out.setErrorLocked(err) 1355 return nil 1356 } 1357 1358 newSecret := cipherSuite.nextTrafficSecret(c.out.trafficSecret) 1359 c.out.setTrafficSecret(cipherSuite, QUICEncryptionLevelInitial, newSecret) 1360 } 1361 1362 return nil 1363} 1364 1365// Read reads data from the connection. 1366// 1367// As Read calls [Conn.Handshake], in order to prevent indefinite blocking a deadline 1368// must be set for both Read and [Conn.Write] before Read is called when the handshake 1369// has not yet completed. See [Conn.SetDeadline], [Conn.SetReadDeadline], and 1370// [Conn.SetWriteDeadline]. 1371func (c *Conn) Read(b []byte) (int, error) { 1372 if err := c.Handshake(); err != nil { 1373 return 0, err 1374 } 1375 if len(b) == 0 { 1376 // Put this after Handshake, in case people were calling 1377 // Read(nil) for the side effect of the Handshake. 1378 return 0, nil 1379 } 1380 1381 c.in.Lock() 1382 defer c.in.Unlock() 1383 1384 for c.input.Len() == 0 { 1385 if err := c.readRecord(); err != nil { 1386 return 0, err 1387 } 1388 for c.hand.Len() > 0 { 1389 if err := c.handlePostHandshakeMessage(); err != nil { 1390 return 0, err 1391 } 1392 } 1393 } 1394 1395 n, _ := c.input.Read(b) 1396 1397 // If a close-notify alert is waiting, read it so that we can return (n, 1398 // EOF) instead of (n, nil), to signal to the HTTP response reading 1399 // goroutine that the connection is now closed. This eliminates a race 1400 // where the HTTP response reading goroutine would otherwise not observe 1401 // the EOF until its next read, by which time a client goroutine might 1402 // have already tried to reuse the HTTP connection for a new request. 1403 // See https://golang.org/cl/76400046 and https://golang.org/issue/3514 1404 if n != 0 && c.input.Len() == 0 && c.rawInput.Len() > 0 && 1405 recordType(c.rawInput.Bytes()[0]) == recordTypeAlert { 1406 if err := c.readRecord(); err != nil { 1407 return n, err // will be io.EOF on closeNotify 1408 } 1409 } 1410 1411 return n, nil 1412} 1413 1414// Close closes the connection. 1415func (c *Conn) Close() error { 1416 // Interlock with Conn.Write above. 1417 var x int32 1418 for { 1419 x = c.activeCall.Load() 1420 if x&1 != 0 { 1421 return net.ErrClosed 1422 } 1423 if c.activeCall.CompareAndSwap(x, x|1) { 1424 break 1425 } 1426 } 1427 if x != 0 { 1428 // io.Writer and io.Closer should not be used concurrently. 1429 // If Close is called while a Write is currently in-flight, 1430 // interpret that as a sign that this Close is really just 1431 // being used to break the Write and/or clean up resources and 1432 // avoid sending the alertCloseNotify, which may block 1433 // waiting on handshakeMutex or the c.out mutex. 1434 return c.conn.Close() 1435 } 1436 1437 var alertErr error 1438 if c.isHandshakeComplete.Load() { 1439 if err := c.closeNotify(); err != nil { 1440 alertErr = fmt.Errorf("tls: failed to send closeNotify alert (but connection was closed anyway): %w", err) 1441 } 1442 } 1443 1444 if err := c.conn.Close(); err != nil { 1445 return err 1446 } 1447 return alertErr 1448} 1449 1450var errEarlyCloseWrite = errors.New("tls: CloseWrite called before handshake complete") 1451 1452// CloseWrite shuts down the writing side of the connection. It should only be 1453// called once the handshake has completed and does not call CloseWrite on the 1454// underlying connection. Most callers should just use [Conn.Close]. 1455func (c *Conn) CloseWrite() error { 1456 if !c.isHandshakeComplete.Load() { 1457 return errEarlyCloseWrite 1458 } 1459 1460 return c.closeNotify() 1461} 1462 1463func (c *Conn) closeNotify() error { 1464 c.out.Lock() 1465 defer c.out.Unlock() 1466 1467 if !c.closeNotifySent { 1468 // Set a Write Deadline to prevent possibly blocking forever. 1469 c.SetWriteDeadline(time.Now().Add(time.Second * 5)) 1470 c.closeNotifyErr = c.sendAlertLocked(alertCloseNotify) 1471 c.closeNotifySent = true 1472 // Any subsequent writes will fail. 1473 c.SetWriteDeadline(time.Now()) 1474 } 1475 return c.closeNotifyErr 1476} 1477 1478// Handshake runs the client or server handshake 1479// protocol if it has not yet been run. 1480// 1481// Most uses of this package need not call Handshake explicitly: the 1482// first [Conn.Read] or [Conn.Write] will call it automatically. 1483// 1484// For control over canceling or setting a timeout on a handshake, use 1485// [Conn.HandshakeContext] or the [Dialer]'s DialContext method instead. 1486// 1487// In order to avoid denial of service attacks, the maximum RSA key size allowed 1488// in certificates sent by either the TLS server or client is limited to 8192 1489// bits. This limit can be overridden by setting tlsmaxrsasize in the GODEBUG 1490// environment variable (e.g. GODEBUG=tlsmaxrsasize=4096). 1491func (c *Conn) Handshake() error { 1492 return c.HandshakeContext(context.Background()) 1493} 1494 1495// HandshakeContext runs the client or server handshake 1496// protocol if it has not yet been run. 1497// 1498// The provided Context must be non-nil. If the context is canceled before 1499// the handshake is complete, the handshake is interrupted and an error is returned. 1500// Once the handshake has completed, cancellation of the context will not affect the 1501// connection. 1502// 1503// Most uses of this package need not call HandshakeContext explicitly: the 1504// first [Conn.Read] or [Conn.Write] will call it automatically. 1505func (c *Conn) HandshakeContext(ctx context.Context) error { 1506 // Delegate to unexported method for named return 1507 // without confusing documented signature. 1508 return c.handshakeContext(ctx) 1509} 1510 1511func (c *Conn) handshakeContext(ctx context.Context) (ret error) { 1512 // Fast sync/atomic-based exit if there is no handshake in flight and the 1513 // last one succeeded without an error. Avoids the expensive context setup 1514 // and mutex for most Read and Write calls. 1515 if c.isHandshakeComplete.Load() { 1516 return nil 1517 } 1518 1519 handshakeCtx, cancel := context.WithCancel(ctx) 1520 // Note: defer this before starting the "interrupter" goroutine 1521 // so that we can tell the difference between the input being canceled and 1522 // this cancellation. In the former case, we need to close the connection. 1523 defer cancel() 1524 1525 if c.quic != nil { 1526 c.quic.cancelc = handshakeCtx.Done() 1527 c.quic.cancel = cancel 1528 } else if ctx.Done() != nil { 1529 // Start the "interrupter" goroutine, if this context might be canceled. 1530 // (The background context cannot). 1531 // 1532 // The interrupter goroutine waits for the input context to be done and 1533 // closes the connection if this happens before the function returns. 1534 done := make(chan struct{}) 1535 interruptRes := make(chan error, 1) 1536 defer func() { 1537 close(done) 1538 if ctxErr := <-interruptRes; ctxErr != nil { 1539 // Return context error to user. 1540 ret = ctxErr 1541 } 1542 }() 1543 go func() { 1544 select { 1545 case <-handshakeCtx.Done(): 1546 // Close the connection, discarding the error 1547 _ = c.conn.Close() 1548 interruptRes <- handshakeCtx.Err() 1549 case <-done: 1550 interruptRes <- nil 1551 } 1552 }() 1553 } 1554 1555 c.handshakeMutex.Lock() 1556 defer c.handshakeMutex.Unlock() 1557 1558 if err := c.handshakeErr; err != nil { 1559 return err 1560 } 1561 if c.isHandshakeComplete.Load() { 1562 return nil 1563 } 1564 1565 c.in.Lock() 1566 defer c.in.Unlock() 1567 1568 c.handshakeErr = c.handshakeFn(handshakeCtx) 1569 if c.handshakeErr == nil { 1570 c.handshakes++ 1571 } else { 1572 // If an error occurred during the handshake try to flush the 1573 // alert that might be left in the buffer. 1574 c.flush() 1575 } 1576 1577 if c.handshakeErr == nil && !c.isHandshakeComplete.Load() { 1578 c.handshakeErr = errors.New("tls: internal error: handshake should have had a result") 1579 } 1580 if c.handshakeErr != nil && c.isHandshakeComplete.Load() { 1581 panic("tls: internal error: handshake returned an error but is marked successful") 1582 } 1583 1584 if c.quic != nil { 1585 if c.handshakeErr == nil { 1586 c.quicHandshakeComplete() 1587 // Provide the 1-RTT read secret now that the handshake is complete. 1588 // The QUIC layer MUST NOT decrypt 1-RTT packets prior to completing 1589 // the handshake (RFC 9001, Section 5.7). 1590 c.quicSetReadSecret(QUICEncryptionLevelApplication, c.cipherSuite, c.in.trafficSecret) 1591 } else { 1592 var a alert 1593 c.out.Lock() 1594 if !errors.As(c.out.err, &a) { 1595 a = alertInternalError 1596 } 1597 c.out.Unlock() 1598 // Return an error which wraps both the handshake error and 1599 // any alert error we may have sent, or alertInternalError 1600 // if we didn't send an alert. 1601 // Truncate the text of the alert to 0 characters. 1602 c.handshakeErr = fmt.Errorf("%w%.0w", c.handshakeErr, AlertError(a)) 1603 } 1604 close(c.quic.blockedc) 1605 close(c.quic.signalc) 1606 } 1607 1608 return c.handshakeErr 1609} 1610 1611// ConnectionState returns basic TLS details about the connection. 1612func (c *Conn) ConnectionState() ConnectionState { 1613 c.handshakeMutex.Lock() 1614 defer c.handshakeMutex.Unlock() 1615 return c.connectionStateLocked() 1616} 1617 1618var tlsunsafeekm = godebug.New("tlsunsafeekm") 1619 1620func (c *Conn) connectionStateLocked() ConnectionState { 1621 var state ConnectionState 1622 state.HandshakeComplete = c.isHandshakeComplete.Load() 1623 state.Version = c.vers 1624 state.NegotiatedProtocol = c.clientProtocol 1625 state.DidResume = c.didResume 1626 state.testingOnlyDidHRR = c.didHRR 1627 // c.curveID is not set on TLS 1.0–1.2 resumptions. Fix that before exposing it. 1628 state.testingOnlyCurveID = c.curveID 1629 state.NegotiatedProtocolIsMutual = true 1630 state.ServerName = c.serverName 1631 state.CipherSuite = c.cipherSuite 1632 state.PeerCertificates = c.peerCertificates 1633 state.VerifiedChains = c.verifiedChains 1634 state.SignedCertificateTimestamps = c.scts 1635 state.OCSPResponse = c.ocspResponse 1636 if (!c.didResume || c.extMasterSecret) && c.vers != VersionTLS13 { 1637 if c.clientFinishedIsFirst { 1638 state.TLSUnique = c.clientFinished[:] 1639 } else { 1640 state.TLSUnique = c.serverFinished[:] 1641 } 1642 } 1643 if c.config.Renegotiation != RenegotiateNever { 1644 state.ekm = noEKMBecauseRenegotiation 1645 } else if c.vers != VersionTLS13 && !c.extMasterSecret { 1646 state.ekm = func(label string, context []byte, length int) ([]byte, error) { 1647 if tlsunsafeekm.Value() == "1" { 1648 tlsunsafeekm.IncNonDefault() 1649 return c.ekm(label, context, length) 1650 } 1651 return noEKMBecauseNoEMS(label, context, length) 1652 } 1653 } else { 1654 state.ekm = c.ekm 1655 } 1656 state.ECHAccepted = c.echAccepted 1657 return state 1658} 1659 1660// OCSPResponse returns the stapled OCSP response from the TLS server, if 1661// any. (Only valid for client connections.) 1662func (c *Conn) OCSPResponse() []byte { 1663 c.handshakeMutex.Lock() 1664 defer c.handshakeMutex.Unlock() 1665 1666 return c.ocspResponse 1667} 1668 1669// VerifyHostname checks that the peer certificate chain is valid for 1670// connecting to host. If so, it returns nil; if not, it returns an error 1671// describing the problem. 1672func (c *Conn) VerifyHostname(host string) error { 1673 c.handshakeMutex.Lock() 1674 defer c.handshakeMutex.Unlock() 1675 if !c.isClient { 1676 return errors.New("tls: VerifyHostname called on TLS server connection") 1677 } 1678 if !c.isHandshakeComplete.Load() { 1679 return errors.New("tls: handshake has not yet been performed") 1680 } 1681 if len(c.verifiedChains) == 0 { 1682 return errors.New("tls: handshake did not verify certificate chain") 1683 } 1684 return c.peerCertificates[0].VerifyHostname(host) 1685} 1686